1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package jpeg implements a JPEG image decoder and encoder.
6//
7// JPEG is defined in ITU-T T.81: https://www.w3.org/Graphics/JPEG/itu-t81.pdf.
8package jpeg
9
10import (
11	"image"
12	"image/color"
13	"image/internal/imageutil"
14	"io"
15)
16
17// TODO(nigeltao): fix up the doc comment style so that sentences start with
18// the name of the type or function that they annotate.
19
20// A FormatError reports that the input is not a valid JPEG.
21type FormatError string
22
23func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) }
24
25// An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature.
26type UnsupportedError string
27
28func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) }
29
30var errUnsupportedSubsamplingRatio = UnsupportedError("luma/chroma subsampling ratio")
31
32// Component specification, specified in section B.2.2.
33type component struct {
34	h  int   // Horizontal sampling factor.
35	v  int   // Vertical sampling factor.
36	c  uint8 // Component identifier.
37	tq uint8 // Quantization table destination selector.
38}
39
40const (
41	dcTable = 0
42	acTable = 1
43	maxTc   = 1
44	maxTh   = 3
45	maxTq   = 3
46
47	maxComponents = 4
48)
49
50const (
51	sof0Marker = 0xc0 // Start Of Frame (Baseline Sequential).
52	sof1Marker = 0xc1 // Start Of Frame (Extended Sequential).
53	sof2Marker = 0xc2 // Start Of Frame (Progressive).
54	dhtMarker  = 0xc4 // Define Huffman Table.
55	rst0Marker = 0xd0 // ReSTart (0).
56	rst7Marker = 0xd7 // ReSTart (7).
57	soiMarker  = 0xd8 // Start Of Image.
58	eoiMarker  = 0xd9 // End Of Image.
59	sosMarker  = 0xda // Start Of Scan.
60	dqtMarker  = 0xdb // Define Quantization Table.
61	driMarker  = 0xdd // Define Restart Interval.
62	comMarker  = 0xfe // COMment.
63	// "APPlication specific" markers aren't part of the JPEG spec per se,
64	// but in practice, their use is described at
65	// https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html
66	app0Marker  = 0xe0
67	app14Marker = 0xee
68	app15Marker = 0xef
69)
70
71// See https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
72const (
73	adobeTransformUnknown = 0
74	adobeTransformYCbCr   = 1
75	adobeTransformYCbCrK  = 2
76)
77
78// unzig maps from the zig-zag ordering to the natural ordering. For example,
79// unzig[3] is the column and row of the fourth element in zig-zag order. The
80// value is 16, which means first column (16%8 == 0) and third row (16/8 == 2).
81var unzig = [blockSize]int{
82	0, 1, 8, 16, 9, 2, 3, 10,
83	17, 24, 32, 25, 18, 11, 4, 5,
84	12, 19, 26, 33, 40, 48, 41, 34,
85	27, 20, 13, 6, 7, 14, 21, 28,
86	35, 42, 49, 56, 57, 50, 43, 36,
87	29, 22, 15, 23, 30, 37, 44, 51,
88	58, 59, 52, 45, 38, 31, 39, 46,
89	53, 60, 61, 54, 47, 55, 62, 63,
90}
91
92// Deprecated: Reader is not used by the image/jpeg package and should
93// not be used by others. It is kept for compatibility.
94type Reader interface {
95	io.ByteReader
96	io.Reader
97}
98
99// bits holds the unprocessed bits that have been taken from the byte-stream.
100// The n least significant bits of a form the unread bits, to be read in MSB to
101// LSB order.
102type bits struct {
103	a uint32 // accumulator.
104	m uint32 // mask. m==1<<(n-1) when n>0, with m==0 when n==0.
105	n int32  // the number of unread bits in a.
106}
107
108type decoder struct {
109	r    io.Reader
110	bits bits
111	// bytes is a byte buffer, similar to a bufio.Reader, except that it
112	// has to be able to unread more than 1 byte, due to byte stuffing.
113	// Byte stuffing is specified in section F.1.2.3.
114	bytes struct {
115		// buf[i:j] are the buffered bytes read from the underlying
116		// io.Reader that haven't yet been passed further on.
