1 /* Tree-based target query functions relating to optabs
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "insn-codes.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "optabs.h"
30 #include "optabs-tree.h"
31 #include "stor-layout.h"
32
33 /* Return the optab used for computing the operation given by the tree code,
34 CODE and the tree EXP. This function is not always usable (for example, it
35 cannot give complete results for multiplication or division) but probably
36 ought to be relied on more widely throughout the expander. */
37 optab
optab_for_tree_code(enum tree_code code,const_tree type,enum optab_subtype subtype)38 optab_for_tree_code (enum tree_code code, const_tree type,
39 enum optab_subtype subtype)
40 {
41 bool trapv;
42 switch (code)
43 {
44 case BIT_AND_EXPR:
45 return and_optab;
46
47 case BIT_IOR_EXPR:
48 return ior_optab;
49
50 case BIT_NOT_EXPR:
51 return one_cmpl_optab;
52
53 case BIT_XOR_EXPR:
54 return xor_optab;
55
56 case MULT_HIGHPART_EXPR:
57 return TYPE_UNSIGNED (type) ? umul_highpart_optab : smul_highpart_optab;
58
59 case TRUNC_MOD_EXPR:
60 case CEIL_MOD_EXPR:
61 case FLOOR_MOD_EXPR:
62 case ROUND_MOD_EXPR:
63 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
64
65 case RDIV_EXPR:
66 case TRUNC_DIV_EXPR:
67 case CEIL_DIV_EXPR:
68 case FLOOR_DIV_EXPR:
69 case ROUND_DIV_EXPR:
70 case EXACT_DIV_EXPR:
71 if (TYPE_SATURATING (type))
72 return TYPE_UNSIGNED (type) ? usdiv_optab : ssdiv_optab;
73 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
74
75 case LSHIFT_EXPR:
76 if (TREE_CODE (type) == VECTOR_TYPE)
77 {
78 if (subtype == optab_vector)
79 return TYPE_SATURATING (type) ? unknown_optab : vashl_optab;
80
81 gcc_assert (subtype == optab_scalar);
82 }
83 if (TYPE_SATURATING (type))
84 return TYPE_UNSIGNED (type) ? usashl_optab : ssashl_optab;
85 return ashl_optab;
86
87 case RSHIFT_EXPR:
88 if (TREE_CODE (type) == VECTOR_TYPE)
89 {
90 if (subtype == optab_vector)
91 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
92
93 gcc_assert (subtype == optab_scalar);
94 }
95 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
96
97 case LROTATE_EXPR:
98 if (TREE_CODE (type) == VECTOR_TYPE)
99 {
100 if (subtype == optab_vector)
101 return vrotl_optab;
102
103 gcc_assert (subtype == optab_scalar);
104 }
105 return rotl_optab;
106
107 case RROTATE_EXPR:
108 if (TREE_CODE (type) == VECTOR_TYPE)
109 {
110 if (subtype == optab_vector)
111 return vrotr_optab;
112
113 gcc_assert (subtype == optab_scalar);
114 }
115 return rotr_optab;
116
117 case MAX_EXPR:
118 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
119
120 case MIN_EXPR:
121 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
122
123 case REALIGN_LOAD_EXPR:
124 return vec_realign_load_optab;
125
126 case WIDEN_SUM_EXPR:
127 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
128
129 case DOT_PROD_EXPR:
130 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
131
132 case SAD_EXPR:
133 return TYPE_UNSIGNED (type) ? usad_optab : ssad_optab;
134
135 case WIDEN_MULT_PLUS_EXPR:
136 return (TYPE_UNSIGNED (type)
137 ? (TYPE_SATURATING (type)
138 ? usmadd_widen_optab : umadd_widen_optab)
139 : (TYPE_SATURATING (type)
140 ? ssmadd_widen_optab : smadd_widen_optab));
141
142 case WIDEN_MULT_MINUS_EXPR:
143 return (TYPE_UNSIGNED (type)
144 ? (TYPE_SATURATING (type)
145 ? usmsub_widen_optab : umsub_widen_optab)
146 : (TYPE_SATURATING (type)
147 ? ssmsub_widen_optab : smsub_widen_optab));
148
149 case VEC_WIDEN_MULT_HI_EXPR:
150 return (TYPE_UNSIGNED (type)
151 ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab);
152
153 case VEC_WIDEN_MULT_LO_EXPR:
154 return (TYPE_UNSIGNED (type)
155 ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab);
156
157 case VEC_WIDEN_MULT_EVEN_EXPR:
158 return (TYPE_UNSIGNED (type)
159 ? vec_widen_umult_even_optab : vec_widen_smult_even_optab);
160
