1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             S E M _ A G G R                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2020, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Aspects;  use Aspects;
27with Atree;    use Atree;
28with Checks;   use Checks;
29with Einfo;    use Einfo;
30with Elists;   use Elists;
31with Errout;   use Errout;
32with Expander; use Expander;
33with Exp_Ch6;  use Exp_Ch6;
34with Exp_Tss;  use Exp_Tss;
35with Exp_Util; use Exp_Util;
36with Freeze;   use Freeze;
37with Itypes;   use Itypes;
38with Lib;      use Lib;
39with Lib.Xref; use Lib.Xref;
40with Namet;    use Namet;
41with Namet.Sp; use Namet.Sp;
42with Nmake;    use Nmake;
43with Nlists;   use Nlists;
44with Opt;      use Opt;
45with Restrict; use Restrict;
46with Rident;   use Rident;
47with Sem;      use Sem;
48with Sem_Aux;  use Sem_Aux;
49with Sem_Cat;  use Sem_Cat;
50with Sem_Ch3;  use Sem_Ch3;
51with Sem_Ch5;  use Sem_Ch5;
52with Sem_Ch8;  use Sem_Ch8;
53with Sem_Ch13; use Sem_Ch13;
54with Sem_Dim;  use Sem_Dim;
55with Sem_Eval; use Sem_Eval;
56with Sem_Res;  use Sem_Res;
57with Sem_Util; use Sem_Util;
58with Sem_Type; use Sem_Type;
59with Sem_Warn; use Sem_Warn;
60with Sinfo;    use Sinfo;
61with Snames;   use Snames;
62with Stringt;  use Stringt;
63with Stand;    use Stand;
64with Style;    use Style;
65with Targparm; use Targparm;
66with Tbuild;   use Tbuild;
67with Ttypes;   use Ttypes;
68with Uintp;    use Uintp;
69
70package body Sem_Aggr is
71
72   type Case_Bounds is record
73      Lo : Node_Id;
74      --  Low bound of choice. Once we sort the Case_Table, then entries
75      --  will be in order of ascending Choice_Lo values.
76
77      Hi : Node_Id;
78      --  High Bound of choice. The sort does not pay any attention to the
79      --  high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
80
81      Highest : Uint;
82      --  If there are duplicates or missing entries, then in the sorted
83      --  table, this records the highest value among Choice_Hi values
84      --  seen so far, including this entry.
85
86      Choice : Node_Id;
87      --  The node of the choice
88   end record;
89
90   type Case_Table_Type is array (Pos range <>) of Case_Bounds;
91   --  Table type used by Check_Case_Choices procedure
92
93   -----------------------
94   -- Local Subprograms --
95   -----------------------
96
97   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
98   --  Sort the Case Table using the Lower Bound of each Choice as the key. A
99   --  simple insertion sort is used since the choices in a case statement will
100   --  usually be in near sorted order.
101
102   procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
103   --  Ada 2005 (AI-231): Check bad usage of null for a component for which
104   --  null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
105   --  the array case (the component type of the array will be used) or an
106   --  E_Component/E_Discriminant entity in the record case, in which case the
107   --  type of the component will be used for the test. If Typ is any other
108   --  kind of entity, the call is ignored. Expr is the component node in the
109   --  aggregate which is known to have a null value. A warning message will be
110   --  issued if the component is null excluding.
111   --
112   --  It would be better to pass the proper type for Typ ???
113
114   procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
115   --  Check that Expr is either not limited or else is one of the cases of
116   --  expressions allowed for a limited component association (namely, an
117   --  aggregate, function call, or <> notation). Report error for violations.
118   --  Expression is also OK in an instance or inlining context, because we
119   --  have already preanalyzed and it is known to be type correct.
120
121   ------------------------------------------------------
122   -- Subprograms used for RECORD AGGREGATE Processing --
123   ------------------------------------------------------
124
125   procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
126   --  This procedure performs all the semantic checks required for record
127   --  aggregates. Note that for aggregates analysis and resolution go
128   --  hand in hand. Aggregate analysis has been delayed up to here and
129   --  it is done while resolving the aggregate.
130   --
131   --    N is the N_Aggregate node.
132   --    Typ is the record type for the aggregate resolution
133   --
134   --  While performing the semantic checks, this procedure builds a new
135   --  Component_Association_List where each record field appears alone in a
136   --  Component_Choice_List along with its corresponding expression. The
137   --  record fields in the Component_Association_List appear in the same order
138   --  in which they appear in the record type Typ.
139   --
140   --  Once this new Component_Association_List is built and all the semantic
141   --  checks performed, the original aggregate subtree is replaced with the
142   --  new named record aggregate just built. This new record aggregate has no
143   --  positional associations, so its Expressions field is set to No_List.
144   --  Note that subtree substitution is performed with Rewrite so as to be
145   --  able to retrieve the original aggregate.
146   --
147   --  The aggregate subtree manipulation performed by Resolve_Record_Aggregate
148   --  yields the aggregate format expected by Gigi. Typically, this kind of
149   --  tree manipulations are done in the expander. However, because the
150   --  semantic checks that need to be performed on record aggregates really go
151   --  hand in hand with the record aggregate normalization, the aggregate
152   --  subtree transformation is performed during resolution rather than
153   --  expansion. Had we decided otherwise we would have had to duplicate most
154   --  of the code in the expansion procedure Expand_Record_Aggregate. Note,
155   --  however, that all the expansion concerning aggregates for tagged records
156   --  is done in Expand_Record_Aggregate.
157   --
158   --  The algorithm of Resolve_Record_Aggregate proceeds as follows:
159   --
160   --  1. Make sure that the record type against which the record aggregate
161   --     has to be resolved is not abstract. Furthermore if the type is a
162   --     null aggregate make sure the input aggregate N is also null.
163   --
164   --  2. Verify that the structure of the aggregate is that of a record
165   --     aggregate. Specifically, look for component associations and ensure
166   --     that each choice list only has identifiers or the N_Others_Choice
167   --     node. Also make sure that if present, the N_Others_Choice occurs
168   --     last and by itself.
169   --
170   --  3. If Typ contains discriminants, the values for each discriminant is
171   --     looked for. If the record type Typ has variants, we check that the
172   --     expressions corresponding to each discriminant ruling the (possibly
173   --     nested) variant parts of Typ, are static. This allows us to determine
174   --     the variant parts to which the rest of the aggregate must conform.
175   --     The names of discriminants with their values are saved in a new
176   --     association list, New_Assoc_List which is later augmented with the
177   --     names and values of the remaining components in the record type.
178   --
179   --     During this phase we also make sure that every discriminant is
180   --     assigned exactly one value. Note that when several values for a given
181   --     discriminant are found, semantic processing continues looking for
182   --     further errors. In this case it's the first discriminant value found
183   --     which we will be recorded.
184   --
185   --     IMPORTANT NOTE: For derived tagged types this procedure expects
186   --     First_Discriminant and Next_Discriminant to give the correct list
187   --     of discriminants, in the correct order.
188   --
189   --  4. After all the discriminant values have been gathered, we can set the
190   --     Etype of the record aggregate. If Typ contains no discriminants this
191   --     is straightforward: the Etype of N is just Typ, otherwise a new
192   --     implicit constrained subtype of Typ is built to be the Etype of N.
193   --
194   --  5. Gather the remaining record components according to the discriminant
195   --     values. This involves recursively traversing the record type
196   --     structure to see what variants are selected by the given discriminant
197   --     values. This processing is a little more convoluted if Typ is a
198   --     derived tagged types since we need to retrieve the record structure
199   --     of all the ancestors of Typ.
200   --
201   --  6. After gathering the record components we look for their values in the
202   --     record aggregate and emit appropriate error messages should we not
203   --     find such values or should they be duplicated.
204   --
205   --  7. We then make sure no illegal component names appear in the record
206   --     aggregate and make sure that the type of the record components
207   --     appearing in a same choice list is the same. Finally we ensure that
208   --     the others choice, if present, is used to provide the value of at
209   --     least a record component.
210   --
211   --  8. The original aggregate node is replaced with the new named aggregate
212   --     built in steps 3 through 6, as explained earlier.
213   --
214   --  Given the complexity of record aggregate resolution, the primary goal of
215   --  this routine is clarity and simplicity rather than execution and storage
216   --  efficiency. If there are only positional components in the aggregate the
217   --  running time is linear. If there are associations the running time is
218   --  still linear as long as the order of the associations is not too far off
219   --  the order of the components in the record type. If this is not the case
220   --  the running time is at worst quadratic in the size of the association
221   --  list.
222
223   procedure Check_Misspelled_Component
224     (Elements  : Elist_Id;
225      Component : Node_Id);
226   --  Give possible misspelling diagnostic if Component is likely to be a
227   --  misspelling of one of the components of the Assoc_List. This is called
228   --  by Resolve_Aggr_Expr after producing an invalid component error message.
229
230   -----------------------------------------------------
231   -- Subprograms used for ARRAY AGGREGATE Processing --
232   -----------------------------------------------------
233
234   function Resolve_Array_Aggregate
235     (N              : Node_Id;
236      Index          : Node_Id;
237      Index_Constr   : Node_Id;
238      Component_Typ  : Entity_Id;
239      Others_Allowed : Boolean) return Boolean;
240   --  This procedure performs the semantic checks for an array aggregate.
241   --  True is returned if the aggregate resolution succeeds.
242   --
243   --  The procedure works by recursively checking each nested aggregate.
244   --  Specifically, after checking a sub-aggregate nested at the i-th level
245   --  we recursively check all the subaggregates at the i+1-st level (if any).
246   --  Note that for aggregates analysis and resolution go hand in hand.
247   --  Aggregate analysis has been delayed up to here and it is done while
248   --  resolving the aggregate.
249   --
250   --    N is the current N_Aggregate node to be checked.
251   --
252   --    Index is the index node corresponding to the array sub-aggregate that
253   --    we are currently checking (RM 4.3.3 (8)). Its Etype is the
254   --    corresponding index type (or subtype).
255   --
256   --    Index_Constr is the node giving the applicable index constraint if
257   --    any (RM 4.3.3 (10)). It "is a constraint provided by certain
258   --    contexts [...] that can be used to determine the bounds of the array
259   --    value specified by the aggregate". If Others_Allowed below is False
260   --    there is no applicable index constraint and this node is set to Index.
261   --
262   --    Component_Typ is the array component type.
263   --
264   --    Others_Allowed indicates whether an others choice is allowed
265   --    in the context where the top-level aggregate appeared.
266   --
267   --  The algorithm of Resolve_Array_Aggregate proceeds as follows:
268   --
269   --  1. Make sure that the others choice, if present, is by itself and
270   --     appears last in the sub-aggregate. Check that we do not have
271   --     positional and named components in the array sub-aggregate (unless
272   --     the named association is an others choice). Finally if an others
273   --     choice is present, make sure it is allowed in the aggregate context.
274   --
275   --  2. If the array sub-aggregate contains discrete_choices:
276   --
277   --     (A) Verify their validity. Specifically verify that:
278   --
279   --        (a) If a null range is present it must be the only possible
280   --            choice in the array aggregate.
281   --
282   --        (b) Ditto for a non static range.
283   --
284   --        (c) Ditto for a non static expression.
285   --
286   --        In addition this step analyzes and resolves each discrete_choice,
287   --        making sure that its type is the type of the corresponding Index.
288   --        If we are not at the lowest array aggregate level (in the case of
289   --        multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
290   --        recursively on each component expression. Otherwise, resolve the
291   --        bottom level component expressions against the expected component
292   --        type ONLY IF the component corresponds to a single discrete choice
293   --        which is not an others choice (to see why read the DELAYED
294   --        COMPONENT RESOLUTION below).
295   --
296   --     (B) Determine the bounds of the sub-aggregate and lowest and
297   --         highest choice values.
298   --
299   --  3. For positional aggregates:
300   --
301   --     (A) Loop over the component expressions either recursively invoking
302   --         Resolve_Array_Aggregate on each of these for multi-dimensional
303   --         array aggregates or resolving the bottom level component
304   --         expressions against the expected component type.
305   --
306   --     (B) Determine the bounds of the positional sub-aggregates.
307   --
308   --  4. Try to determine statically whether the evaluation of the array
309   --     sub-aggregate raises Constraint_Error. If yes emit proper
310   --     warnings. The precise checks are the following:
311   --
312   --     (A) Check that the index range defined by aggregate bounds is
313   --         compatible with corresponding index subtype.
314   --         We also check against the base type. In fact it could be that
315   --         Low/High bounds of the base type are static whereas those of
316   --         the index subtype are not. Thus if we can statically catch
317   --         a problem with respect to the base type we are guaranteed
318   --         that the same problem will arise with the index subtype
319   --
320   --     (B) If we are dealing with a named aggregate containing an others
321   --         choice and at least one discrete choice then make sure the range
322   --         specified by the discrete choices does not overflow the
323   --         aggregate bounds. We also check against the index type and base
324   --         type bounds for the same reasons given in (A).
325   --
326   --     (C) If we are dealing with a positional aggregate with an others
327   --         choice make sure the number of positional elements specified
328   --         does not overflow the aggregate bounds. We also check against
329   --         the index type and base type bounds as mentioned in (A).
330   --
331   --     Finally construct an N_Range node giving the sub-aggregate bounds.
332   --     Set the Aggregate_Bounds field of the sub-aggregate to be this
333   --     N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
334   --     to build the appropriate aggregate subtype. Aggregate_Bounds
335   --     information is needed during expansion.
336   --
337   --  DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
338   --  expressions in an array aggregate may call Duplicate_Subexpr or some
339   --  other routine that inserts code just outside the outermost aggregate.
340   --  If the array aggregate contains discrete choices or an others choice,
341   --  this may be wrong. Consider for instance the following example.
342   --
343   --    type Rec is record
344   --       V : Integer := 0;
345   --    end record;
346   --
347   --    type Acc_Rec is access Rec;
348   --    Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
349   --
350   --  Then the transformation of "new Rec" that occurs during resolution
351   --  entails the following code modifications
352   --
353   --    P7b : constant Acc_Rec := new Rec;
354   --    RecIP (P7b.all);
355   --    Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
356   --
357   --  This code transformation is clearly wrong, since we need to call
358   --  "new Rec" for each of the 3 array elements. To avoid this problem we
359   --  delay resolution of the components of non positional array aggregates
360   --  to the expansion phase. As an optimization, if the discrete choice
361   --  specifies a single value we do not delay resolution.
362
363   function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
364   --  This routine returns the type or subtype of an array aggregate.
365   --
366   --    N is the array aggregate node whose type we return.
367   --
368   --    Typ is the context type in which N occurs.
369   --
370   --  This routine creates an implicit array subtype whose bounds are
371   --  those defined by the aggregate. When this routine is invoked
372   --  Resolve_Array_Aggregate has already processed aggregate N. Thus the
373   --  Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
374   --  sub-aggregate bounds. When building the aggregate itype, this function
375   --  traverses the array aggregate N collecting such Aggregate_Bounds and
376   --  constructs the proper array aggregate itype.
377   --
378   --  Note that in the case of multidimensional aggregates each inner
379   --  sub-aggregate corresponding to a given array dimension, may provide a
380   --  different bounds. If it is possible to determine statically that
381   --  some sub-aggregates corresponding to the same index do not have the
382   --  same bounds, then a warning is emitted. If such check is not possible
383   --  statically (because some sub-aggregate bounds are dynamic expressions)
384   --  then this job is left to the expander. In all cases the particular
385   --  bounds that this function will chose for a given dimension is the first
386   --  N_Range node for a sub-aggregate corresponding to that dimension.
387   --
388   --  Note that the Raises_Constraint_Error flag of an array aggregate
389   --  whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
390   --  is set in Resolve_Array_Aggregate but the aggregate is not
391   --  immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
392   --  first construct the proper itype for the aggregate (Gigi needs
393   --  this). After constructing the proper itype we will eventually replace
394   --  the top-level aggregate with a raise CE (done in Resolve_Aggregate).
395   --  Of course in cases such as:
396   --
397   --     type Arr is array (integer range <>) of Integer;
398   --     A : Arr := (positive range -1 .. 2 => 0);
399   --
400   --  The bounds of the aggregate itype are cooked up to look reasonable
401   --  (in this particular case the bounds will be 1 .. 2).
402
403   procedure Make_String_Into_Aggregate (N : Node_Id);
404   --  A string literal can appear in a context in which a one dimensional
405   --  array of characters is expected. This procedure simply rewrites the
406   --  string as an aggregate, prior to resolution.
407
408   ---------------------------------
409   --  Delta aggregate processing --
410   ---------------------------------
411
412   procedure Resolve_Delta_Array_Aggregate  (N : Node_Id; Typ : Entity_Id);
413   procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
414
415   ------------------------
416   -- Array_Aggr_Subtype --
417   ------------------------
418
419   function Array_Aggr_Subtype
420     (N   : Node_Id;
421      Typ : Entity_Id) return Entity_Id
422   is
423      Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
424      --  Number of aggregate index dimensions
425
426      Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
427      --  Constrained N_Range of each index dimension in our aggregate itype
428
429      Aggr_Low  : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
430      Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
431      --  Low and High bounds for each index dimension in our aggregate itype
432
433      Is_Fully_Positional : Boolean := True;
434
435      procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
436      --  N is an array (sub-)aggregate. Dim is the dimension corresponding
437      --  to (sub-)aggregate N. This procedure collects and removes the side
438      --  effects of the constrained N_Range nodes corresponding to each index
439      --  dimension of our aggregate itype. These N_Range nodes are collected
440      --  in Aggr_Range above.
441      --
442      --  Likewise collect in Aggr_Low & Aggr_High above the low and high
443      --  bounds of each index dimension. If, when collecting, two bounds
444      --  corresponding to the same dimension are static and found to differ,
445      --  then emit a warning, and mark N as raising Constraint_Error.
446
447      -------------------------
448      -- Collect_Aggr_Bounds --
449      -------------------------
450
451      procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
452         This_Range : constant Node_Id := Aggregate_Bounds (N);
453         --  The aggregate range node of this specific sub-aggregate
454
455         This_Low  : constant Node_Id := Low_Bound  (Aggregate_Bounds (N));
456         This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
457         --  The aggregate bounds of this specific sub-aggregate
458
459         Assoc : Node_Id;
460         Expr  : Node_Id;
461
462      begin
463         Remove_Side_Effects (This_Low,  Variable_Ref => True);
464         Remove_Side_Effects (This_High, Variable_Ref => True);
465
466         --  Collect the first N_Range for a given dimension that you find.
467         --  For a given dimension they must be all equal anyway.
468
469         if No (Aggr_Range (Dim)) then
470            Aggr_Low (Dim)   := This_Low;
471            Aggr_High (Dim)  := This_High;
472            Aggr_Range (Dim) := This_Range;
473
474         else
475            if Compile_Time_Known_Value (This_Low) then
476               if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
477                  Aggr_Low (Dim) := This_Low;
478
479               elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
480                  Set_Raises_Constraint_Error (N);
481                  Error_Msg_Warn := SPARK_Mode /= On;
482                  Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
483                  Error_Msg_N ("\Constraint_Error [<<", N);
484               end if;
485            end if;
486
487            if Compile_Time_Known_Value (This_High) then
488               if not Compile_Time_Known_Value (Aggr_High (Dim)) then
489                  Aggr_High (Dim) := This_High;
490
491               elsif
492                 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
493               then
494                  Set_Raises_Constraint_Error (N);
495                  Error_Msg_Warn := SPARK_Mode /= On;
496                  Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
497                  Error_Msg_N ("\Constraint_Error [<<", N);
498               end if;
499            end if;
500         end if;
501
502         if Dim < Aggr_Dimension then
503
504            --  Process positional components
505
506            if Present (Expressions (N)) then
507               Expr := First (Expressions (N));
508               while Present (Expr) loop
509                  Collect_Aggr_Bounds (Expr, Dim + 1);
510                  Next (Expr);
511               end loop;
512            end if;
513
514            --  Process component associations
515
516            if Present (Component_Associations (N)) then
517               Is_Fully_Positional := False;
518
519               Assoc := First (Component_Associations (N));
520               while Present (Assoc) loop
521                  Expr := Expression (Assoc);
522                  Collect_Aggr_Bounds (Expr, Dim + 1);
523                  Next (Assoc);
524               end loop;
525            end if;
526         end if;
527      end Collect_Aggr_Bounds;
528
529      --  Array_Aggr_Subtype variables
530
531      Itype : Entity_Id;
532      --  The final itype of the overall aggregate
533
534      Index_Constraints : constant List_Id := New_List;
535      --  The list of index constraints of the aggregate itype
536
537   --  Start of processing for Array_Aggr_Subtype
538
539   begin
540      --  Make sure that the list of index constraints is properly attached to
541      --  the tree, and then collect the aggregate bounds.
542
543      Set_Parent (Index_Constraints, N);
544      Collect_Aggr_Bounds (N, 1);
545
546      --  Build the list of constrained indexes of our aggregate itype
547
548      for J in 1 .. Aggr_Dimension loop
549         Create_Index : declare
550            Index_Base : constant Entity_Id :=
551                           Base_Type (Etype (Aggr_Range (J)));
552            Index_Typ  : Entity_Id;
553
554         begin
555            --  Construct the Index subtype, and associate it with the range
556            --  construct that generates it.
557
558            Index_Typ :=
559              Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
560
561            Set_Etype (Index_Typ, Index_Base);
562
563            if Is_Character_Type (Index_Base) then
564               Set_Is_Character_Type (Index_Typ);
565            end if;
566
567            Set_Size_Info      (Index_Typ,                (Index_Base));
568            Set_RM_Size        (Index_Typ, RM_Size        (Index_Base));
569            Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
570            Set_Scalar_Range   (Index_Typ, Aggr_Range (J));
571
572            if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
573               Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
574            end if;
575
576            Set_Etype (Aggr_Range (J), Index_Typ);
577
578            Append (Aggr_Range (J), To => Index_Constraints);
579         end Create_Index;
580      end loop;
581
582      --  Now build the Itype
583
584      Itype := Create_Itype (E_Array_Subtype, N);
585
586      Set_First_Rep_Item         (Itype, First_Rep_Item        (Typ));
587      Set_Convention             (Itype, Convention            (Typ));
588      Set_Depends_On_Private     (Itype, Has_Private_Component (Typ));
589      Set_Etype                  (Itype, Base_Type             (Typ));
590      Set_Has_Alignment_Clause   (Itype, Has_Alignment_Clause  (Typ));
591      Set_Is_Aliased             (Itype, Is_Aliased            (Typ));
592      Set_Is_Independent         (Itype, Is_Independent        (Typ));
593      Set_Depends_On_Private     (Itype, Depends_On_Private    (Typ));
594
595      Copy_Suppress_Status (Index_Check,  Typ, Itype);
596      Copy_Suppress_Status (Length_Check, Typ, Itype);
597
598      Set_First_Index    (Itype, First (Index_Constraints));
599      Set_Is_Constrained (Itype, True);
600      Set_Is_Internal    (Itype, True);
601
602      if Has_Predicates (Typ) then
603         Set_Has_Predicates (Itype);
604
605         --  If the base type has a predicate, capture the predicated parent
606         --  or the existing predicate function for SPARK use.
607
608         if Present (Predicate_Function (Typ)) then
609            Set_Predicate_Function (Itype, Predicate_Function (Typ));
610
611         elsif Is_Itype (Typ) then
612            Set_Predicated_Parent (Itype, Predicated_Parent (Typ));
613
614         else
615            Set_Predicated_Parent (Itype, Typ);
616         end if;
617      end if;
618
619      --  A simple optimization: purely positional aggregates of static
620      --  components should be passed to gigi unexpanded whenever possible, and
621      --  regardless of the staticness of the bounds themselves. Subsequent
622      --  checks in exp_aggr verify that type is not packed, etc.
623
624      Set_Size_Known_At_Compile_Time
625        (Itype,
626         Is_Fully_Positional
627           and then Comes_From_Source (N)
628           and then Size_Known_At_Compile_Time (Component_Type (Typ)));
629
630      --  We always need a freeze node for a packed array subtype, so that we
631      --  can build the Packed_Array_Impl_Type corresponding to the subtype. If
632      --  expansion is disabled, the packed array subtype is not built, and we
633      --  must not generate a freeze node for the type, or else it will appear
634      --  incomplete to gigi.