117		buf  [4096]byte
118		i, j int
119		// nUnreadable is the number of bytes to back up i after
120		// overshooting. It can be 0, 1 or 2.
121		nUnreadable int
122	}
123	width, height int
124
125	img1        *image.Gray
126	img3        *image.YCbCr
127	blackPix    []byte
128	blackStride int
129
130	ri    int // Restart Interval.
131	nComp int
132
133	// As per section 4.5, there are four modes of operation (selected by the
134	// SOF? markers): sequential DCT, progressive DCT, lossless and
135	// hierarchical, although this implementation does not support the latter
136	// two non-DCT modes. Sequential DCT is further split into baseline and
137	// extended, as per section 4.11.
138	baseline    bool
139	progressive bool
140
141	jfif                bool
142	adobeTransformValid bool
143	adobeTransform      uint8
144	eobRun              uint16 // End-of-Band run, specified in section G.1.2.2.
145
146	comp       [maxComponents]component
147	progCoeffs [maxComponents][]block // Saved state between progressive-mode scans.
148	huff       [maxTc + 1][maxTh + 1]huffman
149	quant      [maxTq + 1]block // Quantization tables, in zig-zag order.
150	tmp        [2 * blockSize]byte
151}
152
153// fill fills up the d.bytes.buf buffer from the underlying io.Reader. It
154// should only be called when there are no unread bytes in d.bytes.
155func (d *decoder) fill() error {
156	if d.bytes.i != d.bytes.j {
157		panic("jpeg: fill called when unread bytes exist")
158	}
159	// Move the last 2 bytes to the start of the buffer, in case we need
160	// to call unreadByteStuffedByte.
161	if d.bytes.j > 2 {
162		d.bytes.buf[0] = d.bytes.buf[d.bytes.j-2]
163		d.bytes.buf[1] = d.bytes.buf[d.bytes.j-1]
164		d.bytes.i, d.bytes.j = 2, 2
165	}
166	// Fill in the rest of the buffer.
167	n, err := d.r.Read(d.bytes.buf[d.bytes.j:])
168	d.bytes.j += n
169	if n > 0 {
170		err = nil
171	}
172	return err
173}
174
175// unreadByteStuffedByte undoes the most recent readByteStuffedByte call,
176// giving a byte of data back from d.bits to d.bytes. The Huffman look-up table
177// requires at least 8 bits for look-up, which means that Huffman decoding can
178// sometimes overshoot and read one or two too many bytes. Two-byte overshoot
179// can happen when expecting to read a 0xff 0x00 byte-stuffed byte.
180func (d *decoder) unreadByteStuffedByte() {
181	d.bytes.i -= d.bytes.nUnreadable
182	d.bytes.nUnreadable = 0
183	if d.bits.n >= 8 {
184		d.bits.a >>= 8
185		d.bits.n -= 8
186		d.bits.m >>= 8
187	}
188}
189
190// readByte returns the next byte, whether buffered or not buffered. It does
191// not care about byte stuffing.
192func (d *decoder) readByte() (x byte, err error) {
193	for d.bytes.i == d.bytes.j {
194		if err = d.fill(); err != nil {
195			return 0, err
196		}
197	}
198	x = d.bytes.buf[d.bytes.i]
199	d.bytes.i++
200	d.bytes.nUnreadable = 0
201	return x, nil
202}
203
204// errMissingFF00 means that readByteStuffedByte encountered an 0xff byte (a
205// marker byte) that wasn't the expected byte-stuffed sequence 0xff, 0x00.
206var errMissingFF00 = FormatError("missing 0xff00 sequence")
207
208// readByteStuffedByte is like readByte but is for byte-stuffed Huffman data.
209func (d *decoder) readByteStuffedByte() (x byte, err error) {
210	// Take the fast path if d.bytes.buf contains at least two bytes.
