1 /* RTL-level loop invariant motion.
2    Copyright (C) 2004-2021 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This implements the loop invariant motion pass.  It is very simple
21    (no calls, no loads/stores, etc.).  This should be sufficient to cleanup
22    things like address arithmetics -- other more complicated invariants should
23    be eliminated on GIMPLE either in tree-ssa-loop-im.c or in tree-ssa-pre.c.
24 
25    We proceed loop by loop -- it is simpler than trying to handle things
26    globally and should not lose much.  First we inspect all sets inside loop
27    and create a dependency graph on insns (saying "to move this insn, you must
28    also move the following insns").
29 
30    We then need to determine what to move.  We estimate the number of registers
31    used and move as many invariants as possible while we still have enough free
32    registers.  We prefer the expensive invariants.
33 
34    Then we move the selected invariants out of the loop, creating a new
35    temporaries for them if necessary.  */
36 
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "backend.h"
41 #include "target.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "cfghooks.h"
45 #include "df.h"
46 #include "memmodel.h"
47 #include "tm_p.h"
48 #include "insn-config.h"
49 #include "regs.h"
50 #include "ira.h"
51 #include "recog.h"
52 #include "cfgrtl.h"
53 #include "cfgloop.h"
54 #include "expr.h"
55 #include "rtl-iter.h"
56 #include "dumpfile.h"
57 
58 /* The data stored for the loop.  */
59 
60 class loop_data
61 {
62 public:
63   class loop *outermost_exit;	/* The outermost exit of the loop.  */
64   bool has_call;		/* True if the loop contains a call.  */
65   /* Maximal register pressure inside loop for given register class
66      (defined only for the pressure classes).  */
67   int max_reg_pressure[N_REG_CLASSES];
68   /* Loop regs referenced and live pseudo-registers.  */
69   bitmap_head regs_ref;
70   bitmap_head regs_live;
71 };
72 
73 #define LOOP_DATA(LOOP) ((class loop_data *) (LOOP)->aux)
74 
75 /* The description of an use.  */
76 
77 struct use
78 {
79   rtx *pos;			/* Position of the use.  */
80   rtx_insn *insn;		/* The insn in that the use occurs.  */
81   unsigned addr_use_p;		/* Whether the use occurs in an address.  */
82   struct use *next;		/* Next use in the list.  */
83 };
84 
85 /* The description of a def.  */
86 
87 struct def
88 {
89   struct use *uses;		/* The list of uses that are uniquely reached
90 				   by it.  */
91   unsigned n_uses;		/* Number of such uses.  */
92   unsigned n_addr_uses;		/* Number of uses in addresses.  */
93   unsigned invno;		/* The corresponding invariant.  */
94   bool can_prop_to_addr_uses;	/* True if the corresponding inv can be
95 				   propagated into its address uses.  */
96 };
97 
98 /* The data stored for each invariant.  */
99 
100 struct invariant
101 {
102   /* The number of the invariant.  */
103   unsigned invno;
104 
105   /* The number of the invariant with the same value.  */
106   unsigned eqto;
107 
108   /* The number of invariants which eqto this.  */
109   unsigned eqno;
110 
111   /* If we moved the invariant out of the loop, the original regno
112      that contained its value.  */
113   int orig_regno;
114 
115   /* If we moved the invariant out of the loop, the register that contains its
116      value.  */
117   rtx reg;
118 
119   /* The definition of the invariant.  */
120   struct def *def;
121 
122   /* The insn in that it is defined.  */
123   rtx_insn *insn;
124 
125   /* Whether it is always executed.  */
126   bool always_executed;
127 
128   /* Whether to move the invariant.  */
129   bool move;
130 
131   /* Whether the invariant is cheap when used as an address.  */
132   bool cheap_address;
133 
134   /* Cost of the invariant.  */
135   unsigned cost;
136 
137   /* Used for detecting already visited invariants during determining
138      costs of movements.  */
139   unsigned stamp;
140 
141   /* The invariants it depends on.  */
142   bitmap depends_on;
143 };
144 
145 /* Currently processed loop.  */
146 static class loop *curr_loop;
147 
148 /* Table of invariants indexed by the df_ref uid field.  */
149 
150 static unsigned int invariant_table_size = 0;
151 static struct invariant ** invariant_table;
152 
153 /* Entry for hash table of invariant expressions.  */
154 
155 struct invariant_expr_entry
156 {
157   /* The invariant.  */
158   struct invariant *inv;
159 
160   /* Its value.  */
161   rtx expr;
162 
163   /* Its mode.  */
164   machine_mode mode;
165 
166   /* Its hash.  */
167   hashval_t hash;
168 };
169 
170 /* The actual stamp for marking already visited invariants during determining
171    costs of movements.  */
172 
173 static unsigned actual_stamp;
174 
175 typedef struct invariant *invariant_p;
176 
177 
178 /* The invariants.  */
179 
180 static vec<invariant_p> invariants;
181 
182 /* Check the size of the invariant table and realloc if necessary.  */
183 
184 static void
check_invariant_table_size(void)185 check_invariant_table_size (void)
186 {
187   if (invariant_table_size < DF_DEFS_TABLE_SIZE ())
188     {
189       unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
190       invariant_table = XRESIZEVEC (struct invariant *, invariant_table, new_size);
191       memset (&invariant_table[invariant_table_size], 0,
192 	      (new_size - invariant_table_size) * sizeof (struct invariant *));
193       invariant_table_size = new_size;
194     }
195 }
196 
197 /* Test for possibility of invariantness of X.  */
198 
199 static bool
check_maybe_invariant(rtx x)200 check_maybe_invariant (rtx x)
201 {
202   enum rtx_code code = GET_CODE (x);
203   int i, j;
204   const char *fmt;
205 
206   switch (code)
207     {
208     CASE_CONST_ANY:
209     case SYMBOL_REF:
210     case CONST:
211     case LABEL_REF:
212       return true;
213 
214     case PC:
215     case CC0:
216     case UNSPEC_VOLATILE:
217     case CALL:
218       return false;
219 
220     case REG:
221       return true;
222 
223     case MEM:
224       /* Load/store motion is done elsewhere.  ??? Perhaps also add it here?