635
636      if Is_Packed (Itype)
637        and then not In_Spec_Expression
638        and then Expander_Active
639      then
640         Freeze_Itype (Itype, N);
641      end if;
642
643      return Itype;
644   end Array_Aggr_Subtype;
645
646   --------------------------------
647   -- Check_Misspelled_Component --
648   --------------------------------
649
650   procedure Check_Misspelled_Component
651     (Elements  : Elist_Id;
652      Component : Node_Id)
653   is
654      Max_Suggestions   : constant := 2;
655
656      Nr_Of_Suggestions : Natural := 0;
657      Suggestion_1      : Entity_Id := Empty;
658      Suggestion_2      : Entity_Id := Empty;
659      Component_Elmt    : Elmt_Id;
660
661   begin
662      --  All the components of List are matched against Component and a count
663      --  is maintained of possible misspellings. When at the end of the
664      --  analysis there are one or two (not more) possible misspellings,
665      --  these misspellings will be suggested as possible corrections.
666
667      Component_Elmt := First_Elmt (Elements);
668      while Nr_Of_Suggestions <= Max_Suggestions
669        and then Present (Component_Elmt)
670      loop
671         if Is_Bad_Spelling_Of
672              (Chars (Node (Component_Elmt)),
673               Chars (Component))
674         then
675            Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
676
677            case Nr_Of_Suggestions is
678               when 1      => Suggestion_1 := Node (Component_Elmt);
679               when 2      => Suggestion_2 := Node (Component_Elmt);
680               when others => null;
681            end case;
682         end if;
683
684         Next_Elmt (Component_Elmt);
685      end loop;
686
687      --  Report at most two suggestions
688
689      if Nr_Of_Suggestions = 1 then
690         Error_Msg_NE -- CODEFIX
691           ("\possible misspelling of&", Component, Suggestion_1);
692
693      elsif Nr_Of_Suggestions = 2 then
694         Error_Msg_Node_2 := Suggestion_2;
695         Error_Msg_NE -- CODEFIX
696           ("\possible misspelling of& or&", Component, Suggestion_1);
697      end if;
698   end Check_Misspelled_Component;
699
700   ----------------------------------------
701   -- Check_Expr_OK_In_Limited_Aggregate --
702   ----------------------------------------
703
704   procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
705   begin
706      if Is_Limited_Type (Etype (Expr))
707         and then Comes_From_Source (Expr)
708      then
709         if In_Instance_Body or else In_Inlined_Body then
710            null;
711
712         elsif not OK_For_Limited_Init (Etype (Expr), Expr) then
713            Error_Msg_N
714              ("initialization not allowed for limited types", Expr);
715            Explain_Limited_Type (Etype (Expr), Expr);
716         end if;
717      end if;
718   end Check_Expr_OK_In_Limited_Aggregate;
719
720   -------------------------
721   -- Is_Others_Aggregate --
722   -------------------------
723
724   function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
725      Assoc : constant List_Id := Component_Associations (Aggr);
726
727   begin
728      return No (Expressions (Aggr))
729        and then Nkind (First (Choice_List (First (Assoc)))) = N_Others_Choice;
730   end Is_Others_Aggregate;
731
732   -------------------------
733   -- Is_Single_Aggregate --
734   -------------------------
735
736   function Is_Single_Aggregate (Aggr : Node_Id) return Boolean is
737      Assoc : constant List_Id := Component_Associations (Aggr);
738
739   begin
740      return No (Expressions (Aggr))
741        and then No (Next (First (Assoc)))
742        and then No (Next (First (Choice_List (First (Assoc)))));
743   end Is_Single_Aggregate;
744
745   --------------------------------
746   -- Make_String_Into_Aggregate --
747   --------------------------------
748
749   procedure Make_String_Into_Aggregate (N : Node_Id) is
750      Exprs  : constant List_Id    := New_List;
751      Loc    : constant Source_Ptr := Sloc (N);
752      Str    : constant String_Id  := Strval (N);
753      Strlen : constant Nat        := String_Length (Str);
754      C      : Char_Code;
755      C_Node : Node_Id;
756      New_N  : Node_Id;
757      P      : Source_Ptr;
758
759   begin
760      P := Loc + 1;
761      for J in  1 .. Strlen loop
762         C := Get_String_Char (Str, J);
763         Set_Character_Literal_Name (C);
764
765         C_Node :=
766           Make_Character_Literal (P,
767             Chars              => Name_Find,
768             Char_Literal_Value => UI_From_CC (C));
769         Set_Etype (C_Node, Any_Character);
770         Append_To (Exprs, C_Node);
771
772         P := P + 1;
773         --  Something special for wide strings???
774      end loop;
775
776      New_N := Make_Aggregate (Loc, Expressions => Exprs);
777      Set_Analyzed (New_N);
778      Set_Etype (New_N, Any_Composite);
779
780      Rewrite (N, New_N);
781   end Make_String_Into_Aggregate;
782
783   -----------------------
784   -- Resolve_Aggregate --
785   -----------------------
786
787   procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
788      Loc : constant Source_Ptr := Sloc (N);
789
790      Aggr_Subtyp : Entity_Id;
791      --  The actual aggregate subtype. This is not necessarily the same as Typ
792      --  which is the subtype of the context in which the aggregate was found.
793
794      Others_Box : Boolean := False;
795      --  Set to True if N represents a simple aggregate with only
796      --  (others => <>), not nested as part of another aggregate.
797
798      function Within_Aggregate (N : Node_Id) return Boolean;
799      --  Return True if N is part of an N_Aggregate
800
801      ----------------------
802      -- Within_Aggregate --
803      ----------------------
804
805      function Within_Aggregate (N : Node_Id) return Boolean is
806         P : Node_Id := Parent (N);
807      begin
808         while Present (P) loop
809            if Nkind (P) = N_Aggregate then
810               return True;
811            end if;
812
813            P := Parent (P);
814         end loop;
815
816         return False;
817      end Within_Aggregate;
818
819   --  Start of processing for Resolve_Aggregate
820
821   begin
822      --  Ignore junk empty aggregate resulting from parser error
823
824      if No (Expressions (N))
825        and then No (Component_Associations (N))
826        and then not Null_Record_Present (N)
827      then
828         return;
829      end if;
830
831      --  If the aggregate has box-initialized components, its type must be
832      --  frozen so that initialization procedures can properly be called
833      --  in the resolution that follows. The replacement of boxes with
834      --  initialization calls is properly an expansion activity but it must
835      --  be done during resolution.
836
837      if Expander_Active
838        and then Present (Component_Associations (N))
839      then
840         declare
841            Comp       : Node_Id;
842            First_Comp : Boolean := True;
843
844         begin
845            Comp := First (Component_Associations (N));
846            while Present (Comp) loop
847               if Box_Present (Comp) then
848                  if First_Comp
849                    and then No (Expressions (N))
850                    and then Nkind (First (Choices (Comp))) = N_Others_Choice
851                    and then not Within_Aggregate (N)
852                  then
853                     Others_Box := True;
854                  end if;
855
856                  Insert_Actions (N, Freeze_Entity (Typ, N));
857                  exit;
858               end if;
859
860               First_Comp := False;
861               Next (Comp);
862            end loop;
863         end;
864      end if;
865
866      --  Check for aggregates not allowed in configurable run-time mode.
867      --  We allow all cases of aggregates that do not come from source, since
868      --  these are all assumed to be small (e.g. bounds of a string literal).
869      --  We also allow aggregates of types we know to be small.
870
871      if not Support_Aggregates_On_Target
872        and then Comes_From_Source (N)
873        and then (not Known_Static_Esize (Typ)
874                   or else Esize (Typ) > System_Max_Integer_Size)
875      then
876         Error_Msg_CRT ("aggregate", N);
877      end if;
878
879      --  Ada 2005 (AI-287): Limited aggregates allowed
880
881      --  In an instance, ignore aggregate subcomponents tnat may be limited,
882      --  because they originate in view conflicts. If the original aggregate
883      --  is legal and the actuals are legal, the aggregate itself is legal.
884
885      if Is_Limited_Type (Typ)
886        and then Ada_Version < Ada_2005
887        and then not In_Instance
888      then
889         Error_Msg_N ("aggregate type cannot be limited", N);
890         Explain_Limited_Type (Typ, N);
891
892      elsif Is_Class_Wide_Type (Typ) then
893         Error_Msg_N ("type of aggregate cannot be class-wide", N);
894
895      elsif Typ = Any_String
896        or else Typ = Any_Composite
897      then
898         Error_Msg_N ("no unique type for aggregate", N);
899         Set_Etype (N, Any_Composite);
900
901      elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
902         Error_Msg_N ("null record forbidden in array aggregate", N);
903
904      elsif Present (Find_Aspect (Typ, Aspect_Aggregate))
905        and then Ekind (Typ) /= E_Record_Type
906        and then Ada_Version >= Ada_2020
907      then
908         Resolve_Container_Aggregate (N, Typ);
909
910      elsif Is_Record_Type (Typ) then
911         Resolve_Record_Aggregate (N, Typ);
912
913      elsif Is_Array_Type (Typ) then
914
915         --  First a special test, for the case of a positional aggregate of
916         --  characters which can be replaced by a string literal.
917
918         --  Do not perform this transformation if this was a string literal
919         --  to start with, whose components needed constraint checks, or if
920         --  the component type is non-static, because it will require those
921         --  checks and be transformed back into an aggregate. If the index
922         --  type is not Integer the aggregate may represent a user-defined
923         --  string type but the context might need the original type so we
924         --  do not perform the transformation at this point.
925
926         if Number_Dimensions (Typ) = 1
927           and then Is_Standard_Character_Type (Component_Type (Typ))
928           and then No (Component_Associations (N))
929           and then not Is_Limited_Composite (Typ)
930           and then not Is_Private_Composite (Typ)
931           and then not Is_Bit_Packed_Array (Typ)
932           and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
933           and then Is_OK_Static_Subtype (Component_Type (Typ))
934           and then Base_Type (Etype (First_Index (Typ))) =
935                      Base_Type (Standard_Integer)
936         then
937            declare
938               Expr : Node_Id;
939
940            begin
941               Expr := First (Expressions (N));
942               while Present (Expr) loop
943                  exit when Nkind (Expr) /= N_Character_Literal;
944                  Next (Expr);
945               end loop;
946
947               if No (Expr) then
948                  Start_String;
949
950                  Expr := First (Expressions (N));
951                  while Present (Expr) loop
952                     Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
953                     Next (Expr);
954                  end loop;
955
956                  Rewrite (N, Make_String_Literal (Loc, End_String));
957
958                  Analyze_And_Resolve (N, Typ);
959                  return;
960               end if;
961            end;
962         end if;
963
964         --  Here if we have a real aggregate to deal with
965
966         Array_Aggregate : declare
967            Aggr_Resolved : Boolean;
968
969            Aggr_Typ : constant Entity_Id := Etype (Typ);
970            --  This is the unconstrained array type, which is the type against
971            --  which the aggregate is to be resolved. Typ itself is the array
972            --  type of the context which may not be the same subtype as the
973            --  subtype for the final aggregate.
974
975         begin
976            --  In the following we determine whether an OTHERS choice is
977            --  allowed inside the array aggregate. The test checks the context
978            --  in which the array aggregate occurs. If the context does not
979            --  permit it, or the aggregate type is unconstrained, an OTHERS
980            --  choice is not allowed (except that it is always allowed on the
981            --  right-hand side of an assignment statement; in this case the
982            --  constrainedness of the type doesn't matter, because an array
983            --  object is always constrained).
984
985            --  If expansion is disabled (generic context, or semantics-only
986            --  mode) actual subtypes cannot be constructed, and the type of an
987            --  object may be its unconstrained nominal type. However, if the
988            --  context is an assignment statement, OTHERS is allowed, because
989            --  the target of the assignment will have a constrained subtype
990            --  when fully compiled. Ditto if the context is an initialization
991            --  procedure where a component may have a predicate function that
992            --  carries the base type.
993
994            --  Note that there is no node for Explicit_Actual_Parameter.
995            --  To test for this context we therefore have to test for node
996            --  N_Parameter_Association which itself appears only if there is a
997            --  formal parameter. Consequently we also need to test for
998            --  N_Procedure_Call_Statement or N_Function_Call.
999
1000            --  The context may be an N_Reference node, created by expansion.
1001            --  Legality of the others clause was established in the source,
1002            --  so the context is legal.
1003
1004            Set_Etype (N, Aggr_Typ);  --  May be overridden later on
1005
1006            if Nkind (Parent (N)) = N_Assignment_Statement
1007              or else Inside_Init_Proc
1008              or else (Is_Constrained (Typ)
1009                        and then Nkind (Parent (N)) in
1010                                   N_Parameter_Association
1011                                 | N_Function_Call
1012                                 | N_Procedure_Call_Statement
1013                                 | N_Generic_Association
1014                                 | N_Formal_Object_Declaration
1015                                 | N_Simple_Return_Statement
1016                                 | N_Object_Declaration
1017                                 | N_Component_Declaration
1018                                 | N_Parameter_Specification
1019                                 | N_Qualified_Expression
1020                                 | N_Reference
1021                                 | N_Aggregate
1022                                 | N_Extension_Aggregate
1023                                 | N_Component_Association
1024                                 | N_Case_Expression_Alternative
1025                                 | N_If_Expression
1026                                 | N_Expression_With_Actions)
1027            then
1028               Aggr_Resolved :=
1029                 Resolve_Array_Aggregate
1030                   (N,
1031                    Index          => First_Index (Aggr_Typ),
1032                    Index_Constr   => First_Index (Typ),
1033                    Component_Typ  => Component_Type (Typ),
1034                    Others_Allowed => True);
1035            else
1036               Aggr_Resolved :=
1037                 Resolve_Array_Aggregate
1038                   (N,
1039                    Index          => First_Index (Aggr_Typ),
1040                    Index_Constr   => First_Index (Aggr_Typ),
1041                    Component_Typ  => Component_Type (Typ),
1042                    Others_Allowed => False);
1043            end if;
1044
1045            if not Aggr_Resolved then
1046
1047               --  A parenthesized expression may have been intended as an
1048               --  aggregate, leading to a type error when analyzing the
1049               --  component. This can also happen for a nested component
1050               --  (see Analyze_Aggr_Expr).
1051
1052               if Paren_Count (N) > 0 then
1053                  Error_Msg_N
1054                    ("positional aggregate cannot have one component", N);
1055               end if;
1056
1057               Aggr_Subtyp := Any_Composite;
1058
1059            else
1060               Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1061            end if;
1062
1063            Set_Etype (N, Aggr_Subtyp);
1064         end Array_Aggregate;
1065
1066      elsif Is_Private_Type (Typ)
1067        and then Present (Full_View (Typ))
1068        and then (In_Inlined_Body or In_Instance_Body)
1069        and then Is_Composite_Type (Full_View (Typ))
1070      then
1071         Resolve (N, Full_View (Typ));
1072
1073      else
1074         Error_Msg_N ("illegal context for aggregate", N);
1075      end if;
1076
1077      --  If we can determine statically that the evaluation of the aggregate
1078      --  raises Constraint_Error, then replace the aggregate with an
1079      --  N_Raise_Constraint_Error node, but set the Etype to the right
1080      --  aggregate subtype. Gigi needs this.
1081
1082      if Raises_Constraint_Error (N) then
1083         Aggr_Subtyp := Etype (N);
1084         Rewrite (N,
1085           Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
1086         Set_Raises_Constraint_Error (N);
1087         Set_Etype (N, Aggr_Subtyp);
1088         Set_Analyzed (N);
1089      end if;
1090
1091      if Warn_On_No_Value_Assigned
1092        and then Others_Box
1093        and then not Is_Fully_Initialized_Type (Etype (N))
1094      then
1095         Error_Msg_N ("?v?aggregate not fully initialized", N);
1096      end if;
1097
1098      Check_Function_Writable_Actuals (N);
1099   end Resolve_Aggregate;
1100
1101   -----------------------------
1102   -- Resolve_Array_Aggregate --
1103   -----------------------------
1104
1105   function Resolve_Array_Aggregate
1106     (N              : Node_Id;
1107      Index          : Node_Id;
1108      Index_Constr   : Node_Id;
1109      Component_Typ  : Entity_Id;
1110      Others_Allowed : Boolean) return Boolean
1111   is
1112      Loc : constant Source_Ptr := Sloc (N);
1113
1114      Failure : constant Boolean := False;
1115      Success : constant Boolean := True;
1116
1117      Index_Typ      : constant Entity_Id := Etype (Index);
1118      Index_Typ_Low  : constant Node_Id   := Type_Low_Bound  (Index_Typ);
1119      Index_Typ_High : constant Node_Id   := Type_High_Bound (Index_Typ);
1120      --  The type of the index corresponding to the array sub-aggregate along
1121      --  with its low and upper bounds.
1122
1123      Index_Base      : constant Entity_Id := Base_Type (Index_Typ);
1124      Index_Base_Low  : constant Node_Id   := Type_Low_Bound (Index_Base);
1125      Index_Base_High : constant Node_Id   := Type_High_Bound (Index_Base);
1126      --  Ditto for the base type
1127
1128      Others_Present : Boolean := False;
1129
1130      Nb_Choices : Nat := 0;
1131      --  Contains the overall number of named choices in this sub-aggregate
1132
1133      function Add (Val : Uint; To : Node_Id) return Node_Id;
1134      --  Creates a new expression node where Val is added to expression To.
1135      --  Tries to constant fold whenever possible. To must be an already
1136      --  analyzed expression.
1137
1138      procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1139      --  Checks that AH (the upper bound of an array aggregate) is less than
1140      --  or equal to BH (the upper bound of the index base type). If the check
1141      --  fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1142      --  set, and AH is replaced with a duplicate of BH.
1143
1144      procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1145      --  Checks that range AL .. AH is compatible with range L .. H. Emits a
1146      --  warning if not and sets the Raises_Constraint_Error flag in N.
1147
1148      procedure Check_Length (L, H : Node_Id; Len : Uint);
1149      --  Checks that range L .. H contains at least Len elements. Emits a
1150      --  warning if not and sets the Raises_Constraint_Error flag in N.
1151
1152      function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
1153      --  Returns True if range L .. H is dynamic or null
1154
1155      procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1156      --  Given expression node From, this routine sets OK to False if it
1157      --  cannot statically evaluate From. Otherwise it stores this static
1158      --  value into Value.
1159
1160      function Resolve_Aggr_Expr
1161        (Expr        : Node_Id;
1162         Single_Elmt : Boolean) return Boolean;
1163      --  Resolves aggregate expression Expr. Returns False if resolution
1164      --  fails. If Single_Elmt is set to False, the expression Expr may be
1165      --  used to initialize several array aggregate elements (this can happen
1166      --  for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1167      --  In this event we do not resolve Expr unless expansion is disabled.
1168      --  To know why, see the DELAYED COMPONENT RESOLUTION note above.
1169      --
1170      --  NOTE: In the case of "... => <>", we pass the in the
1171      --  N_Component_Association node as Expr, since there is no Expression in
1172      --  that case, and we need a Sloc for the error message.
1173
1174      procedure Resolve_Iterated_Component_Association
1175        (N         : Node_Id;
1176         Index_Typ : Entity_Id);
1177      --  For AI12-061
1178
1179      ---------
1180      -- Add --
1181      ---------
1182
1183      function Add (Val : Uint; To : Node_Id) return Node_Id is
1184         Expr_Pos : Node_Id;
1185         Expr     : Node_Id;
1186         To_Pos   : Node_Id;
1187
1188      begin
1189         if Raises_Constraint_Error (To) then
1190            return To;
1191         end if;
1192
1193         --  First test if we can do constant folding
1194
1195         if Compile_Time_Known_Value (To)
1196           or else Nkind (To) = N_Integer_Literal
1197         then
1198            Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1199            Set_Is_Static_Expression (Expr_Pos);
1200            Set_Etype (Expr_Pos, Etype (To));
1201            Set_Analyzed (Expr_Pos, Analyzed (To));
1202
1203            if not Is_Enumeration_Type (Index_Typ) then
1204               Expr := Expr_Pos;
1205
1206            --  If we are dealing with enumeration return
1207            --     Index_Typ'Val (Expr_Pos)
1208
1209            else
1210               Expr :=
1211                 Make_Attribute_Reference
1212                   (Loc,
1213                    Prefix         => New_Occurrence_Of (Index_Typ, Loc),
1214                    Attribute_Name => Name_Val,
1215                    Expressions    => New_List (Expr_Pos));
1216            end if;
1217
1218            return Expr;
1219         end if;
1220
1221         --  If we are here no constant folding possible
1222
1223         if not Is_Enumeration_Type (Index_Base) then
1224            Expr :=
1225              Make_Op_Add (Loc,
1226                Left_Opnd  => Duplicate_Subexpr (To),
1227                Right_Opnd => Make_Integer_Literal (Loc, Val));
1228
1229         --  If we are dealing with enumeration return
1230         --    Index_Typ'Val (Index_Typ'Pos (To) + Val)
1231
1232         else
1233            To_Pos :=
1234              Make_Attribute_Reference
1235                (Loc,
1236                 Prefix         => New_Occurrence_Of (Index_Typ, Loc),
1237                 Attribute_Name => Name_Pos,
1238                 Expressions    => New_List (Duplicate_Subexpr (To)));
1239
1240            Expr_Pos :=
1241              Make_Op_Add (Loc,
1242                Left_Opnd  => To_Pos,
1243                Right_Opnd => Make_Integer_Literal (Loc, Val));
1244
1245            Expr :=
1246              Make_Attribute_Reference
1247                (Loc,
1248                 Prefix         => New_Occurrence_Of (Index_Typ, Loc),
1249                 Attribute_Name => Name_Val,
1250                 Expressions    => New_List (Expr_Pos));
1251
1252            --  If the index type has a non standard representation, the
1253            --  attributes 'Val and 'Pos expand into function calls and the
1254            --  resulting expression is considered non-safe for reevaluation
1255            --  by the backend. Relocate it into a constant temporary in order
1256            --  to make it safe for reevaluation.
1257
1258            if Has_Non_Standard_Rep (Etype (N)) then
1259               declare
1260                  Def_Id : Entity_Id;
1261
1262               begin
1263                  Def_Id := Make_Temporary (Loc, 'R', Expr);
1264                  Set_Etype (Def_Id, Index_Typ);
1265                  Insert_Action (N,
1266                    Make_Object_Declaration (Loc,
1267                      Defining_Identifier => Def_Id,
1268                      Object_Definition   =>
1269                        New_Occurrence_Of (Index_Typ, Loc),
1270                      Constant_Present    => True,
1271                      Expression          => Relocate_Node (Expr)));
1272
1273                  Expr := New_Occurrence_Of (Def_Id, Loc);
1274               end;
1275            end if;
1276         end if;
1277
1278         return Expr;
1279      end Add;
1280
1281      -----------------
1282      -- Check_Bound --
1283      -----------------
1284
1285      procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1286         Val_BH : Uint;
1287         Val_AH : Uint;
1288
1289         OK_BH : Boolean;
1290         OK_AH : Boolean;
1291
1292      begin
1293         Get (Value => Val_BH, From => BH, OK => OK_BH);
1294         Get (Value => Val_AH, From => AH, OK => OK_AH);
1295
1296         if OK_BH and then OK_AH and then Val_BH < Val_AH then
1297            Set_Raises_Constraint_Error (N);
1298            Error_Msg_Warn := SPARK_Mode /= On;
1299            Error_Msg_N ("upper bound out of range<<", AH);
1300            Error_Msg_N ("\Constraint_Error [<<", AH);
1301
1302            --  You need to set AH to BH or else in the case of enumerations
1303            --  indexes we will not be able to resolve the aggregate bounds.
