1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              P A R _ S C O                               --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 2009-2020, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Aspects;  use Aspects;
27with Atree;    use Atree;
28with Debug;    use Debug;
29with Errout;   use Errout;
30with Lib;      use Lib;
31with Lib.Util; use Lib.Util;
32with Namet;    use Namet;
33with Nlists;   use Nlists;
34with Opt;      use Opt;
35with Output;   use Output;
36with Put_SCOs;
37with SCOs;     use SCOs;
38with Sem;      use Sem;
39with Sem_Util; use Sem_Util;
40with Sinfo;    use Sinfo;
41with Sinput;   use Sinput;
42with Snames;   use Snames;
43with Table;
44
45with GNAT.HTable;      use GNAT.HTable;
46with GNAT.Heap_Sort_G;
47
48package body Par_SCO is
49
50   --------------------------
51   -- First-pass SCO table --
52   --------------------------
53
54   --  The Short_Circuit_And_Or pragma enables one to use AND and OR operators
55   --  in source code while the ones used with booleans will be interpreted as
56   --  their short circuit alternatives (AND THEN and OR ELSE). Thus, the true
57   --  meaning of these operators is known only after the semantic analysis.
58
59   --  However, decision SCOs include short circuit operators only. The SCO
60   --  information generation pass must be done before expansion, hence before
61   --  the semantic analysis. Because of this, the SCO information generation
62   --  is done in two passes.
63
64   --  The first one (SCO_Record_Raw, before semantic analysis) completes the
65   --  SCO_Raw_Table assuming all AND/OR operators are short circuit ones.
66   --  Then, the semantic analysis determines which operators are promoted to
67   --  short circuit ones. Finally, the second pass (SCO_Record_Filtered)
68   --  translates the SCO_Raw_Table to SCO_Table, taking care of removing the
69   --  remaining AND/OR operators and of adjusting decisions accordingly
70   --  (splitting decisions, removing empty ones, etc.).
71
72   type SCO_Generation_State_Type is (None, Raw, Filtered);
73   SCO_Generation_State : SCO_Generation_State_Type := None;
74   --  Keep track of the SCO generation state: this will prevent us from
75   --  running some steps multiple times (the second pass has to be started
76   --  from multiple places).
77
78   package SCO_Raw_Table is new Table.Table
79     (Table_Component_Type => SCO_Table_Entry,
80      Table_Index_Type     => Nat,
81      Table_Low_Bound      => 1,
82      Table_Initial        => 500,
83      Table_Increment      => 300,
84      Table_Name           => "Raw_Table");
85
86   -----------------------
87   -- Unit Number Table --
88   -----------------------
89
90   --  This table parallels the SCO_Unit_Table, keeping track of the unit
91   --  numbers corresponding to the entries made in this table, so that before
92   --  writing out the SCO information to the ALI file, we can fill in the
93   --  proper dependency numbers and file names.
94
95   --  Note that the zeroth entry is here for convenience in sorting the table;
96   --  the real lower bound is 1.
97
98   package SCO_Unit_Number_Table is new Table.Table
99     (Table_Component_Type => Unit_Number_Type,
100      Table_Index_Type     => SCO_Unit_Index,
101      Table_Low_Bound      => 0, -- see note above on sort
102      Table_Initial        => 20,
103      Table_Increment      => 200,
104      Table_Name           => "SCO_Unit_Number_Entry");
105
106   ------------------------------------------
107   -- Condition/Operator/Pragma Hash Table --
108   ------------------------------------------
109
110   --  We need to be able to get to conditions quickly for handling the calls
111   --  to Set_SCO_Condition efficiently, and similarly to get to pragmas to
112   --  handle calls to Set_SCO_Pragma_Enabled (the same holds for operators and
113   --  Set_SCO_Logical_Operator). For this purpose we identify the conditions,
114   --  operators and pragmas in the table by their starting sloc, and use this
115   --  hash table to map from these sloc values to SCO_Table indexes.
116
117   type Header_Num is new Integer range 0 .. 996;
118   --  Type for hash table headers
119
120   function Hash (F : Source_Ptr) return Header_Num;
121   --  Function to Hash source pointer value
122
123   function Equal (F1 : Source_Ptr; F2 : Source_Ptr) return Boolean;
124   --  Function to test two keys for equality
125
126   function "<" (S1 : Source_Location; S2 : Source_Location) return Boolean;
127   --  Function to test for source locations order
128
129   package SCO_Raw_Hash_Table is new Simple_HTable
130     (Header_Num, Int, 0, Source_Ptr, Hash, Equal);
131   --  The actual hash table
132
133   --------------------------
134   -- Internal Subprograms --
135   --------------------------
136
137   function Has_Decision (N : Node_Id) return Boolean;
138   --  N is the node for a subexpression. Returns True if the subexpression
139   --  contains a nested decision (i.e. either is a logical operator, or
140   --  contains a logical operator in its subtree).
141   --
142   --  This must be used in the first pass (SCO_Record_Raw) only: here AND/OR
143   --  operators are considered as short circuit, just in case the
144   --  Short_Circuit_And_Or pragma is used: only real short circuit operations
145   --  will be kept in the secord pass.
146
147   type Tristate is (False, True, Unknown);
148
149   function Is_Logical_Operator (N : Node_Id) return Tristate;
150   --  N is the node for a subexpression. This procedure determines whether N
151   --  is a logical operator: True for short circuit conditions, Unknown for OR
152   --  and AND (the Short_Circuit_And_Or pragma may be used) and False
153   --  otherwise. Note that in cases where True is returned, callers assume
154   --  Nkind (N) in N_Op.
155
156   function To_Source_Location (S : Source_Ptr) return Source_Location;
157   --  Converts Source_Ptr value to Source_Location (line/col) format
158
159   procedure Process_Decisions
160     (N           : Node_Id;
161      T           : Character;
162      Pragma_Sloc : Source_Ptr);
163   --  If N is Empty, has no effect. Otherwise scans the tree for the node N,
164   --  to output any decisions it contains. T is one of IEGPWX (for context of
165   --  expression: if/exit when/entry guard/pragma/while/expression). If T is
166   --  other than X, the node N is the if expression involved, and a decision
167   --  is always present (at the very least a simple decision is present at the
168   --  top level).
169
170   procedure Process_Decisions
171     (L           : List_Id;
172      T           : Character;
173      Pragma_Sloc : Source_Ptr);
174   --  Calls above procedure for each element of the list L
175
176   procedure Set_Raw_Table_Entry
177     (C1                 : Character;
178      C2                 : Character;
179      From               : Source_Ptr;
180      To                 : Source_Ptr;
181      Last               : Boolean;
182      Pragma_Sloc        : Source_Ptr := No_Location;
183      Pragma_Aspect_Name : Name_Id    := No_Name);
184   --  Append an entry to SCO_Raw_Table with fields set as per arguments
185
186   type Dominant_Info is record
187      K : Character;
188      --  F/T/S/E for a valid dominance marker, or ' ' for no dominant
189
190      N : Node_Id;
191      --  Node providing the Sloc(s) for the dominance marker
192   end record;
193   No_Dominant : constant Dominant_Info := (' ', Empty);
194
195   procedure Record_Instance (Id : Instance_Id; Inst_Sloc : Source_Ptr);
196   --  Add one entry from the instance table to the corresponding SCO table
197
198   procedure Traverse_Declarations_Or_Statements
199     (L : List_Id;
200      D : Dominant_Info := No_Dominant;
201      P : Node_Id       := Empty);
202   --  Process L, a list of statements or declarations dominated by D. If P is
203   --  present, it is processed as though it had been prepended to L.
204
205   function Traverse_Declarations_Or_Statements
206     (L : List_Id;
207      D : Dominant_Info := No_Dominant;
208      P : Node_Id       := Empty) return Dominant_Info;
209   --  Same as above, and returns dominant information corresponding to the
210   --  last node with SCO in L.
211
212   --  The following Traverse_* routines perform appropriate calls to
213   --  Traverse_Declarations_Or_Statements to traverse specific node kinds.
214   --  Parameter D, when present, indicates the dominant of the first
215   --  declaration or statement within N.
216
217   --  Why is Traverse_Sync_Definition commented specifically, whereas
218   --  the others are not???
219
220   procedure Traverse_Generic_Package_Declaration (N : Node_Id);
221
222   procedure Traverse_Handled_Statement_Sequence
223     (N : Node_Id;
224      D : Dominant_Info := No_Dominant);
225
226   procedure Traverse_Package_Body (N : Node_Id);
227
228   procedure Traverse_Package_Declaration
229     (N : Node_Id;
230      D : Dominant_Info := No_Dominant);
231
232   procedure Traverse_Subprogram_Or_Task_Body
233     (N : Node_Id;
234      D : Dominant_Info := No_Dominant);
235
236   procedure Traverse_Sync_Definition (N : Node_Id);
237   --  Traverse a protected definition or task definition
238
239   --  Note regarding traversals: In a few cases where an Alternatives list is
240   --  involved, pragmas such as "pragma Page" may show up before the first
241   --  alternative. We skip them because we're out of statement or declaration
242   --  context, so these can't be pragmas of interest for SCO purposes, and
243   --  the regular alternative processing typically involves attribute queries
244   --  which aren't valid for a pragma.
245
246   procedure Write_SCOs_To_ALI_File is new Put_SCOs;
247   --  Write SCO information to the ALI file using routines in Lib.Util
248
249   ----------
250   -- dsco --
251   ----------
252
253   procedure dsco is
254      procedure Dump_Entry (Index : Nat; T : SCO_Table_Entry);
255      --  Dump a SCO table entry
256
257      ----------------
258      -- Dump_Entry --
259      ----------------
260
261      procedure Dump_Entry (Index : Nat; T : SCO_Table_Entry) is
262      begin
263         Write_Str  ("  ");
264         Write_Int  (Index);
265         Write_Char ('.');
266
267         if T.C1 /= ' ' then
268            Write_Str  ("  C1 = '");
269            Write_Char (T.C1);
270            Write_Char (''');
271         end if;
272
273         if T.C2 /= ' ' then
274            Write_Str  ("  C2 = '");
275            Write_Char (T.C2);
276            Write_Char (''');
277         end if;
278
279         if T.From /= No_Source_Location then
280            Write_Str ("  From = ");
281            Write_Int (Int (T.From.Line));
282            Write_Char (':');
283            Write_Int (Int (T.From.Col));
284         end if;
285
286         if T.To /= No_Source_Location then
287            Write_Str ("  To = ");
288            Write_Int (Int (T.To.Line));
289            Write_Char (':');
290            Write_Int (Int (T.To.Col));
291         end if;
292
293         if T.Last then
294            Write_Str ("  True");
295         else
296            Write_Str ("  False");
297         end if;
298
299         Write_Eol;
300      end Dump_Entry;
301
302   --  Start of processing for dsco
303
304   begin
305      --  Dump SCO unit table
306
307      Write_Line ("SCO Unit Table");
308      Write_Line ("--------------");
309
310      for Index in 1 .. SCO_Unit_Table.Last loop
311         declare
312            UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (Index);
313
314         begin
315            Write_Str ("  ");
316            Write_Int (Int (Index));
317            Write_Str ("  Dep_Num = ");
318            Write_Int (Int (UTE.Dep_Num));
319            Write_Str ("  From = ");
320            Write_Int (Int (UTE.From));
321            Write_Str ("  To = ");
322            Write_Int (Int (UTE.To));
323
324            Write_Str ("  File_Name = """);
325
326            if UTE.File_Name /= null then
327               Write_Str (UTE.File_Name.all);
328            end if;
329
330            Write_Char ('"');
331            Write_Eol;
332         end;
333      end loop;
334
335      --  Dump SCO Unit number table if it contains any entries
336
337      if SCO_Unit_Number_Table.Last >= 1 then
338         Write_Eol;
339         Write_Line ("SCO Unit Number Table");
340         Write_Line ("---------------------");
341
342         for Index in 1 .. SCO_Unit_Number_Table.Last loop
343            Write_Str ("  ");
344            Write_Int (Int (Index));
345            Write_Str (". Unit_Number = ");
346            Write_Int (Int (SCO_Unit_Number_Table.Table (Index)));
347            Write_Eol;
348         end loop;
349      end if;
350
351      --  Dump SCO raw-table
352
353      Write_Eol;
354      Write_Line ("SCO Raw Table");
355      Write_Line ("---------");
356
357      if SCO_Generation_State = Filtered then
358         Write_Line ("Empty (free'd after second pass)");
359      else
360         for Index in 1 .. SCO_Raw_Table.Last loop
361            Dump_Entry (Index, SCO_Raw_Table.Table (Index));
362         end loop;
363      end if;
364
365      --  Dump SCO table itself
366
367      Write_Eol;
368      Write_Line ("SCO Filtered Table");
369      Write_Line ("---------");
370
371      for Index in 1 .. SCO_Table.Last loop
372         Dump_Entry (Index, SCO_Table.Table (Index));
373      end loop;
374   end dsco;
375
376   -----------
377   -- Equal --
378   -----------
379
380   function Equal (F1 : Source_Ptr; F2 : Source_Ptr) return Boolean is
381   begin
382      return F1 = F2;
383   end Equal;
384
385   -------
386   -- < --
387   -------
388
389   function "<" (S1 : Source_Location; S2 : Source_Location) return Boolean is
390   begin
391      return S1.Line < S2.Line
392        or else (S1.Line = S2.Line and then S1.Col < S2.Col);
393   end "<";
394
395   ------------------
396   -- Has_Decision --
397   ------------------
398
399   function Has_Decision (N : Node_Id) return Boolean is
400      function Check_Node (N : Node_Id) return Traverse_Result;
401      --  Determine if Nkind (N) indicates the presence of a decision (i.e. N
402      --  is a logical operator, which is a decision in itself, or an
403      --  IF-expression whose Condition attribute is a decision).