225 	 It should not be hard, and might be faster than "elsewhere".  */
226 
227       /* Just handle the most trivial case where we load from an unchanging
228 	 location (most importantly, pic tables).  */
229       if (MEM_READONLY_P (x) && !MEM_VOLATILE_P (x))
230 	break;
231 
232       return false;
233 
234     case ASM_OPERANDS:
235       /* Don't mess with insns declared volatile.  */
236       if (MEM_VOLATILE_P (x))
237 	return false;
238       break;
239 
240     default:
241       break;
242     }
243 
244   fmt = GET_RTX_FORMAT (code);
245   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
246     {
247       if (fmt[i] == 'e')
248 	{
249 	  if (!check_maybe_invariant (XEXP (x, i)))
250 	    return false;
251 	}
252       else if (fmt[i] == 'E')
253 	{
254 	  for (j = 0; j < XVECLEN (x, i); j++)
255 	    if (!check_maybe_invariant (XVECEXP (x, i, j)))
256 	      return false;
257 	}
258     }
259 
260   return true;
261 }
262 
263 /* Returns the invariant definition for USE, or NULL if USE is not
264    invariant.  */
265 
266 static struct invariant *
invariant_for_use(df_ref use)267 invariant_for_use (df_ref use)
268 {
269   struct df_link *defs;
270   df_ref def;
271   basic_block bb = DF_REF_BB (use), def_bb;
272 
273   if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
274     return NULL;
275 
276   defs = DF_REF_CHAIN (use);
277   if (!defs || defs->next)
278     return NULL;
279   def = defs->ref;
280   check_invariant_table_size ();
281   if (!invariant_table[DF_REF_ID (def)])
282     return NULL;
283 
284   def_bb = DF_REF_BB (def);
285   if (!dominated_by_p (CDI_DOMINATORS, bb, def_bb))
286     return NULL;
287   return invariant_table[DF_REF_ID (def)];
288 }
289 
290 /* Computes hash value for invariant expression X in INSN.  */
291 
292 static hashval_t
hash_invariant_expr_1(rtx_insn * insn,rtx x)293 hash_invariant_expr_1 (rtx_insn *insn, rtx x)
294 {
295   enum rtx_code code = GET_CODE (x);
296   int i, j;
297   const char *fmt;
298   hashval_t val = code;
299   int do_not_record_p;
300   df_ref use;
301   struct invariant *inv;
302 
303   switch (code)
304     {
305     CASE_CONST_ANY:
306     case SYMBOL_REF:
307     case CONST:
308     case LABEL_REF:
309       return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
310 
311     case REG:
312       use = df_find_use (insn, x);
313       if (!use)
314 	return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
315       inv = invariant_for_use (use);
316       if (!inv)
317 	return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
318 
319       gcc_assert (inv->eqto != ~0u);
320       return inv->eqto;
321 
322     default:
323       break;
324     }
325 
326   fmt = GET_RTX_FORMAT (code);
327   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
328     {
329       if (fmt[i] == 'e')
330 	val ^= hash_invariant_expr_1 (insn, XEXP (x, i));
331       else if (fmt[i] == 'E')
332 	{
333 	  for (j = 0; j < XVECLEN (x, i); j++)
334 	    val ^= hash_invariant_expr_1 (insn, XVECEXP (x, i, j));
335 	}
336       else if (fmt[i] == 'i' || fmt[i] == 'n')
337 	val ^= XINT (x, i);
338       else if (fmt[i] == 'p')
339 	val ^= constant_lower_bound (SUBREG_BYTE (x));
340     }
341 
342   return val;
343 }
344 
345 /* Returns true if the invariant expressions E1 and E2 used in insns INSN1
346    and INSN2 have always the same value.  */
347 
348 static bool
invariant_expr_equal_p(rtx_insn * insn1,rtx e1,rtx_insn * insn2,rtx e2)349 invariant_expr_equal_p (rtx_insn *insn1, rtx e1, rtx_insn *insn2, rtx e2)
350 {
351   enum rtx_code code = GET_CODE (e1);
352   int i, j;
353   const char *fmt;
354   df_ref use1, use2;
355   struct invariant *inv1 = NULL, *inv2 = NULL;
356   rtx sub1, sub2;
357 
358   /* If mode of only one of the operands is VOIDmode, it is not equivalent to
359      the other one.  If both are VOIDmode, we rely on the caller of this
360      function to verify that their modes are the same.  */
361   if (code != GET_CODE (e2) || GET_MODE (e1) != GET_MODE (e2))
362     return false;
363 
364   switch (code)
365     {
366     CASE_CONST_ANY:
367     case SYMBOL_REF:
368     case CONST:
369     case LABEL_REF:
370       return rtx_equal_p (e1, e2);
371 
372     case REG:
373       use1 = df_find_use (insn1, e1);
374       use2 = df_find_use (insn2, e2);
375       if (use1)
376 	inv1 = invariant_for_use (use1);
377       if (use2)
378 	inv2 = invariant_for_use (use2);
379 
380       if (!inv1 && !inv2)
381 	return rtx_equal_p (e1, e2);
382 
383       if (!inv1 || !inv2)
384 	return false;
385 
386       gcc_assert (inv1->eqto != ~0u);
387       gcc_assert (inv2->eqto != ~0u);
388       return inv1->eqto == inv2->eqto;
389 
390     default:
391       break;
392     }
393 
394   fmt = GET_RTX_FORMAT (code);
395   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
396     {
397       if (fmt[i] == 'e')
398 	{
399 	  sub1 = XEXP (e1, i);
400 	  sub2 = XEXP (e2, i);
401 
402 	  if (!invariant_expr_equal_p (insn1, sub1, insn2, sub2))
403 	    return false;
404 	}
405 
406       else if (fmt[i] == 'E')
407 	{
408 	  if (XVECLEN (e1, i) != XVECLEN (e2, i))
409 	    return false;
410 