1304
1305            AH := Duplicate_Subexpr (BH);
1306         end if;
1307      end Check_Bound;
1308
1309      ------------------
1310      -- Check_Bounds --
1311      ------------------
1312
1313      procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1314         Val_L  : Uint;
1315         Val_H  : Uint;
1316         Val_AL : Uint;
1317         Val_AH : Uint;
1318
1319         OK_L : Boolean;
1320         OK_H : Boolean;
1321
1322         OK_AL : Boolean;
1323         OK_AH  : Boolean;
1324         pragma Warnings (Off, OK_AL);
1325         pragma Warnings (Off, OK_AH);
1326
1327      begin
1328         if Raises_Constraint_Error (N)
1329           or else Dynamic_Or_Null_Range (AL, AH)
1330         then
1331            return;
1332         end if;
1333
1334         Get (Value => Val_L, From => L, OK => OK_L);
1335         Get (Value => Val_H, From => H, OK => OK_H);
1336
1337         Get (Value => Val_AL, From => AL, OK => OK_AL);
1338         Get (Value => Val_AH, From => AH, OK => OK_AH);
1339
1340         if OK_L and then Val_L > Val_AL then
1341            Set_Raises_Constraint_Error (N);
1342            Error_Msg_Warn := SPARK_Mode /= On;
1343            Error_Msg_N ("lower bound of aggregate out of range<<", N);
1344            Error_Msg_N ("\Constraint_Error [<<", N);
1345         end if;
1346
1347         if OK_H and then Val_H < Val_AH then
1348            Set_Raises_Constraint_Error (N);
1349            Error_Msg_Warn := SPARK_Mode /= On;
1350            Error_Msg_N ("upper bound of aggregate out of range<<", N);
1351            Error_Msg_N ("\Constraint_Error [<<", N);
1352         end if;
1353      end Check_Bounds;
1354
1355      ------------------
1356      -- Check_Length --
1357      ------------------
1358
1359      procedure Check_Length (L, H : Node_Id; Len : Uint) is
1360         Val_L  : Uint;
1361         Val_H  : Uint;
1362
1363         OK_L  : Boolean;
1364         OK_H  : Boolean;
1365
1366         Range_Len : Uint;
1367
1368      begin
1369         if Raises_Constraint_Error (N) then
1370            return;
1371         end if;
1372
1373         Get (Value => Val_L, From => L, OK => OK_L);
1374         Get (Value => Val_H, From => H, OK => OK_H);
1375
1376         if not OK_L or else not OK_H then
1377            return;
1378         end if;
1379
1380         --  If null range length is zero
1381
1382         if Val_L > Val_H then
1383            Range_Len := Uint_0;
1384         else
1385            Range_Len := Val_H - Val_L + 1;
1386         end if;
1387
1388         if Range_Len < Len then
1389            Set_Raises_Constraint_Error (N);
1390            Error_Msg_Warn := SPARK_Mode /= On;
1391            Error_Msg_N ("too many elements<<", N);
1392            Error_Msg_N ("\Constraint_Error [<<", N);
1393         end if;
1394      end Check_Length;
1395
1396      ---------------------------
1397      -- Dynamic_Or_Null_Range --
1398      ---------------------------
1399
1400      function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1401         Val_L : Uint;
1402         Val_H : Uint;
1403
1404         OK_L  : Boolean;
1405         OK_H  : Boolean;
1406
1407      begin
1408         Get (Value => Val_L, From => L, OK => OK_L);
1409         Get (Value => Val_H, From => H, OK => OK_H);
1410
1411         return not OK_L or else not OK_H
1412           or else not Is_OK_Static_Expression (L)
1413           or else not Is_OK_Static_Expression (H)
1414           or else Val_L > Val_H;
1415      end Dynamic_Or_Null_Range;
1416
1417      ---------
1418      -- Get --
1419      ---------
1420
1421      procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1422      begin
1423         OK := True;
1424
1425         if Compile_Time_Known_Value (From) then
1426            Value := Expr_Value (From);
1427
1428         --  If expression From is something like Some_Type'Val (10) then
1429         --  Value = 10.
1430
1431         elsif Nkind (From) = N_Attribute_Reference
1432           and then Attribute_Name (From) = Name_Val
1433           and then Compile_Time_Known_Value (First (Expressions (From)))
1434         then
1435            Value := Expr_Value (First (Expressions (From)));
1436         else
1437            Value := Uint_0;
1438            OK := False;
1439         end if;
1440      end Get;
1441
1442      -----------------------
1443      -- Resolve_Aggr_Expr --
1444      -----------------------
1445
1446      function Resolve_Aggr_Expr
1447        (Expr        : Node_Id;
1448         Single_Elmt : Boolean) return Boolean
1449      is
1450         Nxt_Ind        : constant Node_Id := Next_Index (Index);
1451         Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
1452         --  Index is the current index corresponding to the expression
1453
1454         Resolution_OK : Boolean := True;
1455         --  Set to False if resolution of the expression failed
1456
1457      begin
1458         --  Defend against previous errors
1459
1460         if Nkind (Expr) = N_Error
1461           or else Error_Posted (Expr)
1462         then
1463            return True;
1464         end if;
1465
1466         --  If the array type against which we are resolving the aggregate
1467         --  has several dimensions, the expressions nested inside the
1468         --  aggregate must be further aggregates (or strings).
1469
1470         if Present (Nxt_Ind) then
1471            if Nkind (Expr) /= N_Aggregate then
1472
1473               --  A string literal can appear where a one-dimensional array
1474               --  of characters is expected. If the literal looks like an
1475               --  operator, it is still an operator symbol, which will be
1476               --  transformed into a string when analyzed.
1477
1478               if Is_Character_Type (Component_Typ)
1479                 and then No (Next_Index (Nxt_Ind))
1480                 and then Nkind (Expr) in N_String_Literal | N_Operator_Symbol
1481               then
1482                  --  A string literal used in a multidimensional array
1483                  --  aggregate in place of the final one-dimensional
1484                  --  aggregate must not be enclosed in parentheses.
1485
1486                  if Paren_Count (Expr) /= 0 then
1487                     Error_Msg_N ("no parenthesis allowed here", Expr);
1488                  end if;
1489
1490                  Make_String_Into_Aggregate (Expr);
1491
1492               else
1493                  Error_Msg_N ("nested array aggregate expected", Expr);
1494
1495                  --  If the expression is parenthesized, this may be
1496                  --  a missing component association for a 1-aggregate.
1497
1498                  if Paren_Count (Expr) > 0 then
1499                     Error_Msg_N
1500                       ("\if single-component aggregate is intended, "
1501                        & "write e.g. (1 ='> ...)", Expr);
1502                  end if;
1503
1504                  return Failure;
1505               end if;
1506            end if;
1507
1508            --  If it's "... => <>", nothing to resolve
1509
1510            if Nkind (Expr) = N_Component_Association then
1511               pragma Assert (Box_Present (Expr));
1512               return Success;
1513            end if;
1514
1515            --  Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1516            --  Required to check the null-exclusion attribute (if present).
1517            --  This value may be overridden later on.
1518
1519            Set_Etype (Expr, Etype (N));
1520
1521            Resolution_OK := Resolve_Array_Aggregate
1522              (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1523
1524         else
1525            --  If it's "... => <>", nothing to resolve
1526
1527            if Nkind (Expr) = N_Component_Association then
1528               pragma Assert (Box_Present (Expr));
1529               return Success;
1530            end if;
1531
1532            --  Do not resolve the expressions of discrete or others choices
1533            --  unless the expression covers a single component, or the
1534            --  expander is inactive.
1535
1536            --  In SPARK mode, expressions that can perform side effects will
1537            --  be recognized by the gnat2why back-end, and the whole
1538            --  subprogram will be ignored. So semantic analysis can be
1539            --  performed safely.
1540
1541            if Single_Elmt
1542              or else not Expander_Active
1543              or else In_Spec_Expression
1544            then
1545               Analyze_And_Resolve (Expr, Component_Typ);
1546               Check_Expr_OK_In_Limited_Aggregate (Expr);
1547               Check_Non_Static_Context (Expr);
1548               Aggregate_Constraint_Checks (Expr, Component_Typ);
1549               Check_Unset_Reference (Expr);
1550            end if;
1551         end if;
1552
1553         --  If an aggregate component has a type with predicates, an explicit
1554         --  predicate check must be applied, as for an assignment statement,
1555         --  because the aggregate might not be expanded into individual
1556         --  component assignments. If the expression covers several components
1557         --  the analysis and the predicate check take place later.
1558
1559         if Has_Predicates (Component_Typ)
1560           and then Analyzed (Expr)
1561         then
1562            Apply_Predicate_Check (Expr, Component_Typ);
1563         end if;
1564
1565         if Raises_Constraint_Error (Expr)
1566           and then Nkind (Parent (Expr)) /= N_Component_Association
1567         then
1568            Set_Raises_Constraint_Error (N);
1569         end if;
1570
1571         --  If the expression has been marked as requiring a range check,
1572         --  then generate it here. It's a bit odd to be generating such
1573         --  checks in the analyzer, but harmless since Generate_Range_Check
1574         --  does nothing (other than making sure Do_Range_Check is set) if
1575         --  the expander is not active.
1576
1577         if Do_Range_Check (Expr) then
1578            Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1579         end if;
1580
1581         return Resolution_OK;
1582      end Resolve_Aggr_Expr;
1583
1584      --------------------------------------------
1585      -- Resolve_Iterated_Component_Association --
1586      --------------------------------------------
1587
1588      procedure Resolve_Iterated_Component_Association
1589        (N         : Node_Id;
1590         Index_Typ : Entity_Id)
1591      is
1592         Loc : constant Source_Ptr := Sloc (N);
1593         Id  : constant Entity_Id  := Defining_Identifier (N);
1594
1595         -----------------------
1596         -- Remove_References --
1597         -----------------------
1598
1599         function Remove_Ref (N : Node_Id) return Traverse_Result;
1600         --  Remove references to the entity Id after analysis, so it can be
1601         --  properly reanalyzed after construct is expanded into a loop.
1602
1603         function Remove_Ref (N : Node_Id) return Traverse_Result is
1604         begin
1605            if Nkind (N) = N_Identifier
1606               and then Present (Entity (N))
1607               and then Entity (N) = Id
1608            then
1609               Set_Entity (N, Empty);
1610               Set_Etype (N, Empty);
1611            end if;
1612            Set_Analyzed (N, False);
1613            return OK;
1614         end Remove_Ref;
1615
1616         procedure Remove_References is new Traverse_Proc (Remove_Ref);
1617
1618         --  Local variables
1619
1620         Choice : Node_Id;
1621         Dummy  : Boolean;
1622         Ent    : Entity_Id;
1623         Expr   : Node_Id;
1624
1625      --  Start of processing for Resolve_Iterated_Component_Association
1626
1627      begin
1628         --  An element iterator specification cannot appear in
1629         --  an array aggregate because it does not provide index
1630         --  values for the association. This must be a semantic
1631         --  check because the parser cannot tell whether this is
1632         --  an array aggregate or a container aggregate.
1633
1634         if Present (Iterator_Specification (N)) then
1635            Error_Msg_N ("container element Iterator cannot appear "
1636              & "in an array aggregate", N);
1637            return;
1638         end if;
1639
1640         Choice := First (Discrete_Choices (N));
1641
1642         while Present (Choice) loop
1643            if Nkind (Choice) = N_Others_Choice then
1644               Others_Present := True;
1645
1646            else
1647               Analyze (Choice);
1648
1649               --  Choice can be a subtype name, a range, or an expression
1650
1651               if Is_Entity_Name (Choice)
1652                 and then Is_Type (Entity (Choice))
1653                 and then Base_Type (Entity (Choice)) = Base_Type (Index_Typ)
1654               then
1655                  null;
1656
1657               else
1658                  Analyze_And_Resolve (Choice, Index_Typ);
1659               end if;
1660            end if;
1661
1662            Next (Choice);
1663         end loop;
1664
1665         --  Create a scope in which to introduce an index, which is usually
1666         --  visible in the expression for the component, and needed for its
1667         --  analysis.
1668
1669         Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
1670         Set_Etype  (Ent, Standard_Void_Type);
1671         Set_Parent (Ent, Parent (N));
1672         Push_Scope (Ent);
1673
1674         --  Insert and decorate the index variable in the current scope.
1675         --  The expression has to be analyzed once the index variable is
1676         --  directly visible.
1677
1678         Enter_Name (Id);
1679         Set_Etype (Id, Index_Typ);
1680         Set_Ekind (Id, E_Variable);
1681         Set_Scope (Id, Ent);
1682
1683         --  Analyze  expression without expansion, to verify legality.
1684         --  When generating code, we then remove references to the index
1685         --  variable, because the expression will be analyzed anew after
1686         --  rewritting as a loop with a new index variable; when not
1687         --  generating code we leave the analyzed expression as it is.
1688
1689         Expr := Expression (N);
1690
1691         Expander_Mode_Save_And_Set (False);
1692         Dummy := Resolve_Aggr_Expr (Expr, Single_Elmt => False);
1693         Expander_Mode_Restore;
1694
1695         if Operating_Mode /= Check_Semantics then
1696            Remove_References (Expr);
1697         end if;
1698
1699         --  An iterated_component_association may appear in a nested
1700         --  aggregate for a multidimensional structure: preserve the bounds
1701         --  computed for the expression, as well as the anonymous array
1702         --  type generated for it; both are needed during array expansion.
1703
1704         if Nkind (Expr) = N_Aggregate then
1705            Set_Aggregate_Bounds (Expression (N), Aggregate_Bounds (Expr));
1706            Set_Etype (Expression (N), Etype (Expr));
1707         end if;
1708
1709         End_Scope;
1710      end Resolve_Iterated_Component_Association;
1711
1712      --  Local variables
1713
1714      Assoc   : Node_Id;
1715      Choice  : Node_Id;
1716      Expr    : Node_Id;
1717      Discard : Node_Id;
1718
1719      Aggr_Low  : Node_Id := Empty;
1720      Aggr_High : Node_Id := Empty;
1721      --  The actual low and high bounds of this sub-aggregate
1722
1723      Case_Table_Size : Nat;
1724      --  Contains the size of the case table needed to sort aggregate choices
1725
1726      Choices_Low  : Node_Id := Empty;
1727      Choices_High : Node_Id := Empty;
1728      --  The lowest and highest discrete choices values for a named aggregate
1729
1730      Delete_Choice : Boolean;
1731      --  Used when replacing a subtype choice with predicate by a list
1732
1733      Nb_Elements : Uint := Uint_0;
1734      --  The number of elements in a positional aggregate
1735
1736      Nb_Discrete_Choices : Nat := 0;
1737      --  The overall number of discrete choices (not counting others choice)
1738
1739   --  Start of processing for Resolve_Array_Aggregate
1740
1741   begin
1742      --  Ignore junk empty aggregate resulting from parser error
1743
1744      if No (Expressions (N))
1745        and then No (Component_Associations (N))
1746        and then not Null_Record_Present (N)
1747      then
1748         return False;
1749      end if;
1750
1751      --  STEP 1: make sure the aggregate is correctly formatted
1752
1753      if Present (Component_Associations (N)) then
1754         Assoc := First (Component_Associations (N));
1755         while Present (Assoc) loop
1756            if Nkind (Assoc) = N_Iterated_Component_Association then
1757               Resolve_Iterated_Component_Association (Assoc, Index_Typ);
1758            end if;
1759
1760            Choice := First (Choice_List (Assoc));
1761            Delete_Choice := False;
1762            while Present (Choice) loop
1763               if Nkind (Choice) = N_Others_Choice then
1764                  Others_Present := True;
1765
1766                  if Choice /= First (Choice_List (Assoc))
1767                    or else Present (Next (Choice))
1768                  then
1769                     Error_Msg_N
1770                       ("OTHERS must appear alone in a choice list", Choice);
1771                     return Failure;
1772                  end if;
1773
1774                  if Present (Next (Assoc)) then
1775                     Error_Msg_N
1776                       ("OTHERS must appear last in an aggregate", Choice);
1777                     return Failure;
1778                  end if;
1779
1780                  if Ada_Version = Ada_83
1781                    and then Assoc /= First (Component_Associations (N))
1782                    and then Nkind (Parent (N)) in
1783                               N_Assignment_Statement | N_Object_Declaration
1784                  then
1785                     Error_Msg_N
1786                       ("(Ada 83) illegal context for OTHERS choice", N);
1787                  end if;
1788
1789               elsif Is_Entity_Name (Choice) then
1790                  Analyze (Choice);
1791
1792                  declare
1793                     E      : constant Entity_Id := Entity (Choice);
1794                     New_Cs : List_Id;
1795                     P      : Node_Id;
1796                     C      : Node_Id;
1797
1798                  begin
1799                     if Is_Type (E) and then Has_Predicates (E) then
1800                        Freeze_Before (N, E);
1801
1802                        if Has_Dynamic_Predicate_Aspect (E) then
1803                           Error_Msg_NE
1804                             ("subtype& has dynamic predicate, not allowed "
1805                              & "in aggregate choice", Choice, E);
1806
1807                        elsif not Is_OK_Static_Subtype (E) then
1808                           Error_Msg_NE
1809                             ("non-static subtype& has predicate, not allowed "
1810                              & "in aggregate choice", Choice, E);
1811                        end if;
1812
1813                        --  If the subtype has a static predicate, replace the
1814                        --  original choice with the list of individual values
1815                        --  covered by the predicate.
1816                        --  This should be deferred to expansion time ???
1817
1818                        if Present (Static_Discrete_Predicate (E)) then
1819                           Delete_Choice := True;
1820
1821                           New_Cs := New_List;
1822                           P := First (Static_Discrete_Predicate (E));
1823                           while Present (P) loop
1824                              C := New_Copy (P);
1825                              Set_Sloc (C, Sloc (Choice));
1826                              Append_To (New_Cs, C);
1827                              Next (P);
1828                           end loop;
1829
1830                           Insert_List_After (Choice, New_Cs);
1831                        end if;
1832                     end if;
1833                  end;
1834               end if;
1835
1836               Nb_Choices := Nb_Choices + 1;
1837
1838               declare
1839                  C : constant Node_Id := Choice;
1840
1841               begin
1842                  Next (Choice);
1843
1844                  if Delete_Choice then
1845                     Remove (C);
1846                     Nb_Choices := Nb_Choices - 1;
1847                     Delete_Choice := False;
1848                  end if;
1849               end;
1850            end loop;
1851
1852            Next (Assoc);
1853         end loop;
1854      end if;
1855
1856      --  At this point we know that the others choice, if present, is by
1857      --  itself and appears last in the aggregate. Check if we have mixed
1858      --  positional and discrete associations (other than the others choice).
1859
1860      if Present (Expressions (N))
1861        and then (Nb_Choices > 1
1862                   or else (Nb_Choices = 1 and then not Others_Present))
1863      then
1864         Error_Msg_N
1865           ("named association cannot follow positional association",
1866            First (Choice_List (First (Component_Associations (N)))));
1867         return Failure;
1868      end if;
1869
1870      --  Test for the validity of an others choice if present
1871
1872      if Others_Present and then not Others_Allowed then
1873         declare
1874            Others_N : constant Node_Id :=
1875              First (Choice_List (First (Component_Associations (N))));
1876         begin
1877            Error_Msg_N ("OTHERS choice not allowed here", Others_N);
1878            Error_Msg_N ("\qualify the aggregate with a constrained subtype "
1879                         & "to provide bounds for it", Others_N);
1880            return Failure;
1881         end;
1882      end if;
1883
1884      --  Protect against cascaded errors
1885
1886      if Etype (Index_Typ) = Any_Type then
1887         return Failure;
1888      end if;
1889
1890      --  STEP 2: Process named components
1891
1892      if No (Expressions (N)) then
1893         if Others_Present then
1894            Case_Table_Size := Nb_Choices - 1;
1895         else
1896            Case_Table_Size := Nb_Choices;
1897         end if;
1898
1899         Step_2 : declare
1900            function Empty_Range (A : Node_Id) return Boolean;
1901            --  If an association covers an empty range, some warnings on the
1902            --  expression of the association can be disabled.
1903
1904            -----------------
1905            -- Empty_Range --
1906            -----------------
1907
1908            function Empty_Range (A : Node_Id) return Boolean is
1909               R : constant Node_Id := First (Choices (A));
1910            begin
1911               return No (Next (R))
1912                 and then Nkind (R) = N_Range
1913                 and then Compile_Time_Compare
1914                            (Low_Bound (R), High_Bound (R), False) = GT;
1915            end Empty_Range;
1916
1917            --  Local variables
1918
1919            Low  : Node_Id;
1920            High : Node_Id;
1921            --  Denote the lowest and highest values in an aggregate choice
1922
1923            S_Low  : Node_Id := Empty;
1924            S_High : Node_Id := Empty;
1925            --  if a choice in an aggregate is a subtype indication these
1926            --  denote the lowest and highest values of the subtype
1927
1928            Table : Case_Table_Type (1 .. Case_Table_Size);
1929            --  Used to sort all the different choice values
1930
1931            Single_Choice : Boolean;
1932            --  Set to true every time there is a single discrete choice in a
1933            --  discrete association
1934
1935            Prev_Nb_Discrete_Choices : Nat;
1936            --  Used to keep track of the number of discrete choices in the
1937            --  current association.
1938
1939            Errors_Posted_On_Choices : Boolean := False;
1940            --  Keeps track of whether any choices have semantic errors
1941
1942         --  Start of processing for Step_2
1943
1944         begin
1945            --  STEP 2 (A): Check discrete choices validity
1946
1947            Assoc := First (Component_Associations (N));
1948            while Present (Assoc) loop
1949               Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
1950               Choice := First (Choice_List (Assoc));
1951
1952               loop
1953                  Analyze (Choice);
1954
1955                  if Nkind (Choice) = N_Others_Choice then
1956                     Single_Choice := False;
1957                     exit;
1958
1959                  --  Test for subtype mark without constraint
1960
1961                  elsif Is_Entity_Name (Choice) and then
1962                    Is_Type (Entity (Choice))
1963                  then
1964                     if Base_Type (Entity (Choice)) /= Index_Base then
1965                        Error_Msg_N
1966                          ("invalid subtype mark in aggregate choice",
1967                           Choice);
1968                        return Failure;
1969                     end if;
1970
1971                  --  Case of subtype indication
1972
1973                  elsif Nkind (Choice) = N_Subtype_Indication then
1974                     Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
1975
1976                     if Has_Dynamic_Predicate_Aspect
1977                       (Entity (Subtype_Mark (Choice)))
1978                     then
1979                        Error_Msg_NE
1980                          ("subtype& has dynamic predicate, "
1981                           & "not allowed in aggregate choice",
1982                           Choice, Entity (Subtype_Mark (Choice)));
1983                     end if;
1984
1985                     --  Does the subtype indication evaluation raise CE?
1986
1987                     Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
1988                     Get_Index_Bounds (Choice, Low, High);
1989                     Check_Bounds (S_Low, S_High, Low, High);
1990
1991                  --  Case of range or expression
1992
1993                  else
1994                     Resolve (Choice, Index_Base);
1995                     Check_Unset_Reference (Choice);
1996                     Check_Non_Static_Context (Choice);
1997
1998                     --  If semantic errors were posted on the choice, then
1999                     --  record that for possible early return from later
2000                     --  processing (see handling of enumeration choices).
2001
2002                     if Error_Posted (Choice) then
2003                        Errors_Posted_On_Choices := True;
2004                     end if;
2005
2006                     --  Do not range check a choice. This check is redundant
2007                     --  since this test is already done when we check that the
2008                     --  bounds of the array aggregate are within range.
2009
2010                     Set_Do_Range_Check (Choice, False);
2011                  end if;
2012
2013                  --  If we could not resolve the discrete choice stop here
2014
2015                  if Etype (Choice) = Any_Type then
2016                     return Failure;
2017
2018                  --  If the discrete choice raises CE get its original bounds
2019
2020                  elsif Nkind (Choice) = N_Raise_Constraint_Error then
2021                     Set_Raises_Constraint_Error (N);
2022                     Get_Index_Bounds (Original_Node (Choice), Low, High);
2023
2024                  --  Otherwise get its bounds as usual
2025
2026                  else
2027                     Get_Index_Bounds (Choice, Low, High);
2028                  end if;
2029
2030                  if (Dynamic_Or_Null_Range (Low, High)
2031                       or else (Nkind (Choice) = N_Subtype_Indication
2032                                 and then
2033                                   Dynamic_Or_Null_Range (S_Low, S_High)))
2034                    and then Nb_Choices /= 1
2035                  then
2036                     Error_Msg_N
2037                       ("dynamic or empty choice in aggregate "
2038                        & "must be the only choice", Choice);
2039                     return Failure;
2040                  end if;
2041
2042                  if not (All_Composite_Constraints_Static (Low)
2043                            and then All_Composite_Constraints_Static (High)
2044                            and then All_Composite_Constraints_Static (S_Low)
2045                            and then All_Composite_Constraints_Static (S_High))
2046                  then
2047                     Check_Restriction (No_Dynamic_Sized_Objects, Choice);
2048                  end if;
2049
2050                  Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
2051                  Table (Nb_Discrete_Choices).Lo := Low;
2052                  Table (Nb_Discrete_Choices).Hi := High;
2053                  Table (Nb_Discrete_Choices).Choice := Choice;
2054
2055                  Next (Choice);
2056
2057                  if No (Choice) then
2058
2059                     --  Check if we have a single discrete choice and whether
2060                     --  this discrete choice specifies a single value.
2061
2062                     Single_Choice :=
2063                       (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
2064                         and then (Low = High);
2065
2066                     exit;
2067                  end if;
2068               end loop;
2069
2070               --  Ada 2005 (AI-231)
2071
2072               if Ada_Version >= Ada_2005
2073                 and then Known_Null (Expression (Assoc))
2074                 and then not Empty_Range (Assoc)
2075               then
2076                  Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2077               end if;
2078
2079               --  Ada 2005 (AI-287): In case of default initialized component
2080               --  we delay the resolution to the expansion phase.