161 case VEC_WIDEN_MULT_ODD_EXPR:
162 return (TYPE_UNSIGNED (type)
163 ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab);
164
165 case VEC_WIDEN_LSHIFT_HI_EXPR:
166 return (TYPE_UNSIGNED (type)
167 ? vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab);
168
169 case VEC_WIDEN_LSHIFT_LO_EXPR:
170 return (TYPE_UNSIGNED (type)
171 ? vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab);
172
173 case VEC_WIDEN_PLUS_LO_EXPR:
174 return (TYPE_UNSIGNED (type)
175 ? vec_widen_uaddl_lo_optab : vec_widen_saddl_lo_optab);
176
177 case VEC_WIDEN_PLUS_HI_EXPR:
178 return (TYPE_UNSIGNED (type)
179 ? vec_widen_uaddl_hi_optab : vec_widen_saddl_hi_optab);
180
181 case VEC_WIDEN_MINUS_LO_EXPR:
182 return (TYPE_UNSIGNED (type)
183 ? vec_widen_usubl_lo_optab : vec_widen_ssubl_lo_optab);
184
185 case VEC_WIDEN_MINUS_HI_EXPR:
186 return (TYPE_UNSIGNED (type)
187 ? vec_widen_usubl_hi_optab : vec_widen_ssubl_hi_optab);
188
189 case VEC_UNPACK_HI_EXPR:
190 return (TYPE_UNSIGNED (type)
191 ? vec_unpacku_hi_optab : vec_unpacks_hi_optab);
192
193 case VEC_UNPACK_LO_EXPR:
194 return (TYPE_UNSIGNED (type)
195 ? vec_unpacku_lo_optab : vec_unpacks_lo_optab);
196
197 case VEC_UNPACK_FLOAT_HI_EXPR:
198 /* The signedness is determined from input operand. */
199 return (TYPE_UNSIGNED (type)
200 ? vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab);
201
202 case VEC_UNPACK_FLOAT_LO_EXPR:
203 /* The signedness is determined from input operand. */
204 return (TYPE_UNSIGNED (type)
205 ? vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab);
206
207 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
208 /* The signedness is determined from output operand. */
209 return (TYPE_UNSIGNED (type)
210 ? vec_unpack_ufix_trunc_hi_optab
211 : vec_unpack_sfix_trunc_hi_optab);
212
213 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
214 /* The signedness is determined from output operand. */
215 return (TYPE_UNSIGNED (type)
216 ? vec_unpack_ufix_trunc_lo_optab
217 : vec_unpack_sfix_trunc_lo_optab);
218
219 case VEC_PACK_TRUNC_EXPR:
220 return vec_pack_trunc_optab;
221
222 case VEC_PACK_SAT_EXPR:
223 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
224
225 case VEC_PACK_FIX_TRUNC_EXPR:
226 /* The signedness is determined from output operand. */
227 return (TYPE_UNSIGNED (type)
228 ? vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab);
229
230 case VEC_PACK_FLOAT_EXPR:
231 /* The signedness is determined from input operand. */
232 return (TYPE_UNSIGNED (type)
233 ? vec_packu_float_optab : vec_packs_float_optab);
234
235 case VEC_DUPLICATE_EXPR:
236 return vec_duplicate_optab;
237
238 case VEC_SERIES_EXPR:
239 return vec_series_optab;
240
241 default:
242 break;
243 }
244
245 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
246 switch (code)
247 {
248 case POINTER_PLUS_EXPR:
249 case PLUS_EXPR:
250 if (TYPE_SATURATING (type))
251 return TYPE_UNSIGNED (type) ? usadd_optab : ssadd_optab;
252 return trapv ? addv_optab : add_optab;
253
254 case POINTER_DIFF_EXPR:
255 case MINUS_EXPR:
256 if (TYPE_SATURATING (type))
257 return TYPE_UNSIGNED (type) ? ussub_optab : sssub_optab;
258 return trapv ? subv_optab : sub_optab;
259
260 case MULT_EXPR:
261 if (TYPE_SATURATING (type))
262 return TYPE_UNSIGNED (type) ? usmul_optab : ssmul_optab;
263 return trapv ? smulv_optab : smul_optab;
264
265 case NEGATE_EXPR:
266 if (TYPE_SATURATING (type))
267 return TYPE_UNSIGNED (type) ? usneg_optab : ssneg_optab;
268 return trapv ? negv_optab : neg_optab;
269
270 case ABS_EXPR:
271 return trapv ? absv_optab : abs_optab;
272
273 case ABSU_EXPR:
274 return abs_optab;
275 default:
276 return unknown_optab;
277 }
278 }
279
280 /* Check whether an operation represented by CODE is a 'half' widening operation
281 in which the input vector type has half the number of bits of the output
282 vector type e.g. V8QI->V8HI.