404
405      ----------------
406      -- Check_Node --
407      ----------------
408
409      function Check_Node (N : Node_Id) return Traverse_Result is
410      begin
411         --  If we are not sure this is a logical operator (AND and OR may be
412         --  turned into logical operators with the Short_Circuit_And_Or
413         --  pragma), assume it is. Putative decisions will be discarded if
414         --  needed in the secord pass.
415
416         if Is_Logical_Operator (N) /= False
417           or else Nkind (N) = N_If_Expression
418         then
419            return Abandon;
420         else
421            return OK;
422         end if;
423      end Check_Node;
424
425      function Traverse is new Traverse_Func (Check_Node);
426
427   --  Start of processing for Has_Decision
428
429   begin
430      return Traverse (N) = Abandon;
431   end Has_Decision;
432
433   ----------
434   -- Hash --
435   ----------
436
437   function Hash (F : Source_Ptr) return Header_Num is
438   begin
439      return Header_Num (Nat (F) mod 997);
440   end Hash;
441
442   ----------------
443   -- Initialize --
444   ----------------
445
446   procedure Initialize is
447   begin
448      SCO_Unit_Number_Table.Init;
449
450      --  The SCO_Unit_Number_Table entry with index 0 is intentionally set
451      --  aside to be used as temporary for sorting.
452
453      SCO_Unit_Number_Table.Increment_Last;
454   end Initialize;
455
456   -------------------------
457   -- Is_Logical_Operator --
458   -------------------------
459
460   function Is_Logical_Operator (N : Node_Id) return Tristate is
461   begin
462      if Nkind (N) in N_And_Then | N_Op_Not | N_Or_Else then
463         return True;
464      elsif Nkind (N) in N_Op_And | N_Op_Or then
465         return Unknown;
466      else
467         return False;
468      end if;
469   end Is_Logical_Operator;
470
471   -----------------------
472   -- Process_Decisions --
473   -----------------------
474
475   --  Version taking a list
476
477   procedure Process_Decisions
478     (L           : List_Id;
479      T           : Character;
480      Pragma_Sloc : Source_Ptr)
481   is
482      N : Node_Id;
483
484   begin
485      if L /= No_List then
486         N := First (L);
487         while Present (N) loop
488            Process_Decisions (N, T, Pragma_Sloc);
489            Next (N);
490         end loop;
491      end if;
492   end Process_Decisions;
493
494   --  Version taking a node
495
496   Current_Pragma_Sloc : Source_Ptr := No_Location;
497   --  While processing a pragma, this is set to the sloc of the N_Pragma node
498
499   procedure Process_Decisions
500     (N           : Node_Id;
501      T           : Character;
502      Pragma_Sloc : Source_Ptr)
503   is
504      Mark : Nat;
505      --  This is used to mark the location of a decision sequence in the SCO
506      --  table. We use it for backing out a simple decision in an expression
507      --  context that contains only NOT operators.
508
509      Mark_Hash : Nat;
510      --  Likewise for the putative SCO_Raw_Hash_Table entries: see below
511
512      type Hash_Entry is record
513         Sloc      : Source_Ptr;
514         SCO_Index : Nat;
515      end record;
516      --  We must register all conditions/pragmas in SCO_Raw_Hash_Table.
517      --  However we cannot register them in the same time we are adding the
518      --  corresponding SCO entries to the raw table since we may discard them
519      --  later on. So instead we put all putative conditions into Hash_Entries
520      --  (see below) and register them once we are sure we keep them.
521      --
522      --  This data structure holds the conditions/pragmas to register in
523      --  SCO_Raw_Hash_Table.
524
525      package Hash_Entries is new Table.Table
526        (Table_Component_Type => Hash_Entry,
527         Table_Index_Type     => Nat,
528         Table_Low_Bound      => 1,
529         Table_Initial        => 10,
530         Table_Increment      => 10,
531         Table_Name           => "Hash_Entries");
532      --  Hold temporarily (i.e. free'd before returning) the Hash_Entry before
533      --  they are registered in SCO_Raw_Hash_Table.
534
535      X_Not_Decision : Boolean;
536      --  This flag keeps track of whether a decision sequence in the SCO table
537      --  contains only NOT operators, and is for an expression context (T=X).
538      --  The flag will be set False if T is other than X, or if an operator
539      --  other than NOT is in the sequence.
540
541      procedure Output_Decision_Operand (N : Node_Id);
542      --  The node N is the top level logical operator of a decision, or it is
543      --  one of the operands of a logical operator belonging to a single
544      --  complex decision. This routine outputs the sequence of table entries
545      --  corresponding to the node. Note that we do not process the sub-
546      --  operands to look for further decisions, that processing is done in
547      --  Process_Decision_Operand, because we can't get decisions mixed up in
548      --  the global table. Call has no effect if N is Empty.
549
550      procedure Output_Element (N : Node_Id);
551      --  Node N is an operand of a logical operator that is not itself a
552      --  logical operator, or it is a simple decision. This routine outputs
553      --  the table entry for the element, with C1 set to ' '. Last is set
554      --  False, and an entry is made in the condition hash table.
555
556      procedure Output_Header (T : Character);
557      --  Outputs a decision header node. T is I/W/E/P for IF/WHILE/EXIT WHEN/
558      --  PRAGMA, and 'X' for the expression case.
559
560      procedure Process_Decision_Operand (N : Node_Id);
561      --  This is called on node N, the top level node of a decision, or on one
562      --  of its operands or suboperands after generating the full output for
563      --  the complex decision. It process the suboperands of the decision
564      --  looking for nested decisions.
565
566      function Process_Node (N : Node_Id) return Traverse_Result;
567      --  Processes one node in the traversal, looking for logical operators,
568      --  and if one is found, outputs the appropriate table entries.
569
570      -----------------------------
571      -- Output_Decision_Operand --
572      -----------------------------
573
574      procedure Output_Decision_Operand (N : Node_Id) is
575         C1 : Character;
576         C2 : Character;
577         --  C1 holds a character that identifies the operation while C2
578         --  indicates whether we are sure (' ') or not ('?') this operation
579         --  belongs to the decision. '?' entries will be filtered out in the
580         --  second (SCO_Record_Filtered) pass.
581
582         L : Node_Id;
583         T : Tristate;
584
585      begin
586         if No (N) then
587            return;
588         end if;
589
590         T := Is_Logical_Operator (N);
591
592         --  Logical operator
593
594         if T /= False then
595            if Nkind (N) = N_Op_Not then
596               C1 := '!';
597               L := Empty;
598
599            else
600               L := Left_Opnd (N);
601
602               if Nkind (N) in N_Op_Or | N_Or_Else then
603                  C1 := '|';
604               else pragma Assert (Nkind (N) in N_Op_And | N_And_Then);
605                  C1 := '&';
606               end if;
607            end if;
608
609            if T = True then
610               C2 := ' ';
611            else
612               C2 := '?';
613            end if;
614
615            Set_Raw_Table_Entry
616              (C1   => C1,
617               C2   => C2,
618               From => Sloc (N),
619               To   => No_Location,
620               Last => False);
621
622            Hash_Entries.Append ((Sloc (N), SCO_Raw_Table.Last));
623
624            Output_Decision_Operand (L);
625            Output_Decision_Operand (Right_Opnd (N));
626
627         --  Not a logical operator
628
629         else
630            Output_Element (N);
631         end if;
632      end Output_Decision_Operand;
633
634      --------------------
635      -- Output_Element --
636      --------------------
637
638      procedure Output_Element (N : Node_Id) is
639         FSloc : Source_Ptr;
640         LSloc : Source_Ptr;
641      begin
642         Sloc_Range (N, FSloc, LSloc);
643         Set_Raw_Table_Entry
644           (C1   => ' ',
645            C2   => 'c',
646            From => FSloc,
647            To   => LSloc,
648            Last => False);
649         Hash_Entries.Append ((FSloc, SCO_Raw_Table.Last));
650      end Output_Element;
651
652      -------------------
653      -- Output_Header --
654      -------------------
655
656      procedure Output_Header (T : Character) is
657         Loc : Source_Ptr := No_Location;
658         --  Node whose Sloc is used for the decision
659
660         Nam : Name_Id := No_Name;
661         --  For the case of an aspect, aspect name
662
663      begin
664         case T is
665            when 'I' | 'E' | 'W' | 'a' | 'A' =>
666
667               --  For IF, EXIT, WHILE, or aspects, the token SLOC is that of
668               --  the parent of the expression.
669
670               Loc := Sloc (Parent (N));
671
672               if T = 'a' or else T = 'A' then
673                  Nam := Chars (Identifier (Parent (N)));
674               end if;
675
676            when 'G' | 'P' =>
677
678               --  For entry guard, the token sloc is from the N_Entry_Body.
679               --  For PRAGMA, we must get the location from the pragma node.
680               --  Argument N is the pragma argument, and we have to go up
681               --  two levels (through the pragma argument association) to
682               --  get to the pragma node itself. For the guard on a select
683               --  alternative, we do not have access to the token location for
684               --  the WHEN, so we use the first sloc of the condition itself
685               --  (note: we use First_Sloc, not Sloc, because this is what is
686               --  referenced by dominance markers).
687
688               --  Doesn't this requirement of using First_Sloc need to be
689               --  documented in the spec ???
690
691               if Nkind (Parent (N)) in N_Accept_Alternative
692                                      | N_Delay_Alternative
693                                      | N_Terminate_Alternative
694               then
695                  Loc := First_Sloc (N);
696               else
697                  Loc := Sloc (Parent (Parent (N)));
698               end if;
699
700            when 'X' =>
701
702               --  For an expression, no Sloc
703
704               null;
705
706            --  No other possibilities
707
708            when others =>
709               raise Program_Error;
710         end case;
711
712         Set_Raw_Table_Entry
713           (C1                 => T,
714            C2                 => ' ',
715            From               => Loc,
716            To                 => No_Location,
717            Last               => False,
718            Pragma_Sloc        => Pragma_Sloc,
719            Pragma_Aspect_Name => Nam);
720
721         --  For an aspect specification, which will be rewritten into a
722         --  pragma, enter a hash table entry now.
723
724         if T = 'a' then
725            Hash_Entries.Append ((Loc, SCO_Raw_Table.Last));
726         end if;
727      end Output_Header;
728
729      ------------------------------
730      -- Process_Decision_Operand --
731      ------------------------------
732
733      procedure Process_Decision_Operand (N : Node_Id) is
734      begin
735         if Is_Logical_Operator (N) /= False then
736            if Nkind (N) /= N_Op_Not then
737               Process_Decision_Operand (Left_Opnd (N));
738               X_Not_Decision := False;
739            end if;
740
741            Process_Decision_Operand (Right_Opnd (N));
742
743         else
744            Process_Decisions (N, 'X', Pragma_Sloc);
745         end if;
746      end Process_Decision_Operand;
747
748      ------------------
749      -- Process_Node --
750      ------------------
751
752      function Process_Node (N : Node_Id) return Traverse_Result is
753      begin
754         case Nkind (N) is
755
756            --  Logical operators, output table entries and then process
757            --  operands recursively to deal with nested conditions.
758
759            when N_And_Then
760               | N_Op_And
761               | N_Op_Not
762               | N_Op_Or
763               | N_Or_Else
764            =>
765               declare
766                  T : Character;
767
768               begin
769                  --  If outer level, then type comes from call, otherwise it
770                  --  is more deeply nested and counts as X for expression.