211	if d.bytes.i+2 <= d.bytes.j {
212		x = d.bytes.buf[d.bytes.i]
213		d.bytes.i++
214		d.bytes.nUnreadable = 1
215		if x != 0xff {
216			return x, err
217		}
218		if d.bytes.buf[d.bytes.i] != 0x00 {
219			return 0, errMissingFF00
220		}
221		d.bytes.i++
222		d.bytes.nUnreadable = 2
223		return 0xff, nil
224	}
225
226	d.bytes.nUnreadable = 0
227
228	x, err = d.readByte()
229	if err != nil {
230		return 0, err
231	}
232	d.bytes.nUnreadable = 1
233	if x != 0xff {
234		return x, nil
235	}
236
237	x, err = d.readByte()
238	if err != nil {
239		return 0, err
240	}
241	d.bytes.nUnreadable = 2
242	if x != 0x00 {
243		return 0, errMissingFF00
244	}
245	return 0xff, nil
246}
247
248// readFull reads exactly len(p) bytes into p. It does not care about byte
249// stuffing.
250func (d *decoder) readFull(p []byte) error {
251	// Unread the overshot bytes, if any.
252	if d.bytes.nUnreadable != 0 {
253		if d.bits.n >= 8 {
254			d.unreadByteStuffedByte()
255		}
256		d.bytes.nUnreadable = 0
257	}
258
259	for {
260		n := copy(p, d.bytes.buf[d.bytes.i:d.bytes.j])
261		p = p[n:]
262		d.bytes.i += n
263		if len(p) == 0 {
264			break
265		}
266		if err := d.fill(); err != nil {
267			if err == io.EOF {
268				err = io.ErrUnexpectedEOF
269			}
270			return err
271		}
272	}
273	return nil
274}
275
276// ignore ignores the next n bytes.
277func (d *decoder) ignore(n int) error {
278	// Unread the overshot bytes, if any.
279	if d.bytes.nUnreadable != 0 {
280		if d.bits.n >= 8 {
281			d.unreadByteStuffedByte()
282		}
283		d.bytes.nUnreadable = 0
284	}
285
286	for {
287		m := d.bytes.j - d.bytes.i
288		if m > n {
289			m = n
290		}
291		d.bytes.i += m
292		n -= m
293		if n == 0 {
294			break
295		}
296		if err := d.fill(); err != nil {
297			if err == io.EOF {
298				err = io.ErrUnexpectedEOF
299			}
300			return err
301		}
302	}
303	return nil
304}
305
306// Specified in section B.2.2.
307func (d *decoder) processSOF(n int) error {
308	if d.nComp != 0 {
309		return FormatError("multiple SOF markers")
310	}
311	switch n {
312	case 6 + 3*1: // Grayscale image.
313		d.nComp = 1
314	case 6 + 3*3: // YCbCr or RGB image.
315		d.nComp = 3
316	case 6 + 3*4: // YCbCrK or CMYK image.
317		d.nComp = 4
318	default:
319		return UnsupportedError("number of components")
320	}
321	if err := d.readFull(d.tmp[:n]); err != nil {
322		return err
323	}
324	// We only support 8-bit precision.
325	if d.tmp[0] != 8 {
326		return UnsupportedError("precision")
327	}
328	d.height = int(d.tmp[1])<<8 + int(d.tmp[2])
329	d.width = int(d.tmp[3])<<8 + int(d.tmp[4])
330	if int(d.tmp[5]) != d.nComp {
331		return FormatError("SOF has wrong length")
332	}
333
334	for i := 0; i < d.nComp; i++ {
335		d.comp[i].c = d.tmp[6+3*i]
336		// Section B.2.2 states that "the value of C_i shall be different from
337		// the values of C_1 through C_(i-1)".