411 	  for (j = 0; j < XVECLEN (e1, i); j++)
412 	    {
413 	      sub1 = XVECEXP (e1, i, j);
414 	      sub2 = XVECEXP (e2, i, j);
415 
416 	      if (!invariant_expr_equal_p (insn1, sub1, insn2, sub2))
417 		return false;
418 	    }
419 	}
420       else if (fmt[i] == 'i' || fmt[i] == 'n')
421 	{
422 	  if (XINT (e1, i) != XINT (e2, i))
423 	    return false;
424 	}
425       else if (fmt[i] == 'p')
426 	{
427 	  if (maybe_ne (SUBREG_BYTE (e1), SUBREG_BYTE (e2)))
428 	    return false;
429 	}
430       /* Unhandled type of subexpression, we fail conservatively.  */
431       else
432 	return false;
433     }
434 
435   return true;
436 }
437 
438 struct invariant_expr_hasher : free_ptr_hash <invariant_expr_entry>
439 {
440   static inline hashval_t hash (const invariant_expr_entry *);
441   static inline bool equal (const invariant_expr_entry *,
442 			    const invariant_expr_entry *);
443 };
444 
445 /* Returns hash value for invariant expression entry ENTRY.  */
446 
447 inline hashval_t
hash(const invariant_expr_entry * entry)448 invariant_expr_hasher::hash (const invariant_expr_entry *entry)
449 {
450   return entry->hash;
451 }
452 
453 /* Compares invariant expression entries ENTRY1 and ENTRY2.  */
454 
455 inline bool
equal(const invariant_expr_entry * entry1,const invariant_expr_entry * entry2)456 invariant_expr_hasher::equal (const invariant_expr_entry *entry1,
457 			      const invariant_expr_entry *entry2)
458 {
459   if (entry1->mode != entry2->mode)
460     return 0;
461 
462   return invariant_expr_equal_p (entry1->inv->insn, entry1->expr,
463 				 entry2->inv->insn, entry2->expr);
464 }
465 
466 typedef hash_table<invariant_expr_hasher> invariant_htab_type;
467 
468 /* Checks whether invariant with value EXPR in machine mode MODE is
469    recorded in EQ.  If this is the case, return the invariant.  Otherwise
470    insert INV to the table for this expression and return INV.  */
471 
472 static struct invariant *
find_or_insert_inv(invariant_htab_type * eq,rtx expr,machine_mode mode,struct invariant * inv)473 find_or_insert_inv (invariant_htab_type *eq, rtx expr, machine_mode mode,
474 		    struct invariant *inv)
475 {
476   hashval_t hash = hash_invariant_expr_1 (inv->insn, expr);
477   struct invariant_expr_entry *entry;
478   struct invariant_expr_entry pentry;
479   invariant_expr_entry **slot;
480 
481   pentry.expr = expr;
482   pentry.inv = inv;
483   pentry.mode = mode;
484   slot = eq->find_slot_with_hash (&pentry, hash, INSERT);
485   entry = *slot;
486 
487   if (entry)
488     return entry->inv;
489 
490   entry = XNEW (struct invariant_expr_entry);
491   entry->inv = inv;
492   entry->expr = expr;
493   entry->mode = mode;
494   entry->hash = hash;
495   *slot = entry;
496 
497   return inv;
498 }
499 
500 /* Finds invariants identical to INV and records the equivalence.  EQ is the
501    hash table of the invariants.  */
502 
503 static void
find_identical_invariants(invariant_htab_type * eq,struct invariant * inv)504 find_identical_invariants (invariant_htab_type *eq, struct invariant *inv)
505 {
506   unsigned depno;
507   bitmap_iterator bi;
508   struct invariant *dep;
509   rtx expr, set;
510   machine_mode mode;
511   struct invariant *tmp;
512 
513   if (inv->eqto != ~0u)
514     return;
515 
516   EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, depno, bi)
517     {
518       dep = invariants[depno];
519       find_identical_invariants (eq, dep);
520     }
521 
522   set = single_set (inv->insn);
523   expr = SET_SRC (set);
524   mode = GET_MODE (expr);
525   if (mode == VOIDmode)
526     mode = GET_MODE (SET_DEST (set));
527 
528   tmp = find_or_insert_inv (eq, expr, mode, inv);
529   inv->eqto = tmp->invno;
530 
531   if (tmp->invno != inv->invno && inv->always_executed)
532     tmp->eqno++;
533 
534   if (dump_file && inv->eqto != inv->invno)
535     fprintf (dump_file,
536 	     "Invariant %d is equivalent to invariant %d.\n",
537 	     inv->invno, inv->eqto);
538 }
539 
540 /* Find invariants with the same value and record the equivalences.  */
541 
542 static void
merge_identical_invariants(void)543 merge_identical_invariants (void)
544 {
545   unsigned i;
546   struct invariant *inv;
547   invariant_htab_type eq (invariants.length ());
548 
549   FOR_EACH_VEC_ELT (invariants, i, inv)
550     find_identical_invariants (&eq, inv);
551 }
552 
553 /* Determines the basic blocks inside LOOP that are always executed and
554    stores their bitmap to ALWAYS_REACHED.  MAY_EXIT is a bitmap of
555    basic blocks that may either exit the loop, or contain the call that
556    does not have to return.  BODY is body of the loop obtained by
557    get_loop_body_in_dom_order.  */
558 
559 static void
compute_always_reached(class loop * loop,basic_block * body,bitmap may_exit,bitmap always_reached)560 compute_always_reached (class loop *loop, basic_block *body,
561 			bitmap may_exit, bitmap always_reached)
562 {
563   unsigned i;
564 
565   for (i = 0; i < loop->num_nodes; i++)
566     {
567       if (dominated_by_p (CDI_DOMINATORS, loop->latch, body[i]))
568 	bitmap_set_bit (always_reached, i);
569 
570       if (bitmap_bit_p (may_exit, i))