283
284 This is handled by widening the inputs using NOP_EXPRs then using a
285 non-widening stmt e.g. MINUS_EXPR. RTL fusing converts these to the widening
286 hardware instructions if supported.
287
288 The more typical case (handled in supportable_widening_operation) is where
289 the input vector type has the same number of bits as the output vector type.
290 In this case half the elements of the input vectors must be processed at a
291 time into respective vector outputs with elements twice as wide i.e. a
292 'hi'/'lo' pair using codes such as VEC_WIDEN_MINUS_HI/LO.
293
294 Supported widening operations:
295 WIDEN_MINUS_EXPR
296 WIDEN_PLUS_EXPR
297 WIDEN_MULT_EXPR
298 WIDEN_LSHIFT_EXPR
299
300 Output:
301 - CODE1 - The non-widened code, which will be used after the inputs are
302 converted to the wide type. */
303 bool
supportable_half_widening_operation(enum tree_code code,tree vectype_out,tree vectype_in,enum tree_code * code1)304 supportable_half_widening_operation (enum tree_code code, tree vectype_out,
305 tree vectype_in, enum tree_code *code1)
306 {
307 machine_mode m1,m2;
308 enum tree_code dummy_code;
309 optab op;
310
311 gcc_assert (VECTOR_TYPE_P (vectype_out) && VECTOR_TYPE_P (vectype_in));
312
313 m1 = TYPE_MODE (vectype_out);
314 m2 = TYPE_MODE (vectype_in);
315
316 if (!VECTOR_MODE_P (m1) || !VECTOR_MODE_P (m2))
317 return false;
318
319 if (maybe_ne (TYPE_VECTOR_SUBPARTS (vectype_in),
320 TYPE_VECTOR_SUBPARTS (vectype_out)))
321 return false;
322
323 switch (code)
324 {
325 case WIDEN_LSHIFT_EXPR:
326 *code1 = LSHIFT_EXPR;
327 break;
328 case WIDEN_MINUS_EXPR:
329 *code1 = MINUS_EXPR;
330 break;
331 case WIDEN_PLUS_EXPR:
332 *code1 = PLUS_EXPR;
333 break;
334 case WIDEN_MULT_EXPR:
335 *code1 = MULT_EXPR;
336 break;
337 default:
338 return false;
339 }
340
341 if (!supportable_convert_operation (NOP_EXPR, vectype_out, vectype_in,
342 &dummy_code))
343 return false;
344
345 op = optab_for_tree_code (*code1, vectype_out, optab_vector);
346 return (optab_handler (op, TYPE_MODE (vectype_out)) != CODE_FOR_nothing);
347 }
348
349 /* Function supportable_convert_operation
350
351 Check whether an operation represented by the code CODE is a
352 convert operation that is supported by the target platform in
353 vector form (i.e., when operating on arguments of type VECTYPE_IN
354 producing a result of type VECTYPE_OUT).
355
356 Convert operations we currently support directly are FIX_TRUNC and FLOAT.
357 This function checks if these operations are supported
358 by the target platform directly (via vector tree-codes).