771
772                  if N = Process_Decisions.N then
773                     T := Process_Decisions.T;
774                  else
775                     T := 'X';
776                  end if;
777
778                  --  Output header for sequence
779
780                  X_Not_Decision := T = 'X' and then Nkind (N) = N_Op_Not;
781                  Mark      := SCO_Raw_Table.Last;
782                  Mark_Hash := Hash_Entries.Last;
783                  Output_Header (T);
784
785                  --  Output the decision
786
787                  Output_Decision_Operand (N);
788
789                  --  If the decision was in an expression context (T = 'X')
790                  --  and contained only NOT operators, then we don't output
791                  --  it, so delete it.
792
793                  if X_Not_Decision then
794                     SCO_Raw_Table.Set_Last (Mark);
795                     Hash_Entries.Set_Last (Mark_Hash);
796
797                  --  Otherwise, set Last in last table entry to mark end
798
799                  else
800                     SCO_Raw_Table.Table (SCO_Raw_Table.Last).Last := True;
801                  end if;
802
803                  --  Process any embedded decisions
804
805                  Process_Decision_Operand (N);
806                  return Skip;
807               end;
808
809            --  Case expression
810
811            --  Really hard to believe this is correct given the special
812            --  handling for if expressions below ???
813
814            when N_Case_Expression =>
815               return OK; -- ???
816
817            --  If expression, processed like an if statement
818
819            when N_If_Expression =>
820               declare
821                  Cond : constant Node_Id := First (Expressions (N));
822                  Thnx : constant Node_Id := Next (Cond);
823                  Elsx : constant Node_Id := Next (Thnx);
824
825               begin
826                  Process_Decisions (Cond, 'I', Pragma_Sloc);
827                  Process_Decisions (Thnx, 'X', Pragma_Sloc);
828                  Process_Decisions (Elsx, 'X', Pragma_Sloc);
829                  return Skip;
830               end;
831
832            --  All other cases, continue scan
833
834            when others =>
835               return OK;
836         end case;
837      end Process_Node;
838
839      procedure Traverse is new Traverse_Proc (Process_Node);
840
841   --  Start of processing for Process_Decisions
842
843   begin
844      if No (N) then
845         return;
846      end if;
847
848      Hash_Entries.Init;
849
850      --  See if we have simple decision at outer level and if so then
851      --  generate the decision entry for this simple decision. A simple
852      --  decision is a boolean expression (which is not a logical operator
853      --  or short circuit form) appearing as the operand of an IF, WHILE,
854      --  EXIT WHEN, or special PRAGMA construct.
855
856      if T /= 'X' and then Is_Logical_Operator (N) = False then
857         Output_Header (T);
858         Output_Element (N);
859
860         --  Change Last in last table entry to True to mark end of
861         --  sequence, which is this case is only one element long.
862
863         SCO_Raw_Table.Table (SCO_Raw_Table.Last).Last := True;
864      end if;
865
866      Traverse (N);
867
868      --  Now we have the definitive set of SCO entries, register them in the
869      --  corresponding hash table.
870
871      for J in 1 .. Hash_Entries.Last loop
872         SCO_Raw_Hash_Table.Set
873           (Hash_Entries.Table (J).Sloc,
874            Hash_Entries.Table (J).SCO_Index);
875      end loop;
876
877      Hash_Entries.Free;
878   end Process_Decisions;
879
880   -----------
881   -- pscos --
882   -----------
883
884   procedure pscos is
885      procedure Write_Info_Char (C : Character) renames Write_Char;
886      --  Write one character;
887
888      procedure Write_Info_Initiate (Key : Character) renames Write_Char;
889      --  Start new one and write one character;
890
891      procedure Write_Info_Nat (N : Nat);
892      --  Write value of N
893
894      procedure Write_Info_Terminate renames Write_Eol;
895      --  Terminate current line
896
897      --------------------
898      -- Write_Info_Nat --
899      --------------------
900
901      procedure Write_Info_Nat (N : Nat) is
902      begin
903         Write_Int (N);
904      end Write_Info_Nat;
905
906      procedure Debug_Put_SCOs is new Put_SCOs;
907
908   --  Start of processing for pscos
909
910   begin
911      Debug_Put_SCOs;
912   end pscos;
913
914   ---------------------
915   -- Record_Instance --
916   ---------------------
917
918   procedure Record_Instance (Id : Instance_Id; Inst_Sloc : Source_Ptr) is
919      Inst_Src  : constant Source_File_Index :=
920                    Get_Source_File_Index (Inst_Sloc);
921   begin
922      SCO_Instance_Table.Append
923        ((Inst_Dep_Num       => Dependency_Num (Unit (Inst_Src)),
924          Inst_Loc           => To_Source_Location (Inst_Sloc),
925          Enclosing_Instance => SCO_Instance_Index (Instance (Inst_Src))));
926
927      pragma Assert
928        (SCO_Instance_Table.Last = SCO_Instance_Index (Id));
929   end Record_Instance;
930
931   ----------------
932   -- SCO_Output --
933   ----------------
934
935   procedure SCO_Output is
936      procedure Populate_SCO_Instance_Table is
937        new Sinput.Iterate_On_Instances (Record_Instance);
938
939   begin
940      pragma Assert (SCO_Generation_State = Filtered);
941
942      if Debug_Flag_Dot_OO then
943         dsco;
944      end if;
945
946      Populate_SCO_Instance_Table;
947
948      --  Sort the unit tables based on dependency numbers
949
950      Unit_Table_Sort : declare
951         function Lt (Op1 : Natural; Op2 : Natural) return Boolean;
952         --  Comparison routine for sort call
953
954         procedure Move (From : Natural; To : Natural);
955         --  Move routine for sort call
956
957         --------
958         -- Lt --
959         --------
960
961         function Lt (Op1 : Natural; Op2 : Natural) return Boolean is
962         begin
963            return
964              Dependency_Num
965                (SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op1)))
966                     <
967              Dependency_Num
968                (SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op2)));
969         end Lt;
970
971         ----------
972         -- Move --
973         ----------
974
975         procedure Move (From : Natural; To : Natural) is
976         begin
977            SCO_Unit_Table.Table (SCO_Unit_Index (To)) :=
978              SCO_Unit_Table.Table (SCO_Unit_Index (From));
979            SCO_Unit_Number_Table.Table (SCO_Unit_Index (To)) :=
980              SCO_Unit_Number_Table.Table (SCO_Unit_Index (From));
981         end Move;
982
983         package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
984
985      --  Start of processing for Unit_Table_Sort
986
987      begin
988         Sorting.Sort (Integer (SCO_Unit_Table.Last));
989      end Unit_Table_Sort;
990
991      --  Loop through entries in the unit table to set file name and
992      --  dependency number entries.
993
994      for J in 1 .. SCO_Unit_Table.Last loop
995         declare
996            U   : constant Unit_Number_Type := SCO_Unit_Number_Table.Table (J);
997            UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (J);
998
999         begin
1000            Get_Name_String (Reference_Name (Source_Index (U)));
1001            UTE.File_Name := new String'(Name_Buffer (1 .. Name_Len));
1002            UTE.Dep_Num := Dependency_Num (U);
1003         end;
1004      end loop;
1005
1006      --  Now the tables are all setup for output to the ALI file
1007
1008      Write_SCOs_To_ALI_File;
1009   end SCO_Output;
1010
1011   -------------------------
1012   -- SCO_Pragma_Disabled --
1013   -------------------------
1014
1015   function SCO_Pragma_Disabled (Loc : Source_Ptr) return Boolean is
1016      Index : Nat;
1017
1018   begin
1019      if Loc = No_Location then
1020         return False;
1021      end if;
1022
1023      Index := SCO_Raw_Hash_Table.Get (Loc);
1024
1025      --  The test here for zero is to deal with possible previous errors, and
1026      --  for the case of pragma statement SCOs, for which we always set the
1027      --  Pragma_Sloc even if the particular pragma cannot be specifically
1028      --  disabled.
1029
1030      if Index /= 0 then
1031         declare
1032            T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
1033
1034         begin
1035            case T.C1 is
1036               when 'S' =>
1037                  --  Pragma statement
1038
1039                  return T.C2 = 'p';
1040
1041               when 'A' =>
1042                  --  Aspect decision (enabled)
1043
1044                  return False;
1045
1046               when 'a' =>
1047                  --  Aspect decision (not enabled)
1048
1049                  return True;
1050
1051               when ASCII.NUL =>
1052                  --  Nullified disabled SCO
1053
1054                  return True;
1055
1056               when others =>
1057                  raise Program_Error;
1058            end case;
1059         end;
1060
1061      else
1062         return False;
1063      end if;
1064   end SCO_Pragma_Disabled;
1065
1066   --------------------
1067   -- SCO_Record_Raw --
1068   --------------------
1069
1070   procedure SCO_Record_Raw (U : Unit_Number_Type) is
1071      procedure Traverse_Aux_Decls (N : Node_Id);
1072      --  Traverse the Aux_Decls_Node of compilation unit N
1073
1074      ------------------------
1075      -- Traverse_Aux_Decls --
1076      ------------------------
1077
1078      procedure Traverse_Aux_Decls (N : Node_Id) is
1079         ADN : constant Node_Id := Aux_Decls_Node (N);
1080
1081      begin
1082         Traverse_Declarations_Or_Statements (Config_Pragmas (ADN));
1083         Traverse_Declarations_Or_Statements (Pragmas_After  (ADN));
1084
1085         --  Declarations and Actions do not correspond to source constructs,
1086         --  they contain only nodes from expansion, so at this point they
1087         --  should still be empty:
1088
1089         pragma Assert (No (Declarations (ADN)));
1090         pragma Assert (No (Actions (ADN)));
1091      end Traverse_Aux_Decls;
1092
1093      --  Local variables
1094
1095      From : Nat;
1096      Lu   : Node_Id;
1097
1098   --  Start of processing for SCO_Record_Raw
1099
1100   begin
1101      --  It is legitimate to run this pass multiple times (once per unit) so
1102      --  run it even if it was already run before.
1103
1104      pragma Assert (SCO_Generation_State in None .. Raw);
1105      SCO_Generation_State := Raw;
1106
1107      --  Ignore call if not generating code and generating SCO's
1108
1109      if not (Generate_SCO and then Operating_Mode = Generate_Code) then
1110         return;
1111      end if;
1112
1113      --  Ignore call if this unit already recorded
1114
1115      for J in 1 .. SCO_Unit_Number_Table.Last loop
1116         if U = SCO_Unit_Number_Table.Table (J) then
1117            return;
1118         end if;
1119      end loop;
1120
1121      --  Otherwise record starting entry
1122
1123      From := SCO_Raw_Table.Last + 1;
1124
1125      --  Get Unit (checking case of subunit)
1126
1127      Lu := Unit (Cunit (U));
1128
1129      if Nkind (Lu) = N_Subunit then
1130         Lu := Proper_Body (Lu);
1131      end if;
1132
1133      --  Traverse the unit
1134
1135      Traverse_Aux_Decls (Cunit (U));
1136
1137      case Nkind (Lu) is
1138         when N_Generic_Instantiation
1139            | N_Generic_Package_Declaration
1140            | N_Package_Body
1141            | N_Package_Declaration
1142            | N_Protected_Body
1143            | N_Subprogram_Body
1144            | N_Subprogram_Declaration
1145            | N_Task_Body
1146         =>
1147            Traverse_Declarations_Or_Statements (L => No_List, P => Lu);
1148
1149         --  All other cases of compilation units (e.g. renamings), generate no
1150         --  SCO information.
1151
1152         when others =>
1153            null;
1154      end case;
1155
1156      --  Make entry for new unit in unit tables, we will fill in the file
1157      --  name and dependency numbers later.
1158
1159      SCO_Unit_Table.Append (
1160        (Dep_Num    => 0,
1161         File_Name  => null,
1162         File_Index => Get_Source_File_Index (Sloc (Lu)),
1163         From       => From,
1164         To         => SCO_Raw_Table.Last));
1165
1166      SCO_Unit_Number_Table.Append (U);
1167   end SCO_Record_Raw;
1168
1169   -----------------------
1170   -- Set_SCO_Condition --
1171   -----------------------
1172
1173   procedure Set_SCO_Condition (Cond : Node_Id; Val : Boolean) is
1174
1175      --  SCO annotations are not processed after the filtering pass
1176
1177      pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
1178
1179      Constant_Condition_Code : constant array (Boolean) of Character :=
1180                                  (False => 'f', True => 't');
1181
1182      Orig  : constant Node_Id := Original_Node (Cond);
1183      Dummy : Source_Ptr;
1184      Index : Nat;
1185      Start : Source_Ptr;
1186
1187   begin
1188      Sloc_Range (Orig, Start, Dummy);
1189      Index := SCO_Raw_Hash_Table.Get (Start);
1190
1191      --  Index can be zero for boolean expressions that do not have SCOs
1192      --  (simple decisions outside of a control flow structure), or in case
1193      --  of a previous error.