571 	return;
572     }
573 }
574 
575 /* Finds exits out of the LOOP with body BODY.  Marks blocks in that we may
576    exit the loop by cfg edge to HAS_EXIT and MAY_EXIT.  In MAY_EXIT
577    additionally mark blocks that may exit due to a call.  */
578 
579 static void
find_exits(class loop * loop,basic_block * body,bitmap may_exit,bitmap has_exit)580 find_exits (class loop *loop, basic_block *body,
581 	    bitmap may_exit, bitmap has_exit)
582 {
583   unsigned i;
584   edge_iterator ei;
585   edge e;
586   class loop *outermost_exit = loop, *aexit;
587   bool has_call = false;
588   rtx_insn *insn;
589 
590   for (i = 0; i < loop->num_nodes; i++)
591     {
592       if (body[i]->loop_father == loop)
593 	{
594 	  FOR_BB_INSNS (body[i], insn)
595 	    {
596 	      if (CALL_P (insn)
597 		  && (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
598 		      || !RTL_CONST_OR_PURE_CALL_P (insn)))
599 		{
600 		  has_call = true;
601 		  bitmap_set_bit (may_exit, i);
602 		  break;
603 		}
604 	    }
605 
606 	  FOR_EACH_EDGE (e, ei, body[i]->succs)
607 	    {
608 	      if (! flow_bb_inside_loop_p (loop, e->dest))
609 		{
610 		  bitmap_set_bit (may_exit, i);
611 		  bitmap_set_bit (has_exit, i);
612 		  outermost_exit = find_common_loop (outermost_exit,
613 						     e->dest->loop_father);
614 		}
615 	      /* If we enter a subloop that might never terminate treat
616 	         it like a possible exit.  */
617 	      if (flow_loop_nested_p (loop, e->dest->loop_father))
618 		bitmap_set_bit (may_exit, i);
619 	    }
620 	  continue;
621 	}
622 
623       /* Use the data stored for the subloop to decide whether we may exit
624 	 through it.  It is sufficient to do this for header of the loop,
625 	 as other basic blocks inside it must be dominated by it.  */
626       if (body[i]->loop_father->header != body[i])
627 	continue;
628 
629       if (LOOP_DATA (body[i]->loop_father)->has_call)
630 	{
631 	  has_call = true;
632 	  bitmap_set_bit (may_exit, i);
633 	}
634       aexit = LOOP_DATA (body[i]->loop_father)->outermost_exit;
635       if (aexit != loop)
636 	{
637 	  bitmap_set_bit (may_exit, i);
638 	  bitmap_set_bit (has_exit, i);
639 
640 	  if (flow_loop_nested_p (aexit, outermost_exit))
641 	    outermost_exit = aexit;
642 	}
643     }
644 
645   if (loop->aux == NULL)
646     {
647       loop->aux = xcalloc (1, sizeof (class loop_data));
648       bitmap_initialize (&LOOP_DATA (loop)->regs_ref, &reg_obstack);
649       bitmap_initialize (&LOOP_DATA (loop)->regs_live, &reg_obstack);
650     }
651   LOOP_DATA (loop)->outermost_exit = outermost_exit;
652   LOOP_DATA (loop)->has_call = has_call;
653 }
654 
655 /* Check whether we may assign a value to X from a register.  */
656 
657 static bool
may_assign_reg_p(rtx x)658 may_assign_reg_p (rtx x)
659 {
660   return (GET_MODE (x) != VOIDmode
661 	  && GET_MODE (x) != BLKmode
662 	  && can_copy_p (GET_MODE (x))
663 	  /* Do not mess with the frame pointer adjustments that can
664 	     be generated e.g. by expand_builtin_setjmp_receiver.  */
665 	  && x != frame_pointer_rtx
666 	  && (!REG_P (x)
667 	      || !HARD_REGISTER_P (x)
668 	      || REGNO_REG_CLASS (REGNO (x)) != NO_REGS));
669 }
670 
671 /* Finds definitions that may correspond to invariants in LOOP with body
672    BODY.  */
673 
674 static void
find_defs(class loop * loop)675 find_defs (class loop *loop)
676 {
677   if (dump_file)
678     {
679       fprintf (dump_file,
680 	       "*****starting processing of loop %d ******\n",
681 	       loop->num);
682     }
683 
684   df_chain_add_problem (DF_UD_CHAIN);
685   df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
686   df_analyze_loop (loop);
687   check_invariant_table_size ();
688 
689   if (dump_file)
690     {
691       df_dump_region (dump_file);
692       fprintf (dump_file,
693 	       "*****ending processing of loop %d ******\n",
694 	       loop->num);
695     }
696 }
697 
698 /* Creates a new invariant for definition DEF in INSN, depending on invariants
699    in DEPENDS_ON.  ALWAYS_EXECUTED is true if the insn is always executed,
700    unless the program ends due to a function call.  The newly created invariant
701    is returned.  */
702 
703 static struct invariant *
create_new_invariant(struct def * def,rtx_insn * insn,bitmap depends_on,bool always_executed)704 create_new_invariant (struct def *def, rtx_insn *insn, bitmap depends_on,
705 		      bool always_executed)
706 {
707   struct invariant *inv = XNEW (struct invariant);
708   rtx set = single_set (insn);
709   bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
710 
711   inv->def = def;
712   inv->always_executed = always_executed;
713   inv->depends_on = depends_on;
714 
715   /* If the set is simple, usually by moving it we move the whole store out of
716      the loop.  Otherwise we save only cost of the computation.  */
717   if (def)
718     {
719       inv->cost = set_rtx_cost (set, speed);
720       /* ??? Try to determine cheapness of address computation.  Unfortunately
721          the address cost is only a relative measure, we can't really compare
722 	 it with any absolute number, but only with other address costs.