2081
2082               if Box_Present (Assoc) then
2083
2084                  --  Ada 2005 (AI-287): In case of default initialization of a
2085                  --  component the expander will generate calls to the
2086                  --  corresponding initialization subprogram. We need to call
2087                  --  Resolve_Aggr_Expr to check the rules about
2088                  --  dimensionality.
2089
2090                  if not Resolve_Aggr_Expr
2091                           (Assoc, Single_Elmt => Single_Choice)
2092                  then
2093                     return Failure;
2094                  end if;
2095
2096               --  ??? Checks for dynamically tagged expressions below will
2097               --  be only applied to iterated_component_association after
2098               --  expansion; in particular, errors might not be reported when
2099               --  -gnatc switch is used.
2100
2101               elsif Nkind (Assoc) = N_Iterated_Component_Association then
2102                  null;   --  handled above, in a loop context
2103
2104               elsif not Resolve_Aggr_Expr
2105                           (Expression (Assoc), Single_Elmt => Single_Choice)
2106               then
2107                  return Failure;
2108
2109               --  Check incorrect use of dynamically tagged expression
2110
2111               --  We differentiate here two cases because the expression may
2112               --  not be decorated. For example, the analysis and resolution
2113               --  of the expression associated with the others choice will be
2114               --  done later with the full aggregate. In such case we
2115               --  duplicate the expression tree to analyze the copy and
2116               --  perform the required check.
2117
2118               elsif not Present (Etype (Expression (Assoc))) then
2119                  declare
2120                     Save_Analysis : constant Boolean := Full_Analysis;
2121                     Expr          : constant Node_Id :=
2122                                       New_Copy_Tree (Expression (Assoc));
2123
2124                  begin
2125                     Expander_Mode_Save_And_Set (False);
2126                     Full_Analysis := False;
2127
2128                     --  Analyze the expression, making sure it is properly
2129                     --  attached to the tree before we do the analysis.
2130
2131                     Set_Parent (Expr, Parent (Expression (Assoc)));
2132                     Analyze (Expr);
2133
2134                     --  Compute its dimensions now, rather than at the end of
2135                     --  resolution, because in the case of multidimensional
2136                     --  aggregates subsequent expansion may lead to spurious
2137                     --  errors.
2138
2139                     Check_Expression_Dimensions (Expr, Component_Typ);
2140
2141                     --  If the expression is a literal, propagate this info
2142                     --  to the expression in the association, to enable some
2143                     --  optimizations downstream.
2144
2145                     if Is_Entity_Name (Expr)
2146                       and then Present (Entity (Expr))
2147                       and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2148                     then
2149                        Analyze_And_Resolve
2150                          (Expression (Assoc), Component_Typ);
2151                     end if;
2152
2153                     Full_Analysis := Save_Analysis;
2154                     Expander_Mode_Restore;
2155
2156                     if Is_Tagged_Type (Etype (Expr)) then
2157                        Check_Dynamically_Tagged_Expression
2158                          (Expr => Expr,
2159                           Typ  => Component_Type (Etype (N)),
2160                           Related_Nod => N);
2161                     end if;
2162                  end;
2163
2164               elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2165                  Check_Dynamically_Tagged_Expression
2166                    (Expr        => Expression (Assoc),
2167                     Typ         => Component_Type (Etype (N)),
2168                     Related_Nod => N);
2169               end if;
2170
2171               Next (Assoc);
2172            end loop;
2173
2174            --  If aggregate contains more than one choice then these must be
2175            --  static. Check for duplicate and missing values.
2176
2177            --  Note: there is duplicated code here wrt Check_Choice_Set in
2178            --  the body of Sem_Case, and it is possible we could just reuse
2179            --  that procedure. To be checked ???
2180
2181            if Nb_Discrete_Choices > 1 then
2182               Check_Choices : declare
2183                  Choice : Node_Id;
2184                  --  Location of choice for messages
2185
2186                  Hi_Val : Uint;
2187                  Lo_Val : Uint;
2188                  --  High end of one range and Low end of the next. Should be
2189                  --  contiguous if there is no hole in the list of values.
2190
2191                  Lo_Dup : Uint;
2192                  Hi_Dup : Uint;
2193                  --  End points of duplicated range
2194
2195                  Missing_Or_Duplicates : Boolean := False;
2196                  --  Set True if missing or duplicate choices found
2197
2198                  procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
2199                  --  Output continuation message with a representation of the
2200                  --  bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2201                  --  choice node where the message is to be posted.
2202
2203                  ------------------------
2204                  -- Output_Bad_Choices --
2205                  ------------------------
2206
2207                  procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
2208                  begin
2209                     --  Enumeration type case
2210
2211                     if Is_Enumeration_Type (Index_Typ) then
2212                        Error_Msg_Name_1 :=
2213                          Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
2214                        Error_Msg_Name_2 :=
2215                          Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
2216
2217                        if Lo = Hi then
2218                           Error_Msg_N ("\\  %!", C);
2219                        else
2220                           Error_Msg_N ("\\  % .. %!", C);
2221                        end if;
2222
2223                        --  Integer types case
2224
2225                     else
2226                        Error_Msg_Uint_1 := Lo;
2227                        Error_Msg_Uint_2 := Hi;
2228
2229                        if Lo = Hi then
2230                           Error_Msg_N ("\\  ^!", C);
2231                        else
2232                           Error_Msg_N ("\\  ^ .. ^!", C);
2233                        end if;
2234                     end if;
2235                  end Output_Bad_Choices;
2236
2237               --  Start of processing for Check_Choices
2238
2239               begin
2240                  Sort_Case_Table (Table);
2241
2242                  --  First we do a quick linear loop to find out if we have
2243                  --  any duplicates or missing entries (usually we have a
2244                  --  legal aggregate, so this will get us out quickly).
2245
2246                  for J in 1 .. Nb_Discrete_Choices - 1 loop
2247                     Hi_Val := Expr_Value (Table (J).Hi);
2248                     Lo_Val := Expr_Value (Table (J + 1).Lo);
2249
2250                     if Lo_Val <= Hi_Val
2251                       or else (Lo_Val > Hi_Val + 1
2252                                 and then not Others_Present)
2253                     then
2254                        Missing_Or_Duplicates := True;
2255                        exit;
2256                     end if;
2257                  end loop;
2258
2259                  --  If we have missing or duplicate entries, first fill in
2260                  --  the Highest entries to make life easier in the following
2261                  --  loops to detect bad entries.
2262
2263                  if Missing_Or_Duplicates then
2264                     Table (1).Highest := Expr_Value (Table (1).Hi);
2265
2266                     for J in 2 .. Nb_Discrete_Choices loop
2267                        Table (J).Highest :=
2268                          UI_Max
2269                            (Table (J - 1).Highest, Expr_Value (Table (J).Hi));
2270                     end loop;
2271
2272                     --  Loop through table entries to find duplicate indexes
2273
2274                     for J in 2 .. Nb_Discrete_Choices loop
2275                        Lo_Val := Expr_Value (Table (J).Lo);
2276                        Hi_Val := Expr_Value (Table (J).Hi);
2277
2278                        --  Case where we have duplicates (the lower bound of
2279                        --  this choice is less than or equal to the highest
2280                        --  high bound found so far).
2281
2282                        if Lo_Val <= Table (J - 1).Highest then
2283
2284                           --  We move backwards looking for duplicates. We can
2285                           --  abandon this loop as soon as we reach a choice
2286                           --  highest value that is less than Lo_Val.
2287
2288                           for K in reverse 1 .. J - 1 loop
2289                              exit when Table (K).Highest < Lo_Val;
2290
2291                              --  Here we may have duplicates between entries
2292                              --  for K and J. Get range of duplicates.
2293
2294                              Lo_Dup :=
2295                                UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
2296                              Hi_Dup :=
2297                                UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
2298
2299                              --  Nothing to do if duplicate range is null
2300
2301                              if Lo_Dup > Hi_Dup then
2302                                 null;
2303
2304                              --  Otherwise place proper message
2305
2306                              else
2307                                 --  We place message on later choice, with a
2308                                 --  line reference to the earlier choice.
2309
2310                                 if Sloc (Table (J).Choice) <
2311                                   Sloc (Table (K).Choice)
2312                                 then
2313                                    Choice := Table (K).Choice;
2314                                    Error_Msg_Sloc := Sloc (Table (J).Choice);
2315                                 else
2316                                    Choice := Table (J).Choice;
2317                                    Error_Msg_Sloc := Sloc (Table (K).Choice);
2318                                 end if;
2319
2320                                 if Lo_Dup = Hi_Dup then
2321                                    Error_Msg_N
2322                                      ("index value in array aggregate "
2323                                       & "duplicates the one given#!", Choice);
2324                                 else
2325                                    Error_Msg_N
2326                                      ("index values in array aggregate "
2327                                       & "duplicate those given#!", Choice);
2328                                 end if;
2329
2330                                 Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
2331                              end if;
2332                           end loop;
2333                        end if;
2334                     end loop;
2335
2336                     --  Loop through entries in table to find missing indexes.
2337                     --  Not needed if others, since missing impossible.
2338
2339                     if not Others_Present then
2340                        for J in 2 .. Nb_Discrete_Choices loop
2341                           Lo_Val := Expr_Value (Table (J).Lo);
2342                           Hi_Val := Table (J - 1).Highest;
2343
2344                           if Lo_Val > Hi_Val + 1 then
2345
2346                              declare
2347                                 Error_Node : Node_Id;
2348
2349                              begin
2350                                 --  If the choice is the bound of a range in
2351                                 --  a subtype indication, it is not in the
2352                                 --  source lists for the aggregate itself, so
2353                                 --  post the error on the aggregate. Otherwise
2354                                 --  post it on choice itself.
2355
2356                                 Choice := Table (J).Choice;
2357
2358                                 if Is_List_Member (Choice) then
2359                                    Error_Node := Choice;
2360                                 else
2361                                    Error_Node := N;
2362                                 end if;
2363
2364                                 if Hi_Val + 1 = Lo_Val - 1 then
2365                                    Error_Msg_N
2366                                      ("missing index value "
2367                                       & "in array aggregate!", Error_Node);
2368                                 else
2369                                    Error_Msg_N
2370                                      ("missing index values "
2371                                       & "in array aggregate!", Error_Node);
2372                                 end if;
2373
2374                                 Output_Bad_Choices
2375                                   (Hi_Val + 1, Lo_Val - 1, Error_Node);
2376                              end;
2377                           end if;
2378                        end loop;
2379                     end if;
2380
2381                     --  If either missing or duplicate values, return failure
2382
2383                     Set_Etype (N, Any_Composite);
2384                     return Failure;
2385                  end if;
2386               end Check_Choices;
2387            end if;
2388
2389            --  STEP 2 (B): Compute aggregate bounds and min/max choices values
2390
2391            if Nb_Discrete_Choices > 0 then
2392               Choices_Low  := Table (1).Lo;
2393               Choices_High := Table (Nb_Discrete_Choices).Hi;
2394            end if;
2395
2396            --  If Others is present, then bounds of aggregate come from the
2397            --  index constraint (not the choices in the aggregate itself).
2398
2399            if Others_Present then
2400               Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2401
2402               --  Abandon processing if either bound is already signalled as
2403               --  an error (prevents junk cascaded messages and blow ups).
2404
2405               if Nkind (Aggr_Low) = N_Error
2406                    or else
2407                  Nkind (Aggr_High) = N_Error
2408               then
2409                  return False;
2410               end if;
2411
2412            --  No others clause present
2413
2414            else
2415               --  Special processing if others allowed and not present. This
2416               --  means that the bounds of the aggregate come from the index
2417               --  constraint (and the length must match).
2418
2419               if Others_Allowed then
2420                  Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2421
2422                  --  Abandon processing if either bound is already signalled
2423                  --  as an error (stop junk cascaded messages and blow ups).
2424
2425                  if Nkind (Aggr_Low) = N_Error
2426                       or else
2427                     Nkind (Aggr_High) = N_Error
2428                  then
2429                     return False;
2430                  end if;
2431
2432                  --  If others allowed, and no others present, then the array
2433                  --  should cover all index values. If it does not, we will
2434                  --  get a length check warning, but there is two cases where
2435                  --  an additional warning is useful:
2436
2437                  --  If we have no positional components, and the length is
2438                  --  wrong (which we can tell by others being allowed with
2439                  --  missing components), and the index type is an enumeration
2440                  --  type, then issue appropriate warnings about these missing
2441                  --  components. They are only warnings, since the aggregate
2442                  --  is fine, it's just the wrong length. We skip this check
2443                  --  for standard character types (since there are no literals
2444                  --  and it is too much trouble to concoct them), and also if
2445                  --  any of the bounds have values that are not known at
2446                  --  compile time.
2447
2448                  --  Another case warranting a warning is when the length
2449                  --  is right, but as above we have an index type that is
2450                  --  an enumeration, and the bounds do not match. This is a
2451                  --  case where dubious sliding is allowed and we generate a
2452                  --  warning that the bounds do not match.
2453
2454                  if No (Expressions (N))
2455                    and then Nkind (Index) = N_Range
2456                    and then Is_Enumeration_Type (Etype (Index))
2457                    and then not Is_Standard_Character_Type (Etype (Index))
2458                    and then Compile_Time_Known_Value (Aggr_Low)
2459                    and then Compile_Time_Known_Value (Aggr_High)
2460                    and then Compile_Time_Known_Value (Choices_Low)
2461                    and then Compile_Time_Known_Value (Choices_High)
2462                  then
2463                     --  If any of the expressions or range bounds in choices
2464                     --  have semantic errors, then do not attempt further
2465                     --  resolution, to prevent cascaded errors.
2466
2467                     if Errors_Posted_On_Choices then
2468                        return Failure;
2469                     end if;
2470
2471                     declare
2472                        ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2473                        AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2474                        CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2475                        CHi : constant Node_Id := Expr_Value_E (Choices_High);
2476
2477                        Ent : Entity_Id;
2478
2479                     begin
2480                        --  Warning case 1, missing values at start/end. Only
2481                        --  do the check if the number of entries is too small.
2482
2483                        if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2484                              <
2485                           (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2486                        then
2487                           Error_Msg_N
2488                             ("missing index value(s) in array aggregate??",
2489                              N);
2490
2491                           --  Output missing value(s) at start
2492
2493                           if Chars (ALo) /= Chars (CLo) then
2494                              Ent := Prev (CLo);
2495
2496                              if Chars (ALo) = Chars (Ent) then
2497                                 Error_Msg_Name_1 := Chars (ALo);
2498                                 Error_Msg_N ("\  %??", N);
2499                              else
2500                                 Error_Msg_Name_1 := Chars (ALo);
2501                                 Error_Msg_Name_2 := Chars (Ent);
2502                                 Error_Msg_N ("\  % .. %??", N);
2503                              end if;
2504                           end if;
2505
2506                           --  Output missing value(s) at end
2507
2508                           if Chars (AHi) /= Chars (CHi) then
2509                              Ent := Next (CHi);
2510
2511                              if Chars (AHi) = Chars (Ent) then
2512                                 Error_Msg_Name_1 := Chars (Ent);
2513                                 Error_Msg_N ("\  %??", N);
2514                              else
2515                                 Error_Msg_Name_1 := Chars (Ent);
2516                                 Error_Msg_Name_2 := Chars (AHi);
2517                                 Error_Msg_N ("\  % .. %??", N);
2518                              end if;
2519                           end if;
2520
2521                        --  Warning case 2, dubious sliding. The First_Subtype
2522                        --  test distinguishes between a constrained type where
2523                        --  sliding is not allowed (so we will get a warning
2524                        --  later that Constraint_Error will be raised), and
2525                        --  the unconstrained case where sliding is permitted.
2526
2527                        elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2528                                 =
2529                              (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2530                          and then Chars (ALo) /= Chars (CLo)
2531                          and then
2532                            not Is_Constrained (First_Subtype (Etype (N)))
2533                        then
2534                           Error_Msg_N
2535                             ("bounds of aggregate do not match target??", N);
2536                        end if;
2537                     end;
2538                  end if;
2539               end if;
2540
2541               --  If no others, aggregate bounds come from aggregate
2542
2543               Aggr_Low  := Choices_Low;
2544               Aggr_High := Choices_High;
2545            end if;
2546         end Step_2;
2547
2548      --  STEP 3: Process positional components
2549
2550      else
2551         --  STEP 3 (A): Process positional elements
2552
2553         Expr := First (Expressions (N));
2554         Nb_Elements := Uint_0;
2555         while Present (Expr) loop
2556            Nb_Elements := Nb_Elements + 1;
2557
2558            --  Ada 2005 (AI-231)
2559
2560            if Ada_Version >= Ada_2005 and then Known_Null (Expr) then
2561               Check_Can_Never_Be_Null (Etype (N), Expr);
2562            end if;
2563
2564            if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2565               return Failure;
2566            end if;
2567
2568            --  Check incorrect use of dynamically tagged expression
2569
2570            if Is_Tagged_Type (Etype (Expr)) then
2571               Check_Dynamically_Tagged_Expression
2572                 (Expr => Expr,
2573                  Typ  => Component_Type (Etype (N)),
2574                  Related_Nod => N);
2575            end if;
2576
2577            Next (Expr);
2578         end loop;
2579
2580         if Others_Present then
2581            Assoc := Last (Component_Associations (N));
2582
2583            --  Ada 2005 (AI-231)
2584
2585            if Ada_Version >= Ada_2005 and then Known_Null (Assoc) then
2586               Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2587            end if;
2588
2589            --  Ada 2005 (AI-287): In case of default initialized component,
2590            --  we delay the resolution to the expansion phase.
2591
2592            if Box_Present (Assoc) then
2593
2594               --  Ada 2005 (AI-287): In case of default initialization of a
2595               --  component the expander will generate calls to the
2596               --  corresponding initialization subprogram. We need to call
2597               --  Resolve_Aggr_Expr to check the rules about
2598               --  dimensionality.
2599
2600               if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
2601                  return Failure;
2602               end if;
2603
2604            elsif not Resolve_Aggr_Expr (Expression (Assoc),
2605                                         Single_Elmt => False)
2606            then
2607               return Failure;
2608
2609            --  Check incorrect use of dynamically tagged expression. The
2610            --  expression of the others choice has not been resolved yet.
2611            --  In order to diagnose the semantic error we create a duplicate
2612            --  tree to analyze it and perform the check.
2613
2614            elsif Nkind (Assoc) /= N_Iterated_Component_Association then
2615               declare
2616                  Save_Analysis : constant Boolean := Full_Analysis;
2617                  Expr          : constant Node_Id :=
2618                                    New_Copy_Tree (Expression (Assoc));
2619
2620               begin
2621                  Expander_Mode_Save_And_Set (False);
2622                  Full_Analysis := False;
2623                  Analyze (Expr);
2624                  Full_Analysis := Save_Analysis;
2625                  Expander_Mode_Restore;
2626
2627                  if Is_Tagged_Type (Etype (Expr)) then
2628                     Check_Dynamically_Tagged_Expression
2629                       (Expr        => Expr,
2630                        Typ         => Component_Type (Etype (N)),
2631                        Related_Nod => N);
2632                  end if;
2633               end;
2634            end if;
2635         end if;
2636
2637         --  STEP 3 (B): Compute the aggregate bounds
2638
2639         if Others_Present then
2640            Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2641
2642         else
2643            if Others_Allowed then
2644               Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
2645            else
2646               Aggr_Low := Index_Typ_Low;
2647            end if;
2648
2649            Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2650            Check_Bound (Index_Base_High, Aggr_High);
2651         end if;
2652      end if;
2653
2654      --  STEP 4: Perform static aggregate checks and save the bounds
2655
2656      --  Check (A)
2657
2658      Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2659      Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2660
2661      --  Check (B)
2662
2663      if Others_Present and then Nb_Discrete_Choices > 0 then
2664         Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2665         Check_Bounds (Index_Typ_Low, Index_Typ_High,
2666                       Choices_Low, Choices_High);
2667         Check_Bounds (Index_Base_Low, Index_Base_High,
2668                       Choices_Low, Choices_High);
2669
2670      --  Check (C)
2671
2672      elsif Others_Present and then Nb_Elements > 0 then
2673         Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2674         Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2675         Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
2676      end if;
2677
2678      if Raises_Constraint_Error (Aggr_Low)
2679        or else Raises_Constraint_Error (Aggr_High)
2680      then
2681         Set_Raises_Constraint_Error (N);
2682      end if;
2683
2684      Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2685
2686      --  Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2687      --  since the addition node returned by Add is not yet analyzed. Attach
2688      --  to tree and analyze first. Reset analyzed flag to ensure it will get
2689      --  analyzed when it is a literal bound whose type must be properly set.
2690
2691      if Others_Present or else Nb_Discrete_Choices > 0 then
2692         Aggr_High := Duplicate_Subexpr (Aggr_High);
2693
2694         if Etype (Aggr_High) = Universal_Integer then
2695            Set_Analyzed (Aggr_High, False);
2696         end if;
2697      end if;
2698
2699      --  If the aggregate already has bounds attached to it, it means this is
2700      --  a positional aggregate created as an optimization by
2701      --  Exp_Aggr.Convert_To_Positional, so we don't want to change those
2702      --  bounds.
2703
2704      if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
2705         Aggr_Low  := Low_Bound  (Aggregate_Bounds (N));
2706         Aggr_High := High_Bound (Aggregate_Bounds (N));
2707      end if;
2708
2709      Set_Aggregate_Bounds
2710        (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2711
2712      --  The bounds may contain expressions that must be inserted upwards.
2713      --  Attach them fully to the tree. After analysis, remove side effects
2714      --  from upper bound, if still needed.
2715
2716      Set_Parent (Aggregate_Bounds (N), N);
2717      Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
2718      Check_Unset_Reference (Aggregate_Bounds (N));
2719
2720      if not Others_Present and then Nb_Discrete_Choices = 0 then
2721         Set_High_Bound
2722           (Aggregate_Bounds (N),
2723            Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
2724      end if;
2725
2726      --  Check the dimensions of each component in the array aggregate
2727
2728      Analyze_Dimension_Array_Aggregate (N, Component_Typ);
2729
2730      return Success;
2731   end Resolve_Array_Aggregate;
2732
2733   ---------------------------------
2734   -- Resolve_Container_Aggregate --
2735   ---------------------------------
2736
2737   procedure Resolve_Container_Aggregate (N : Node_Id; Typ : Entity_Id) is
2738      procedure Resolve_Iterated_Association
2739       (Comp      : Node_Id;
2740        Key_Type  : Entity_Id;
2741        Elmt_Type : Entity_Id);
2742      --  Resolve choices and expression in an iterated component association
2743      --  or an iterated element association, which has a key_expression.
2744      --  This is similar but not identical to the handling of this construct
2745      --  in an array aggregate.
2746      --  For a named container, the type of each choice must be compatible
2747      --  with the key type. For a positional container, the choice must be
2748      --  a subtype indication or an iterator specification that determines
2749      --  an element type.
2750
2751      Asp   : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Aggregate);
2752
2753      Empty_Subp          : Node_Id := Empty;
2754      Add_Named_Subp      : Node_Id := Empty;
2755      Add_Unnamed_Subp    : Node_Id := Empty;
2756      New_Indexed_Subp    : Node_Id := Empty;
2757      Assign_Indexed_Subp : Node_Id := Empty;
2758
2759      ----------------------------------
2760      -- Resolve_Iterated_Association --
2761      ----------------------------------
2762
2763      procedure Resolve_Iterated_Association
2764       (Comp      : Node_Id;
2765        Key_Type  : Entity_Id;
2766        Elmt_Type : Entity_Id)
2767      is
2768         Choice   : Node_Id;
2769         Ent      : Entity_Id;
2770         Expr     : Node_Id;
2771         Key_Expr : Node_Id;
2772         Id       : Entity_Id;
2773         Id_Name  : Name_Id;
2774         Iter     : Node_Id;
2775         Typ      : Entity_Id := Empty;
2776
2777      begin
2778         --  If this is an Iterated_Element_Association then either a
2779         --  an Iterator_Specification or a Loop_Parameter specification
2780         --  is present. In both cases a Key_Expression is present.