1194
1195      if Index = 0 then
1196         return;
1197
1198      else
1199         pragma Assert (SCO_Raw_Table.Table (Index).C1 = ' ');
1200         SCO_Raw_Table.Table (Index).C2 := Constant_Condition_Code (Val);
1201      end if;
1202   end Set_SCO_Condition;
1203
1204   ------------------------------
1205   -- Set_SCO_Logical_Operator --
1206   ------------------------------
1207
1208   procedure Set_SCO_Logical_Operator (Op : Node_Id) is
1209
1210      --  SCO annotations are not processed after the filtering pass
1211
1212      pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
1213
1214      Orig      : constant Node_Id    := Original_Node (Op);
1215      Orig_Sloc : constant Source_Ptr := Sloc (Orig);
1216      Index     : constant Nat        := SCO_Raw_Hash_Table.Get (Orig_Sloc);
1217
1218   begin
1219      --  All (putative) logical operators are supposed to have their own entry
1220      --  in the SCOs table. However, the semantic analysis may invoke this
1221      --  subprogram with nodes that are out of the SCO generation scope.
1222
1223      if Index /= 0 then
1224         SCO_Raw_Table.Table (Index).C2 := ' ';
1225      end if;
1226   end Set_SCO_Logical_Operator;
1227
1228   ----------------------------
1229   -- Set_SCO_Pragma_Enabled --
1230   ----------------------------
1231
1232   procedure Set_SCO_Pragma_Enabled (Loc : Source_Ptr) is
1233
1234      --  SCO annotations are not processed after the filtering pass
1235
1236      pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
1237
1238      Index : Nat;
1239
1240   begin
1241      --  Nothing to do if not generating SCO, or if we're not processing the
1242      --  original source occurrence of the pragma.
1243
1244      if not (Generate_SCO
1245               and then In_Extended_Main_Source_Unit (Loc)
1246               and then not (In_Instance or In_Inlined_Body))
1247      then
1248         return;
1249      end if;
1250
1251      --  Note: the reason we use the Sloc value as the key is that in the
1252      --  generic case, the call to this procedure is made on a copy of the
1253      --  original node, so we can't use the Node_Id value.
1254
1255      Index := SCO_Raw_Hash_Table.Get (Loc);
1256
1257      --  A zero index here indicates that semantic analysis found an
1258      --  activated pragma at Loc which does not have a corresponding pragma
1259      --  or aspect at the syntax level. This may occur in legitimate cases
1260      --  because of expanded code (such are Pre/Post conditions generated for
1261      --  formal parameter validity checks), or as a consequence of a previous
1262      --  error.
1263
1264      if Index = 0 then
1265         return;
1266
1267      else
1268         declare
1269            T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
1270
1271         begin
1272            --  Note: may be called multiple times for the same sloc, so
1273            --  account for the fact that the entry may already have been
1274            --  marked enabled.
1275
1276            case T.C1 is
1277               --  Aspect (decision SCO)
1278
1279               when 'a' =>
1280                  T.C1 := 'A';
1281
1282               when 'A' =>
1283                  null;
1284
1285               --  Pragma (statement SCO)
1286
1287               when 'S' =>
1288                  pragma Assert (T.C2 = 'p' or else T.C2 = 'P');
1289                  T.C2 := 'P';
1290
1291               when others =>
1292                  raise Program_Error;
1293            end case;
1294         end;
1295      end if;
1296   end Set_SCO_Pragma_Enabled;
1297
1298   -------------------------
1299   -- Set_Raw_Table_Entry --
1300   -------------------------
1301
1302   procedure Set_Raw_Table_Entry
1303     (C1                 : Character;
1304      C2                 : Character;
1305      From               : Source_Ptr;
1306      To                 : Source_Ptr;
1307      Last               : Boolean;
1308      Pragma_Sloc        : Source_Ptr := No_Location;
1309      Pragma_Aspect_Name : Name_Id    := No_Name)
1310   is
1311      pragma Assert (SCO_Generation_State = Raw);
1312   begin
1313      SCO_Raw_Table.Append
1314        ((C1                 => C1,
1315          C2                 => C2,
1316          From               => To_Source_Location (From),
1317          To                 => To_Source_Location (To),
1318          Last               => Last,
1319          Pragma_Sloc        => Pragma_Sloc,
1320          Pragma_Aspect_Name => Pragma_Aspect_Name));
1321   end Set_Raw_Table_Entry;
1322
1323   ------------------------
1324   -- To_Source_Location --
1325   ------------------------
1326
1327   function To_Source_Location (S : Source_Ptr) return Source_Location is
1328   begin
1329      if S = No_Location then
1330         return No_Source_Location;
1331      else
1332         return
1333           (Line => Get_Logical_Line_Number (S),
1334            Col  => Get_Column_Number (S));
1335      end if;
1336   end To_Source_Location;
1337
1338   -----------------------------------------
1339   -- Traverse_Declarations_Or_Statements --
1340   -----------------------------------------
1341
1342   --  Tables used by Traverse_Declarations_Or_Statements for temporarily
1343   --  holding statement and decision entries. These are declared globally
1344   --  since they are shared by recursive calls to this procedure.
1345
1346   type SC_Entry is record
1347      N    : Node_Id;
1348      From : Source_Ptr;
1349      To   : Source_Ptr;
1350      Typ  : Character;
1351   end record;
1352   --  Used to store a single entry in the following table, From:To represents
1353   --  the range of entries in the CS line entry, and typ is the type, with
1354   --  space meaning that no type letter will accompany the entry.
1355
1356   package SC is new Table.Table
1357     (Table_Component_Type => SC_Entry,
1358      Table_Index_Type     => Nat,
1359      Table_Low_Bound      => 1,
1360      Table_Initial        => 1000,
1361      Table_Increment      => 200,
1362      Table_Name           => "SCO_SC");
1363   --  Used to store statement components for a CS entry to be output as a
1364   --  result of the call to this procedure. SC.Last is the last entry stored,
1365   --  so the current statement sequence is represented by SC_Array (SC_First
1366   --  .. SC.Last), where SC_First is saved on entry to each recursive call to
1367   --  the routine.
1368   --
1369   --  Extend_Statement_Sequence adds an entry to this array, and then
1370   --  Set_Statement_Entry clears the entries starting with SC_First, copying
1371   --  these entries to the main SCO output table. The reason that we do the
1372   --  temporary caching of results in this array is that we want the SCO table
1373   --  entries for a given CS line to be contiguous, and the processing may
1374   --  output intermediate entries such as decision entries.
1375
1376   type SD_Entry is record
1377      Nod : Node_Id;
1378      Lst : List_Id;
1379      Typ : Character;
1380      Plo : Source_Ptr;
1381   end record;
1382   --  Used to store a single entry in the following table. Nod is the node to
1383   --  be searched for decisions for the case of Process_Decisions_Defer with a
1384   --  node argument (with Lst set to No_List. Lst is the list to be searched
1385   --  for decisions for the case of Process_Decisions_Defer with a List
1386   --  argument (in which case Nod is set to Empty). Plo is the sloc of the
1387   --  enclosing pragma, if any.
1388
1389   package SD is new Table.Table
1390     (Table_Component_Type => SD_Entry,
1391      Table_Index_Type     => Nat,
1392      Table_Low_Bound      => 1,
1393      Table_Initial        => 1000,
1394      Table_Increment      => 200,
1395      Table_Name           => "SCO_SD");
1396   --  Used to store possible decision information. Instead of calling the
1397   --  Process_Decisions procedures directly, we call Process_Decisions_Defer,
1398   --  which simply stores the arguments in this table. Then when we clear
1399   --  out a statement sequence using Set_Statement_Entry, after generating
1400   --  the CS lines for the statements, the entries in this table result in
1401   --  calls to Process_Decision. The reason for doing things this way is to
1402   --  ensure that decisions are output after the CS line for the statements
1403   --  in which the decisions occur.
1404
1405   procedure Traverse_Declarations_Or_Statements
1406     (L : List_Id;
1407      D : Dominant_Info := No_Dominant;
1408      P : Node_Id       := Empty)
1409   is
1410      Discard_Dom : Dominant_Info;
1411      pragma Warnings (Off, Discard_Dom);
1412   begin
1413      Discard_Dom := Traverse_Declarations_Or_Statements (L, D, P);
1414   end Traverse_Declarations_Or_Statements;
1415
1416   function Traverse_Declarations_Or_Statements
1417     (L : List_Id;
1418      D : Dominant_Info := No_Dominant;
1419      P : Node_Id       := Empty) return Dominant_Info
1420   is
1421      Current_Dominant : Dominant_Info := D;
1422      --  Dominance information for the current basic block
1423
1424      Current_Test : Node_Id;
1425      --  Conditional node (N_If_Statement or N_Elsiif being processed
1426
1427      N : Node_Id;
1428
1429      SC_First : constant Nat := SC.Last + 1;
1430      SD_First : constant Nat := SD.Last + 1;
1431      --  Record first entries used in SC/SD at this recursive level
1432
1433      procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character);
1434      --  Extend the current statement sequence to encompass the node N. Typ is
1435      --  the letter that identifies the type of statement/declaration that is
1436      --  being added to the sequence.
1437
1438      procedure Process_Decisions_Defer (N : Node_Id; T : Character);
1439      pragma Inline (Process_Decisions_Defer);
1440      --  This routine is logically the same as Process_Decisions, except that
1441      --  the arguments are saved in the SD table for later processing when
1442      --  Set_Statement_Entry is called, which goes through the saved entries
1443      --  making the corresponding calls to Process_Decision. Note: the
1444      --  enclosing statement must have already been added to the current
1445      --  statement sequence, so that nested decisions are properly
1446      --  identified as such.
1447
1448      procedure Process_Decisions_Defer (L : List_Id; T : Character);
1449      pragma Inline (Process_Decisions_Defer);
1450      --  Same case for list arguments, deferred call to Process_Decisions
1451
1452      procedure Set_Statement_Entry;
1453      --  Output CS entries for all statements saved in table SC, and end the
1454      --  current CS sequence. Then output entries for all decisions nested in
1455      --  these statements, which have been deferred so far.
1456
1457      procedure Traverse_One (N : Node_Id);
1458      --  Traverse one declaration or statement
1459
1460      procedure Traverse_Aspects (N : Node_Id);
1461      --  Helper for Traverse_One: traverse N's aspect specifications
1462
1463      procedure Traverse_Degenerate_Subprogram (N : Node_Id);
1464      --  Common code to handle null procedures and expression functions. Emit
1465      --  a SCO of the given Kind and N outside of the dominance flow.