338		for j := 0; j < i; j++ {
339			if d.comp[i].c == d.comp[j].c {
340				return FormatError("repeated component identifier")
341			}
342		}
343
344		d.comp[i].tq = d.tmp[8+3*i]
345		if d.comp[i].tq > maxTq {
346			return FormatError("bad Tq value")
347		}
348
349		hv := d.tmp[7+3*i]
350		h, v := int(hv>>4), int(hv&0x0f)
351		if h < 1 || 4 < h || v < 1 || 4 < v {
352			return FormatError("luma/chroma subsampling ratio")
353		}
354		if h == 3 || v == 3 {
355			return errUnsupportedSubsamplingRatio
356		}
357		switch d.nComp {
358		case 1:
359			// If a JPEG image has only one component, section A.2 says "this data
360			// is non-interleaved by definition" and section A.2.2 says "[in this
361			// case...] the order of data units within a scan shall be left-to-right
362			// and top-to-bottom... regardless of the values of H_1 and V_1". Section
363			// 4.8.2 also says "[for non-interleaved data], the MCU is defined to be
364			// one data unit". Similarly, section A.1.1 explains that it is the ratio
365			// of H_i to max_j(H_j) that matters, and similarly for V. For grayscale
366			// images, H_1 is the maximum H_j for all components j, so that ratio is
367			// always 1. The component's (h, v) is effectively always (1, 1): even if
368			// the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8
369			// MCUs, not two 16x8 MCUs.
370			h, v = 1, 1
371
372		case 3:
373			// For YCbCr images, we only support 4:4:4, 4:4:0, 4:2:2, 4:2:0,
374			// 4:1:1 or 4:1:0 chroma subsampling ratios. This implies that the
375			// (h, v) values for the Y component are either (1, 1), (1, 2),
376			// (2, 1), (2, 2), (4, 1) or (4, 2), and the Y component's values
377			// must be a multiple of the Cb and Cr component's values. We also
378			// assume that the two chroma components have the same subsampling
379			// ratio.
380			switch i {
381			case 0: // Y.
382				// We have already verified, above, that h and v are both
383				// either 1, 2 or 4, so invalid (h, v) combinations are those
384				// with v == 4.
385				if v == 4 {
386					return errUnsupportedSubsamplingRatio
387				}
388			case 1: // Cb.
389				if d.comp[0].h%h != 0 || d.comp[0].v%v != 0 {
390					return errUnsupportedSubsamplingRatio
391				}
392			case 2: // Cr.
393				if d.comp[1].h != h || d.comp[1].v != v {
394					return errUnsupportedSubsamplingRatio
395				}
396			}
397
398		case 4:
399			// For 4-component images (either CMYK or YCbCrK), we only support two
400			// hv vectors: [0x11 0x11 0x11 0x11] and [0x22 0x11 0x11 0x22].
401			// Theoretically, 4-component JPEG images could mix and match hv values
402			// but in practice, those two combinations are the only ones in use,
403			// and it simplifies the applyBlack code below if we can assume that:
404			//	- for CMYK, the C and K channels have full samples, and if the M
405			//	  and Y channels subsample, they subsample both horizontally and
406			//	  vertically.
407			//	- for YCbCrK, the Y and K channels have full samples.
408			switch i {
409			case 0:
410				if hv != 0x11 && hv != 0x22 {
411					return errUnsupportedSubsamplingRatio
412				}
413			case 1, 2:
414				if hv != 0x11 {
415					return errUnsupportedSubsamplingRatio
416				}
417			case 3:
418				if d.comp[0].h != h || d.comp[0].v != v {
419					return errUnsupportedSubsamplingRatio
420				}
421			}
422		}
423
424		d.comp[i].h = h
425		d.comp[i].v = v
426	}
427	return nil
428}
429
430// Specified in section B.2.4.1.
431func (d *decoder) processDQT(n int) error {
432loop:
433	for n > 0 {
434		n--
435		x, err := d.readByte()
436		if err != nil {
437			return err
438		}
439		tq := x & 0x0f
440		if tq > maxTq {
441			return FormatError("bad Tq value")
442		}
443		switch x >> 4 {
444		default:
445			return FormatError("bad Pq value")
446		case 0:
447			if n < blockSize {
448				break loop
449			}
450			n -= blockSize
451			if err := d.readFull(d.tmp[:blockSize]); err != nil {
452				return err
453			}
454			for i := range d.quant[tq] {
455				d.quant[tq][i] = int32(d.tmp[i])
456			}
457		case 1:
458			if n < 2*blockSize {
459				break loop
460			}
461			n -= 2 * blockSize
462			if err := d.readFull(d.tmp[:2*blockSize]); err != nil {
463				return err
464			}
465			for i := range d.quant[tq] {
466				d.quant[tq][i] = int32(d.tmp[2*i])<<8 | int32(d.tmp[2*i+1])
467			}
468		}
469	}
470	if n != 0 {
471		return FormatError("DQT has wrong length")
472	}
473	return nil
474}
475
476// Specified in section B.2.4.4.