2781
2782         if Nkind (Comp) = N_Iterated_Element_Association then
2783            if Present (Loop_Parameter_Specification (Comp)) then
2784               Analyze_Loop_Parameter_Specification
2785                  (Loop_Parameter_Specification (Comp));
2786               Id_Name := Chars (Defining_Identifier
2787                            (Loop_Parameter_Specification (Comp)));
2788            else
2789               Iter := Copy_Separate_Tree (Iterator_Specification (Comp));
2790               Analyze (Iter);
2791               Typ := Etype (Defining_Identifier (Iter));
2792               Id_Name := Chars (Defining_Identifier
2793                            (Iterator_Specification (Comp)));
2794            end if;
2795
2796            --  Key expression must have the type of the key. We analyze
2797            --  a copy of the original expression, because it will be
2798            --  reanalyzed and copied as needed during expansion of the
2799            --  corresponding loop.
2800
2801            Key_Expr := Key_Expression (Comp);
2802            Analyze_And_Resolve (New_Copy_Tree (Key_Expr), Key_Type);
2803
2804         elsif Present (Iterator_Specification (Comp)) then
2805            Iter    := Copy_Separate_Tree (Iterator_Specification (Comp));
2806            Id_Name := Chars (Defining_Identifier (Comp));
2807            Analyze (Iter);
2808            Typ := Etype (Defining_Identifier (Iter));
2809
2810         else
2811            Choice := First (Discrete_Choices (Comp));
2812
2813            while Present (Choice) loop
2814               Analyze (Choice);
2815
2816               --  Choice can be a subtype name, a range, or an expression
2817
2818               if Is_Entity_Name (Choice)
2819                 and then Is_Type (Entity (Choice))
2820                 and then Base_Type (Entity (Choice)) = Base_Type (Key_Type)
2821               then
2822                  null;
2823
2824               elsif Present (Key_Type) then
2825                  Analyze_And_Resolve (Choice, Key_Type);
2826
2827               else
2828                  Typ := Etype (Choice);  --  assume unique for now
2829               end if;
2830
2831               Next (Choice);
2832            end loop;
2833
2834            Id_Name := Chars (Defining_Identifier (Comp));
2835         end if;
2836
2837         --  Create a scope in which to introduce an index, which is usually
2838         --  visible in the expression for the component, and needed for its
2839         --  analysis.
2840
2841         Id := Make_Defining_Identifier (Sloc (Comp), Id_Name);
2842         Ent := New_Internal_Entity (E_Loop, Current_Scope, Sloc (Comp), 'L');
2843         Set_Etype  (Ent, Standard_Void_Type);
2844         Set_Parent (Ent, Parent (Comp));
2845         Push_Scope (Ent);
2846
2847         --  Insert and decorate the loop variable in the current scope.
2848         --  The expression has to be analyzed once the loop variable is
2849         --  directly visible. Mark the variable as referenced to prevent
2850         --  spurious warnings, given that subsequent uses of its name in the
2851         --  expression will reference the internal (synonym) loop variable.
2852
2853         Enter_Name (Id);
2854
2855         if No (Key_Type) then
2856            pragma Assert (Present (Typ));
2857            Set_Etype (Id, Typ);
2858         else
2859            Set_Etype (Id, Key_Type);
2860         end if;
2861
2862         Set_Ekind (Id, E_Variable);
2863         Set_Scope (Id, Ent);
2864         Set_Referenced (Id);
2865
2866         --  Analyze a copy of the expression, to verify legality. We use
2867         --  a copy because the expression will be analyzed anew when the
2868         --  enclosing aggregate is expanded, and the construct is rewritten
2869         --  as a loop with a new index variable.
2870
2871         Expr := New_Copy_Tree (Expression (Comp));
2872         Preanalyze_And_Resolve (Expr, Elmt_Type);
2873         End_Scope;
2874
2875      end Resolve_Iterated_Association;
2876
2877   begin
2878      pragma Assert (Nkind (Asp) = N_Aggregate);
2879
2880      Set_Etype (N, Typ);
2881      Parse_Aspect_Aggregate (Asp,
2882        Empty_Subp, Add_Named_Subp, Add_Unnamed_Subp,
2883        New_Indexed_Subp, Assign_Indexed_Subp);
2884
2885      if Present (Add_Unnamed_Subp)
2886        and then No (New_Indexed_Subp)
2887      then
2888         declare
2889            Elmt_Type : constant Entity_Id :=
2890              Etype (Next_Formal
2891                (First_Formal (Entity (Add_Unnamed_Subp))));
2892            Comp : Node_Id;
2893
2894         begin
2895            if Present (Expressions (N)) then
2896               --  positional aggregate
2897
2898               Comp := First (Expressions (N));
2899               while Present (Comp) loop
2900                  Analyze_And_Resolve (Comp, Elmt_Type);
2901                  Next (Comp);
2902               end loop;
2903            end if;
2904
2905            --  Empty aggregate, to be replaced by Empty during
2906            --  expansion, or iterated component association.
2907
2908            if Present (Component_Associations (N)) then
2909               declare
2910                  Comp : Node_Id := First (Component_Associations (N));
2911               begin
2912                  while Present (Comp) loop
2913                     if Nkind (Comp) /=
2914                       N_Iterated_Component_Association
2915                     then
2916                        Error_Msg_N ("illegal component association "
2917                          & "for unnamed container aggregate", Comp);
2918                        return;
2919                     else
2920                        Resolve_Iterated_Association
2921                          (Comp, Empty, Elmt_Type);
2922                     end if;
2923
2924                     Next (Comp);
2925                  end loop;
2926               end;
2927            end if;
2928         end;
2929
2930      elsif  Present (Add_Named_Subp) then
2931         declare
2932            --  Retrieves types of container, key, and element from the
2933            --  specified insertion procedure.
2934
2935            Container : constant Entity_Id :=
2936              First_Formal (Entity (Add_Named_Subp));
2937            Key_Type  : constant Entity_Id := Etype (Next_Formal (Container));
2938            Elmt_Type : constant Entity_Id :=
2939                                 Etype (Next_Formal (Next_Formal (Container)));
2940            Comp   : Node_Id;
2941            Choice : Node_Id;
2942
2943         begin
2944            Comp := First (Component_Associations (N));
2945            while Present (Comp) loop
2946               if Nkind (Comp) = N_Component_Association then
2947                  Choice := First (Choices (Comp));
2948
2949                  while Present (Choice) loop
2950                     Analyze_And_Resolve (Choice, Key_Type);
2951                     if not Is_Static_Expression (Choice) then
2952                        Error_Msg_N ("choice must be static", Choice);
2953                     end if;
2954
2955                     Next (Choice);
2956                  end loop;
2957
2958                  Analyze_And_Resolve (Expression (Comp), Elmt_Type);
2959
2960               elsif Nkind (Comp) in
2961                 N_Iterated_Component_Association |
2962                 N_Iterated_Element_Association
2963               then
2964                  Resolve_Iterated_Association
2965                    (Comp, Key_Type, Elmt_Type);
2966               end if;
2967
2968               Next (Comp);
2969            end loop;
2970         end;
2971
2972      else
2973         --  Indexed Aggregate. Positional or indexed component
2974         --  can be present, but not both. Choices must be static
2975         --  values or ranges with static bounds.
2976
2977         declare
2978            Container : constant Entity_Id :=
2979              First_Formal (Entity (Assign_Indexed_Subp));
2980            Index_Type : constant Entity_Id := Etype (Next_Formal (Container));
2981            Comp_Type  : constant Entity_Id :=
2982                                 Etype (Next_Formal (Next_Formal (Container)));
2983            Comp   : Node_Id;
2984            Choice : Node_Id;
2985
2986         begin
2987            if Present (Expressions (N)) then
2988               Comp := First (Expressions (N));
2989               while Present (Comp) loop
2990                  Analyze_And_Resolve (Comp, Comp_Type);
2991                  Next (Comp);
2992               end loop;
2993            end if;
2994
2995            if Present (Component_Associations (N)) then
2996               if Present (Expressions (N)) then
2997                  Error_Msg_N ("container aggregate cannot be "
2998                    & "both positional and named", N);
2999                  return;
3000               end if;
3001
3002               Comp := First (Expressions (N));
3003
3004               while Present (Comp) loop
3005                  if Nkind (Comp) = N_Component_Association then
3006                     Choice := First (Choices (Comp));
3007
3008                     while Present (Choice) loop
3009                        Analyze_And_Resolve (Choice, Index_Type);
3010                        Next (Choice);
3011                     end loop;
3012
3013                     Analyze_And_Resolve (Expression (Comp), Comp_Type);
3014
3015                  elsif Nkind (Comp) in
3016                    N_Iterated_Component_Association |
3017                    N_Iterated_Element_Association
3018                  then
3019                     Resolve_Iterated_Association
3020                       (Comp, Index_Type, Comp_Type);
3021                  end if;
3022
3023                  Next (Comp);
3024               end loop;
3025            end if;
3026         end;
3027      end if;
3028   end Resolve_Container_Aggregate;
3029
3030   -----------------------------
3031   -- Resolve_Delta_Aggregate --
3032   -----------------------------
3033
3034   procedure Resolve_Delta_Aggregate (N : Node_Id; Typ : Entity_Id) is
3035      Base : constant Node_Id := Expression (N);
3036
3037   begin
3038      Error_Msg_Ada_2020_Feature ("delta aggregate", Sloc (N));
3039
3040      if not Is_Composite_Type (Typ) then
3041         Error_Msg_N ("not a composite type", N);
3042      end if;
3043
3044      Analyze_And_Resolve (Base, Typ);
3045
3046      if Is_Array_Type (Typ) then
3047         Resolve_Delta_Array_Aggregate (N, Typ);
3048      else
3049         Resolve_Delta_Record_Aggregate (N, Typ);
3050      end if;
3051
3052      Set_Etype (N, Typ);
3053   end Resolve_Delta_Aggregate;
3054
3055   -----------------------------------
3056   -- Resolve_Delta_Array_Aggregate --
3057   -----------------------------------
3058
3059   procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id) is
3060      Deltas     : constant List_Id   := Component_Associations (N);
3061      Index_Type : constant Entity_Id := Etype (First_Index (Typ));
3062
3063      Assoc  : Node_Id;
3064      Choice : Node_Id;
3065      Expr   : Node_Id;
3066
3067   begin
3068      Assoc := First (Deltas);
3069      while Present (Assoc) loop
3070         if Nkind (Assoc) = N_Iterated_Component_Association then
3071            Choice := First (Choice_List (Assoc));
3072            while Present (Choice) loop
3073               if Nkind (Choice) = N_Others_Choice then
3074                  Error_Msg_N
3075                    ("OTHERS not allowed in delta aggregate", Choice);
3076
3077               elsif Nkind (Choice) = N_Subtype_Indication then
3078                  Resolve_Discrete_Subtype_Indication
3079                    (Choice, Base_Type (Index_Type));
3080
3081               else
3082                  Analyze_And_Resolve (Choice, Index_Type);
3083               end if;
3084
3085               Next (Choice);
3086            end loop;
3087
3088            declare
3089               Id  : constant Entity_Id := Defining_Identifier (Assoc);
3090               Ent : constant Entity_Id :=
3091                       New_Internal_Entity
3092                         (E_Loop, Current_Scope, Sloc (Assoc), 'L');
3093
3094            begin
3095               Set_Etype  (Ent, Standard_Void_Type);
3096               Set_Parent (Ent, Assoc);
3097               Push_Scope (Ent);
3098
3099               if No (Scope (Id)) then
3100                  Set_Etype (Id, Index_Type);
3101                  Set_Ekind (Id, E_Variable);
3102                  Set_Scope (Id, Ent);
3103               end if;
3104               Enter_Name (Id);
3105
3106               --  Resolve a copy of the expression, after setting
3107               --  its parent properly to preserve its context.
3108
3109               Expr := New_Copy_Tree (Expression (Assoc));
3110               Set_Parent (Expr, Assoc);
3111               Analyze_And_Resolve (Expr, Component_Type (Typ));
3112               End_Scope;
3113            end;
3114
3115         else
3116            Choice := First (Choice_List (Assoc));
3117            while Present (Choice) loop
3118               Analyze (Choice);
3119
3120               if Nkind (Choice) = N_Others_Choice then
3121                  Error_Msg_N
3122                    ("OTHERS not allowed in delta aggregate", Choice);
3123
3124               elsif Is_Entity_Name (Choice)
3125                 and then Is_Type (Entity (Choice))
3126               then
3127                  --  Choice covers a range of values
3128
3129                  if Base_Type (Entity (Choice)) /=
3130                     Base_Type (Index_Type)
3131                  then
3132                     Error_Msg_NE
3133                       ("choice does not match index type of &",
3134                        Choice, Typ);
3135                  end if;
3136
3137               elsif Nkind (Choice) = N_Subtype_Indication then
3138                  Resolve_Discrete_Subtype_Indication
3139                    (Choice, Base_Type (Index_Type));
3140
3141               else
3142                  Resolve (Choice, Index_Type);
3143               end if;
3144
3145               Next (Choice);
3146            end loop;
3147
3148            Analyze_And_Resolve (Expression (Assoc), Component_Type (Typ));
3149         end if;
3150
3151         Next (Assoc);
3152      end loop;
3153   end Resolve_Delta_Array_Aggregate;
3154
3155   ------------------------------------
3156   -- Resolve_Delta_Record_Aggregate --
3157   ------------------------------------
3158
3159   procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
3160
3161      --  Variables used to verify that discriminant-dependent components
3162      --  appear in the same variant.
3163
3164      Comp_Ref : Entity_Id := Empty; -- init to avoid warning
3165      Variant  : Node_Id;
3166
3167      procedure Check_Variant (Id : Entity_Id);
3168      --  If a given component of the delta aggregate appears in a variant
3169      --  part, verify that it is within the same variant as that of previous
3170      --  specified variant components of the delta.
3171
3172      function Get_Component (Nam : Node_Id) return Entity_Id;
3173      --  Locate component with a given name and return it. If none found then
3174      --  report error and return Empty.
3175
3176      function Nested_In (V1 : Node_Id; V2 : Node_Id) return Boolean;
3177      --  Determine whether variant V1 is within variant V2
3178
3179      function Variant_Depth (N : Node_Id) return Integer;
3180      --  Determine the distance of a variant to the enclosing type
3181      --  declaration.
3182
3183      --------------------
3184      --  Check_Variant --
3185      --------------------
3186
3187      procedure Check_Variant (Id : Entity_Id) is
3188         Comp         : Entity_Id;
3189         Comp_Variant : Node_Id;
3190
3191      begin
3192         if not Has_Discriminants (Typ) then
3193            return;
3194         end if;
3195
3196         Comp := First_Entity (Typ);
3197         while Present (Comp) loop
3198            exit when Chars (Comp) = Chars (Id);
3199            Next_Component (Comp);
3200         end loop;
3201
3202         --  Find the variant, if any, whose component list includes the
3203         --  component declaration.
3204
3205         Comp_Variant := Parent (Parent (List_Containing (Parent (Comp))));
3206         if Nkind (Comp_Variant) = N_Variant then
3207            if No (Variant) then
3208               Variant  := Comp_Variant;
3209               Comp_Ref := Comp;
3210
3211            elsif Variant /= Comp_Variant then
3212               declare
3213                  D1 : constant Integer := Variant_Depth (Variant);
3214                  D2 : constant Integer := Variant_Depth (Comp_Variant);
3215
3216               begin
3217                  if D1 = D2
3218                    or else
3219                      (D1 > D2 and then not Nested_In (Variant, Comp_Variant))
3220                    or else
3221                      (D2 > D1 and then not Nested_In (Comp_Variant, Variant))
3222                  then
3223                     pragma Assert (Present (Comp_Ref));
3224                     Error_Msg_Node_2 := Comp_Ref;
3225                     Error_Msg_NE
3226                       ("& and & appear in different variants", Id, Comp);
3227
3228                  --  Otherwise retain the deeper variant for subsequent tests
3229
3230                  elsif D2 > D1 then
3231                     Variant := Comp_Variant;
3232                  end if;
3233               end;
3234            end if;
3235         end if;
3236      end Check_Variant;
3237
3238      -------------------
3239      -- Get_Component --
3240      -------------------
3241
3242      function Get_Component (Nam : Node_Id) return Entity_Id is
3243         Comp : Entity_Id;
3244
3245      begin
3246         Comp := First_Entity (Typ);
3247         while Present (Comp) loop
3248            if Chars (Comp) = Chars (Nam) then
3249               if Ekind (Comp) = E_Discriminant then
3250                  Error_Msg_N ("delta cannot apply to discriminant", Nam);
3251               end if;
3252
3253               return Comp;
3254            end if;
3255
3256            Next_Entity (Comp);
3257         end loop;
3258
3259         Error_Msg_NE ("type& has no component with this name", Nam, Typ);
3260         return Empty;
3261      end Get_Component;
3262
3263      ---------------
3264      -- Nested_In --
3265      ---------------
3266
3267      function Nested_In (V1, V2 : Node_Id) return Boolean is
3268         Par : Node_Id;
3269
3270      begin
3271         Par := Parent (V1);
3272         while Nkind (Par) /= N_Full_Type_Declaration loop
3273            if Par = V2 then
3274               return True;
3275            end if;
3276
3277            Par := Parent (Par);
3278         end loop;
3279
3280         return False;
3281      end Nested_In;
3282
3283      -------------------
3284      -- Variant_Depth --
3285      -------------------
3286
3287      function Variant_Depth (N : Node_Id) return Integer is
3288         Depth : Integer;
3289         Par   : Node_Id;
3290
3291      begin
3292         Depth := 0;
3293         Par   := Parent (N);
3294         while Nkind (Par) /= N_Full_Type_Declaration loop
3295            Depth := Depth + 1;
3296            Par   := Parent (Par);
3297         end loop;
3298
3299         return Depth;
3300      end Variant_Depth;
3301
3302      --  Local variables
3303
3304      Deltas : constant List_Id := Component_Associations (N);
3305
3306      Assoc     : Node_Id;
3307      Choice    : Node_Id;
3308      Comp      : Entity_Id;
3309      Comp_Type : Entity_Id := Empty; -- init to avoid warning
3310
3311   --  Start of processing for Resolve_Delta_Record_Aggregate
3312
3313   begin
3314      Variant := Empty;
3315
3316      Assoc := First (Deltas);
3317      while Present (Assoc) loop
3318         Choice := First (Choice_List (Assoc));
3319         while Present (Choice) loop
3320            Comp := Get_Component (Choice);
3321
3322            if Present (Comp) then
3323               Check_Variant (Choice);
3324
3325               Comp_Type := Etype (Comp);
3326
3327               --  Decorate the component reference by setting its entity and
3328               --  type, as otherwise backends like GNATprove would have to
3329               --  rediscover this information by themselves.
3330
3331               Set_Entity (Choice, Comp);
3332               Set_Etype  (Choice, Comp_Type);
3333            else
3334               Comp_Type := Any_Type;
3335            end if;
3336
3337            Next (Choice);
3338         end loop;
3339
3340         pragma Assert (Present (Comp_Type));
3341         Analyze_And_Resolve (Expression (Assoc), Comp_Type);
3342         Next (Assoc);
3343      end loop;
3344   end Resolve_Delta_Record_Aggregate;
3345
3346   ---------------------------------
3347   -- Resolve_Extension_Aggregate --
3348   ---------------------------------
3349
3350   --  There are two cases to consider:
3351
3352   --  a) If the ancestor part is a type mark, the components needed are the
3353   --  difference between the components of the expected type and the
3354   --  components of the given type mark.
3355
3356   --  b) If the ancestor part is an expression, it must be unambiguous, and
3357   --  once we have its type we can also compute the needed components as in
3358   --  the previous case. In both cases, if the ancestor type is not the
3359   --  immediate ancestor, we have to build this ancestor recursively.
3360
3361   --  In both cases, discriminants of the ancestor type do not play a role in
3362   --  the resolution of the needed components, because inherited discriminants
3363   --  cannot be used in a type extension. As a result we can compute
3364   --  independently the list of components of the ancestor type and of the
3365   --  expected type.
3366
3367   procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
3368      A      : constant Node_Id := Ancestor_Part (N);
3369      A_Type : Entity_Id;
3370      I      : Interp_Index;
3371      It     : Interp;
3372
3373      function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
3374      --  If the type is limited, verify that the ancestor part is a legal
3375      --  expression (aggregate or function call, including 'Input)) that does
3376      --  not require a copy, as specified in 7.5(2).
3377
3378      function Valid_Ancestor_Type return Boolean;
3379      --  Verify that the type of the ancestor part is a non-private ancestor
3380      --  of the expected type, which must be a type extension.
3381
3382      procedure Transform_BIP_Assignment (Typ : Entity_Id);
3383      --  For an extension aggregate whose ancestor part is a build-in-place
3384      --  call returning a nonlimited type, this is used to transform the
3385      --  assignment to the ancestor part to use a temp.
3386
3387      ----------------------------
3388      -- Valid_Limited_Ancestor --
3389      ----------------------------
3390
3391      function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
3392      begin
3393         if Is_Entity_Name (Anc) and then Is_Type (Entity (Anc)) then
3394            return True;
3395
3396         --  The ancestor must be a call or an aggregate, but a call may
3397         --  have been expanded into a temporary, so check original node.
3398
3399         elsif Nkind (Anc) in N_Aggregate
3400                            | N_Extension_Aggregate
3401                            | N_Function_Call
3402         then
3403            return True;
3404
3405         elsif Nkind (Original_Node (Anc)) = N_Function_Call then
3406            return True;
3407
3408         elsif Nkind (Anc) = N_Attribute_Reference
3409           and then Attribute_Name (Anc) = Name_Input
3410         then
3411            return True;
3412
3413         elsif Nkind (Anc) = N_Qualified_Expression then
3414            return Valid_Limited_Ancestor (Expression (Anc));
3415
3416         elsif Nkind (Anc) = N_Raise_Expression then
3417            return True;
3418
3419         else
3420            return False;
3421         end if;
3422      end Valid_Limited_Ancestor;
3423
3424      -------------------------
3425      -- Valid_Ancestor_Type --
3426      -------------------------
3427
3428      function Valid_Ancestor_Type return Boolean is
3429         Imm_Type : Entity_Id;
3430
3431      begin
3432         Imm_Type := Base_Type (Typ);
3433         while Is_Derived_Type (Imm_Type) loop
3434            if Etype (Imm_Type) = Base_Type (A_Type) then
3435               return True;
3436
3437            --  The base type of the parent type may appear as a private
3438            --  extension if it is declared as such in a parent unit of the
3439            --  current one. For consistency of the subsequent analysis use
3440            --  the partial view for the ancestor part.
3441
3442            elsif Is_Private_Type (Etype (Imm_Type))
3443              and then Present (Full_View (Etype (Imm_Type)))
3444              and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
3445            then
3446               A_Type := Etype (Imm_Type);
3447               return True;
3448
3449            --  The parent type may be a private extension. The aggregate is
3450            --  legal if the type of the aggregate is an extension of it that
3451            --  is not a private extension.
3452
3453            elsif Is_Private_Type (A_Type)
3454              and then not Is_Private_Type (Imm_Type)
3455              and then Present (Full_View (A_Type))
3456              and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
3457            then
3458               return True;
3459
3460            --  The parent type may be a raise expression (which is legal in
3461            --  any expression context).
3462
3463            elsif A_Type = Raise_Type then
3464               A_Type := Etype (Imm_Type);
3465               return True;
3466
3467            else
3468               Imm_Type := Etype (Base_Type (Imm_Type));
3469            end if;
3470         end loop;
3471
3472         --  If previous loop did not find a proper ancestor, report error
3473
3474         Error_Msg_NE ("expect ancestor type of &", A, Typ);
3475         return False;
3476      end Valid_Ancestor_Type;
3477
3478      ------------------------------
3479      -- Transform_BIP_Assignment --
3480      ------------------------------
3481
3482      procedure Transform_BIP_Assignment (Typ : Entity_Id) is
3483         Loc      : constant Source_Ptr := Sloc (N);
3484         Def_Id   : constant Entity_Id  := Make_Temporary (Loc, 'Y', A);
3485         Obj_Decl : constant Node_Id    :=
3486                      Make_Object_Declaration (Loc,
3487                        Defining_Identifier => Def_Id,
3488                        Constant_Present    => True,
3489                        Object_Definition   => New_Occurrence_Of (Typ, Loc),
3490                        Expression          => A,
3491                        Has_Init_Expression => True);
3492      begin
3493         Set_Etype (Def_Id, Typ);
3494         Set_Ancestor_Part (N, New_Occurrence_Of (Def_Id, Loc));
3495         Insert_Action (N, Obj_Decl);
3496      end Transform_BIP_Assignment;
3497
3498   --  Start of processing for Resolve_Extension_Aggregate
3499
3500   begin
3501      --  Analyze the ancestor part and account for the case where it is a
3502      --  parameterless function call.