1466
1467      -------------------------------
1468      -- Extend_Statement_Sequence --
1469      -------------------------------
1470
1471      procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character) is
1472         Dummy   : Source_Ptr;
1473         F       : Source_Ptr;
1474         T       : Source_Ptr;
1475         To_Node : Node_Id := Empty;
1476
1477      begin
1478         Sloc_Range (N, F, T);
1479
1480         case Nkind (N) is
1481            when N_Accept_Statement =>
1482               if Present (Parameter_Specifications (N)) then
1483                  To_Node := Last (Parameter_Specifications (N));
1484               elsif Present (Entry_Index (N)) then
1485                  To_Node := Entry_Index (N);
1486               else
1487                  To_Node := Entry_Direct_Name (N);
1488               end if;
1489
1490            when N_Case_Statement =>
1491               To_Node := Expression (N);
1492
1493            when N_Elsif_Part
1494               | N_If_Statement
1495            =>
1496               To_Node := Condition (N);
1497
1498            when N_Extended_Return_Statement =>
1499               To_Node := Last (Return_Object_Declarations (N));
1500
1501            when N_Loop_Statement =>
1502               To_Node := Iteration_Scheme (N);
1503
1504            when N_Asynchronous_Select
1505               | N_Conditional_Entry_Call
1506               | N_Selective_Accept
1507               | N_Single_Protected_Declaration
1508               | N_Single_Task_Declaration
1509               | N_Timed_Entry_Call
1510            =>
1511               T := F;
1512
1513            when N_Protected_Type_Declaration
1514               | N_Task_Type_Declaration
1515            =>
1516               if Has_Aspects (N) then
1517                  To_Node := Last (Aspect_Specifications (N));
1518
1519               elsif Present (Discriminant_Specifications (N)) then
1520                  To_Node := Last (Discriminant_Specifications (N));
1521
1522               else
1523                  To_Node := Defining_Identifier (N);
1524               end if;
1525
1526            when N_Subexpr =>
1527               To_Node := N;
1528
1529            when others =>
1530               null;
1531         end case;
1532
1533         if Present (To_Node) then
1534            Sloc_Range (To_Node, Dummy, T);
1535         end if;
1536
1537         SC.Append ((N, F, T, Typ));
1538      end Extend_Statement_Sequence;
1539
1540      -----------------------------
1541      -- Process_Decisions_Defer --
1542      -----------------------------
1543
1544      procedure Process_Decisions_Defer (N : Node_Id; T : Character) is
1545      begin
1546         SD.Append ((N, No_List, T, Current_Pragma_Sloc));
1547      end Process_Decisions_Defer;
1548
1549      procedure Process_Decisions_Defer (L : List_Id; T : Character) is
1550      begin
1551         SD.Append ((Empty, L, T, Current_Pragma_Sloc));
1552      end Process_Decisions_Defer;
1553
1554      -------------------------
1555      -- Set_Statement_Entry --
1556      -------------------------
1557
1558      procedure Set_Statement_Entry is
1559         SC_Last : constant Int := SC.Last;
1560         SD_Last : constant Int := SD.Last;
1561
1562      begin
1563         --  Output statement entries from saved entries in SC table
1564
1565         for J in SC_First .. SC_Last loop
1566            if J = SC_First then
1567
1568               if Current_Dominant /= No_Dominant then
1569                  declare
1570                     From : Source_Ptr;
1571                     To   : Source_Ptr;
1572
1573                  begin
1574                     Sloc_Range (Current_Dominant.N, From, To);
1575
1576                     if Current_Dominant.K /= 'E' then
1577                        To := No_Location;
1578                     end if;
1579
1580                     Set_Raw_Table_Entry
1581                       (C1                 => '>',
1582                        C2                 => Current_Dominant.K,
1583                        From               => From,
1584                        To                 => To,
1585                        Last               => False,
1586                        Pragma_Sloc        => No_Location,
1587                        Pragma_Aspect_Name => No_Name);
1588                  end;
1589               end if;
1590            end if;
1591
1592            declare
1593               SCE                : SC_Entry renames SC.Table (J);
1594               Pragma_Sloc        : Source_Ptr := No_Location;
1595               Pragma_Aspect_Name : Name_Id    := No_Name;
1596
1597            begin
1598               --  For the case of a statement SCO for a pragma controlled by
1599               --  Set_SCO_Pragma_Enabled, set Pragma_Sloc so that the SCO (and
1600               --  those of any nested decision) is emitted only if the pragma
1601               --  is enabled.
1602
1603               if SCE.Typ = 'p' then
1604                  Pragma_Sloc := SCE.From;
1605                  SCO_Raw_Hash_Table.Set
1606                    (Pragma_Sloc, SCO_Raw_Table.Last + 1);
1607                  Pragma_Aspect_Name := Pragma_Name_Unmapped (SCE.N);
1608                  pragma Assert (Pragma_Aspect_Name /= No_Name);
1609
1610               elsif SCE.Typ = 'P' then
1611                  Pragma_Aspect_Name := Pragma_Name_Unmapped (SCE.N);
1612                  pragma Assert (Pragma_Aspect_Name /= No_Name);
1613               end if;
1614
1615               Set_Raw_Table_Entry
1616                 (C1                 => 'S',
1617                  C2                 => SCE.Typ,
1618                  From               => SCE.From,
1619                  To                 => SCE.To,
1620                  Last               => (J = SC_Last),
1621                  Pragma_Sloc        => Pragma_Sloc,
1622                  Pragma_Aspect_Name => Pragma_Aspect_Name);
1623            end;
1624         end loop;
1625
1626         --  Last statement of basic block, if present, becomes new current
1627         --  dominant.
1628
1629         if SC_Last >= SC_First then
1630            Current_Dominant := ('S', SC.Table (SC_Last).N);
1631         end if;
1632
1633         --  Clear out used section of SC table
1634
1635         SC.Set_Last (SC_First - 1);
1636
1637         --  Output any embedded decisions
1638
1639         for J in SD_First .. SD_Last loop
1640            declare
1641               SDE : SD_Entry renames SD.Table (J);
1642
1643            begin
1644               if Present (SDE.Nod) then
1645                  Process_Decisions (SDE.Nod, SDE.Typ, SDE.Plo);
1646               else
1647                  Process_Decisions (SDE.Lst, SDE.Typ, SDE.Plo);
1648               end if;
1649            end;
1650         end loop;
1651
1652         --  Clear out used section of SD table
1653
1654         SD.Set_Last (SD_First - 1);
1655      end Set_Statement_Entry;
1656
1657      ----------------------
1658      -- Traverse_Aspects --
1659      ----------------------
1660
1661      procedure Traverse_Aspects (N : Node_Id) is
1662         AE : Node_Id;
1663         AN : Node_Id;
1664         C1 : Character;
1665
1666      begin
1667         AN := First (Aspect_Specifications (N));
1668         while Present (AN) loop
1669            AE := Expression (AN);
1670
1671            --  SCOs are generated before semantic analysis/expansion:
1672            --  PPCs are not split yet.
1673
1674            pragma Assert (not Split_PPC (AN));
1675
1676            C1 := ASCII.NUL;
1677
1678            case Get_Aspect_Id (AN) is
1679
1680               --  Aspects rewritten into pragmas controlled by a Check_Policy:
1681               --  Current_Pragma_Sloc must be set to the sloc of the aspect
1682               --  specification. The corresponding pragma will have the same
1683               --  sloc. Note that Invariant, Pre, and Post will be enabled if
1684               --  the policy is Check; on the other hand, predicate aspects
1685               --  will be enabled for Check and Ignore (when Add_Predicate
1686               --  is called) because the actual checks occur in client units.
1687               --  When the assertion policy for Predicate is Disable, the
1688               --  SCO remains disabled, because Add_Predicate is never called.
1689
1690               --  Pre/post can have checks in client units too because of
1691               --  inheritance, so should they receive the same treatment???
1692
1693               when Aspect_Dynamic_Predicate
1694                  | Aspect_Invariant
1695                  | Aspect_Post
1696                  | Aspect_Postcondition
1697                  | Aspect_Pre
1698                  | Aspect_Precondition
1699                  | Aspect_Predicate
1700                  | Aspect_Static_Predicate
1701                  | Aspect_Type_Invariant
1702               =>
1703                  C1 := 'a';
1704
1705               --  Other aspects: just process any decision nested in the
1706               --  aspect expression.
1707
1708               when others =>
1709                  if Has_Decision (AE) then
1710                     C1 := 'X';
1711                  end if;
1712            end case;
1713
1714            if C1 /= ASCII.NUL then
1715               pragma Assert (Current_Pragma_Sloc = No_Location);
1716
1717               if C1 = 'a' or else C1 = 'A' then
1718                  Current_Pragma_Sloc := Sloc (AN);
1719               end if;
1720
1721               Process_Decisions_Defer (AE, C1);
1722
1723               Current_Pragma_Sloc := No_Location;
1724            end if;
1725
1726            Next (AN);
1727         end loop;
1728      end Traverse_Aspects;
1729
1730      ------------------------------------
1731      -- Traverse_Degenerate_Subprogram --
1732      ------------------------------------
1733
1734      procedure Traverse_Degenerate_Subprogram (N : Node_Id) is
1735      begin
1736         --  Complete current sequence of statements
1737
1738         Set_Statement_Entry;
1739
1740         declare
1741            Saved_Dominant : constant Dominant_Info := Current_Dominant;
1742            --  Save last statement in current sequence as dominant
1743
1744         begin
1745            --  Output statement SCO for degenerate subprogram body (null
1746            --  statement or freestanding expression) outside of the dominance
1747            --  chain.
1748
1749            Current_Dominant := No_Dominant;
1750            Extend_Statement_Sequence (N, Typ => 'X');
1751
1752            --  For the case of an expression-function, collect decisions
1753            --  embedded in the expression now.
1754
1755            if Nkind (N) in N_Subexpr then
1756               Process_Decisions_Defer (N, 'X');
1757            end if;
1758
1759            Set_Statement_Entry;
1760
1761            --  Restore current dominant information designating last statement
1762            --  in previous sequence (i.e. make the dominance chain skip over
1763            --  the degenerate body).
1764
1765            Current_Dominant := Saved_Dominant;
1766         end;
1767      end Traverse_Degenerate_Subprogram;
1768
1769      ------------------
1770      -- Traverse_One --
1771      ------------------
1772
1773      procedure Traverse_One (N : Node_Id) is
1774      begin
1775         --  Initialize or extend current statement sequence. Note that for
1776         --  special cases such as IF and Case statements we will modify
1777         --  the range to exclude internal statements that should not be
1778         --  counted as part of the current statement sequence.
1779
1780         case Nkind (N) is
1781
1782            --  Package declaration
1783
1784            when N_Package_Declaration =>
1785               Set_Statement_Entry;
1786               Traverse_Package_Declaration (N, Current_Dominant);
1787
1788            --  Generic package declaration
1789
1790            when N_Generic_Package_Declaration =>
1791               Set_Statement_Entry;
1792               Traverse_Generic_Package_Declaration (N);
1793
1794            --  Package body
1795
1796            when N_Package_Body =>
1797               Set_Statement_Entry;
1798               Traverse_Package_Body (N);
1799
1800            --  Subprogram declaration or subprogram body stub
1801
1802            when N_Expression_Function
1803               | N_Subprogram_Body_Stub
1804               | N_Subprogram_Declaration
1805            =>
1806               declare
1807                  Spec : constant Node_Id := Specification (N);
1808               begin
1809                  Process_Decisions_Defer
1810                    (Parameter_Specifications (Spec), 'X');
1811
1812                  --  Case of a null procedure: generate SCO for fictitious
1813                  --  NULL statement located at the NULL keyword in the
1814                  --  procedure specification.
1815
1816                  if Nkind (N) = N_Subprogram_Declaration
1817                    and then Nkind (Spec) = N_Procedure_Specification
1818                    and then Null_Present (Spec)
1819                  then
1820                     Traverse_Degenerate_Subprogram (Null_Statement (Spec));
1821
1822                  --  Case of an expression function: generate a statement SCO
1823                  --  for the expression (and then decision SCOs for any nested
1824                  --  decisions).
1825
1826                  elsif Nkind (N) = N_Expression_Function then
1827                     Traverse_Degenerate_Subprogram (Expression (N));
1828                  end if;
1829               end;
1830
1831            --  Entry declaration
1832
1833            when N_Entry_Declaration =>
1834               Process_Decisions_Defer (Parameter_Specifications (N), 'X');
1835
1836            --  Generic subprogram declaration
1837
1838            when N_Generic_Subprogram_Declaration =>
1839               Process_Decisions_Defer
1840                 (Generic_Formal_Declarations (N), 'X');
1841               Process_Decisions_Defer
1842                 (Parameter_Specifications (Specification (N)), 'X');
1843
1844            --  Task or subprogram body
1845
1846            when N_Subprogram_Body
1847               | N_Task_Body
1848            =>
1849               Set_Statement_Entry;
1850               Traverse_Subprogram_Or_Task_Body (N);
1851
1852            --  Entry body
1853
1854            when N_Entry_Body =>
1855               declare
1856                  Cond : constant Node_Id :=
1857                           Condition (Entry_Body_Formal_Part (N));
1858
1859                  Inner_Dominant : Dominant_Info := No_Dominant;
1860
1861               begin
1862                  Set_Statement_Entry;
1863
1864                  if Present (Cond) then
1865                     Process_Decisions_Defer (Cond, 'G');
1866
1867                     --  For an entry body with a barrier, the entry body
1868                     --  is dominanted by a True evaluation of the barrier.
1869
1870                     Inner_Dominant := ('T', N);
1871                  end if;
1872
1873                  Traverse_Subprogram_Or_Task_Body (N, Inner_Dominant);
1874               end;
1875
1876            --  Protected body
1877
1878            when N_Protected_Body =>
1879               Set_Statement_Entry;
1880               Traverse_Declarations_Or_Statements (Declarations (N));
1881
1882            --  Exit statement, which is an exit statement in the SCO sense,
1883            --  so it is included in the current statement sequence, but
1884            --  then it terminates this sequence. We also have to process
1885            --  any decisions in the exit statement expression.
