1 /****************************************************************************
2  *                                                                          *
3  *                        GNAT COMPILER COMPONENTS                          *
4  *                                                                          *
5  *                               C U I N T P                                *
6  *                                                                          *
7  *                          C Implementation File                           *
8  *                                                                          *
9  *          Copyright (C) 1992-2020, Free Software Foundation, Inc.         *
10  *                                                                          *
11  * GNAT is free software;  you can  redistribute it  and/or modify it under *
12  * terms of the  GNU General Public License as published  by the Free Soft- *
13  * ware  Foundation;  either version 3,  or (at your option) any later ver- *
14  * sion.  GNAT is distributed in the hope that it will be useful, but WITH- *
15  * OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY *
16  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License *
17  * for  more details.  You should have received a copy of the GNU General   *
18  * Public License along with GCC; see the file COPYING3.  If not see        *
19  * <http://www.gnu.org/licenses/>.                                          *
20  *                                                                          *
21  * GNAT was originally developed  by the GNAT team at  New York University. *
22  * Extensive contributions were provided by Ada Core Technologies Inc.      *
23  *                                                                          *
24  ****************************************************************************/
25 
26 /* This file corresponds to the Ada package body Uintp.  It was created
27    manually from the files uintp.ads and uintp.adb.  */
28 
29 #include "config.h"
30 #include "system.h"
31 #include "coretypes.h"
32 #include "tm.h"
33 #include "vec.h"
34 #include "alias.h"
35 #include "tree.h"
36 #include "inchash.h"
37 #include "fold-const.h"
38 
39 #include "ada.h"
40 #include "types.h"
41 #include "uintp.h"
42 #include "ada-tree.h"
43 #include "gigi.h"
44 
45 /* Universal integers are represented by the Uint type which is an index into
46    the Uints_Ptr table containing Uint_Entry values.  A Uint_Entry contains an
47    index and length for getting the "digits" of the universal integer from the
48    Udigits_Ptr table.
49 
50    For efficiency, this method is used only for integer values larger than the
51    constant Uint_Bias.  If a Uint is less than this constant, then it contains
52    the integer value itself.  The origin of the Uints_Ptr table is adjusted so
53    that a Uint value of Uint_Bias indexes the first element.
54 
55    First define a utility function that is build_int_cst for integral types and
56    does a conversion for floating-point types.  */
57 
58 static tree
build_cst_from_int(tree type,HOST_WIDE_INT low)59 build_cst_from_int (tree type, HOST_WIDE_INT low)
60 {
61   if (SCALAR_FLOAT_TYPE_P (type))
62     return convert (type, build_int_cst (gnat_type_for_size (32, 0), low));
63   else
64     return build_int_cst (type, low);
65 }
66 
67 /* Similar to UI_To_Int, but return a GCC INTEGER_CST or REAL_CST node,
68    depending on whether TYPE is an integral or real type.  Overflow is tested
69    by the constant-folding used to build the node.  TYPE is the GCC type of
70    the resulting node.  */
71 
72 tree
UI_To_gnu(Uint Input,tree type)73 UI_To_gnu (Uint Input, tree type)
74 {
75   /* We might have a TYPE with biased representation and be passed an unbiased
76      value that doesn't fit.  We always use an unbiased type to be able to hold