3503
3504      Analyze (A);
3505      Check_Parameterless_Call (A);
3506
3507      if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3508
3509         --  AI05-0115: If the ancestor part is a subtype mark, the ancestor
3510         --  must not have unknown discriminants. To catch cases where the
3511         --  aggregate occurs at a place where the full view of the ancestor
3512         --  type is visible and doesn't have unknown discriminants, but the
3513         --  aggregate type was derived from a partial view that has unknown
3514         --  discriminants, we check whether the aggregate type has unknown
3515         --  discriminants (unknown discriminants were inherited), along
3516         --  with checking that the partial view of the ancestor has unknown
3517         --  discriminants. (It might be sufficient to replace the entire
3518         --  condition with Has_Unknown_Discriminants (Typ), but that might
3519         --  miss some cases, not clear, and causes error changes in some tests
3520         --  such as class-wide cases, that aren't clearly improvements. ???)
3521
3522         if Has_Unknown_Discriminants (Entity (A))
3523           or else (Has_Unknown_Discriminants (Typ)
3524                      and then Partial_View_Has_Unknown_Discr (Entity (A)))
3525         then
3526            Error_Msg_NE
3527              ("aggregate not available for type& whose ancestor "
3528                 & "has unknown discriminants", N, Typ);
3529         end if;
3530      end if;
3531
3532      if not Is_Tagged_Type (Typ) then
3533         Error_Msg_N ("type of extension aggregate must be tagged", N);
3534         return;
3535
3536      elsif Is_Limited_Type (Typ) then
3537
3538         --  Ada 2005 (AI-287): Limited aggregates are allowed
3539
3540         if Ada_Version < Ada_2005 then
3541            Error_Msg_N ("aggregate type cannot be limited", N);
3542            Explain_Limited_Type (Typ, N);
3543            return;
3544
3545         elsif Valid_Limited_Ancestor (A) then
3546            null;
3547
3548         else
3549            Error_Msg_N
3550              ("limited ancestor part must be aggregate or function call", A);
3551         end if;
3552
3553      elsif Is_Class_Wide_Type (Typ) then
3554         Error_Msg_N ("aggregate cannot be of a class-wide type", N);
3555         return;
3556      end if;
3557
3558      if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3559         A_Type := Get_Full_View (Entity (A));
3560
3561         if Valid_Ancestor_Type then
3562            Set_Entity (A, A_Type);
3563            Set_Etype  (A, A_Type);
3564
3565            Validate_Ancestor_Part (N);
3566            Resolve_Record_Aggregate (N, Typ);
3567         end if;
3568
3569      elsif Nkind (A) /= N_Aggregate then
3570         if Is_Overloaded (A) then
3571            A_Type := Any_Type;
3572
3573            Get_First_Interp (A, I, It);
3574            while Present (It.Typ) loop
3575
3576               --  Consider limited interpretations if Ada 2005 or higher
3577
3578               if Is_Tagged_Type (It.Typ)
3579                 and then (Ada_Version >= Ada_2005
3580                            or else not Is_Limited_Type (It.Typ))
3581               then
3582                  if A_Type /= Any_Type then
3583                     Error_Msg_N ("cannot resolve expression", A);
3584                     return;
3585                  else
3586                     A_Type := It.Typ;
3587                  end if;
3588               end if;
3589
3590               Get_Next_Interp (I, It);
3591            end loop;
3592
3593            if A_Type = Any_Type then
3594               if Ada_Version >= Ada_2005 then
3595                  Error_Msg_N
3596                    ("ancestor part must be of a tagged type", A);
3597               else
3598                  Error_Msg_N
3599                    ("ancestor part must be of a nonlimited tagged type", A);
3600               end if;
3601
3602               return;
3603            end if;
3604
3605         else
3606            A_Type := Etype (A);
3607         end if;
3608
3609         if Valid_Ancestor_Type then
3610            Resolve (A, A_Type);
3611            Check_Unset_Reference (A);
3612            Check_Non_Static_Context (A);
3613
3614            --  The aggregate is illegal if the ancestor expression is a call
3615            --  to a function with a limited unconstrained result, unless the
3616            --  type of the aggregate is a null extension. This restriction
3617            --  was added in AI05-67 to simplify implementation.
3618
3619            if Nkind (A) = N_Function_Call
3620              and then Is_Limited_Type (A_Type)
3621              and then not Is_Null_Extension (Typ)
3622              and then not Is_Constrained (A_Type)
3623            then
3624               Error_Msg_N
3625                 ("type of limited ancestor part must be constrained", A);
3626
3627            --  Reject the use of CPP constructors that leave objects partially
3628            --  initialized. For example:
3629
3630            --    type CPP_Root is tagged limited record ...
3631            --    pragma Import (CPP, CPP_Root);
3632
3633            --    type CPP_DT is new CPP_Root and Iface ...
3634            --    pragma Import (CPP, CPP_DT);
3635
3636            --    type Ada_DT is new CPP_DT with ...
3637
3638            --    Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
3639
3640            --  Using the constructor of CPP_Root the slots of the dispatch
3641            --  table of CPP_DT cannot be set, and the secondary tag of
3642            --  CPP_DT is unknown.
3643
3644            elsif Nkind (A) = N_Function_Call
3645              and then Is_CPP_Constructor_Call (A)
3646              and then Enclosing_CPP_Parent (Typ) /= A_Type
3647            then
3648               Error_Msg_NE
3649                 ("??must use 'C'P'P constructor for type &", A,
3650                  Enclosing_CPP_Parent (Typ));
3651
3652               --  The following call is not needed if the previous warning
3653               --  is promoted to an error.
3654
3655               Resolve_Record_Aggregate (N, Typ);
3656
3657            elsif Is_Class_Wide_Type (Etype (A))
3658              and then Nkind (Original_Node (A)) = N_Function_Call
3659            then
3660               --  If the ancestor part is a dispatching call, it appears
3661               --  statically to be a legal ancestor, but it yields any member
3662               --  of the class, and it is not possible to determine whether
3663               --  it is an ancestor of the extension aggregate (much less
3664               --  which ancestor). It is not possible to determine the
3665               --  components of the extension part.
3666
3667               --  This check implements AI-306, which in fact was motivated by
3668               --  an AdaCore query to the ARG after this test was added.
3669
3670               Error_Msg_N ("ancestor part must be statically tagged", A);
3671            else
3672               --  We are using the build-in-place protocol, but we can't build
3673               --  in place, because we need to call the function before
3674               --  allocating the aggregate. Could do better for null
3675               --  extensions, and maybe for nondiscriminated types.
3676               --  This is wrong for limited, but those were wrong already.
3677
3678               if not Is_Limited_View (A_Type)
3679                 and then Is_Build_In_Place_Function_Call (A)
3680               then
3681                  Transform_BIP_Assignment (A_Type);
3682               end if;
3683
3684               Resolve_Record_Aggregate (N, Typ);
3685            end if;
3686         end if;
3687
3688      else
3689         Error_Msg_N ("no unique type for this aggregate", A);
3690      end if;
3691
3692      Check_Function_Writable_Actuals (N);
3693   end Resolve_Extension_Aggregate;
3694
3695   ------------------------------
3696   -- Resolve_Record_Aggregate --
3697   ------------------------------
3698
3699   procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
3700      New_Assoc_List : constant List_Id := New_List;
3701      --  New_Assoc_List is the newly built list of N_Component_Association
3702      --  nodes.
3703
3704      Others_Etype : Entity_Id := Empty;
3705      --  This variable is used to save the Etype of the last record component
3706      --  that takes its value from the others choice. Its purpose is:
3707      --
3708      --    (a) make sure the others choice is useful
3709      --
3710      --    (b) make sure the type of all the components whose value is
3711      --        subsumed by the others choice are the same.
3712      --
3713      --  This variable is updated as a side effect of function Get_Value.
3714
3715      Box_Node               : Node_Id := Empty;
3716      Is_Box_Present         : Boolean := False;
3717      Is_Box_Init_By_Default : Boolean := False;
3718      Others_Box             : Natural := 0;
3719      --  Ada 2005 (AI-287): Variables used in case of default initialization
3720      --  to provide a functionality similar to Others_Etype. Box_Present
3721      --  indicates that the component takes its default initialization;
3722      --  Others_Box counts the number of components of the current aggregate
3723      --  (which may be a sub-aggregate of a larger one) that are default-
3724      --  initialized. A value of One indicates that an others_box is present.
3725      --  Any larger value indicates that the others_box is not redundant.
3726      --  These variables, similar to Others_Etype, are also updated as a side
3727      --  effect of function Get_Value. Box_Node is used to place a warning on
3728      --  a redundant others_box.
3729
3730      procedure Add_Association
3731        (Component      : Entity_Id;
3732         Expr           : Node_Id;
3733         Assoc_List     : List_Id;
3734         Is_Box_Present : Boolean := False);
3735      --  Builds a new N_Component_Association node which associates Component
3736      --  to expression Expr and adds it to the association list being built,
3737      --  either New_Assoc_List, or the association being built for an inner
3738      --  aggregate.
3739
3740      procedure Add_Discriminant_Values
3741        (New_Aggr   : Node_Id;
3742         Assoc_List : List_Id);
3743      --  The constraint to a component may be given by a discriminant of the
3744      --  enclosing type, in which case we have to retrieve its value, which is
3745      --  part of the enclosing aggregate. Assoc_List provides the discriminant
3746      --  associations of the current type or of some enclosing record.
3747
3748      function Discriminant_Present (Input_Discr : Entity_Id) return Boolean;
3749      --  If aggregate N is a regular aggregate this routine will return True.
3750      --  Otherwise, if N is an extension aggregate, then Input_Discr denotes
3751      --  a discriminant whose value may already have been specified by N's
3752      --  ancestor part. This routine checks whether this is indeed the case
3753      --  and if so returns False, signaling that no value for Input_Discr
3754      --  should appear in N's aggregate part. Also, in this case, the routine
3755      --  appends to New_Assoc_List the discriminant value specified in the
3756      --  ancestor part.
3757      --
3758      --  If the aggregate is in a context with expansion delayed, it will be
3759      --  reanalyzed. The inherited discriminant values must not be reinserted
3760      --  in the component list to prevent spurious errors, but they must be
3761      --  present on first analysis to build the proper subtype indications.
3762      --  The flag Inherited_Discriminant is used to prevent the re-insertion.
3763
3764      function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id;
3765      --  AI05-0115: Find earlier ancestor in the derivation chain that is
3766      --  derived from private view Typ. Whether the aggregate is legal depends
3767      --  on the current visibility of the type as well as that of the parent
3768      --  of the ancestor.
3769
3770      function Get_Value
3771        (Compon                 : Entity_Id;
3772         From                   : List_Id;
3773         Consider_Others_Choice : Boolean := False) return Node_Id;
3774      --  Given a record component stored in parameter Compon, this function
3775      --  returns its value as it appears in the list From, which is a list
3776      --  of N_Component_Association nodes.
3777      --
3778      --  If no component association has a choice for the searched component,
3779      --  the value provided by the others choice is returned, if there is one,
3780      --  and Consider_Others_Choice is set to true. Otherwise Empty is
3781      --  returned. If there is more than one component association giving a
3782      --  value for the searched record component, an error message is emitted
3783      --  and the first found value is returned.
3784      --
3785      --  If Consider_Others_Choice is set and the returned expression comes
3786      --  from the others choice, then Others_Etype is set as a side effect.
3787      --  An error message is emitted if the components taking their value from
3788      --  the others choice do not have same type.
3789
3790      procedure Propagate_Discriminants
3791        (Aggr       : Node_Id;
3792         Assoc_List : List_Id);
3793      --  Nested components may themselves be discriminated types constrained
3794      --  by outer discriminants, whose values must be captured before the
3795      --  aggregate is expanded into assignments.
3796
3797      procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id);
3798      --  Analyzes and resolves expression Expr against the Etype of the
3799      --  Component. This routine also applies all appropriate checks to Expr.
3800      --  It finally saves a Expr in the newly created association list that
3801      --  will be attached to the final record aggregate. Note that if the
3802      --  Parent pointer of Expr is not set then Expr was produced with a
3803      --  New_Copy_Tree or some such.
3804
3805      procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id);
3806      --  Rewrite a range node Rge when its bounds refer to non-stored
3807      --  discriminants from Root_Type, to replace them with the stored
3808      --  discriminant values. This is required in GNATprove mode, and is
3809      --  adopted in all modes to avoid special-casing GNATprove mode.
3810
3811      ---------------------
3812      -- Add_Association --
3813      ---------------------
3814
3815      procedure Add_Association
3816        (Component      : Entity_Id;
3817         Expr           : Node_Id;
3818         Assoc_List     : List_Id;
3819         Is_Box_Present : Boolean := False)
3820      is
3821         Choice_List : constant List_Id := New_List;
3822         Loc         : Source_Ptr;
3823
3824      begin
3825         --  If this is a box association the expression is missing, so use the
3826         --  Sloc of the aggregate itself for the new association.
3827
3828         pragma Assert (Present (Expr) xor Is_Box_Present);
3829
3830         if Present (Expr) then
3831            Loc := Sloc (Expr);
3832         else
3833            Loc := Sloc (N);
3834         end if;
3835
3836         Append_To (Choice_List, New_Occurrence_Of (Component, Loc));
3837
3838         Append_To (Assoc_List,
3839           Make_Component_Association (Loc,
3840             Choices     => Choice_List,
3841             Expression  => Expr,
3842             Box_Present => Is_Box_Present));
3843
3844         --  If this association has a box for a component that is initialized
3845         --  by default, then set flag on the new association to indicate that
3846         --  the original association was for such a box-initialized component.
3847
3848         if Is_Box_Init_By_Default then
3849            Set_Was_Default_Init_Box_Association (Last (Assoc_List));
3850         end if;
3851      end Add_Association;
3852
3853      -----------------------------
3854      -- Add_Discriminant_Values --
3855      -----------------------------
3856
3857      procedure Add_Discriminant_Values
3858        (New_Aggr   : Node_Id;
3859         Assoc_List : List_Id)
3860      is
3861         Assoc      : Node_Id;
3862         Discr      : Entity_Id;
3863         Discr_Elmt : Elmt_Id;
3864         Discr_Val  : Node_Id;
3865         Val        : Entity_Id;
3866
3867      begin
3868         Discr      := First_Discriminant (Etype (New_Aggr));
3869         Discr_Elmt := First_Elmt (Discriminant_Constraint (Etype (New_Aggr)));
3870         while Present (Discr_Elmt) loop
3871            Discr_Val := Node (Discr_Elmt);
3872
3873            --  If the constraint is given by a discriminant then it is a
3874            --  discriminant of an enclosing record, and its value has already
3875            --  been placed in the association list.
3876
3877            if Is_Entity_Name (Discr_Val)
3878              and then Ekind (Entity (Discr_Val)) = E_Discriminant
3879            then
3880               Val := Entity (Discr_Val);
3881
3882               Assoc := First (Assoc_List);
3883               while Present (Assoc) loop
3884                  if Present (Entity (First (Choices (Assoc))))
3885                    and then Entity (First (Choices (Assoc))) = Val
3886                  then
3887                     Discr_Val := Expression (Assoc);
3888                     exit;
3889                  end if;
3890
3891                  Next (Assoc);
3892               end loop;
3893            end if;
3894
3895            Add_Association
3896              (Discr, New_Copy_Tree (Discr_Val),
3897               Component_Associations (New_Aggr));
3898
3899            --  If the discriminant constraint is a current instance, mark the
3900            --  current aggregate so that the self-reference can be expanded
3901            --  later. The constraint may refer to the subtype of aggregate, so
3902            --  use base type for comparison.
3903
3904            if Nkind (Discr_Val) = N_Attribute_Reference
3905              and then Is_Entity_Name (Prefix (Discr_Val))
3906              and then Is_Type (Entity (Prefix (Discr_Val)))
3907              and then Base_Type (Etype (N)) = Entity (Prefix (Discr_Val))
3908            then
3909               Set_Has_Self_Reference (N);
3910            end if;
3911
3912            Next_Elmt (Discr_Elmt);
3913            Next_Discriminant (Discr);
3914         end loop;
3915      end Add_Discriminant_Values;
3916
3917      --------------------------
3918      -- Discriminant_Present --
3919      --------------------------
3920
3921      function Discriminant_Present (Input_Discr : Entity_Id) return Boolean is
3922         Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
3923
3924         Ancestor_Is_Subtyp : Boolean;
3925
3926         Loc : Source_Ptr;
3927
3928         Ancestor     : Node_Id;
3929         Ancestor_Typ : Entity_Id;
3930         Comp_Assoc   : Node_Id;
3931         Discr        : Entity_Id;
3932         Discr_Expr   : Node_Id;
3933         Discr_Val    : Elmt_Id := No_Elmt;
3934         Orig_Discr   : Entity_Id;
3935
3936      begin
3937         if Regular_Aggr then
3938            return True;
3939         end if;
3940
3941         --  Check whether inherited discriminant values have already been
3942         --  inserted in the aggregate. This will be the case if we are
3943         --  re-analyzing an aggregate whose expansion was delayed.
3944
3945         if Present (Component_Associations (N)) then
3946            Comp_Assoc := First (Component_Associations (N));
3947            while Present (Comp_Assoc) loop
3948               if Inherited_Discriminant (Comp_Assoc) then
3949                  return True;
3950               end if;
3951
3952               Next (Comp_Assoc);
3953            end loop;
3954         end if;
3955
3956         Ancestor     := Ancestor_Part (N);
3957         Ancestor_Typ := Etype (Ancestor);
3958         Loc          := Sloc (Ancestor);
3959
3960         --  For a private type with unknown discriminants, use the underlying
3961         --  record view if it is available.
3962
3963         if Has_Unknown_Discriminants (Ancestor_Typ)
3964           and then Present (Full_View (Ancestor_Typ))
3965           and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
3966         then
3967            Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
3968         end if;
3969
3970         Ancestor_Is_Subtyp :=
3971           Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
3972
3973         --  If the ancestor part has no discriminants clearly N's aggregate
3974         --  part must provide a value for Discr.
3975
3976         if not Has_Discriminants (Ancestor_Typ) then
3977            return True;
3978
3979         --  If the ancestor part is an unconstrained subtype mark then the
3980         --  Discr must be present in N's aggregate part.
3981
3982         elsif Ancestor_Is_Subtyp
3983           and then not Is_Constrained (Entity (Ancestor))
3984         then
3985            return True;
3986         end if;
3987
3988         --  Now look to see if Discr was specified in the ancestor part
3989
3990         if Ancestor_Is_Subtyp then
3991            Discr_Val :=
3992              First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
3993         end if;
3994
3995         Orig_Discr := Original_Record_Component (Input_Discr);
3996
3997         Discr := First_Discriminant (Ancestor_Typ);
3998         while Present (Discr) loop
3999
4000            --  If Ancestor has already specified Disc value then insert its
4001            --  value in the final aggregate.
4002
4003            if Original_Record_Component (Discr) = Orig_Discr then
4004               if Ancestor_Is_Subtyp then
4005                  Discr_Expr := New_Copy_Tree (Node (Discr_Val));
4006               else
4007                  Discr_Expr :=
4008                    Make_Selected_Component (Loc,
4009                      Prefix        => Duplicate_Subexpr (Ancestor),
4010                      Selector_Name => New_Occurrence_Of (Input_Discr, Loc));
4011               end if;
4012
4013               Resolve_Aggr_Expr (Discr_Expr, Input_Discr);
4014               Set_Inherited_Discriminant (Last (New_Assoc_List));
4015               return False;
4016            end if;
4017
4018            Next_Discriminant (Discr);
4019
4020            if Ancestor_Is_Subtyp then
4021               Next_Elmt (Discr_Val);
4022            end if;
4023         end loop;
4024
4025         return True;
4026      end Discriminant_Present;
4027
4028      ---------------------------
4029      -- Find_Private_Ancestor --
4030      ---------------------------
4031
4032      function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id is
4033         Par : Entity_Id;
4034
4035      begin
4036         Par := Typ;
4037         loop
4038            if Has_Private_Ancestor (Par)
4039              and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
4040            then
4041               return Par;
4042
4043            elsif not Is_Derived_Type (Par) then
4044               return Empty;
4045
4046            else
4047               Par := Etype (Base_Type (Par));
4048            end if;
4049         end loop;
4050      end Find_Private_Ancestor;
4051
4052      ---------------
4053      -- Get_Value --
4054      ---------------
4055
4056      function Get_Value
4057        (Compon                 : Entity_Id;
4058         From                   : List_Id;
4059         Consider_Others_Choice : Boolean := False) return Node_Id
4060      is
4061         Typ           : constant Entity_Id := Etype (Compon);
4062         Assoc         : Node_Id;
4063         Expr          : Node_Id := Empty;
4064         Selector_Name : Node_Id;
4065
4066      begin
4067         Is_Box_Present := False;
4068         Is_Box_Init_By_Default := False;
4069
4070         if No (From) then
4071            return Empty;
4072         end if;
4073
4074         Assoc := First (From);
4075         while Present (Assoc) loop
4076            Selector_Name := First (Choices (Assoc));
4077            while Present (Selector_Name) loop
4078               if Nkind (Selector_Name) = N_Others_Choice then
4079                  if Consider_Others_Choice and then No (Expr) then
4080
4081                     --  We need to duplicate the expression for each
4082                     --  successive component covered by the others choice.
4083                     --  This is redundant if the others_choice covers only
4084                     --  one component (small optimization possible???), but
4085                     --  indispensable otherwise, because each one must be
4086                     --  expanded individually to preserve side effects.
4087
4088                     --  Ada 2005 (AI-287): In case of default initialization
4089                     --  of components, we duplicate the corresponding default
4090                     --  expression (from the record type declaration). The
4091                     --  copy must carry the sloc of the association (not the
4092                     --  original expression) to prevent spurious elaboration
4093                     --  checks when the default includes function calls.
4094
4095                     if Box_Present (Assoc) then
4096                        Others_Box     := Others_Box + 1;
4097                        Is_Box_Present := True;
4098
4099                        if Expander_Active then
4100                           return
4101                             New_Copy_Tree_And_Copy_Dimensions
4102                               (Expression (Parent (Compon)),
4103                                New_Sloc => Sloc (Assoc));
4104                        else
4105                           return Expression (Parent (Compon));
4106                        end if;
4107
4108                     else
4109                        if Present (Others_Etype)
4110                          and then Base_Type (Others_Etype) /= Base_Type (Typ)
4111                        then
4112                           --  If the components are of an anonymous access
4113                           --  type they are distinct, but this is legal in
4114                           --  Ada 2012 as long as designated types match.
4115
4116                           if (Ekind (Typ) = E_Anonymous_Access_Type
4117                                or else Ekind (Typ) =
4118                                            E_Anonymous_Access_Subprogram_Type)
4119                             and then Designated_Type (Typ) =
4120                                            Designated_Type (Others_Etype)
4121                           then
4122                              null;
4123                           else
4124                              Error_Msg_N
4125                                ("components in OTHERS choice must have same "
4126                                 & "type", Selector_Name);
4127                           end if;
4128                        end if;
4129
4130                        Others_Etype := Typ;
4131
4132                        --  Copy the expression so that it is resolved
4133                        --  independently for each component, This is needed
4134                        --  for accessibility checks on components of anonymous
4135                        --  access types, even in compile_only mode.
4136
4137                        if not Inside_A_Generic then
4138                           return
4139                             New_Copy_Tree_And_Copy_Dimensions
4140                               (Expression (Assoc));
4141                        else
4142                           return Expression (Assoc);
4143                        end if;
4144                     end if;
4145                  end if;
4146
4147               elsif Chars (Compon) = Chars (Selector_Name) then
4148                  if No (Expr) then
4149
4150                     --  Ada 2005 (AI-231)
4151
4152                     if Ada_Version >= Ada_2005
4153                       and then Known_Null (Expression (Assoc))
4154                     then
4155                        Check_Can_Never_Be_Null (Compon, Expression (Assoc));
4156                     end if;
4157
4158                     --  We need to duplicate the expression when several
4159                     --  components are grouped together with a "|" choice.
4160                     --  For instance "filed1 | filed2 => Expr"
4161
4162                     --  Ada 2005 (AI-287)
4163
4164                     if Box_Present (Assoc) then
4165                        Is_Box_Present := True;
4166
4167                        --  Duplicate the default expression of the component
4168                        --  from the record type declaration, so a new copy
4169                        --  can be attached to the association.
4170
4171                        --  Note that we always copy the default expression,
4172                        --  even when the association has a single choice, in
4173                        --  order to create a proper association for the
4174                        --  expanded aggregate.