723 	 But here we don't have any other addresses, so compare with a magic
724 	 number anyway.  It has to be large enough to not regress PR33928
725 	 (by avoiding to move reg+8,reg+16,reg+24 invariants), but small
726 	 enough to not regress 410.bwaves either (by still moving reg+reg
727 	 invariants).
728 	 See http://gcc.gnu.org/ml/gcc-patches/2009-10/msg01210.html .  */
729       if (SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set))))
730 	inv->cheap_address = address_cost (SET_SRC (set), word_mode,
731 					   ADDR_SPACE_GENERIC, speed) < 3;
732       else
733 	inv->cheap_address = false;
734     }
735   else
736     {
737       inv->cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)),
738 				speed);
739       inv->cheap_address = false;
740     }
741 
742   inv->move = false;
743   inv->reg = NULL_RTX;
744   inv->orig_regno = -1;
745   inv->stamp = 0;
746   inv->insn = insn;
747 
748   inv->invno = invariants.length ();
749   inv->eqto = ~0u;
750 
751   /* Itself.  */
752   inv->eqno = 1;
753 
754   if (def)
755     def->invno = inv->invno;
756   invariants.safe_push (inv);
757 
758   if (dump_file)
759     {
760       fprintf (dump_file,
761 	       "Set in insn %d is invariant (%d), cost %d, depends on ",
762 	       INSN_UID (insn), inv->invno, inv->cost);
763       dump_bitmap (dump_file, inv->depends_on);
764     }
765 
766   return inv;
767 }
768 
769 /* Return a canonical version of X for the address, from the point of view,
770    that all multiplications are represented as MULT instead of the multiply
771    by a power of 2 being represented as ASHIFT.
772 
773    Callers should prepare a copy of X because this function may modify it
774    in place.  */
775 
776 static void
canonicalize_address_mult(rtx x)777 canonicalize_address_mult (rtx x)
778 {
779   subrtx_var_iterator::array_type array;
780   FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
781     {
782       rtx sub = *iter;
783       scalar_int_mode sub_mode;
784       if (is_a <scalar_int_mode> (GET_MODE (sub), &sub_mode)
785 	  && GET_CODE (sub) == ASHIFT
786 	  && CONST_INT_P (XEXP (sub, 1))
787 	  && INTVAL (XEXP (sub, 1)) < GET_MODE_BITSIZE (sub_mode)
788 	  && INTVAL (XEXP (sub, 1)) >= 0)
789 	{
790 	  HOST_WIDE_INT shift = INTVAL (XEXP (sub, 1));
791 	  PUT_CODE (sub, MULT);
792 	  XEXP (sub, 1) = gen_int_mode (HOST_WIDE_INT_1 << shift, sub_mode);
793 	  iter.skip_subrtxes ();
794 	}
795     }
796 }
797 
798 /* Maximum number of sub expressions in address.  We set it to
799    a small integer since it's unlikely to have a complicated
800    address expression.  */
801 
802 #define MAX_CANON_ADDR_PARTS (5)
803 
804 /* Collect sub expressions in address X with PLUS as the seperator.
805    Sub expressions are stored in vector ADDR_PARTS.  */
806 
807 static void
collect_address_parts(rtx x,vec<rtx> * addr_parts)808 collect_address_parts (rtx x, vec<rtx> *addr_parts)
809 {
810   subrtx_var_iterator::array_type array;
811   FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
812     {
813       rtx sub = *iter;
814 
815       if (GET_CODE (sub) != PLUS)
816 	{
817 	  addr_parts->safe_push (sub);
818 	  iter.skip_subrtxes ();
819 	}
820     }
821 }
822 
823 /* Compare function for sorting sub expressions X and Y based on
824    precedence defined for communitive operations.  */
825 
826 static int
compare_address_parts(const void * x,const void * y)827 compare_address_parts (const void *x, const void *y)
828 {
829   const rtx *rx = (const rtx *)x;
830   const rtx *ry = (const rtx *)y;
831   int px = commutative_operand_precedence (*rx);
832   int py = commutative_operand_precedence (*ry);
833 
834   return (py - px);
835 }
836 
837 /* Return a canonical version address for X by following steps:
838      1) Rewrite ASHIFT into MULT recursively.
839      2) Divide address into sub expressions with PLUS as the
840 	separator.
841      3) Sort sub expressions according to precedence defined
842 	for communative operations.
843      4) Simplify CONST_INT_P sub expressions.
844      5) Create new canonicalized address and return.