77      any such possible value for intermediate computations and then rely on a
78      conversion back to TYPE to perform the bias adjustment when need be.  */
79   tree comp_type
80     = TREE_CODE (type) == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (type)
81       ? get_base_type (type) : type;
82   tree gnu_ret;
83 
84   if (Input <= Uint_Direct_Last)
85     gnu_ret = build_cst_from_int (comp_type, Input - Uint_Direct_Bias);
86   else
87     {
88       Int Idx = Uints_Ptr[Input].Loc;
89       Pos Length = Uints_Ptr[Input].Length;
90       Int First = Udigits_Ptr[Idx];
91       tree gnu_base;
92 
93       gcc_assert (Length > 0);
94 
95       /* The computations we perform below always require a type at least as
96 	 large as an integer not to overflow.  FP types are always fine, but
97 	 INTEGER or ENUMERAL types we are handed may be too short.  We use a
98 	 base integer type node for the computations in this case and will
99 	 convert the final result back to the incoming type later on.  */
100       if (!SCALAR_FLOAT_TYPE_P (comp_type) && TYPE_PRECISION (comp_type) < 32)
101 	comp_type = gnat_type_for_size (32, 0);
102 
103       gnu_base = build_cst_from_int (comp_type, Base);
104 
105       gnu_ret = build_cst_from_int (comp_type, First);
106       if (First < 0)
107 	for (Idx++, Length--; Length; Idx++, Length--)
108 	  gnu_ret = fold_build2 (MINUS_EXPR, comp_type,
109 				 fold_build2 (MULT_EXPR, comp_type,
110 					      gnu_ret, gnu_base),
111 				 build_cst_from_int (comp_type,
112 						     Udigits_Ptr[Idx]));
113       else
114 	for (Idx++, Length--; Length; Idx++, Length--)
115 	  gnu_ret = fold_build2 (PLUS_EXPR, comp_type,
116 				 fold_build2 (MULT_EXPR, comp_type,
117 					      gnu_ret, gnu_base),
118 				 build_cst_from_int (comp_type,
119 						     Udigits_Ptr[Idx]));
120     }
121 
122   gnu_ret = convert (type, gnu_ret);
123 
124   /* We don't need any NOP_EXPR or NON_LVALUE_EXPR on GNU_RET.  */
125   while ((TREE_CODE (gnu_ret) == NOP_EXPR
126 	  || TREE_CODE (gnu_ret) == NON_LVALUE_EXPR)
127 	 && TREE_TYPE (TREE_OPERAND (gnu_ret, 0)) == TREE_TYPE (gnu_ret))
128     gnu_ret = TREE_OPERAND (gnu_ret, 0);
129 
130   return gnu_ret;
131 }
132 
133 /* Similar to UI_From_Int, but take a GCC INTEGER_CST.  We use UI_From_Int
134    when possible, i.e. for a 32-bit signed value, to take advantage of its
135    built-in caching mechanism.  For values of larger magnitude, we compute
136    digits into a vector and call Vector_To_Uint.  */
137 
138 Uint
UI_From_gnu(tree Input)139 UI_From_gnu (tree Input)
140 {
141   tree gnu_type = TREE_TYPE (Input), gnu_base, gnu_temp;
142   /* UI_Base is defined so that 5 Uint digits is sufficient to hold the
143      largest possible signed 64-bit value.  */
144   const int Max_For_Dint = 5;
145   int v[Max_For_Dint];
146   Vector_Template temp;
147   Int_Vector vec;
148 
149 #if HOST_BITS_PER_WIDE_INT < 64
150 #error unsupported HOST_BITS_PER_WIDE_INT setting
151 #endif
152 
153   /* On 64-bit hosts, tree_fits_shwi_p tells whether the input fits in
154      a signed 64-bit integer.  Then a truncation tells whether it fits
155      in a signed 32-bit integer.  */
156   if (tree_fits_shwi_p (Input))
157     {
158       HOST_WIDE_INT hw_input = tree_to_shwi (Input);
159       if (hw_input == (int) hw_input)
160 	return UI_From_Int (hw_input);
161     }
162   else
163     return No_Uint;
164 
165   gnu_base = build_int_cst (gnu_type, UI_Base);
166   gnu_temp = Input;
167 
168   for (int i = Max_For_Dint - 1; i >= 0; i--)
169     {
170       v[i] = tree_to_shwi (fold_build1 (ABS_EXPR, gnu_type,
171 					fold_build2 (TRUNC_MOD_EXPR, gnu_type,
172 						     gnu_temp, gnu_base)));
173       gnu_temp = fold_build2 (TRUNC_DIV_EXPR, gnu_type, gnu_temp, gnu_base);
174     }
175 
176   temp.Low_Bound = 1;
177   temp.High_Bound = Max_For_Dint;
178   vec.Bounds = &temp;
179   vec.Array = v;
180   return Vector_To_Uint (vec, tree_int_cst_sgn (Input) < 0);
181 }
182