477func (d *decoder) processDRI(n int) error {
478	if n != 2 {
479		return FormatError("DRI has wrong length")
480	}
481	if err := d.readFull(d.tmp[:2]); err != nil {
482		return err
483	}
484	d.ri = int(d.tmp[0])<<8 + int(d.tmp[1])
485	return nil
486}
487
488func (d *decoder) processApp0Marker(n int) error {
489	if n < 5 {
490		return d.ignore(n)
491	}
492	if err := d.readFull(d.tmp[:5]); err != nil {
493		return err
494	}
495	n -= 5
496
497	d.jfif = d.tmp[0] == 'J' && d.tmp[1] == 'F' && d.tmp[2] == 'I' && d.tmp[3] == 'F' && d.tmp[4] == '\x00'
498
499	if n > 0 {
500		return d.ignore(n)
501	}
502	return nil
503}
504
505func (d *decoder) processApp14Marker(n int) error {
506	if n < 12 {
507		return d.ignore(n)
508	}
509	if err := d.readFull(d.tmp[:12]); err != nil {
510		return err
511	}
512	n -= 12
513
514	if d.tmp[0] == 'A' && d.tmp[1] == 'd' && d.tmp[2] == 'o' && d.tmp[3] == 'b' && d.tmp[4] == 'e' {
515		d.adobeTransformValid = true
516		d.adobeTransform = d.tmp[11]
517	}
518
519	if n > 0 {
520		return d.ignore(n)
521	}
522	return nil
523}
524
525// decode reads a JPEG image from r and returns it as an image.Image.
526func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) {
527	d.r = r
528
529	// Check for the Start Of Image marker.
530	if err := d.readFull(d.tmp[:2]); err != nil {
531		return nil, err
532	}
533	if d.tmp[0] != 0xff || d.tmp[1] != soiMarker {
534		return nil, FormatError("missing SOI marker")
535	}
536
537	// Process the remaining segments until the End Of Image marker.
538	for {
539		err := d.readFull(d.tmp[:2])
540		if err != nil {
541			return nil, err
542		}
543		for d.tmp[0] != 0xff {
544			// Strictly speaking, this is a format error. However, libjpeg is
545			// liberal in what it accepts. As of version 9, next_marker in
546			// jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and
547			// continues to decode the stream. Even before next_marker sees
548			// extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many
549			// bytes as it can, possibly past the end of a scan's data. It
550			// effectively puts back any markers that it overscanned (e.g. an
551			// "\xff\xd9" EOI marker), but it does not put back non-marker data,
552			// and thus it can silently ignore a small number of extraneous
553			// non-marker bytes before next_marker has a chance to see them (and
554			// print a warning).
555			//
556			// We are therefore also liberal in what we accept. Extraneous data
557			// is silently ignored.
558			//
559			// This is similar to, but not exactly the same as, the restart
560			// mechanism within a scan (the RST[0-7] markers).
561			//
562			// Note that extraneous 0xff bytes in e.g. SOS data are escaped as
563			// "\xff\x00", and so are detected a little further down below.
564			d.tmp[0] = d.tmp[1]
565			d.tmp[1], err = d.readByte()
566			if err != nil {
567				return nil, err
568			}
569		}
570		marker := d.tmp[1]
571		if marker == 0 {
572			// Treat "\xff\x00" as extraneous data.
573			continue
574		}
575		for marker == 0xff {
576			// Section B.1.1.2 says, "Any marker may optionally be preceded by any
577			// number of fill bytes, which are bytes assigned code X'FF'".
578			marker, err = d.readByte()
579			if err != nil {
580				return nil, err
581			}
582		}
583		if marker == eoiMarker { // End Of Image.