845    Callers should prepare a copy of X because this function may
846    modify it in place.  */
847 
848 static rtx
canonicalize_address(rtx x)849 canonicalize_address (rtx x)
850 {
851   rtx res;
852   unsigned int i, j;
853   machine_mode mode = GET_MODE (x);
854   auto_vec<rtx, MAX_CANON_ADDR_PARTS> addr_parts;
855 
856   /* Rewrite ASHIFT into MULT.  */
857   canonicalize_address_mult (x);
858   /* Divide address into sub expressions.  */
859   collect_address_parts (x, &addr_parts);
860   /* Unlikely to have very complicated address.  */
861   if (addr_parts.length () < 2
862       || addr_parts.length () > MAX_CANON_ADDR_PARTS)
863     return x;
864 
865   /* Sort sub expressions according to canonicalization precedence.  */
866   addr_parts.qsort (compare_address_parts);
867 
868   /* Simplify all constant int summary if possible.  */
869   for (i = 0; i < addr_parts.length (); i++)
870     if (CONST_INT_P (addr_parts[i]))
871       break;
872 
873   for (j = i + 1; j < addr_parts.length (); j++)
874     {
875       gcc_assert (CONST_INT_P (addr_parts[j]));
876       addr_parts[i] = simplify_gen_binary (PLUS, mode,
877 					   addr_parts[i],
878 					   addr_parts[j]);
879     }
880 
881   /* Chain PLUS operators to the left for !CONST_INT_P sub expressions.  */
882   res = addr_parts[0];
883   for (j = 1; j < i; j++)
884     res = simplify_gen_binary (PLUS, mode, res, addr_parts[j]);
885 
886   /* Pickup the last CONST_INT_P sub expression.  */
887   if (i < addr_parts.length ())
888     res = simplify_gen_binary (PLUS, mode, res, addr_parts[i]);
889 
890   return res;
891 }
892 
893 /* Given invariant DEF and its address USE, check if the corresponding
894    invariant expr can be propagated into the use or not.  */
895 
896 static bool
inv_can_prop_to_addr_use(struct def * def,df_ref use)897 inv_can_prop_to_addr_use (struct def *def, df_ref use)
898 {
899   struct invariant *inv;
900   rtx *pos = DF_REF_REAL_LOC (use), def_set, use_set;
901   rtx_insn *use_insn = DF_REF_INSN (use);
902   rtx_insn *def_insn;
903   bool ok;
904 
905   inv = invariants[def->invno];
906   /* No need to check if address expression is expensive.  */
907   if (!inv->cheap_address)
908     return false;
909 
910   def_insn = inv->insn;
911   def_set = single_set (def_insn);
912   if (!def_set)
913     return false;
914 
915   validate_unshare_change (use_insn, pos, SET_SRC (def_set), true);
916   ok = verify_changes (0);
917   /* Try harder with canonicalization in address expression.  */
918   if (!ok && (use_set = single_set (use_insn)) != NULL_RTX)
919     {
920       rtx src, dest, mem = NULL_RTX;
921 
922       src = SET_SRC (use_set);
923       dest = SET_DEST (use_set);
924       if (MEM_P (src))
925 	mem = src;
926       else if (MEM_P (dest))
927 	mem = dest;
928 
929       if (mem != NULL_RTX
930 	  && !memory_address_addr_space_p (GET_MODE (mem),
931 					   XEXP (mem, 0),
932 					   MEM_ADDR_SPACE (mem)))
933 	{
934 	  rtx addr = canonicalize_address (copy_rtx (XEXP (mem, 0)));
935 	  if (memory_address_addr_space_p (GET_MODE (mem),
936 					   addr, MEM_ADDR_SPACE (mem)))
937 	    ok = true;
938 	}
939     }
940   cancel_changes (0);
941   return ok;
942 }
943 
944 /* Record USE at DEF.  */
945 
946 static void
record_use(struct def * def,df_ref use)947 record_use (struct def *def, df_ref use)
948 {
949   struct use *u = XNEW (struct use);
950 
951   u->pos = DF_REF_REAL_LOC (use);
952   u->insn = DF_REF_INSN (use);
953   u->addr_use_p = (DF_REF_TYPE (use) == DF_REF_REG_MEM_LOAD
954 		   || DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE);
955   u->next = def->uses;
956   def->uses = u;
957   def->n_uses++;
958   if (u->addr_use_p)
959     {
960       /* Initialize propagation information if this is the first addr
961 	 use of the inv def.  */
962       if (def->n_addr_uses == 0)
963 	def->can_prop_to_addr_uses = true;
964 
965       def->n_addr_uses++;
966       if (def->can_prop_to_addr_uses && !inv_can_prop_to_addr_use (def, use))
967 	def->can_prop_to_addr_uses = false;
968     }
969 }
970 
971 /* Finds the invariants USE depends on and store them to the DEPENDS_ON
972    bitmap.  Returns true if all dependencies of USE are known to be
973    loop invariants, false otherwise.  */
974 
975 static bool
check_dependency(basic_block bb,df_ref use,bitmap depends_on)976 check_dependency (basic_block bb, df_ref use, bitmap depends_on)
977 {
978   df_ref def;
979   basic_block def_bb;
980   struct df_link *defs;
981   struct def *def_data;
982   struct invariant *inv;
983 
984   if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
985     return false;
986 
987   defs = DF_REF_CHAIN (use);
988   if (!defs)
989     {
990       unsigned int regno = DF_REF_REGNO (use);
991 
992       /* If this is the use of an uninitialized argument register that is
993 	 likely to be spilled, do not move it lest this might extend its
994 	 lifetime and cause reload to die.  This can occur for a call to
995 	 a function taking complex number arguments and moving the insns
996 	 preparing the arguments without moving the call itself wouldn't
997 	 gain much in practice.  */
998       if ((DF_REF_FLAGS (use) & DF_HARD_REG_LIVE)
999 	  && FUNCTION_ARG_REGNO_P (regno)
