1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package rsa
6
7import (
8	"crypto"
9	"crypto/subtle"
10	"errors"
11	"io"
12	"math/big"
13
14	"crypto/internal/randutil"
15)
16
17// This file implements encryption and decryption using PKCS #1 v1.5 padding.
18
19// PKCS1v15DecrypterOpts is for passing options to PKCS #1 v1.5 decryption using
20// the crypto.Decrypter interface.
21type PKCS1v15DecryptOptions struct {
22	// SessionKeyLen is the length of the session key that is being
23	// decrypted. If not zero, then a padding error during decryption will
24	// cause a random plaintext of this length to be returned rather than
25	// an error. These alternatives happen in constant time.
26	SessionKeyLen int
27}
28
29// EncryptPKCS1v15 encrypts the given message with RSA and the padding
30// scheme from PKCS #1 v1.5.  The message must be no longer than the
31// length of the public modulus minus 11 bytes.
32//
33// The rand parameter is used as a source of entropy to ensure that
34// encrypting the same message twice doesn't result in the same
35// ciphertext.
36//
37// WARNING: use of this function to encrypt plaintexts other than
38// session keys is dangerous. Use RSA OAEP in new protocols.
39func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) ([]byte, error) {
40	randutil.MaybeReadByte(rand)
41
42	if err := checkPub(pub); err != nil {
43		return nil, err
44	}
45	k := pub.Size()
46	if len(msg) > k-11 {
47		return nil, ErrMessageTooLong
48	}
49
50	// EM = 0x00 || 0x02 || PS || 0x00 || M
51	em := make([]byte, k)
52	em[1] = 2
53	ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):]
54	err := nonZeroRandomBytes(ps, rand)
55	if err != nil {
56		return nil, err
57	}
58	em[len(em)-len(msg)-1] = 0
59	copy(mm, msg)
60
61	m := new(big.Int).SetBytes(em)
62	c := encrypt(new(big.Int), pub, m)
63
64	return c.FillBytes(em), nil
65}
66
67// DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS #1 v1.5.
68// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
69//
70// Note that whether this function returns an error or not discloses secret
71// information. If an attacker can cause this function to run repeatedly and
72// learn whether each instance returned an error then they can decrypt and
73// forge signatures as if they had the private key. See
74// DecryptPKCS1v15SessionKey for a way of solving this problem.
75func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) ([]byte, error) {
76	if err := checkPub(&priv.PublicKey); err != nil {
77		return nil, err
78	}
79	valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext)
80	if err != nil {
81		return nil, err
82	}
83	if valid == 0 {
84		return nil, ErrDecryption
85	}
86	return out[index:], nil
87}
88
89// DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS #1 v1.5.
90// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
91// It returns an error if the ciphertext is the wrong length or if the
92// ciphertext is greater than the public modulus. Otherwise, no error is
93// returned. If the padding is valid, the resulting plaintext message is copied
94// into key. Otherwise, key is unchanged. These alternatives occur in constant
95// time. It is intended that the user of this function generate a random
96// session key beforehand and continue the protocol with the resulting value.
97// This will remove any possibility that an attacker can learn any information
98// about the plaintext.
99// See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA
100// Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology
101// (Crypto '98).
102//
103// Note that if the session key is too small then it may be possible for an
104// attacker to brute-force it. If they can do that then they can learn whether
105// a random value was used (because it'll be different for the same ciphertext)
106// and thus whether the padding was correct. This defeats the point of this
107// function. Using at least a 16-byte key will protect against this attack.
108func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) error {
109	if err := checkPub(&priv.PublicKey); err != nil {
110		return err
111	}
112	k := priv.Size()
113	if k-(len(key)+3+8) < 0 {
114		return ErrDecryption
115	}
116
117	valid, em, index, err := decryptPKCS1v15(rand, priv, ciphertext)
118	if err != nil {
119		return err
120	}
121
122	if len(em) != k {
123		// This should be impossible because decryptPKCS1v15 always
124		// returns the full slice.
125		return ErrDecryption
126	}
127
128	valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key)))
129	subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):])
130	return nil
131}
132
133// decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if
134// rand is not nil. It returns one or zero in valid that indicates whether the
135// plaintext was correctly structured. In either case, the plaintext is
136// returned in em so that it may be read independently of whether it was valid
137// in order to maintain constant memory access patterns. If the plaintext was
138// valid then index contains the index of the original message in em.
139func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) {
140	k := priv.Size()
141	if k < 11 {
142		err = ErrDecryption
143		return
144	}
145
146	c := new(big.Int).SetBytes(ciphertext)
147	m, err := decrypt(rand, priv, c)
148	if err != nil {
149		return
150	}
151
152	em = m.FillBytes(make([]byte, k))
153	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
154	secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2)
155
156	// The remainder of the plaintext must be a string of non-zero random
157	// octets, followed by a 0, followed by the message.
158	//   lookingForIndex: 1 iff we are still looking for the zero.
159	//   index: the offset of the first zero byte.
160	lookingForIndex := 1
161
162	for i := 2; i < len(em); i++ {
163		equals0 := subtle.ConstantTimeByteEq(em[i], 0)
164		index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index)
165		lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex)
166	}
167
168	// The PS padding must be at least 8 bytes long, and it starts two
169	// bytes into em.