584			break
585		}
586		if rst0Marker <= marker && marker <= rst7Marker {
587			// Figures B.2 and B.16 of the specification suggest that restart markers should
588			// only occur between Entropy Coded Segments and not after the final ECS.
589			// However, some encoders may generate incorrect JPEGs with a final restart
590			// marker. That restart marker will be seen here instead of inside the processSOS
591			// method, and is ignored as a harmless error. Restart markers have no extra data,
592			// so we check for this before we read the 16-bit length of the segment.
593			continue
594		}
595
596		// Read the 16-bit length of the segment. The value includes the 2 bytes for the
597		// length itself, so we subtract 2 to get the number of remaining bytes.
598		if err = d.readFull(d.tmp[:2]); err != nil {
599			return nil, err
600		}
601		n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2
602		if n < 0 {
603			return nil, FormatError("short segment length")
604		}
605
606		switch marker {
607		case sof0Marker, sof1Marker, sof2Marker:
608			d.baseline = marker == sof0Marker
609			d.progressive = marker == sof2Marker
610			err = d.processSOF(n)
611			if configOnly && d.jfif {
612				return nil, err
613			}
614		case dhtMarker:
615			if configOnly {
616				err = d.ignore(n)
617			} else {
618				err = d.processDHT(n)
619			}
620		case dqtMarker:
621			if configOnly {
622				err = d.ignore(n)
623			} else {
624				err = d.processDQT(n)
625			}
626		case sosMarker:
627			if configOnly {
628				return nil, nil
629			}
630			err = d.processSOS(n)
631		case driMarker:
632			if configOnly {
633				err = d.ignore(n)
634			} else {
635				err = d.processDRI(n)
636			}
637		case app0Marker:
638			err = d.processApp0Marker(n)
639		case app14Marker:
640			err = d.processApp14Marker(n)
641		default:
642			if app0Marker <= marker && marker <= app15Marker || marker == comMarker {
643				err = d.ignore(n)
644			} else if marker < 0xc0 { // See Table B.1 "Marker code assignments".
645				err = FormatError("unknown marker")
646			} else {
647				err = UnsupportedError("unknown marker")
648			}
649		}
650		if err != nil {
651			return nil, err
652		}
653	}
654
655	if d.progressive {
656		if err := d.reconstructProgressiveImage(); err != nil {
657			return nil, err
658		}
659	}
660	if d.img1 != nil {
661		return d.img1, nil
662	}
663	if d.img3 != nil {
664		if d.blackPix != nil {
665			return d.applyBlack()
666		} else if d.isRGB() {
667			return d.convertToRGB()
668		}
669		return d.img3, nil
670	}
671	return nil, FormatError("missing SOS marker")
672}
673
674// applyBlack combines d.img3 and d.blackPix into a CMYK image. The formula
675// used depends on whether the JPEG image is stored as CMYK or YCbCrK,
676// indicated by the APP14 (Adobe) metadata.
677//
678// Adobe CMYK JPEG images are inverted, where 255 means no ink instead of full
679// ink, so we apply "v = 255 - v" at various points. Note that a double
680// inversion is a no-op, so inversions might be implicit in the code below.
681func (d *decoder) applyBlack() (image.Image, error) {
682	if !d.adobeTransformValid {
683		return nil, UnsupportedError("unknown color model: 4-component JPEG doesn't have Adobe APP14 metadata")
684	}
685
686	// If the 4-component JPEG image isn't explicitly marked as "Unknown (RGB
687	// or CMYK)" as per
688	// https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
689	// we assume that it is YCbCrK. This matches libjpeg's jdapimin.c.
690	if d.adobeTransform != adobeTransformUnknown {
691		// Convert the YCbCr part of the YCbCrK to RGB, invert the RGB to get
692		// CMY, and patch in the original K. The RGB to CMY inversion cancels
693		// out the 'Adobe inversion' described in the applyBlack doc comment
694		// above, so in practice, only the fourth channel (black) is inverted.