1000 	  && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
1001 	return false;
1002 
1003       return true;
1004     }
1005 
1006   if (defs->next)
1007     return false;
1008 
1009   def = defs->ref;
1010   check_invariant_table_size ();
1011   inv = invariant_table[DF_REF_ID (def)];
1012   if (!inv)
1013     return false;
1014 
1015   def_data = inv->def;
1016   gcc_assert (def_data != NULL);
1017 
1018   def_bb = DF_REF_BB (def);
1019   /* Note that in case bb == def_bb, we know that the definition
1020      dominates insn, because def has invariant_table[DF_REF_ID(def)]
1021      defined and we process the insns in the basic block bb
1022      sequentially.  */
1023   if (!dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1024     return false;
1025 
1026   bitmap_set_bit (depends_on, def_data->invno);
1027   return true;
1028 }
1029 
1030 
1031 /* Finds the invariants INSN depends on and store them to the DEPENDS_ON
1032    bitmap.  Returns true if all dependencies of INSN are known to be
1033    loop invariants, false otherwise.  */
1034 
1035 static bool
check_dependencies(rtx_insn * insn,bitmap depends_on)1036 check_dependencies (rtx_insn *insn, bitmap depends_on)
1037 {
1038   struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
1039   df_ref use;
1040   basic_block bb = BLOCK_FOR_INSN (insn);
1041 
1042   FOR_EACH_INSN_INFO_USE (use, insn_info)
1043     if (!check_dependency (bb, use, depends_on))
1044       return false;
1045   FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
1046     if (!check_dependency (bb, use, depends_on))
1047       return false;
1048 
1049   return true;
1050 }
1051 
1052 /* Pre-check candidate DEST to skip the one which cannot make a valid insn
1053    during move_invariant_reg.  SIMPLE is to skip HARD_REGISTER.  */
1054 static bool
pre_check_invariant_p(bool simple,rtx dest)1055 pre_check_invariant_p (bool simple, rtx dest)
1056 {
1057   if (simple && REG_P (dest) && DF_REG_DEF_COUNT (REGNO (dest)) > 1)
1058     {
1059       df_ref use;
1060       unsigned int i = REGNO (dest);
1061       struct df_insn_info *insn_info;
1062       df_ref def_rec;
1063 
1064       for (use = DF_REG_USE_CHAIN (i); use; use = DF_REF_NEXT_REG (use))
1065 	{
1066 	  rtx_insn *ref = DF_REF_INSN (use);
1067 	  insn_info = DF_INSN_INFO_GET (ref);
1068 
1069 	  FOR_EACH_INSN_INFO_DEF (def_rec, insn_info)
1070 	    if (DF_REF_REGNO (def_rec) == i)
1071 	      {
1072 		/* Multi definitions at this stage, most likely are due to
1073 		   instruction constraints, which requires both read and write
1074 		   on the same register.  Since move_invariant_reg is not
1075 		   powerful enough to handle such cases, just ignore the INV
1076 		   and leave the chance to others.  */
1077 		return false;
1078 	      }
1079 	}
1080     }
1081   return true;
1082 }
1083 
1084 /* Finds invariant in INSN.  ALWAYS_REACHED is true if the insn is always
1085    executed.  ALWAYS_EXECUTED is true if the insn is always executed,
1086    unless the program ends due to a function call.  */
1087 
1088 static void
find_invariant_insn(rtx_insn * insn,bool always_reached,bool always_executed)1089 find_invariant_insn (rtx_insn *insn, bool always_reached, bool always_executed)
1090 {
1091   df_ref ref;
1092   struct def *def;
1093   bitmap depends_on;
1094   rtx set, dest;
1095   bool simple = true;
1096   struct invariant *inv;
1097 
1098   /* We can't move a CC0 setter without the user.  */
1099   if (HAVE_cc0 && sets_cc0_p (insn))
1100     return;
1101 
1102   /* Jumps have control flow side-effects.  */
1103   if (JUMP_P (insn))
1104     return;
1105 
1106   set = single_set (insn);
1107   if (!set)
1108     return;
1109   dest = SET_DEST (set);
1110 
1111   if (!REG_P (dest)
1112       || HARD_REGISTER_P (dest))
1113     simple = false;
1114 
1115   if (!may_assign_reg_p (dest)
1116       || !pre_check_invariant_p (simple, dest)
1117       || !check_maybe_invariant (SET_SRC (set)))
1118     return;
1119 
1120   /* If the insn can throw exception, we cannot move it at all without changing
1121      cfg.  */
1122   if (can_throw_internal (insn))
1123     return;
1124 
1125   /* We cannot make trapping insn executed, unless it was executed before.  */
1126   if (may_trap_or_fault_p (PATTERN (insn)) && !always_reached)
1127     return;
1128 
1129   depends_on = BITMAP_ALLOC (NULL);
1130   if (!check_dependencies (insn, depends_on))
1131     {
1132       BITMAP_FREE (depends_on);
1133       return;
1134     }
1135 
1136   if (simple)
1137     def = XCNEW (struct def);
1138   else
1139     def = NULL;
1140 
1141   inv = create_new_invariant (def, insn, depends_on, always_executed);
1142 
1143   if (simple)
1144     {
1145       ref = df_find_def (insn, dest);
1146       check_invariant_table_size ();
1147       invariant_table[DF_REF_ID (ref)] = inv;
1148     }
1149 }
1150 
1151 /* Record registers used in INSN that have a unique invariant definition.  */
1152 
1153 static void
record_uses(rtx_insn * insn)1154 record_uses (rtx_insn *insn)
1155 {
1156   struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
1157   df_ref use;
1158   struct invariant *inv;
1159 
1160   FOR_EACH_INSN_INFO_USE (use, insn_info)
1161     {
1162       inv = invariant_for_use (use);