359
360 Output:
361 - CODE1 is code of vector operation to be used when
362 vectorizing the operation, if available. */
363
364 bool
supportable_convert_operation(enum tree_code code,tree vectype_out,tree vectype_in,enum tree_code * code1)365 supportable_convert_operation (enum tree_code code,
366 tree vectype_out, tree vectype_in,
367 enum tree_code *code1)
368 {
369 machine_mode m1,m2;
370 bool truncp;
371
372 gcc_assert (VECTOR_TYPE_P (vectype_out) && VECTOR_TYPE_P (vectype_in));
373
374 m1 = TYPE_MODE (vectype_out);
375 m2 = TYPE_MODE (vectype_in);
376
377 if (!VECTOR_MODE_P (m1) || !VECTOR_MODE_P (m2))
378 return false;
379
380 /* First check if we can done conversion directly. */
381 if ((code == FIX_TRUNC_EXPR
382 && can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
383 != CODE_FOR_nothing)
384 || (code == FLOAT_EXPR
385 && can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
386 != CODE_FOR_nothing))
387 {
388 *code1 = code;
389 return true;
390 }
391
392 if (GET_MODE_UNIT_PRECISION (m1) > GET_MODE_UNIT_PRECISION (m2)
393 && can_extend_p (m1, m2, TYPE_UNSIGNED (vectype_in)))
394 {
395 *code1 = code;
396 return true;
397 }
398
399 if (GET_MODE_UNIT_PRECISION (m1) < GET_MODE_UNIT_PRECISION (m2)
400 && convert_optab_handler (trunc_optab, m1, m2) != CODE_FOR_nothing)
401 {
402 *code1 = code;
403 return true;
404 }
405
406 return false;
407 }
408
409 /* Return true iff vec_cmp_optab/vec_cmpu_optab can handle a vector comparison
410 for code CODE, comparing operands of type VALUE_TYPE and producing a result
411 of type MASK_TYPE. */
412
413 static bool
vec_cmp_icode_p(tree value_type,tree mask_type,enum tree_code code)414 vec_cmp_icode_p (tree value_type, tree mask_type, enum tree_code code)
415 {
416 enum rtx_code rcode = get_rtx_code_1 (code, TYPE_UNSIGNED (value_type));
417 if (rcode == UNKNOWN)
418 return false;
419
420 return can_vec_cmp_compare_p (rcode, TYPE_MODE (value_type),
421 TYPE_MODE (mask_type));
422 }
423
424 /* Return true iff vec_cmpeq_optab can handle a vector comparison for code
425 CODE, comparing operands of type VALUE_TYPE and producing a result of type
426 MASK_TYPE. */
427
428 static bool
vec_cmp_eq_icode_p(tree value_type,tree mask_type,enum tree_code code)429 vec_cmp_eq_icode_p (tree value_type, tree mask_type, enum tree_code code)
430 {
431 if (code != EQ_EXPR && code != NE_EXPR)
432 return false;
433
434 return get_vec_cmp_eq_icode (TYPE_MODE (value_type), TYPE_MODE (mask_type))
435 != CODE_FOR_nothing;
436 }
437
438 /* Return TRUE if appropriate vector insn is available
439 for vector comparison expr with vector type VALUE_TYPE
440 and resulting mask with MASK_TYPE. */
441
442 bool
expand_vec_cmp_expr_p(tree value_type,tree mask_type,enum tree_code code)443 expand_vec_cmp_expr_p (tree value_type, tree mask_type, enum tree_code code)
444 {
445 return vec_cmp_icode_p (value_type, mask_type, code)
446 || vec_cmp_eq_icode_p (value_type, mask_type, code);
447 }
448
449 /* Return true iff vcond_optab/vcondu_optab can handle a vector
450 comparison for code CODE, comparing operands of type CMP_OP_TYPE and
451 producing a result of type VALUE_TYPE. */
452
453 static bool
vcond_icode_p(tree value_type,tree cmp_op_type,enum tree_code code)454 vcond_icode_p (tree value_type, tree cmp_op_type, enum tree_code code)
455 {
456 enum rtx_code rcode = get_rtx_code_1 (code, TYPE_UNSIGNED (cmp_op_type));
457 if (rcode == UNKNOWN)
458 return false;
459