695		bounds := d.img3.Bounds()
696		img := image.NewRGBA(bounds)
697		imageutil.DrawYCbCr(img, bounds, d.img3, bounds.Min)
698		for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
699			for i, x := iBase+3, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
700				img.Pix[i] = 255 - d.blackPix[(y-bounds.Min.Y)*d.blackStride+(x-bounds.Min.X)]
701			}
702		}
703		return &image.CMYK{
704			Pix:    img.Pix,
705			Stride: img.Stride,
706			Rect:   img.Rect,
707		}, nil
708	}
709
710	// The first three channels (cyan, magenta, yellow) of the CMYK
711	// were decoded into d.img3, but each channel was decoded into a separate
712	// []byte slice, and some channels may be subsampled. We interleave the
713	// separate channels into an image.CMYK's single []byte slice containing 4
714	// contiguous bytes per pixel.
715	bounds := d.img3.Bounds()
716	img := image.NewCMYK(bounds)
717
718	translations := [4]struct {
719		src    []byte
720		stride int
721	}{
722		{d.img3.Y, d.img3.YStride},
723		{d.img3.Cb, d.img3.CStride},
724		{d.img3.Cr, d.img3.CStride},
725		{d.blackPix, d.blackStride},
726	}
727	for t, translation := range translations {
728		subsample := d.comp[t].h != d.comp[0].h || d.comp[t].v != d.comp[0].v
729		for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
730			sy := y - bounds.Min.Y
731			if subsample {
732				sy /= 2
733			}
734			for i, x := iBase+t, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
735				sx := x - bounds.Min.X
736				if subsample {
737					sx /= 2
738				}
739				img.Pix[i] = 255 - translation.src[sy*translation.stride+sx]
740			}
741		}
742	}
743	return img, nil
744}
745
746func (d *decoder) isRGB() bool {
747	if d.jfif {
748		return false
749	}
750	if d.adobeTransformValid && d.adobeTransform == adobeTransformUnknown {
751		// https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
752		// says that 0 means Unknown (and in practice RGB) and 1 means YCbCr.
753		return true
754	}
755	return d.comp[0].c == 'R' && d.comp[1].c == 'G' && d.comp[2].c == 'B'
756}
757
758func (d *decoder) convertToRGB() (image.Image, error) {
759	cScale := d.comp[0].h / d.comp[1].h
760	bounds := d.img3.Bounds()
761	img := image.NewRGBA(bounds)
762	for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
763		po := img.PixOffset(bounds.Min.X, y)
764		yo := d.img3.YOffset(bounds.Min.X, y)
765		co := d.img3.COffset(bounds.Min.X, y)
766		for i, iMax := 0, bounds.Max.X-bounds.Min.X; i < iMax; i++ {
767			img.Pix[po+4*i+0] = d.img3.Y[yo+i]
768			img.Pix[po+4*i+1] = d.img3.Cb[co+i/cScale]
769			img.Pix[po+4*i+2] = d.img3.Cr[co+i/cScale]
770			img.Pix[po+4*i+3] = 255
771		}
772	}
773	return img, nil
774}
775
776// Decode reads a JPEG image from r and returns it as an image.Image.
777func Decode(r io.Reader) (image.Image, error) {
778	var d decoder
779	return d.decode(r, false)
780}
781
782// DecodeConfig returns the color model and dimensions of a JPEG image without
783// decoding the entire image.
784func DecodeConfig(r io.Reader) (image.Config, error) {
785	var d decoder
786	if _, err := d.decode(r, true); err != nil {
787		return image.Config{}, err
788	}
789	switch d.nComp {
790	case 1:
791		return image.Config{
792			ColorModel: color.GrayModel,
793			Width:      d.width,
794			Height:     d.height,
795		}, nil
796	case 3:
797		cm := color.YCbCrModel
798		if d.isRGB() {
799			cm = color.RGBAModel
800		}
801		return image.Config{
802			ColorModel: cm,
803			Width:      d.width,
804			Height:     d.height,
805		}, nil
806	case 4:
807		return image.Config{
808			ColorModel: color.CMYKModel,
809			Width:      d.width,
810			Height:     d.height,
811		}, nil
812	}
813	return image.Config{}, FormatError("missing SOF marker")
814}
815
816func init() {
817	image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig)
818}
819