1886
1887            when N_Exit_Statement =>
1888               Extend_Statement_Sequence (N, 'E');
1889               Process_Decisions_Defer (Condition (N), 'E');
1890               Set_Statement_Entry;
1891
1892               --  If condition is present, then following statement is
1893               --  only executed if the condition evaluates to False.
1894
1895               if Present (Condition (N)) then
1896                  Current_Dominant := ('F', N);
1897               else
1898                  Current_Dominant := No_Dominant;
1899               end if;
1900
1901            --  Label, which breaks the current statement sequence, but the
1902            --  label itself is not included in the next statement sequence,
1903            --  since it generates no code.
1904
1905            when N_Label =>
1906               Set_Statement_Entry;
1907               Current_Dominant := No_Dominant;
1908
1909            --  Block statement, which breaks the current statement sequence
1910
1911            when N_Block_Statement =>
1912               Set_Statement_Entry;
1913
1914               --  The first statement in the handled sequence of statements
1915               --  is dominated by the elaboration of the last declaration.
1916
1917               Current_Dominant := Traverse_Declarations_Or_Statements
1918                                     (L => Declarations (N),
1919                                      D => Current_Dominant);
1920
1921               Traverse_Handled_Statement_Sequence
1922                 (N => Handled_Statement_Sequence (N),
1923                  D => Current_Dominant);
1924
1925            --  If statement, which breaks the current statement sequence,
1926            --  but we include the condition in the current sequence.
1927
1928            when N_If_Statement =>
1929               Current_Test := N;
1930               Extend_Statement_Sequence (N, 'I');
1931               Process_Decisions_Defer (Condition (N), 'I');
1932               Set_Statement_Entry;
1933
1934               --  Now we traverse the statements in the THEN part
1935
1936               Traverse_Declarations_Or_Statements
1937                 (L => Then_Statements (N),
1938                  D => ('T', N));
1939
1940               --  Loop through ELSIF parts if present
1941
1942               if Present (Elsif_Parts (N)) then
1943                  declare
1944                     Saved_Dominant : constant Dominant_Info :=
1945                                        Current_Dominant;
1946
1947                     Elif : Node_Id := First (Elsif_Parts (N));
1948
1949                  begin
1950                     while Present (Elif) loop
1951
1952                        --  An Elsif is executed only if the previous test
1953                        --  got a FALSE outcome.
1954
1955                        Current_Dominant := ('F', Current_Test);
1956
1957                        --  Now update current test information
1958
1959                        Current_Test := Elif;
1960
1961                        --  We generate a statement sequence for the
1962                        --  construct "ELSIF condition", so that we have
1963                        --  a statement for the resulting decisions.
1964
1965                        Extend_Statement_Sequence (Elif, 'I');
1966                        Process_Decisions_Defer (Condition (Elif), 'I');
1967                        Set_Statement_Entry;
1968
1969                        --  An ELSIF part is never guaranteed to have
1970                        --  been executed, following statements are only
1971                        --  dominated by the initial IF statement.
1972
1973                        Current_Dominant := Saved_Dominant;
1974
1975                        --  Traverse the statements in the ELSIF
1976
1977                        Traverse_Declarations_Or_Statements
1978                          (L => Then_Statements (Elif),
1979                           D => ('T', Elif));
1980                        Next (Elif);
1981                     end loop;
1982                  end;
1983               end if;
1984
1985               --  Finally traverse the ELSE statements if present
1986
1987               Traverse_Declarations_Or_Statements
1988                 (L => Else_Statements (N),
1989                  D => ('F', Current_Test));
1990
1991            --  CASE statement, which breaks the current statement sequence,
1992            --  but we include the expression in the current sequence.
1993
1994            when N_Case_Statement =>
1995               Extend_Statement_Sequence (N, 'C');
1996               Process_Decisions_Defer (Expression (N), 'X');
1997               Set_Statement_Entry;
1998
1999               --  Process case branches, all of which are dominated by the
2000               --  CASE statement.
2001
2002               declare
2003                  Alt : Node_Id;
2004               begin
2005                  Alt := First_Non_Pragma (Alternatives (N));
2006                  while Present (Alt) loop
2007                     Traverse_Declarations_Or_Statements
2008                       (L => Statements (Alt),
2009                        D => Current_Dominant);
2010                     Next (Alt);
2011                  end loop;
2012               end;
2013
2014            --  ACCEPT statement
2015
2016            when N_Accept_Statement =>
2017               Extend_Statement_Sequence (N, 'A');
2018               Set_Statement_Entry;
2019
2020               --  Process sequence of statements, dominant is the ACCEPT
2021               --  statement.
2022
2023               Traverse_Handled_Statement_Sequence
2024                 (N => Handled_Statement_Sequence (N),
2025                  D => Current_Dominant);
2026
2027            --  SELECT
2028
2029            when N_Selective_Accept =>
2030               Extend_Statement_Sequence (N, 'S');
2031               Set_Statement_Entry;
2032
2033               --  Process alternatives
2034
2035               declare
2036                  Alt   : Node_Id;
2037                  Guard : Node_Id;
2038                  S_Dom : Dominant_Info;
2039
2040               begin
2041                  Alt := First (Select_Alternatives (N));
2042                  while Present (Alt) loop
2043                     S_Dom := Current_Dominant;
2044                     Guard := Condition (Alt);
2045
2046                     if Present (Guard) then
2047                        Process_Decisions
2048                          (Guard,
2049                           'G',
2050                           Pragma_Sloc => No_Location);
2051                        Current_Dominant := ('T', Guard);
2052                     end if;
2053
2054                     Traverse_One (Alt);
2055
2056                     Current_Dominant := S_Dom;
2057                     Next (Alt);
2058                  end loop;
2059               end;
2060
2061               Traverse_Declarations_Or_Statements
2062                 (L => Else_Statements (N),
2063                  D => Current_Dominant);
2064
2065            when N_Conditional_Entry_Call
2066               | N_Timed_Entry_Call
2067            =>
2068               Extend_Statement_Sequence (N, 'S');
2069               Set_Statement_Entry;
2070
2071               --  Process alternatives
2072
2073               Traverse_One (Entry_Call_Alternative (N));
2074
2075               if Nkind (N) = N_Timed_Entry_Call then
2076                  Traverse_One (Delay_Alternative (N));
2077               else
2078                  Traverse_Declarations_Or_Statements
2079                    (L => Else_Statements (N),
2080                     D => Current_Dominant);
2081               end if;
2082
2083            when N_Asynchronous_Select =>
2084               Extend_Statement_Sequence (N, 'S');
2085               Set_Statement_Entry;
2086
2087               Traverse_One (Triggering_Alternative (N));
2088               Traverse_Declarations_Or_Statements
2089                 (L => Statements (Abortable_Part (N)),
2090                  D => Current_Dominant);
2091
2092            when N_Accept_Alternative =>
2093               Traverse_Declarations_Or_Statements
2094                 (L => Statements (N),
2095                  D => Current_Dominant,
2096                  P => Accept_Statement (N));
2097
2098            when N_Entry_Call_Alternative =>
2099               Traverse_Declarations_Or_Statements
2100                 (L => Statements (N),
2101                  D => Current_Dominant,
2102                  P => Entry_Call_Statement (N));
2103
2104            when N_Delay_Alternative =>
2105               Traverse_Declarations_Or_Statements
2106                 (L => Statements (N),
2107                  D => Current_Dominant,
2108                  P => Delay_Statement (N));
2109
2110            when N_Triggering_Alternative =>
2111               Traverse_Declarations_Or_Statements
2112                 (L => Statements (N),
2113                  D => Current_Dominant,
2114                  P => Triggering_Statement (N));
2115
2116            when N_Terminate_Alternative =>
2117
2118               --  It is dubious to emit a statement SCO for a TERMINATE
2119               --  alternative, since no code is actually executed if the
2120               --  alternative is selected -- the tasking runtime call just
2121               --  never returns???
2122
2123               Extend_Statement_Sequence (N, ' ');
2124               Set_Statement_Entry;
2125
2126            --  Unconditional exit points, which are included in the current
2127            --  statement sequence, but then terminate it
2128
2129            when N_Goto_Statement
2130               | N_Raise_Statement
2131               | N_Requeue_Statement
2132            =>
2133               Extend_Statement_Sequence (N, ' ');
2134               Set_Statement_Entry;
2135               Current_Dominant := No_Dominant;
2136
2137            --  Simple return statement. which is an exit point, but we
2138            --  have to process the return expression for decisions.
2139
2140            when N_Simple_Return_Statement =>
2141               Extend_Statement_Sequence (N, ' ');
2142               Process_Decisions_Defer (Expression (N), 'X');
2143               Set_Statement_Entry;
2144               Current_Dominant := No_Dominant;
2145
2146            --  Extended return statement
2147
2148            when N_Extended_Return_Statement =>
2149               Extend_Statement_Sequence (N, 'R');
2150               Process_Decisions_Defer (Return_Object_Declarations (N), 'X');
2151               Set_Statement_Entry;
2152
2153               Traverse_Handled_Statement_Sequence
2154                 (N => Handled_Statement_Sequence (N),
2155                  D => Current_Dominant);
2156
2157               Current_Dominant := No_Dominant;
2158
2159            --  Loop ends the current statement sequence, but we include
2160            --  the iteration scheme if present in the current sequence.
2161            --  But the body of the loop starts a new sequence, since it
2162            --  may not be executed as part of the current sequence.
2163
2164            when N_Loop_Statement =>
2165               declare
2166                  ISC            : constant Node_Id := Iteration_Scheme (N);
2167                  Inner_Dominant : Dominant_Info    := No_Dominant;
2168
2169               begin
2170                  if Present (ISC) then
2171
2172                     --  If iteration scheme present, extend the current
2173                     --  statement sequence to include the iteration scheme
2174                     --  and process any decisions it contains.
2175
2176                     --  While loop
2177
2178                     if Present (Condition (ISC)) then
2179                        Extend_Statement_Sequence (N, 'W');
2180                        Process_Decisions_Defer (Condition (ISC), 'W');
2181
2182                        --  Set more specific dominant for inner statements
2183                        --  (the control sloc for the decision is that of
2184                        --  the WHILE token).
2185
2186                        Inner_Dominant := ('T', ISC);
2187
2188                     --  For loop
2189
2190                     else
2191                        Extend_Statement_Sequence (N, 'F');
2192                        Process_Decisions_Defer
2193                          (Loop_Parameter_Specification (ISC), 'X');
2194                     end if;
2195                  end if;
2196
2197                  Set_Statement_Entry;
2198
2199                  if Inner_Dominant = No_Dominant then
2200                     Inner_Dominant := Current_Dominant;
2201                  end if;
2202
2203                  Traverse_Declarations_Or_Statements
2204                    (L => Statements (N),
2205                     D => Inner_Dominant);
2206               end;
2207
2208            --  Pragma
2209
2210            when N_Pragma =>
2211
2212               --  Record sloc of pragma (pragmas don't nest)
2213
2214               pragma Assert (Current_Pragma_Sloc = No_Location);
2215               Current_Pragma_Sloc := Sloc (N);
2216
2217               --  Processing depends on the kind of pragma
2218
2219               declare
2220                  Nam : constant Name_Id := Pragma_Name_Unmapped (N);
2221                  Arg : Node_Id          :=
2222                          First (Pragma_Argument_Associations (N));
2223                  Typ : Character;
2224
2225               begin
2226                  case Nam is
2227                     when Name_Assert
2228                        | Name_Assert_And_Cut
2229                        | Name_Assume
2230                        | Name_Check
2231                        | Name_Loop_Invariant
2232                        | Name_Postcondition
2233                        | Name_Precondition
2234                     =>
2235                        --  For Assert/Check/Precondition/Postcondition, we
2236                        --  must generate a P entry for the decision. Note
2237                        --  that this is done unconditionally at this stage.
2238                        --  Output for disabled pragmas is suppressed later
2239                        --  on when we output the decision line in Put_SCOs,
2240                        --  depending on setting by Set_SCO_Pragma_Enabled.
2241
2242                        if Nam = Name_Check then
2243                           Next (Arg);
2244                        end if;
2245
2246                        Process_Decisions_Defer (Expression (Arg), 'P');
2247                        Typ := 'p';
2248
2249                        --  Pre/postconditions can be inherited so SCO should
2250                        --  never be deactivated???
2251
2252                     when Name_Debug =>
2253                        if Present (Arg) and then Present (Next (Arg)) then
2254
2255                           --  Case of a dyadic pragma Debug: first argument
2256                           --  is a P decision, any nested decision in the
2257                           --  second argument is an X decision.