170	validPS := subtle.ConstantTimeLessOrEq(2+8, index)
171
172	valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS
173	index = subtle.ConstantTimeSelect(valid, index+1, 0)
174	return valid, em, index, nil
175}
176
177// nonZeroRandomBytes fills the given slice with non-zero random octets.
178func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) {
179	_, err = io.ReadFull(rand, s)
180	if err != nil {
181		return
182	}
183
184	for i := 0; i < len(s); i++ {
185		for s[i] == 0 {
186			_, err = io.ReadFull(rand, s[i:i+1])
187			if err != nil {
188				return
189			}
190			// In tests, the PRNG may return all zeros so we do
191			// this to break the loop.
192			s[i] ^= 0x42
193		}
194	}
195
196	return
197}
198
199// These are ASN1 DER structures:
200//   DigestInfo ::= SEQUENCE {
201//     digestAlgorithm AlgorithmIdentifier,
202//     digest OCTET STRING
203//   }
204// For performance, we don't use the generic ASN1 encoder. Rather, we
205// precompute a prefix of the digest value that makes a valid ASN1 DER string
206// with the correct contents.
207var hashPrefixes = map[crypto.Hash][]byte{
208	crypto.MD5:       {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
209	crypto.SHA1:      {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14},
210	crypto.SHA224:    {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
211	crypto.SHA256:    {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
212	crypto.SHA384:    {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
213	crypto.SHA512:    {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
214	crypto.MD5SHA1:   {}, // A special TLS case which doesn't use an ASN1 prefix.
215	crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14},
216}
217
218// SignPKCS1v15 calculates the signature of hashed using
219// RSASSA-PKCS1-V1_5-SIGN from RSA PKCS #1 v1.5.  Note that hashed must
220// be the result of hashing the input message using the given hash
221// function. If hash is zero, hashed is signed directly. This isn't
222// advisable except for interoperability.
223//
224// If rand is not nil then RSA blinding will be used to avoid timing
225// side-channel attacks.
226//
227// This function is deterministic. Thus, if the set of possible
228// messages is small, an attacker may be able to build a map from
229// messages to signatures and identify the signed messages. As ever,
230// signatures provide authenticity, not confidentiality.
231func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) ([]byte, error) {
232	hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
233	if err != nil {
234		return nil, err
235	}
236
237	tLen := len(prefix) + hashLen
238	k := priv.Size()
239	if k < tLen+11 {
240		return nil, ErrMessageTooLong
241	}
242
243	// EM = 0x00 || 0x01 || PS || 0x00 || T
244	em := make([]byte, k)
245	em[1] = 1
246	for i := 2; i < k-tLen-1; i++ {
247		em[i] = 0xff
248	}
249	copy(em[k-tLen:k-hashLen], prefix)
250	copy(em[k-hashLen:k], hashed)
251
252	m := new(big.Int).SetBytes(em)
253	c, err := decryptAndCheck(rand, priv, m)
254	if err != nil {
255		return nil, err
256	}
257
258	return c.FillBytes(em), nil
259}
260
261// VerifyPKCS1v15 verifies an RSA PKCS #1 v1.5 signature.
262// hashed is the result of hashing the input message using the given hash
263// function and sig is the signature. A valid signature is indicated by
264// returning a nil error. If hash is zero then hashed is used directly. This
265// isn't advisable except for interoperability.
266func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) error {
267	hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
268	if err != nil {
269		return err
270	}
271
272	tLen := len(prefix) + hashLen
273	k := pub.Size()
274	if k < tLen+11 {
275		return ErrVerification
276	}
277
278	// RFC 8017 Section 8.2.2: If the length of the signature S is not k
279	// octets (where k is the length in octets of the RSA modulus n), output
280	// "invalid signature" and stop.
281	if k != len(sig) {
282		return ErrVerification
283	}
284
285	c := new(big.Int).SetBytes(sig)
286	m := encrypt(new(big.Int), pub, c)
287	em := m.FillBytes(make([]byte, k))
288	// EM = 0x00 || 0x01 || PS || 0x00 || T
289
290	ok := subtle.ConstantTimeByteEq(em[0], 0)
291	ok &= subtle.ConstantTimeByteEq(em[1], 1)
292	ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed)
293	ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix)
294	ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0)
295
296	for i := 2; i < k-tLen-1; i++ {
297		ok &= subtle.ConstantTimeByteEq(em[i], 0xff)
298	}
299
300	if ok != 1 {
301		return ErrVerification
302	}
303
304	return nil
305}
306
307func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) {
308	// Special case: crypto.Hash(0) is used to indicate that the data is
309	// signed directly.
310	if hash == 0 {
311		return inLen, nil, nil
312	}
313
314	hashLen = hash.Size()
315	if inLen != hashLen {
316		return 0, nil, errors.New("crypto/rsa: input must be hashed message")
317	}
318	prefix, ok := hashPrefixes[hash]
319	if !ok {
320		return 0, nil, errors.New("crypto/rsa: unsupported hash function")
321	}
322	return
323}
324