460 return can_vcond_compare_p (rcode, TYPE_MODE (value_type),
461 TYPE_MODE (cmp_op_type));
462 }
463
464 /* Return true iff vcondeq_optab can handle a vector comparison for code CODE,
465 comparing operands of type CMP_OP_TYPE and producing a result of type
466 VALUE_TYPE. */
467
468 static bool
vcond_eq_icode_p(tree value_type,tree cmp_op_type,enum tree_code code)469 vcond_eq_icode_p (tree value_type, tree cmp_op_type, enum tree_code code)
470 {
471 if (code != EQ_EXPR && code != NE_EXPR)
472 return false;
473
474 return get_vcond_eq_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type))
475 != CODE_FOR_nothing;
476 }
477
478 /* Return TRUE iff, appropriate vector insns are available
479 for vector cond expr with vector type VALUE_TYPE and a comparison
480 with operand vector types in CMP_OP_TYPE. */
481
482 bool
expand_vec_cond_expr_p(tree value_type,tree cmp_op_type,enum tree_code code)483 expand_vec_cond_expr_p (tree value_type, tree cmp_op_type, enum tree_code code)
484 {
485 machine_mode value_mode = TYPE_MODE (value_type);
486 machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
487 if (VECTOR_BOOLEAN_TYPE_P (cmp_op_type)
488 && get_vcond_mask_icode (TYPE_MODE (value_type),
489 TYPE_MODE (cmp_op_type)) != CODE_FOR_nothing)
490 return true;
491
492 if (maybe_ne (GET_MODE_NUNITS (value_mode), GET_MODE_NUNITS (cmp_op_mode)))
493 return false;
494
495 if (TREE_CODE_CLASS (code) != tcc_comparison)
496 /* This may happen, for example, if code == SSA_NAME, in which case we
497 cannot be certain whether a vector insn is available. */
498 return false;
499
500 return vcond_icode_p (value_type, cmp_op_type, code)
501 || vcond_eq_icode_p (value_type, cmp_op_type, code);
502 }
503
504 /* Use the current target and options to initialize
505 TREE_OPTIMIZATION_OPTABS (OPTNODE). */
506
507 void
init_tree_optimization_optabs(tree optnode)508 init_tree_optimization_optabs (tree optnode)
509 {
510 /* Quick exit if we have already computed optabs for this target. */
511 if (TREE_OPTIMIZATION_BASE_OPTABS (optnode) == this_target_optabs)
512 return;
513
514 /* Forget any previous information and set up for the current target. */
515 TREE_OPTIMIZATION_BASE_OPTABS (optnode) = this_target_optabs;
516 struct target_optabs *tmp_optabs = (struct target_optabs *)
517 TREE_OPTIMIZATION_OPTABS (optnode);
518 if (tmp_optabs)
519 memset (tmp_optabs, 0, sizeof (struct target_optabs));
520 else
521 tmp_optabs = ggc_cleared_alloc<target_optabs> ();
522
523 /* Generate a new set of optabs into tmp_optabs. */
524 init_all_optabs (tmp_optabs);
525
526 /* If the optabs changed, record it. */
527 if (memcmp (tmp_optabs, this_target_optabs, sizeof (struct target_optabs)))
528 TREE_OPTIMIZATION_OPTABS (optnode) = tmp_optabs;
529 else
530 {
531 TREE_OPTIMIZATION_OPTABS (optnode) = NULL;
532 ggc_free (tmp_optabs);
533 }
534 }
535
536 /* Return TRUE if the target has support for vector right shift of an
537 operand of type TYPE. If OT_TYPE is OPTAB_DEFAULT, check for existence
538 of a shift by either a scalar or a vector. Otherwise, check only
539 for a shift that matches OT_TYPE. */
540
541 bool
target_supports_op_p(tree type,enum tree_code code,enum optab_subtype ot_subtype)542 target_supports_op_p (tree type, enum tree_code code,
543 enum optab_subtype ot_subtype)
544 {
545 optab ot = optab_for_tree_code (code, type, ot_subtype);
546 return (ot != unknown_optab
547 && optab_handler (ot, TYPE_MODE (type)) != CODE_FOR_nothing);
548 }
549
550