2258
2259                           Process_Decisions_Defer (Expression (Arg), 'P');
2260                           Next (Arg);
2261                        end if;
2262
2263                        Process_Decisions_Defer (Expression (Arg), 'X');
2264                        Typ := 'p';
2265
2266                     --  For all other pragmas, we generate decision entries
2267                     --  for any embedded expressions, and the pragma is
2268                     --  never disabled.
2269
2270                     --  Should generate P decisions (not X) for assertion
2271                     --  related pragmas: [Type_]Invariant,
2272                     --  [{Static,Dynamic}_]Predicate???
2273
2274                     when others =>
2275                        Process_Decisions_Defer (N, 'X');
2276                        Typ := 'P';
2277                  end case;
2278
2279                  --  Add statement SCO
2280
2281                  Extend_Statement_Sequence (N, Typ);
2282
2283                  Current_Pragma_Sloc := No_Location;
2284               end;
2285
2286            --  Object declaration. Ignored if Prev_Ids is set, since the
2287            --  parser generates multiple instances of the whole declaration
2288            --  if there is more than one identifier declared, and we only
2289            --  want one entry in the SCOs, so we take the first, for which
2290            --  Prev_Ids is False.
2291
2292            when N_Number_Declaration
2293               | N_Object_Declaration
2294            =>
2295               if not Prev_Ids (N) then
2296                  Extend_Statement_Sequence (N, 'o');
2297
2298                  if Has_Decision (N) then
2299                     Process_Decisions_Defer (N, 'X');
2300                  end if;
2301               end if;
2302
2303            --  All other cases, which extend the current statement sequence
2304            --  but do not terminate it, even if they have nested decisions.
2305
2306            when N_Protected_Type_Declaration
2307               | N_Task_Type_Declaration
2308            =>
2309               Extend_Statement_Sequence (N, 't');
2310               Process_Decisions_Defer (Discriminant_Specifications (N), 'X');
2311               Set_Statement_Entry;
2312
2313               Traverse_Sync_Definition (N);
2314
2315            when N_Single_Protected_Declaration
2316               | N_Single_Task_Declaration
2317            =>
2318               Extend_Statement_Sequence (N, 'o');
2319               Set_Statement_Entry;
2320
2321               Traverse_Sync_Definition (N);
2322
2323            when others =>
2324
2325               --  Determine required type character code, or ASCII.NUL if
2326               --  no SCO should be generated for this node.
2327
2328               declare
2329                  NK  : constant Node_Kind := Nkind (N);
2330                  Typ : Character;
2331
2332               begin
2333                  case NK is
2334                     when N_Full_Type_Declaration
2335                        | N_Incomplete_Type_Declaration
2336                        | N_Private_Extension_Declaration
2337                        | N_Private_Type_Declaration
2338                     =>
2339                        Typ := 't';
2340
2341                     when N_Subtype_Declaration =>
2342                        Typ := 's';
2343
2344                     when N_Renaming_Declaration =>
2345                        Typ := 'r';
2346
2347                     when N_Generic_Instantiation =>
2348                        Typ := 'i';
2349
2350                     when N_Package_Body_Stub
2351                        | N_Protected_Body_Stub
2352                        | N_Representation_Clause
2353                        | N_Task_Body_Stub
2354                        | N_Use_Package_Clause
2355                        | N_Use_Type_Clause
2356                     =>
2357                        Typ := ASCII.NUL;
2358
2359                     when N_Procedure_Call_Statement =>
2360                        Typ := ' ';
2361
2362                     when others =>
2363                        if NK in N_Statement_Other_Than_Procedure_Call then
2364                           Typ := ' ';
2365                        else
2366                           Typ := 'd';
2367                        end if;
2368                  end case;
2369
2370                  if Typ /= ASCII.NUL then
2371                     Extend_Statement_Sequence (N, Typ);
2372                  end if;
2373               end;
2374
2375               --  Process any embedded decisions
2376
2377               if Has_Decision (N) then
2378                  Process_Decisions_Defer (N, 'X');
2379               end if;
2380         end case;
2381
2382         --  Process aspects if present
2383
2384         Traverse_Aspects (N);
2385      end Traverse_One;
2386
2387   --  Start of processing for Traverse_Declarations_Or_Statements
2388
2389   begin
2390      --  Process single prefixed node
2391
2392      if Present (P) then
2393         Traverse_One (P);
2394      end if;
2395
2396      --  Loop through statements or declarations
2397
2398      if Is_Non_Empty_List (L) then
2399         N := First (L);
2400         while Present (N) loop
2401
2402            --  Note: For separate bodies, we see the tree after Par.Labl has
2403            --  introduced implicit labels, so we need to ignore those nodes.
2404
2405            if Nkind (N) /= N_Implicit_Label_Declaration then
2406               Traverse_One (N);
2407            end if;
2408
2409            Next (N);
2410         end loop;
2411
2412      end if;
2413
2414      --  End sequence of statements and flush deferred decisions
2415
2416      if Present (P) or else Is_Non_Empty_List (L) then
2417         Set_Statement_Entry;
2418      end if;
2419
2420      return Current_Dominant;
2421   end Traverse_Declarations_Or_Statements;
2422
2423   ------------------------------------------
2424   -- Traverse_Generic_Package_Declaration --
2425   ------------------------------------------
2426
2427   procedure Traverse_Generic_Package_Declaration (N : Node_Id) is
2428   begin
2429      Process_Decisions (Generic_Formal_Declarations (N), 'X', No_Location);
2430      Traverse_Package_Declaration (N);
2431   end Traverse_Generic_Package_Declaration;
2432
2433   -----------------------------------------
2434   -- Traverse_Handled_Statement_Sequence --
2435   -----------------------------------------
2436
2437   procedure Traverse_Handled_Statement_Sequence
2438     (N : Node_Id;
2439      D : Dominant_Info := No_Dominant)
2440   is
2441      Handler : Node_Id;
2442
2443   begin
2444      --  For package bodies without a statement part, the parser adds an empty
2445      --  one, to normalize the representation. The null statement therein,
2446      --  which does not come from source, does not get a SCO.
2447
2448      if Present (N) and then Comes_From_Source (N) then
2449         Traverse_Declarations_Or_Statements (Statements (N), D);
2450
2451         if Present (Exception_Handlers (N)) then
2452            Handler := First_Non_Pragma (Exception_Handlers (N));
2453            while Present (Handler) loop
2454               Traverse_Declarations_Or_Statements
2455                 (L => Statements (Handler),
2456                  D => ('E', Handler));
2457               Next (Handler);
2458            end loop;
2459         end if;
2460      end if;
2461   end Traverse_Handled_Statement_Sequence;
2462
2463   ---------------------------
2464   -- Traverse_Package_Body --
2465   ---------------------------
2466
2467   procedure Traverse_Package_Body (N : Node_Id) is
2468      Dom : Dominant_Info;
2469   begin
2470      --  The first statement in the handled sequence of statements is
2471      --  dominated by the elaboration of the last declaration.
2472
2473      Dom := Traverse_Declarations_Or_Statements (Declarations (N));
2474
2475      Traverse_Handled_Statement_Sequence
2476        (Handled_Statement_Sequence (N), Dom);
2477   end Traverse_Package_Body;
2478
2479   ----------------------------------
2480   -- Traverse_Package_Declaration --
2481   ----------------------------------
2482
2483   procedure Traverse_Package_Declaration
2484     (N : Node_Id;
2485      D : Dominant_Info := No_Dominant)
2486   is
2487      Spec : constant Node_Id := Specification (N);
2488      Dom  : Dominant_Info;
2489
2490   begin
2491      Dom :=
2492        Traverse_Declarations_Or_Statements (Visible_Declarations (Spec), D);
2493
2494      --  First private declaration is dominated by last visible declaration
2495
2496      Traverse_Declarations_Or_Statements (Private_Declarations (Spec), Dom);
2497   end Traverse_Package_Declaration;
2498
2499   ------------------------------
2500   -- Traverse_Sync_Definition --
2501   ------------------------------
2502
2503   procedure Traverse_Sync_Definition (N : Node_Id) is
2504      Dom_Info : Dominant_Info := ('S', N);
2505      --  The first declaration is dominated by the protected or task [type]
2506      --  declaration.
2507
2508      Sync_Def : Node_Id;
2509      --  N's protected or task definition
2510
2511      Priv_Decl : List_Id;
2512      Vis_Decl  : List_Id;
2513      --  Sync_Def's Visible_Declarations and Private_Declarations
2514
2515   begin
2516      case Nkind (N) is
2517         when N_Protected_Type_Declaration
2518            | N_Single_Protected_Declaration
2519         =>
2520            Sync_Def := Protected_Definition (N);
2521
2522         when N_Single_Task_Declaration
2523            | N_Task_Type_Declaration
2524         =>
2525            Sync_Def := Task_Definition (N);
2526
2527         when others =>
2528            raise Program_Error;
2529      end case;
2530
2531      --  Sync_Def may be Empty at least for empty Task_Type_Declarations.
2532      --  Querying Visible or Private_Declarations is invalid in this case.
2533
2534      if Present (Sync_Def) then
2535         Vis_Decl  := Visible_Declarations (Sync_Def);
2536         Priv_Decl := Private_Declarations (Sync_Def);
2537      else
2538         Vis_Decl  := No_List;
2539         Priv_Decl := No_List;
2540      end if;
2541
2542      Dom_Info := Traverse_Declarations_Or_Statements
2543                    (L => Vis_Decl,
2544                     D => Dom_Info);
2545
2546      --  If visible declarations are present, the first private declaration
2547      --  is dominated by the last visible declaration.
2548
2549      Traverse_Declarations_Or_Statements
2550        (L => Priv_Decl,
2551         D => Dom_Info);
2552   end Traverse_Sync_Definition;
2553
2554   --------------------------------------
2555   -- Traverse_Subprogram_Or_Task_Body --
2556   --------------------------------------
2557
2558   procedure Traverse_Subprogram_Or_Task_Body
2559     (N : Node_Id;
2560      D : Dominant_Info := No_Dominant)
2561   is
2562      Decls    : constant List_Id := Declarations (N);
2563      Dom_Info : Dominant_Info    := D;
2564
2565   begin
2566      --  If declarations are present, the first statement is dominated by the
2567      --  last declaration.
2568
2569      Dom_Info := Traverse_Declarations_Or_Statements
2570                    (L => Decls, D => Dom_Info);
2571
2572      Traverse_Handled_Statement_Sequence
2573        (N => Handled_Statement_Sequence (N),
2574         D => Dom_Info);
2575   end Traverse_Subprogram_Or_Task_Body;
2576
2577   -------------------------
2578   -- SCO_Record_Filtered --
2579   -------------------------
2580
2581   procedure SCO_Record_Filtered is
2582      type Decision is record
2583         Kind : Character;
2584         --  Type of the SCO decision (see comments for SCO_Table_Entry.C1)
2585
2586         Sloc : Source_Location;
2587
2588         Top  : Nat;
2589         --  Index in the SCO_Raw_Table for the root operator/condition for the
2590         --  expression that controls the decision.
2591      end record;
2592      --  Decision descriptor: used to gather information about a candidate
2593      --  SCO decision.
2594
2595      package Pending_Decisions is new Table.Table
2596        (Table_Component_Type => Decision,
2597         Table_Index_Type     => Nat,
2598         Table_Low_Bound      => 1,
2599         Table_Initial        => 1000,
2600         Table_Increment      => 200,
2601         Table_Name           => "Filter_Pending_Decisions");
2602      --  Table used to hold decisions to process during the collection pass
2603
2604      procedure Add_Expression_Tree (Idx : in out Nat);
2605      --  Add SCO raw table entries for the decision controlling expression
2606      --  tree starting at Idx to the filtered SCO table.
2607
2608      procedure Collect_Decisions
2609        (D    : Decision;
2610         Next : out Nat);
2611      --  Collect decisions to add to the filtered SCO table starting at the
2612      --  D decision (including it and its nested operators/conditions). Set
2613      --  Next to the first node index passed the whole decision.
2614
2615      procedure Compute_Range
2616        (Idx  : in out Nat;
2617         From : out Source_Location;
2618         To   : out Source_Location);
2619      --  Compute the source location range for the expression tree starting at
2620      --  Idx in the SCO raw table. Store its bounds in From and To.
2621
2622      function Is_Decision (Idx : Nat) return Boolean;
2623      --  Return if the expression tree starting at Idx has adjacent nested
2624      --  nodes that make a decision.
2625
2626      procedure Process_Pending_Decisions
2627        (Original_Decision : SCO_Table_Entry);
2628      --  Complete the filtered SCO table using collected decisions. Output
2629      --  decisions inherit the pragma information from the original decision.