4175
4176                        --  Component may have no default, in which case the
4177                        --  expression is empty and the component is default-
4178                        --  initialized, but an association for the component
4179                        --  exists, and it is not covered by an others clause.
4180
4181                        --  Scalar and private types have no initialization
4182                        --  procedure, so they remain uninitialized. If the
4183                        --  target of the aggregate is a constant this
4184                        --  deserves a warning.
4185
4186                        if No (Expression (Parent (Compon)))
4187                          and then not Has_Non_Null_Base_Init_Proc (Typ)
4188                          and then not Has_Aspect (Typ, Aspect_Default_Value)
4189                          and then not Is_Concurrent_Type (Typ)
4190                          and then Nkind (Parent (N)) = N_Object_Declaration
4191                          and then Constant_Present (Parent (N))
4192                        then
4193                           Error_Msg_Node_2 := Typ;
4194                           Error_Msg_NE
4195                             ("component&? of type& is uninitialized",
4196                              Assoc, Selector_Name);
4197
4198                           --  An additional reminder if the component type
4199                           --  is a generic formal.
4200
4201                           if Is_Generic_Type (Base_Type (Typ)) then
4202                              Error_Msg_NE
4203                                ("\instance should provide actual type with "
4204                                 & "initialization for&", Assoc, Typ);
4205                           end if;
4206                        end if;
4207
4208                        return
4209                          New_Copy_Tree_And_Copy_Dimensions
4210                            (Expression (Parent (Compon)));
4211
4212                     else
4213                        if Present (Next (Selector_Name)) then
4214                           Expr := New_Copy_Tree_And_Copy_Dimensions
4215                                     (Expression (Assoc));
4216                        else
4217                           Expr := Expression (Assoc);
4218                        end if;
4219                     end if;
4220
4221                     Generate_Reference (Compon, Selector_Name, 'm');
4222
4223                  else
4224                     Error_Msg_NE
4225                       ("more than one value supplied for &",
4226                        Selector_Name, Compon);
4227
4228                  end if;
4229               end if;
4230
4231               Next (Selector_Name);
4232            end loop;
4233
4234            Next (Assoc);
4235         end loop;
4236
4237         return Expr;
4238      end Get_Value;
4239
4240      -----------------------------
4241      -- Propagate_Discriminants --
4242      -----------------------------
4243
4244      procedure Propagate_Discriminants
4245        (Aggr       : Node_Id;
4246         Assoc_List : List_Id)
4247      is
4248         Loc : constant Source_Ptr := Sloc (N);
4249
4250         procedure Process_Component (Comp : Entity_Id);
4251         --  Add one component with a box association to the inner aggregate,
4252         --  and recurse if component is itself composite.
4253
4254         -----------------------
4255         -- Process_Component --
4256         -----------------------
4257
4258         procedure Process_Component (Comp : Entity_Id) is
4259            T        : constant Entity_Id := Etype (Comp);
4260            New_Aggr : Node_Id;
4261
4262         begin
4263            if Is_Record_Type (T) and then Has_Discriminants (T) then
4264               New_Aggr := Make_Aggregate (Loc, No_List, New_List);
4265               Set_Etype (New_Aggr, T);
4266
4267               Add_Association
4268                 (Comp, New_Aggr, Component_Associations (Aggr));
4269
4270               --  Collect discriminant values and recurse
4271
4272               Add_Discriminant_Values (New_Aggr, Assoc_List);
4273               Propagate_Discriminants (New_Aggr, Assoc_List);
4274
4275               Build_Constrained_Itype
4276                 (New_Aggr, T, Component_Associations (New_Aggr));
4277            else
4278               Add_Association
4279                 (Comp, Empty, Component_Associations (Aggr),
4280                  Is_Box_Present => True);
4281            end if;
4282         end Process_Component;
4283
4284         --  Local variables
4285
4286         Aggr_Type  : constant Entity_Id := Base_Type (Etype (Aggr));
4287         Components : constant Elist_Id  := New_Elmt_List;
4288         Def_Node   : constant Node_Id   :=
4289                       Type_Definition (Declaration_Node (Aggr_Type));
4290
4291         Comp      : Node_Id;
4292         Comp_Elmt : Elmt_Id;
4293         Errors    : Boolean;
4294
4295      --  Start of processing for Propagate_Discriminants
4296
4297      begin
4298         --  The component type may be a variant type. Collect the components
4299         --  that are ruled by the known values of the discriminants. Their
4300         --  values have already been inserted into the component list of the
4301         --  current aggregate.
4302
4303         if Nkind (Def_Node) = N_Record_Definition
4304           and then Present (Component_List (Def_Node))
4305           and then Present (Variant_Part (Component_List (Def_Node)))
4306         then
4307            Gather_Components (Aggr_Type,
4308              Component_List (Def_Node),
4309              Governed_By   => Component_Associations (Aggr),
4310              Into          => Components,
4311              Report_Errors => Errors);
4312
4313            Comp_Elmt := First_Elmt (Components);
4314            while Present (Comp_Elmt) loop
4315               if Ekind (Node (Comp_Elmt)) /= E_Discriminant then
4316                  Process_Component (Node (Comp_Elmt));
4317               end if;
4318
4319               Next_Elmt (Comp_Elmt);
4320            end loop;
4321
4322            --  No variant part, iterate over all components
4323
4324         else
4325            Comp := First_Component (Etype (Aggr));
4326            while Present (Comp) loop
4327               Process_Component (Comp);
4328               Next_Component (Comp);
4329            end loop;
4330         end if;
4331      end Propagate_Discriminants;
4332
4333      -----------------------
4334      -- Resolve_Aggr_Expr --
4335      -----------------------
4336
4337      procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id) is
4338         function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
4339         --  If the expression is an aggregate (possibly qualified) then its
4340         --  expansion is delayed until the enclosing aggregate is expanded
4341         --  into assignments. In that case, do not generate checks on the
4342         --  expression, because they will be generated later, and will other-
4343         --  wise force a copy (to remove side effects) that would leave a
4344         --  dynamic-sized aggregate in the code, something that gigi cannot
4345         --  handle.
4346
4347         ---------------------------
4348         -- Has_Expansion_Delayed --
4349         ---------------------------
4350
4351         function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
4352         begin
4353            return
4354               (Nkind (Expr) in N_Aggregate | N_Extension_Aggregate
4355                 and then Present (Etype (Expr))
4356                 and then Is_Record_Type (Etype (Expr))
4357                 and then Expansion_Delayed (Expr))
4358              or else
4359                (Nkind (Expr) = N_Qualified_Expression
4360                  and then Has_Expansion_Delayed (Expression (Expr)));
4361         end Has_Expansion_Delayed;
4362
4363         --  Local variables
4364
4365         Expr_Type : Entity_Id := Empty;
4366         New_C     : Entity_Id := Component;
4367         New_Expr  : Node_Id;
4368
4369         Relocate : Boolean;
4370         --  Set to True if the resolved Expr node needs to be relocated when
4371         --  attached to the newly created association list. This node need not
4372         --  be relocated if its parent pointer is not set. In fact in this
4373         --  case Expr is the output of a New_Copy_Tree call. If Relocate is
4374         --  True then we have analyzed the expression node in the original
4375         --  aggregate and hence it needs to be relocated when moved over to
4376         --  the new association list.
4377
4378      --  Start of processing for Resolve_Aggr_Expr
4379
4380      begin
4381         --  If the type of the component is elementary or the type of the
4382         --  aggregate does not contain discriminants, use the type of the
4383         --  component to resolve Expr.
4384
4385         if Is_Elementary_Type (Etype (Component))
4386           or else not Has_Discriminants (Etype (N))
4387         then
4388            Expr_Type := Etype (Component);
4389
4390         --  Otherwise we have to pick up the new type of the component from
4391         --  the new constrained subtype of the aggregate. In fact components
4392         --  which are of a composite type might be constrained by a
4393         --  discriminant, and we want to resolve Expr against the subtype were
4394         --  all discriminant occurrences are replaced with their actual value.
4395
4396         else
4397            New_C := First_Component (Etype (N));
4398            while Present (New_C) loop
4399               if Chars (New_C) = Chars (Component) then
4400                  Expr_Type := Etype (New_C);
4401                  exit;
4402               end if;
4403
4404               Next_Component (New_C);
4405            end loop;
4406
4407            pragma Assert (Present (Expr_Type));
4408
4409            --  For each range in an array type where a discriminant has been
4410            --  replaced with the constraint, check that this range is within
4411            --  the range of the base type. This checks is done in the init
4412            --  proc for regular objects, but has to be done here for
4413            --  aggregates since no init proc is called for them.
4414
4415            if Is_Array_Type (Expr_Type) then
4416               declare
4417                  Index : Node_Id;
4418                  --  Range of the current constrained index in the array
4419
4420                  Orig_Index : Node_Id := First_Index (Etype (Component));
4421                  --  Range corresponding to the range Index above in the
4422                  --  original unconstrained record type. The bounds of this
4423                  --  range may be governed by discriminants.
4424
4425                  Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
4426                  --  Range corresponding to the range Index above for the
4427                  --  unconstrained array type. This range is needed to apply
4428                  --  range checks.
4429
4430               begin
4431                  Index := First_Index (Expr_Type);
4432                  while Present (Index) loop
4433                     if Depends_On_Discriminant (Orig_Index) then
4434                        Apply_Range_Check (Index, Etype (Unconstr_Index));
4435                     end if;
4436
4437                     Next_Index (Index);
4438                     Next_Index (Orig_Index);
4439                     Next_Index (Unconstr_Index);
4440                  end loop;
4441               end;
4442            end if;
4443         end if;
4444
4445         --  If the Parent pointer of Expr is not set, Expr is an expression
4446         --  duplicated by New_Tree_Copy (this happens for record aggregates
4447         --  that look like (Field1 | Filed2 => Expr) or (others => Expr)).
4448         --  Such a duplicated expression must be attached to the tree
4449         --  before analysis and resolution to enforce the rule that a tree
4450         --  fragment should never be analyzed or resolved unless it is
4451         --  attached to the current compilation unit.
4452
4453         if No (Parent (Expr)) then
4454            Set_Parent (Expr, N);
4455            Relocate := False;
4456         else
4457            Relocate := True;
4458         end if;
4459
4460         Analyze_And_Resolve (Expr, Expr_Type);
4461         Check_Expr_OK_In_Limited_Aggregate (Expr);
4462         Check_Non_Static_Context (Expr);
4463         Check_Unset_Reference (Expr);
4464
4465         --  Check wrong use of class-wide types
4466
4467         if Is_Class_Wide_Type (Etype (Expr)) then
4468            Error_Msg_N ("dynamically tagged expression not allowed", Expr);
4469         end if;
4470
4471         if not Has_Expansion_Delayed (Expr) then
4472            Aggregate_Constraint_Checks (Expr, Expr_Type);
4473         end if;
4474
4475         --  If an aggregate component has a type with predicates, an explicit
4476         --  predicate check must be applied, as for an assignment statement,
4477         --  because the aggregate might not be expanded into individual
4478         --  component assignments.
4479
4480         if Has_Predicates (Expr_Type)
4481           and then Analyzed (Expr)
4482         then
4483            Apply_Predicate_Check (Expr, Expr_Type);
4484         end if;
4485
4486         if Raises_Constraint_Error (Expr) then
4487            Set_Raises_Constraint_Error (N);
4488         end if;
4489
4490         --  If the expression has been marked as requiring a range check, then
4491         --  generate it here. It's a bit odd to be generating such checks in
4492         --  the analyzer, but harmless since Generate_Range_Check does nothing
4493         --  (other than making sure Do_Range_Check is set) if the expander is
4494         --  not active.
4495
4496         if Do_Range_Check (Expr) then
4497            Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
4498         end if;
4499
4500         --  Add association Component => Expr if the caller requests it
4501
4502         if Relocate then
4503            New_Expr := Relocate_Node (Expr);
4504
4505            --  Since New_Expr is not gonna be analyzed later on, we need to
4506            --  propagate here the dimensions form Expr to New_Expr.
4507
4508            Copy_Dimensions (Expr, New_Expr);
4509
4510         else
4511            New_Expr := Expr;
4512         end if;
4513
4514         Add_Association (New_C, New_Expr, New_Assoc_List);
4515      end Resolve_Aggr_Expr;
4516
4517      -------------------
4518      -- Rewrite_Range --
4519      -------------------
4520
4521      procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id) is
4522         procedure Rewrite_Bound
4523           (Bound     : Node_Id;
4524            Disc      : Entity_Id;
4525            Expr_Disc : Node_Id);
4526         --  Rewrite a bound of the range Bound, when it is equal to the
4527         --  non-stored discriminant Disc, into the stored discriminant
4528         --  value Expr_Disc.
4529
4530         -------------------
4531         -- Rewrite_Bound --
4532         -------------------
4533
4534         procedure Rewrite_Bound
4535           (Bound     : Node_Id;
4536            Disc      : Entity_Id;
4537            Expr_Disc : Node_Id)
4538         is
4539         begin
4540            if Nkind (Bound) /= N_Identifier then
4541               return;
4542            end if;
4543
4544            --  We expect either the discriminant or the discriminal
4545
4546            if Entity (Bound) = Disc
4547              or else (Ekind (Entity (Bound)) = E_In_Parameter
4548                        and then Discriminal_Link (Entity (Bound)) = Disc)
4549            then
4550               Rewrite (Bound, New_Copy_Tree (Expr_Disc));
4551            end if;
4552         end Rewrite_Bound;
4553
4554         --  Local variables
4555
4556         Low, High : Node_Id;
4557         Disc      : Entity_Id;
4558         Expr_Disc : Elmt_Id;
4559
4560      --  Start of processing for Rewrite_Range
4561
4562      begin
4563         if Has_Discriminants (Root_Type) and then Nkind (Rge) = N_Range then
4564            Low := Low_Bound (Rge);
4565            High := High_Bound (Rge);
4566
4567            Disc      := First_Discriminant (Root_Type);
4568            Expr_Disc := First_Elmt (Stored_Constraint (Etype (N)));
4569            while Present (Disc) loop
4570               Rewrite_Bound (Low, Disc, Node (Expr_Disc));
4571               Rewrite_Bound (High, Disc, Node (Expr_Disc));
4572               Next_Discriminant (Disc);
4573               Next_Elmt (Expr_Disc);
4574            end loop;
4575         end if;
4576      end Rewrite_Range;
4577
4578      --  Local variables
4579
4580      Components : constant Elist_Id := New_Elmt_List;
4581      --  Components is the list of the record components whose value must be
4582      --  provided in the aggregate. This list does include discriminants.
4583
4584      Component       : Entity_Id;
4585      Component_Elmt  : Elmt_Id;
4586      Expr            : Node_Id;
4587      Positional_Expr : Node_Id;
4588
4589   --  Start of processing for Resolve_Record_Aggregate
4590
4591   begin
4592      --  A record aggregate is restricted in SPARK:
4593
4594      --    Each named association can have only a single choice.
4595      --    OTHERS cannot be used.
4596      --    Positional and named associations cannot be mixed.
4597
4598      if Present (Component_Associations (N))
4599        and then Present (First (Component_Associations (N)))
4600      then
4601         declare
4602            Assoc : Node_Id;
4603
4604         begin
4605            Assoc := First (Component_Associations (N));
4606            while Present (Assoc) loop
4607               if Nkind (Assoc) = N_Iterated_Component_Association then
4608                  Error_Msg_N
4609                    ("iterated component association can only appear in an "
4610                     & "array aggregate", N);
4611                  raise Unrecoverable_Error;
4612               end if;
4613
4614               Next (Assoc);
4615            end loop;
4616         end;
4617      end if;
4618
4619      --  We may end up calling Duplicate_Subexpr on expressions that are
4620      --  attached to New_Assoc_List. For this reason we need to attach it
4621      --  to the tree by setting its parent pointer to N. This parent point
4622      --  will change in STEP 8 below.
4623
4624      Set_Parent (New_Assoc_List, N);
4625
4626      --  STEP 1: abstract type and null record verification
4627
4628      if Is_Abstract_Type (Typ) then
4629         Error_Msg_N ("type of aggregate cannot be abstract",  N);
4630      end if;
4631
4632      if No (First_Entity (Typ)) and then Null_Record_Present (N) then
4633         Set_Etype (N, Typ);
4634         return;
4635
4636      elsif Present (First_Entity (Typ))
4637        and then Null_Record_Present (N)
4638        and then not Is_Tagged_Type (Typ)
4639      then
4640         Error_Msg_N ("record aggregate cannot be null", N);
4641         return;
4642
4643      --  If the type has no components, then the aggregate should either
4644      --  have "null record", or in Ada 2005 it could instead have a single
4645      --  component association given by "others => <>". For Ada 95 we flag an
4646      --  error at this point, but for Ada 2005 we proceed with checking the
4647      --  associations below, which will catch the case where it's not an
4648      --  aggregate with "others => <>". Note that the legality of a <>
4649      --  aggregate for a null record type was established by AI05-016.
4650
4651      elsif No (First_Entity (Typ))
4652         and then Ada_Version < Ada_2005
4653      then
4654         Error_Msg_N ("record aggregate must be null", N);
4655         return;
4656      end if;
4657
4658      --  STEP 2: Verify aggregate structure
4659
4660      Step_2 : declare
4661         Assoc         : Node_Id;
4662         Bad_Aggregate : Boolean := False;
4663         Selector_Name : Node_Id;
4664
4665      begin
4666         if Present (Component_Associations (N)) then
4667            Assoc := First (Component_Associations (N));
4668         else
4669            Assoc := Empty;
4670         end if;
4671
4672         while Present (Assoc) loop
4673            Selector_Name := First (Choices (Assoc));
4674            while Present (Selector_Name) loop
4675               if Nkind (Selector_Name) = N_Identifier then
4676                  null;
4677
4678               elsif Nkind (Selector_Name) = N_Others_Choice then
4679                  if Selector_Name /= First (Choices (Assoc))
4680                    or else Present (Next (Selector_Name))
4681                  then
4682                     Error_Msg_N
4683                       ("OTHERS must appear alone in a choice list",
4684                        Selector_Name);
4685                     return;
4686
4687                  elsif Present (Next (Assoc)) then
4688                     Error_Msg_N
4689                       ("OTHERS must appear last in an aggregate",
4690                        Selector_Name);
4691                     return;
4692
4693                  --  (Ada 2005): If this is an association with a box,
4694                  --  indicate that the association need not represent
4695                  --  any component.
4696
4697                  elsif Box_Present (Assoc) then
4698                     Others_Box := 1;
4699                     Box_Node   := Assoc;
4700                  end if;
4701
4702               else
4703                  Error_Msg_N
4704                    ("selector name should be identifier or OTHERS",
4705                     Selector_Name);
4706                  Bad_Aggregate := True;
4707               end if;
4708
4709               Next (Selector_Name);
4710            end loop;
4711
4712            Next (Assoc);
4713         end loop;
4714
4715         if Bad_Aggregate then
4716            return;
4717         end if;
4718      end Step_2;
4719
4720      --  STEP 3: Find discriminant Values
4721
4722      Step_3 : declare
4723         Discrim               : Entity_Id;
4724         Missing_Discriminants : Boolean := False;
4725
4726      begin
4727         if Present (Expressions (N)) then
4728            Positional_Expr := First (Expressions (N));
4729         else
4730            Positional_Expr := Empty;
4731         end if;
4732
4733         --  AI05-0115: if the ancestor part is a subtype mark, the ancestor
4734         --  must not have unknown discriminants.
4735         --  ??? We are not checking any subtype mark here and this code is not
4736         --  exercised by any test, so it's likely wrong (in particular
4737         --  we should not use Root_Type here but the subtype mark, if any),
4738         --  and possibly not needed.
4739
4740         if Is_Derived_Type (Typ)
4741           and then Has_Unknown_Discriminants (Root_Type (Typ))
4742           and then Nkind (N) /= N_Extension_Aggregate
4743         then
4744            Error_Msg_NE
4745              ("aggregate not available for type& whose ancestor "
4746               & "has unknown discriminants ", N, Typ);
4747         end if;
4748
4749         if Has_Unknown_Discriminants (Typ)
4750           and then Present (Underlying_Record_View (Typ))
4751         then
4752            Discrim := First_Discriminant (Underlying_Record_View (Typ));
4753         elsif Has_Discriminants (Typ) then
4754            Discrim := First_Discriminant (Typ);
4755         else
4756            Discrim := Empty;
4757         end if;
4758
4759         --  First find the discriminant values in the positional components
4760
4761         while Present (Discrim) and then Present (Positional_Expr) loop
4762            if Discriminant_Present (Discrim) then
4763               Resolve_Aggr_Expr (Positional_Expr, Discrim);
4764
4765               --  Ada 2005 (AI-231)
4766
4767               if Ada_Version >= Ada_2005
4768                 and then Known_Null (Positional_Expr)
4769               then
4770                  Check_Can_Never_Be_Null (Discrim, Positional_Expr);
4771               end if;
4772
4773               Next (Positional_Expr);
4774            end if;
4775
4776            if Present (Get_Value (Discrim, Component_Associations (N))) then
4777               Error_Msg_NE
4778                 ("more than one value supplied for discriminant&",
4779                  N, Discrim);
4780            end if;
4781
4782            Next_Discriminant (Discrim);
4783         end loop;
4784
4785         --  Find remaining discriminant values if any among named components
4786
4787         while Present (Discrim) loop
4788            Expr := Get_Value (Discrim, Component_Associations (N), True);
4789
4790            if not Discriminant_Present (Discrim) then
4791               if Present (Expr) then
4792                  Error_Msg_NE
4793                    ("more than one value supplied for discriminant &",
4794                     N, Discrim);
4795               end if;
4796
4797            elsif No (Expr) then
4798               Error_Msg_NE
4799                 ("no value supplied for discriminant &", N, Discrim);
4800               Missing_Discriminants := True;
4801
4802            else
4803               Resolve_Aggr_Expr (Expr, Discrim);
4804            end if;
4805
4806            Next_Discriminant (Discrim);
4807         end loop;
4808
4809         if Missing_Discriminants then
4810            return;
4811         end if;
4812
4813         --  At this point and until the beginning of STEP 6, New_Assoc_List
4814         --  contains only the discriminants and their values.
4815
4816      end Step_3;
4817
4818      --  STEP 4: Set the Etype of the record aggregate
4819
4820      if Has_Discriminants (Typ)
4821        or else (Has_Unknown_Discriminants (Typ)
4822                  and then Present (Underlying_Record_View (Typ)))
4823      then
4824         Build_Constrained_Itype (N, Typ, New_Assoc_List);
4825      else
4826         Set_Etype (N, Typ);
4827      end if;
4828
4829      --  STEP 5: Get remaining components according to discriminant values
4830
4831      Step_5 : declare
4832         Dnode           : Node_Id;
4833         Errors_Found    : Boolean := False;
4834         Record_Def      : Node_Id;
4835         Parent_Typ      : Entity_Id;
4836         Parent_Typ_List : Elist_Id;
4837         Parent_Elmt     : Elmt_Id;
4838         Root_Typ        : Entity_Id;
4839
4840      begin
4841         if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
4842            Parent_Typ_List := New_Elmt_List;
4843
4844            --  If this is an extension aggregate, the component list must
4845            --  include all components that are not in the given ancestor type.
4846            --  Otherwise, the component list must include components of all
4847            --  ancestors, starting with the root.
4848
4849            if Nkind (N) = N_Extension_Aggregate then
4850               Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
4851
4852            else
4853               --  AI05-0115: check legality of aggregate for type with a
4854               --  private ancestor.
4855
4856               Root_Typ := Root_Type (Typ);
4857               if Has_Private_Ancestor (Typ) then
4858                  declare
4859                     Ancestor      : constant Entity_Id :=
4860                                       Find_Private_Ancestor (Typ);
4861                     Ancestor_Unit : constant Entity_Id :=
4862                                       Cunit_Entity
4863                                         (Get_Source_Unit (Ancestor));
4864                     Parent_Unit   : constant Entity_Id :=
4865                                       Cunit_Entity (Get_Source_Unit
4866                                         (Base_Type (Etype (Ancestor))));
4867                  begin
4868                     --  Check whether we are in a scope that has full view
4869                     --  over the private ancestor and its parent. This can
4870                     --  only happen if the derivation takes place in a child
4871                     --  unit of the unit that declares the parent, and we are
4872                     --  in the private part or body of that child unit, else
4873                     --  the aggregate is illegal.