2630
2631      procedure Search_Nested_Decisions (Idx : in out Nat);
2632      --  Collect decisions to add to the filtered SCO table starting at the
2633      --  node at Idx in the SCO raw table. This node must not be part of an
2634      --  already-processed decision. Set Idx to the first node index passed
2635      --  the whole expression tree.
2636
2637      procedure Skip_Decision
2638        (Idx                      : in out Nat;
2639         Process_Nested_Decisions : Boolean);
2640      --  Skip all the nodes that belong to the decision starting at Idx. If
2641      --  Process_Nested_Decision, call Search_Nested_Decisions on the first
2642      --  nested nodes that do not belong to the decision. Set Idx to the first
2643      --  node index passed the whole expression tree.
2644
2645      -------------------------
2646      -- Add_Expression_Tree --
2647      -------------------------
2648
2649      procedure Add_Expression_Tree (Idx : in out Nat) is
2650         Node_Idx : constant Nat := Idx;
2651         T        : SCO_Table_Entry renames SCO_Raw_Table.Table (Node_Idx);
2652         From     : Source_Location;
2653         To       : Source_Location;
2654
2655      begin
2656         case T.C1 is
2657            when ' ' =>
2658
2659               --  This is a single condition. Add an entry for it and move on
2660
2661               SCO_Table.Append (T);
2662               Idx := Idx + 1;
2663
2664            when '!' =>
2665
2666               --  This is a NOT operator: add an entry for it and browse its
2667               --  only child.
2668
2669               SCO_Table.Append (T);
2670               Idx := Idx + 1;
2671               Add_Expression_Tree (Idx);
2672
2673            when others =>
2674
2675               --  This must be an AND/OR/AND THEN/OR ELSE operator
2676
2677               if T.C2 = '?' then
2678
2679                  --  This is not a short circuit operator: consider this one
2680                  --  and all its children as a single condition.
2681
2682                  Compute_Range (Idx, From, To);
2683                  SCO_Table.Append
2684                    ((From               => From,
2685                      To                 => To,
2686                      C1                 => ' ',
2687                      C2                 => 'c',
2688                      Last               => False,
2689                      Pragma_Sloc        => No_Location,
2690                      Pragma_Aspect_Name => No_Name));
2691
2692               else
2693                  --  This is a real short circuit operator: add an entry for
2694                  --  it and browse its children.
2695
2696                  SCO_Table.Append (T);
2697                  Idx := Idx + 1;
2698                  Add_Expression_Tree (Idx);
2699                  Add_Expression_Tree (Idx);
2700               end if;
2701         end case;
2702      end Add_Expression_Tree;
2703
2704      -----------------------
2705      -- Collect_Decisions --
2706      -----------------------
2707
2708      procedure Collect_Decisions
2709        (D    : Decision;
2710         Next : out Nat)
2711      is
2712         Idx : Nat := D.Top;
2713
2714      begin
2715         if D.Kind /= 'X' or else Is_Decision (D.Top) then
2716            Pending_Decisions.Append (D);
2717         end if;
2718
2719         Skip_Decision (Idx, True);
2720         Next := Idx;
2721      end Collect_Decisions;
2722
2723      -------------------
2724      -- Compute_Range --
2725      -------------------
2726
2727      procedure Compute_Range
2728        (Idx  : in out Nat;
2729         From : out Source_Location;
2730         To   : out Source_Location)
2731      is
2732         Sloc_F : Source_Location := No_Source_Location;
2733         Sloc_T : Source_Location := No_Source_Location;
2734
2735         procedure Process_One;
2736         --  Process one node of the tree, and recurse over children. Update
2737         --  Idx during the traversal.
2738
2739         -----------------
2740         -- Process_One --
2741         -----------------
2742
2743         procedure Process_One is
2744         begin
2745            if Sloc_F = No_Source_Location
2746                 or else
2747               SCO_Raw_Table.Table (Idx).From < Sloc_F
2748            then
2749               Sloc_F := SCO_Raw_Table.Table (Idx).From;
2750            end if;
2751
2752            if Sloc_T = No_Source_Location
2753                 or else
2754               Sloc_T < SCO_Raw_Table.Table (Idx).To
2755            then
2756               Sloc_T := SCO_Raw_Table.Table (Idx).To;
2757            end if;
2758
2759            if SCO_Raw_Table.Table (Idx).C1 = ' ' then
2760
2761               --  This is a condition: nothing special to do
2762
2763               Idx := Idx + 1;
2764
2765            elsif SCO_Raw_Table.Table (Idx).C1 = '!' then
2766
2767               --  The "not" operator has only one operand
2768
2769               Idx := Idx + 1;
2770               Process_One;
2771
2772            else
2773               --  This is an AND THEN or OR ELSE logical operator: follow the
2774               --  left, then the right operands.
2775
2776               Idx := Idx + 1;
2777
2778               Process_One;
2779               Process_One;
2780            end if;
2781         end Process_One;
2782
2783      --  Start of processing for Compute_Range
2784
2785      begin
2786         Process_One;
2787         From := Sloc_F;
2788         To   := Sloc_T;
2789      end Compute_Range;
2790
2791      -----------------
2792      -- Is_Decision --
2793      -----------------
2794
2795      function Is_Decision (Idx : Nat) return Boolean is
2796         Index : Nat := Idx;
2797
2798      begin
2799         loop
2800            declare
2801               T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
2802
2803            begin
2804               case T.C1 is
2805                  when ' ' =>
2806                     return False;
2807
2808                  when '!' =>
2809
2810                     --  This is a decision iff the only operand of the NOT
2811                     --  operator could be a standalone decision.
2812
2813                     Index := Idx + 1;
2814
2815                  when others =>
2816
2817                     --  This node is a logical operator (and thus could be a
2818                     --  standalone decision) iff it is a short circuit
2819                     --  operator.
2820
2821                     return T.C2 /= '?';
2822               end case;
2823            end;
2824         end loop;
2825      end Is_Decision;
2826
2827      -------------------------------
2828      -- Process_Pending_Decisions --
2829      -------------------------------
2830
2831      procedure Process_Pending_Decisions
2832        (Original_Decision : SCO_Table_Entry)
2833      is
2834      begin
2835         for Index in 1 .. Pending_Decisions.Last loop
2836            declare
2837               D   : Decision renames Pending_Decisions.Table (Index);
2838               Idx : Nat := D.Top;
2839
2840            begin
2841               --  Add a SCO table entry for the decision itself
2842
2843               pragma Assert (D.Kind /= ' ');
2844
2845               SCO_Table.Append
2846                 ((To                 => No_Source_Location,
2847                   From               => D.Sloc,
2848                   C1                 => D.Kind,
2849                   C2                 => ' ',
2850                   Last               => False,
2851                   Pragma_Sloc        => Original_Decision.Pragma_Sloc,
2852                   Pragma_Aspect_Name =>
2853                      Original_Decision.Pragma_Aspect_Name));
2854
2855               --  Then add ones for its nested operators/operands. Do not
2856               --  forget to tag its *last* entry as such.
2857
2858               Add_Expression_Tree (Idx);
2859               SCO_Table.Table (SCO_Table.Last).Last := True;
2860            end;
2861         end loop;
2862
2863         --  Clear the pending decisions list
2864         Pending_Decisions.Set_Last (0);
2865      end Process_Pending_Decisions;
2866
2867      -----------------------------
2868      -- Search_Nested_Decisions --
2869      -----------------------------
2870
2871      procedure Search_Nested_Decisions (Idx : in out Nat) is
2872      begin
2873         loop
2874            declare
2875               T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
2876
2877            begin
2878               case T.C1 is
2879                  when ' ' =>
2880                     Idx := Idx + 1;
2881                     exit;
2882
2883                  when '!' =>
2884                     Collect_Decisions
2885                       ((Kind => 'X',
2886                         Sloc => T.From,
2887                         Top  => Idx),
2888                        Idx);
2889                     exit;
2890
2891                  when others =>
2892                     if T.C2 = '?' then
2893
2894                        --  This is not a logical operator: start looking for
2895                        --  nested decisions from here. Recurse over the left
2896                        --  child and let the loop take care of the right one.
2897
2898                        Idx := Idx + 1;
2899                        Search_Nested_Decisions (Idx);
2900
2901                     else
2902                        --  We found a nested decision
2903
2904                        Collect_Decisions
2905                          ((Kind => 'X',
2906                            Sloc => T.From,
2907                            Top  => Idx),
2908                            Idx);
2909                        exit;
2910                     end if;
2911               end case;
2912            end;
2913         end loop;
2914      end Search_Nested_Decisions;
2915
2916      -------------------
2917      -- Skip_Decision --
2918      -------------------
2919
2920      procedure Skip_Decision
2921        (Idx                      : in out Nat;
2922         Process_Nested_Decisions : Boolean)
2923      is
2924      begin
2925         loop
2926            declare
2927               T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
2928
2929            begin
2930               Idx := Idx + 1;
2931
2932               case T.C1 is
2933                  when ' ' =>
2934                     exit;
2935
2936                  when '!' =>
2937
2938                     --  This NOT operator belongs to the outside decision:
2939                     --  just skip it.
2940
2941                     null;
2942
2943                  when others =>
2944                     if T.C2 = '?' and then Process_Nested_Decisions then
2945
2946                        --  This is not a logical operator: start looking for
2947                        --  nested decisions from here. Recurse over the left
2948                        --  child and let the loop take care of the right one.
2949
2950                        Search_Nested_Decisions (Idx);
2951
2952                     else
2953                        --  This is a logical operator, so it belongs to the
2954                        --  outside decision: skip its left child, then let the
2955                        --  loop take care of the right one.
2956
2957                        Skip_Decision (Idx, Process_Nested_Decisions);
2958                     end if;
2959               end case;
2960            end;
2961         end loop;
2962      end Skip_Decision;
2963
2964   --  Start of processing for SCO_Record_Filtered
2965
2966   begin
2967      --  Filtering must happen only once: do nothing if it this pass was
2968      --  already run.
2969
2970      if SCO_Generation_State = Filtered then
2971         return;
2972      else
2973         pragma Assert (SCO_Generation_State = Raw);
2974         SCO_Generation_State := Filtered;
2975      end if;
2976
2977      --  Loop through all SCO entries under SCO units
2978
2979      for Unit_Idx in 1 .. SCO_Unit_Table.Last loop
2980         declare
2981            Unit : SCO_Unit_Table_Entry
2982                     renames SCO_Unit_Table.Table (Unit_Idx);
2983
2984            Idx : Nat := Unit.From;
2985            --  Index of the current SCO raw table entry
2986
2987            New_From : constant Nat := SCO_Table.Last + 1;
2988            --  After copying SCO enties of interest to the final table, we
2989            --  will have to change the From/To indexes this unit targets.
2990            --  This constant keeps track of the new From index.
2991
2992         begin
2993            while Idx <= Unit.To loop
2994               declare
2995                  T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
2996
2997               begin
2998                  case T.C1 is
2999
3000                     --  Decision (of any kind, including pragmas and aspects)
3001
3002                     when 'E' | 'G' | 'I' | 'W' | 'X' | 'P' | 'a' | 'A' =>
3003                        if SCO_Pragma_Disabled (T.Pragma_Sloc) then
3004
3005                           --  Skip SCO entries for decisions in disabled
3006                           --  constructs (pragmas or aspects).
3007
3008                           Idx := Idx + 1;
3009                           Skip_Decision (Idx, False);
3010
3011                        else
3012                           Collect_Decisions
3013                             ((Kind => T.C1,
3014                               Sloc => T.From,
3015                               Top  => Idx + 1),
3016                              Idx);
3017                           Process_Pending_Decisions (T);
3018                        end if;
3019
3020                     --  There is no translation/filtering to do for other kind
3021                     --  of SCO items (statements, dominance markers, etc.).
3022
3023                     when '|' | '&' | '!' | ' ' =>
3024
3025                        --  SCO logical operators and conditions cannot exist
3026                        --  on their own: they must be inside a decision (such
3027                        --  entries must have been skipped by
3028                        --  Collect_Decisions).
3029
3030                        raise Program_Error;
3031
3032                     when others =>
3033                        SCO_Table.Append (T);
3034                        Idx := Idx + 1;
3035                  end case;
3036               end;
3037            end loop;
3038
3039            --  Now, update the SCO entry indexes in the unit entry
3040
3041            Unit.From := New_From;
3042            Unit.To   := SCO_Table.Last;
3043         end;
3044      end loop;
3045
3046      --  Then clear the raw table to free bytes
3047
3048      SCO_Raw_Table.Free;
3049   end SCO_Record_Filtered;
3050
3051end Par_SCO;
3052