4874
4875                     if Is_Child_Unit (Ancestor_Unit)
4876                       and then Scope (Ancestor_Unit) = Parent_Unit
4877                       and then In_Open_Scopes (Scope (Ancestor))
4878                       and then
4879                        (In_Private_Part (Scope (Ancestor))
4880                          or else In_Package_Body (Scope (Ancestor)))
4881                     then
4882                        null;
4883
4884                     else
4885                        Error_Msg_NE
4886                          ("type of aggregate has private ancestor&!",
4887                           N, Root_Typ);
4888                        Error_Msg_N ("must use extension aggregate!", N);
4889                        return;
4890                     end if;
4891                  end;
4892               end if;
4893
4894               Dnode := Declaration_Node (Base_Type (Root_Typ));
4895
4896               --  If we don't get a full declaration, then we have some error
4897               --  which will get signalled later so skip this part. Otherwise
4898               --  gather components of root that apply to the aggregate type.
4899               --  We use the base type in case there is an applicable stored
4900               --  constraint that renames the discriminants of the root.
4901
4902               if Nkind (Dnode) = N_Full_Type_Declaration then
4903                  Record_Def := Type_Definition (Dnode);
4904                  Gather_Components
4905                    (Base_Type (Typ),
4906                     Component_List (Record_Def),
4907                     Governed_By   => New_Assoc_List,
4908                     Into          => Components,
4909                     Report_Errors => Errors_Found);
4910
4911                  if Errors_Found then
4912                     Error_Msg_N
4913                       ("discriminant controlling variant part is not static",
4914                        N);
4915                     return;
4916                  end if;
4917               end if;
4918            end if;
4919
4920            Parent_Typ := Base_Type (Typ);
4921            while Parent_Typ /= Root_Typ loop
4922               Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
4923               Parent_Typ := Etype (Parent_Typ);
4924
4925               if Nkind (Parent (Base_Type (Parent_Typ))) =
4926                                        N_Private_Type_Declaration
4927                 or else Nkind (Parent (Base_Type (Parent_Typ))) =
4928                                        N_Private_Extension_Declaration
4929               then
4930                  if Nkind (N) /= N_Extension_Aggregate then
4931                     Error_Msg_NE
4932                       ("type of aggregate has private ancestor&!",
4933                        N, Parent_Typ);
4934                     Error_Msg_N  ("must use extension aggregate!", N);
4935                     return;
4936
4937                  elsif Parent_Typ /= Root_Typ then
4938                     Error_Msg_NE
4939                       ("ancestor part of aggregate must be private type&",
4940                         Ancestor_Part (N), Parent_Typ);
4941                     return;
4942                  end if;
4943
4944               --  The current view of ancestor part may be a private type,
4945               --  while the context type is always non-private.
4946
4947               elsif Is_Private_Type (Root_Typ)
4948                 and then Present (Full_View (Root_Typ))
4949                 and then Nkind (N) = N_Extension_Aggregate
4950               then
4951                  exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
4952               end if;
4953            end loop;
4954
4955            --  Now collect components from all other ancestors, beginning
4956            --  with the current type. If the type has unknown discriminants
4957            --  use the component list of the Underlying_Record_View, which
4958            --  needs to be used for the subsequent expansion of the aggregate
4959            --  into assignments.
4960
4961            Parent_Elmt := First_Elmt (Parent_Typ_List);
4962            while Present (Parent_Elmt) loop
4963               Parent_Typ := Node (Parent_Elmt);
4964
4965               if Has_Unknown_Discriminants (Parent_Typ)
4966                 and then Present (Underlying_Record_View (Typ))
4967               then
4968                  Parent_Typ := Underlying_Record_View (Parent_Typ);
4969               end if;
4970
4971               Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
4972               Gather_Components (Empty,
4973                 Component_List (Record_Extension_Part (Record_Def)),
4974                 Governed_By   => New_Assoc_List,
4975                 Into          => Components,
4976                 Report_Errors => Errors_Found);
4977
4978               Next_Elmt (Parent_Elmt);
4979            end loop;
4980
4981         --  Typ is not a derived tagged type
4982
4983         else
4984            Record_Def := Type_Definition (Parent (Base_Type (Typ)));
4985
4986            if Null_Present (Record_Def) then
4987               null;
4988
4989            elsif not Has_Unknown_Discriminants (Typ) then
4990               Gather_Components
4991                 (Base_Type (Typ),
4992                  Component_List (Record_Def),
4993                  Governed_By   => New_Assoc_List,
4994                  Into          => Components,
4995                  Report_Errors => Errors_Found);
4996
4997            else
4998               Gather_Components
4999                 (Base_Type (Underlying_Record_View (Typ)),
5000                  Component_List (Record_Def),
5001                  Governed_By   => New_Assoc_List,
5002                  Into          => Components,
5003                  Report_Errors => Errors_Found);
5004            end if;
5005         end if;
5006
5007         if Errors_Found then
5008            return;
5009         end if;
5010      end Step_5;
5011
5012      --  STEP 6: Find component Values
5013
5014      Component := Empty;
5015      Component_Elmt := First_Elmt (Components);
5016
5017      --  First scan the remaining positional associations in the aggregate.
5018      --  Remember that at this point Positional_Expr contains the current
5019      --  positional association if any is left after looking for discriminant
5020      --  values in step 3.
5021
5022      while Present (Positional_Expr) and then Present (Component_Elmt) loop
5023         Component := Node (Component_Elmt);
5024         Resolve_Aggr_Expr (Positional_Expr, Component);
5025
5026         --  Ada 2005 (AI-231)
5027
5028         if Ada_Version >= Ada_2005 and then Known_Null (Positional_Expr) then
5029            Check_Can_Never_Be_Null (Component, Positional_Expr);
5030         end if;
5031
5032         if Present (Get_Value (Component, Component_Associations (N))) then
5033            Error_Msg_NE
5034              ("more than one value supplied for Component &", N, Component);
5035         end if;
5036
5037         Next (Positional_Expr);
5038         Next_Elmt (Component_Elmt);
5039      end loop;
5040
5041      if Present (Positional_Expr) then
5042         Error_Msg_N
5043           ("too many components for record aggregate", Positional_Expr);
5044      end if;
5045
5046      --  Now scan for the named arguments of the aggregate
5047
5048      while Present (Component_Elmt) loop
5049         Component := Node (Component_Elmt);
5050         Expr := Get_Value (Component, Component_Associations (N), True);
5051
5052         --  Note: The previous call to Get_Value sets the value of the
5053         --  variable Is_Box_Present.
5054
5055         --  Ada 2005 (AI-287): Handle components with default initialization.
5056         --  Note: This feature was originally added to Ada 2005 for limited
5057         --  but it was finally allowed with any type.
5058
5059         if Is_Box_Present then
5060            Check_Box_Component : declare
5061               Ctyp : constant Entity_Id := Etype (Component);
5062
5063            begin
5064               --  Initially assume that the box is for a default-initialized
5065               --  component and reset to False in cases where that's not true.
5066
5067               Is_Box_Init_By_Default := True;
5068
5069               --  If there is a default expression for the aggregate, copy
5070               --  it into a new association. This copy must modify the scopes
5071               --  of internal types that may be attached to the expression
5072               --  (e.g. index subtypes of arrays) because in general the type
5073               --  declaration and the aggregate appear in different scopes,
5074               --  and the backend requires the scope of the type to match the
5075               --  point at which it is elaborated.
5076
5077               --  If the component has an initialization procedure (IP) we
5078               --  pass the component to the expander, which will generate
5079               --  the call to such IP.
5080
5081               --  If the component has discriminants, their values must
5082               --  be taken from their subtype. This is indispensable for
5083               --  constraints that are given by the current instance of an
5084               --  enclosing type, to allow the expansion of the aggregate to
5085               --  replace the reference to the current instance by the target
5086               --  object of the aggregate.
5087
5088               if Present (Parent (Component))
5089                 and then Nkind (Parent (Component)) = N_Component_Declaration
5090                 and then Present (Expression (Parent (Component)))
5091               then
5092                  --  If component declaration has an initialization expression
5093                  --  then this is not a case of default initialization.
5094
5095                  Is_Box_Init_By_Default := False;
5096
5097                  Expr :=
5098                    New_Copy_Tree_And_Copy_Dimensions
5099                      (Expression (Parent (Component)),
5100                       New_Scope => Current_Scope,
5101                       New_Sloc  => Sloc (N));
5102
5103                  --  As the type of the copied default expression may refer
5104                  --  to discriminants of the record type declaration, these
5105                  --  non-stored discriminants need to be rewritten into stored
5106                  --  discriminant values for the aggregate. This is required
5107                  --  in GNATprove mode, and is adopted in all modes to avoid
5108                  --  special-casing GNATprove mode.
5109
5110                  if Is_Array_Type (Etype (Expr)) then
5111                     declare
5112                        Rec_Typ : constant Entity_Id := Scope (Component);
5113                        --  Root record type whose discriminants may be used as
5114                        --  bounds in range nodes.
5115
5116                        Assoc  : Node_Id;
5117                        Choice : Node_Id;
5118                        Index  : Node_Id;
5119
5120                     begin
5121                        --  Rewrite the range nodes occurring in the indexes
5122                        --  and their types.
5123
5124                        Index := First_Index (Etype (Expr));
5125                        while Present (Index) loop
5126                           Rewrite_Range (Rec_Typ, Index);
5127                           Rewrite_Range
5128                             (Rec_Typ, Scalar_Range (Etype (Index)));
5129
5130                           Next_Index (Index);
5131                        end loop;
5132
5133                        --  Rewrite the range nodes occurring as aggregate
5134                        --  bounds and component associations.
5135
5136                        if Nkind (Expr) = N_Aggregate then
5137                           if Present (Aggregate_Bounds (Expr)) then
5138                              Rewrite_Range (Rec_Typ, Aggregate_Bounds (Expr));
5139                           end if;
5140
5141                           if Present (Component_Associations (Expr)) then
5142                              Assoc := First (Component_Associations (Expr));
5143                              while Present (Assoc) loop
5144                                 Choice := First (Choices (Assoc));
5145                                 while Present (Choice) loop
5146                                    Rewrite_Range (Rec_Typ, Choice);
5147
5148                                    Next (Choice);
5149                                 end loop;
5150
5151                                 Next (Assoc);
5152                              end loop;
5153                           end if;
5154                        end if;
5155                     end;
5156                  end if;
5157
5158                  Add_Association
5159                    (Component  => Component,
5160                     Expr       => Expr,
5161                     Assoc_List => New_Assoc_List);
5162                  Set_Has_Self_Reference (N);
5163
5164               --  A box-defaulted access component gets the value null. Also
5165               --  included are components of private types whose underlying
5166               --  type is an access type. In either case set the type of the
5167               --  literal, for subsequent use in semantic checks.
5168
5169               elsif Present (Underlying_Type (Ctyp))
5170                 and then Is_Access_Type (Underlying_Type (Ctyp))
5171               then
5172                  --  If the component's type is private with an access type as
5173                  --  its underlying type then we have to create an unchecked
5174                  --  conversion to satisfy type checking.
5175
5176                  if Is_Private_Type (Ctyp) then
5177                     declare
5178                        Qual_Null : constant Node_Id :=
5179                                      Make_Qualified_Expression (Sloc (N),
5180                                        Subtype_Mark =>
5181                                          New_Occurrence_Of
5182                                            (Underlying_Type (Ctyp), Sloc (N)),
5183                                        Expression   => Make_Null (Sloc (N)));
5184
5185                        Convert_Null : constant Node_Id :=
5186                                         Unchecked_Convert_To
5187                                           (Ctyp, Qual_Null);
5188
5189                     begin
5190                        Analyze_And_Resolve (Convert_Null, Ctyp);
5191                        Add_Association
5192                          (Component  => Component,
5193                           Expr       => Convert_Null,
5194                           Assoc_List => New_Assoc_List);
5195                     end;
5196
5197                  --  Otherwise the component type is non-private
5198
5199                  else
5200                     Expr := Make_Null (Sloc (N));
5201                     Set_Etype (Expr, Ctyp);
5202
5203                     Add_Association
5204                       (Component  => Component,
5205                        Expr       => Expr,
5206                        Assoc_List => New_Assoc_List);
5207                  end if;
5208
5209               --  Ada 2012: If component is scalar with default value, use it
5210               --  by converting it to Ctyp, so that subtype constraints are
5211               --  checked.
5212
5213               elsif Is_Scalar_Type (Ctyp)
5214                 and then Has_Default_Aspect (Ctyp)
5215               then
5216                  declare
5217                     Conv : constant Node_Id :=
5218                       Convert_To
5219                         (Typ  => Ctyp,
5220                          Expr =>
5221                            New_Copy_Tree
5222                              (Default_Aspect_Value
5223                                 (First_Subtype (Underlying_Type (Ctyp)))));
5224
5225                  begin
5226                     Analyze_And_Resolve (Conv, Ctyp);
5227                     Add_Association
5228                       (Component  => Component,
5229                        Expr       => Conv,
5230                        Assoc_List => New_Assoc_List);
5231                  end;
5232
5233               elsif Has_Non_Null_Base_Init_Proc (Ctyp)
5234                 or else not Expander_Active
5235               then
5236                  if Is_Record_Type (Ctyp)
5237                    and then Has_Discriminants (Ctyp)
5238                    and then not Is_Private_Type (Ctyp)
5239                  then
5240                     --  We build a partially initialized aggregate with the
5241                     --  values of the discriminants and box initialization
5242                     --  for the rest, if other components are present.
5243
5244                     --  The type of the aggregate is the known subtype of
5245                     --  the component. The capture of discriminants must be
5246                     --  recursive because subcomponents may be constrained
5247                     --  (transitively) by discriminants of enclosing types.
5248                     --  For a private type with discriminants, a call to the
5249                     --  initialization procedure will be generated, and no
5250                     --  subaggregate is needed.
5251
5252                     Capture_Discriminants : declare
5253                        Loc  : constant Source_Ptr := Sloc (N);
5254                        Expr : Node_Id;
5255
5256                     begin
5257                        Expr := Make_Aggregate (Loc, No_List, New_List);
5258                        Set_Etype (Expr, Ctyp);
5259
5260                        --  If the enclosing type has discriminants, they have
5261                        --  been collected in the aggregate earlier, and they
5262                        --  may appear as constraints of subcomponents.
5263
5264                        --  Similarly if this component has discriminants, they
5265                        --  might in turn be propagated to their components.
5266
5267                        if Has_Discriminants (Typ) then
5268                           Add_Discriminant_Values (Expr, New_Assoc_List);
5269                           Propagate_Discriminants (Expr, New_Assoc_List);
5270
5271                        elsif Has_Discriminants (Ctyp) then
5272                           Add_Discriminant_Values
5273                             (Expr, Component_Associations (Expr));
5274                           Propagate_Discriminants
5275                             (Expr, Component_Associations (Expr));
5276
5277                           Build_Constrained_Itype
5278                             (Expr, Ctyp, Component_Associations (Expr));
5279
5280                        else
5281                           declare
5282                              Comp : Entity_Id;
5283
5284                           begin
5285                              --  If the type has additional components, create
5286                              --  an OTHERS box association for them.
5287
5288                              Comp := First_Component (Ctyp);
5289                              while Present (Comp) loop
5290                                 if Ekind (Comp) = E_Component then
5291                                    if not Is_Record_Type (Etype (Comp)) then
5292                                       Append_To
5293                                         (Component_Associations (Expr),
5294                                          Make_Component_Association (Loc,
5295                                            Choices     =>
5296                                              New_List (
5297                                                Make_Others_Choice (Loc)),
5298                                            Expression  => Empty,
5299                                            Box_Present => True));
5300                                    end if;
5301
5302                                    exit;
5303                                 end if;
5304
5305                                 Next_Component (Comp);
5306                              end loop;
5307                           end;
5308                        end if;
5309
5310                        Add_Association
5311                          (Component  => Component,
5312                           Expr       => Expr,
5313                           Assoc_List => New_Assoc_List);
5314                     end Capture_Discriminants;
5315
5316                  --  Otherwise the component type is not a record, or it has
5317                  --  not discriminants, or it is private.
5318
5319                  else
5320                     Add_Association
5321                       (Component      => Component,
5322                        Expr           => Empty,
5323                        Assoc_List     => New_Assoc_List,
5324                        Is_Box_Present => True);
5325                  end if;
5326
5327               --  Otherwise we only need to resolve the expression if the
5328               --  component has partially initialized values (required to
5329               --  expand the corresponding assignments and run-time checks).
5330
5331               elsif Present (Expr)
5332                 and then Is_Partially_Initialized_Type (Ctyp)
5333               then
5334                  Resolve_Aggr_Expr (Expr, Component);
5335               end if;
5336            end Check_Box_Component;
5337
5338         elsif No (Expr) then
5339
5340            --  Ignore hidden components associated with the position of the
5341            --  interface tags: these are initialized dynamically.
5342
5343            if not Present (Related_Type (Component)) then
5344               Error_Msg_NE
5345                 ("no value supplied for component &!", N, Component);
5346            end if;
5347
5348         else
5349            Resolve_Aggr_Expr (Expr, Component);
5350         end if;
5351
5352         Next_Elmt (Component_Elmt);
5353      end loop;
5354
5355      --  STEP 7: check for invalid components + check type in choice list
5356
5357      Step_7 : declare
5358         Assoc     : Node_Id;
5359         New_Assoc : Node_Id;
5360
5361         Selectr : Node_Id;
5362         --  Selector name
5363
5364         Typech : Entity_Id;
5365         --  Type of first component in choice list
5366
5367      begin
5368         if Present (Component_Associations (N)) then
5369            Assoc := First (Component_Associations (N));
5370         else
5371            Assoc := Empty;
5372         end if;
5373
5374         Verification : while Present (Assoc) loop
5375            Selectr := First (Choices (Assoc));
5376            Typech := Empty;
5377
5378            if Nkind (Selectr) = N_Others_Choice then
5379
5380               --  Ada 2005 (AI-287): others choice may have expression or box
5381
5382               if No (Others_Etype) and then Others_Box = 0 then
5383                  Error_Msg_N
5384                    ("OTHERS must represent at least one component", Selectr);
5385
5386               elsif Others_Box = 1 and then Warn_On_Redundant_Constructs then
5387                  Error_Msg_N ("OTHERS choice is redundant?", Box_Node);
5388                  Error_Msg_N
5389                    ("\previous choices cover all components?", Box_Node);
5390               end if;
5391
5392               exit Verification;
5393            end if;
5394
5395            while Present (Selectr) loop
5396               New_Assoc := First (New_Assoc_List);
5397               while Present (New_Assoc) loop
5398                  Component := First (Choices (New_Assoc));
5399
5400                  if Chars (Selectr) = Chars (Component) then
5401                     if Style_Check then
5402                        Check_Identifier (Selectr, Entity (Component));
5403                     end if;
5404
5405                     exit;
5406                  end if;
5407
5408                  Next (New_Assoc);
5409               end loop;
5410
5411               --  If no association, this is not a legal component of the type
5412               --  in question, unless its association is provided with a box.
5413
5414               if No (New_Assoc) then
5415                  if Box_Present (Parent (Selectr)) then
5416
5417                     --  This may still be a bogus component with a box. Scan
5418                     --  list of components to verify that a component with
5419                     --  that name exists.
5420
5421                     declare
5422                        C : Entity_Id;
5423
5424                     begin
5425                        C := First_Component (Typ);
5426                        while Present (C) loop
5427                           if Chars (C) = Chars (Selectr) then
5428
5429                              --  If the context is an extension aggregate,
5430                              --  the component must not be inherited from
5431                              --  the ancestor part of the aggregate.
5432
5433                              if Nkind (N) /= N_Extension_Aggregate
5434                                or else
5435                                  Scope (Original_Record_Component (C)) /=
5436                                    Etype (Ancestor_Part (N))
5437                              then
5438                                 exit;
5439                              end if;
5440                           end if;
5441
5442                           Next_Component (C);
5443                        end loop;
5444
5445                        if No (C) then
5446                           Error_Msg_Node_2 := Typ;
5447                           Error_Msg_N ("& is not a component of}", Selectr);
5448                        end if;
5449                     end;
5450
5451                  elsif Chars (Selectr) /= Name_uTag
5452                    and then Chars (Selectr) /= Name_uParent
5453                  then
5454                     if not Has_Discriminants (Typ) then
5455                        Error_Msg_Node_2 := Typ;
5456                        Error_Msg_N ("& is not a component of}", Selectr);
5457                     else
5458                        Error_Msg_N
5459                          ("& is not a component of the aggregate subtype",
5460                            Selectr);
5461                     end if;
5462
5463                     Check_Misspelled_Component (Components, Selectr);
5464                  end if;
5465
5466               elsif No (Typech) then
5467                  Typech := Base_Type (Etype (Component));
5468
5469               --  AI05-0199: In Ada 2012, several components of anonymous
5470               --  access types can appear in a choice list, as long as the
5471               --  designated types match.
5472
5473               elsif Typech /= Base_Type (Etype (Component)) then
5474                  if Ada_Version >= Ada_2012
5475                    and then Ekind (Typech) = E_Anonymous_Access_Type
5476                    and then
5477                       Ekind (Etype (Component)) = E_Anonymous_Access_Type
5478                    and then Base_Type (Designated_Type (Typech)) =
5479                             Base_Type (Designated_Type (Etype (Component)))
5480                    and then
5481                      Subtypes_Statically_Match (Typech, (Etype (Component)))
5482                  then
5483                     null;
5484
5485                  elsif not Box_Present (Parent (Selectr)) then
5486                     Error_Msg_N
5487                       ("components in choice list must have same type",
5488                        Selectr);
5489                  end if;
5490               end if;
5491
5492               Next (Selectr);
5493            end loop;
5494
5495            Next (Assoc);
5496         end loop Verification;
5497      end Step_7;
5498
5499      --  STEP 8: replace the original aggregate
5500
5501      Step_8 : declare
5502         New_Aggregate : constant Node_Id := New_Copy (N);
5503
5504      begin
5505         Set_Expressions            (New_Aggregate, No_List);
5506         Set_Etype                  (New_Aggregate, Etype (N));
5507         Set_Component_Associations (New_Aggregate, New_Assoc_List);
5508         Set_Check_Actuals          (New_Aggregate, Check_Actuals (N));
5509
5510         Rewrite (N, New_Aggregate);
5511      end Step_8;
5512
5513      --  Check the dimensions of the components in the record aggregate
5514
5515      Analyze_Dimension_Extension_Or_Record_Aggregate (N);
5516   end Resolve_Record_Aggregate;
5517
5518   -----------------------------
5519   -- Check_Can_Never_Be_Null --
5520   -----------------------------
5521
5522   procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
5523      Comp_Typ : Entity_Id;
5524
5525   begin
5526      pragma Assert
5527        (Ada_Version >= Ada_2005
5528          and then Present (Expr)
5529          and then Known_Null (Expr));
5530
5531      case Ekind (Typ) is
5532         when E_Array_Type  =>
5533            Comp_Typ := Component_Type (Typ);
5534
5535         when E_Component
5536            | E_Discriminant
5537         =>
5538            Comp_Typ := Etype (Typ);
5539
5540         when others =>
5541            return;
5542      end case;
5543
5544      if Can_Never_Be_Null (Comp_Typ) then
5545
5546         --  Here we know we have a constraint error. Note that we do not use
5547         --  Apply_Compile_Time_Constraint_Error here to the Expr, which might
5548         --  seem the more natural approach. That's because in some cases the
5549         --  components are rewritten, and the replacement would be missed.
5550         --  We do not mark the whole aggregate as raising a constraint error,
5551         --  because the association may be a null array range.
5552
5553         Error_Msg_N
5554           ("(Ada 2005) NULL not allowed in null-excluding component??", Expr);
5555         Error_Msg_N
5556           ("\Constraint_Error will be raised at run time??", Expr);
5557
5558         Rewrite (Expr,
5559           Make_Raise_Constraint_Error
5560             (Sloc (Expr), Reason => CE_Access_Check_Failed));
5561         Set_Etype    (Expr, Comp_Typ);
5562         Set_Analyzed (Expr);
5563      end if;
5564   end Check_Can_Never_Be_Null;
5565
5566   ---------------------
5567   -- Sort_Case_Table --
5568   ---------------------
5569
5570   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
5571      U : constant Int := Case_Table'Last;
5572      K : Int;
5573      J : Int;
5574      T : Case_Bounds;
5575
5576   begin
5577      K := 1;
5578      while K < U loop
5579         T := Case_Table (K + 1);
5580
5581         J := K + 1;
5582         while J > 1
5583           and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
5584         loop
5585            Case_Table (J) := Case_Table (J - 1);
5586            J := J - 1;
5587         end loop;
5588
5589         Case_Table (J) := T;
5590         K := K + 1;
5591      end loop;
5592   end Sort_Case_Table;
5593
5594end Sem_Aggr;
5595