1163       if (inv)
1164 	record_use (inv->def, use);
1165     }
1166   FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
1167     {
1168       inv = invariant_for_use (use);
1169       if (inv)
1170 	record_use (inv->def, use);
1171     }
1172 }
1173 
1174 /* Finds invariants in INSN.  ALWAYS_REACHED is true if the insn is always
1175    executed.  ALWAYS_EXECUTED is true if the insn is always executed,
1176    unless the program ends due to a function call.  */
1177 
1178 static void
find_invariants_insn(rtx_insn * insn,bool always_reached,bool always_executed)1179 find_invariants_insn (rtx_insn *insn, bool always_reached, bool always_executed)
1180 {
1181   find_invariant_insn (insn, always_reached, always_executed);
1182   record_uses (insn);
1183 }
1184 
1185 /* Finds invariants in basic block BB.  ALWAYS_REACHED is true if the
1186    basic block is always executed.  ALWAYS_EXECUTED is true if the basic
1187    block is always executed, unless the program ends due to a function
1188    call.  */
1189 
1190 static void
find_invariants_bb(basic_block bb,bool always_reached,bool always_executed)1191 find_invariants_bb (basic_block bb, bool always_reached, bool always_executed)
1192 {
1193   rtx_insn *insn;
1194 
1195   FOR_BB_INSNS (bb, insn)
1196     {
1197       if (!NONDEBUG_INSN_P (insn))
1198 	continue;
1199 
1200       find_invariants_insn (insn, always_reached, always_executed);
1201 
1202       if (always_reached
1203 	  && CALL_P (insn)
1204 	  && (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
1205 	      || ! RTL_CONST_OR_PURE_CALL_P (insn)))
1206 	always_reached = false;
1207     }
1208 }
1209 
1210 /* Finds invariants in LOOP with body BODY.  ALWAYS_REACHED is the bitmap of
1211    basic blocks in BODY that are always executed.  ALWAYS_EXECUTED is the
1212    bitmap of basic blocks in BODY that are always executed unless the program
1213    ends due to a function call.  */
1214 
1215 static void
find_invariants_body(class loop * loop,basic_block * body,bitmap always_reached,bitmap always_executed)1216 find_invariants_body (class loop *loop, basic_block *body,
1217 		      bitmap always_reached, bitmap always_executed)
1218 {
1219   unsigned i;
1220 
1221   for (i = 0; i < loop->num_nodes; i++)
1222     find_invariants_bb (body[i],
1223 			bitmap_bit_p (always_reached, i),
1224 			bitmap_bit_p (always_executed, i));
1225 }
1226 
1227 /* Finds invariants in LOOP.  */
1228 
1229 static void
find_invariants(class loop * loop)1230 find_invariants (class loop *loop)
1231 {
1232   auto_bitmap may_exit;
1233   auto_bitmap always_reached;
1234   auto_bitmap has_exit;
1235   auto_bitmap always_executed;
1236   basic_block *body = get_loop_body_in_dom_order (loop);
1237 
1238   find_exits (loop, body, may_exit, has_exit);
1239   compute_always_reached (loop, body, may_exit, always_reached);
1240   compute_always_reached (loop, body, has_exit, always_executed);
1241 
1242   find_defs (loop);
1243   find_invariants_body (loop, body, always_reached, always_executed);
1244   merge_identical_invariants ();
1245 
1246   free (body);
1247 }
1248 
1249 /* Frees a list of uses USE.  */
1250 
1251 static void
free_use_list(struct use * use)1252 free_use_list (struct use *use)
1253 {
1254   struct use *next;
1255 
1256   for (; use; use = next)
1257     {
1258       next = use->next;
1259       free (use);
1260     }
1261 }
1262 
1263 /* Return pressure class and number of hard registers (through *NREGS)
1264    for destination of INSN. */
1265 static enum reg_class
get_pressure_class_and_nregs(rtx_insn * insn,int * nregs)1266 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
1267 {
1268   rtx reg;
1269   enum reg_class pressure_class;
1270   rtx set = single_set (insn);
1271 
1272   /* Considered invariant insns have only one set.  */
1273   gcc_assert (set != NULL_RTX);
1274   reg = SET_DEST (set);
1275   if (GET_CODE (reg) == SUBREG)
1276     reg = SUBREG_REG (reg);
1277   if (MEM_P (reg))
1278     {
1279       *nregs = 0;
1280       pressure_class = NO_REGS;
1281     }
1282   else
1283     {
1284       if (! REG_P (reg))
1285 	reg = NULL_RTX;
1286       if (reg == NULL_RTX)
1287 	pressure_class = GENERAL_REGS;
1288       else
1289 	{
1290 	  pressure_class = reg_allocno_class (REGNO (reg));
1291 	  pressure_class = ira_pressure_class_translate[pressure_class];
1292 	}
1293       *nregs
1294 	= ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
1295     }
1296   return pressure_class;
1297 }
1298 
1299 /* Calculates cost and number of registers needed for moving invariant INV
1300    out of the loop and stores them to *COST and *REGS_NEEDED.  *CL will be
1301    the REG_CLASS of INV.  Return
1302      -1: if INV is invalid.
1303       0: if INV and its depends_on have same reg_class
1304       1: if INV and its depends_on have different reg_classes.  */
1305 
1306 static int
get_inv_cost(struct invariant * inv,int * comp_cost,unsigned * regs_needed,enum reg_class * cl)1307 get_inv_cost (struct invariant *inv, int *comp_cost, unsigned *regs_needed,
1308 	      enum reg_class *cl)
1309 {
1310   int i, acomp_cost;
1311   unsigned aregs_needed[N_REG_CLASSES];
1312   unsigned depno;
1313   struct invariant *dep;
1314   bitmap_iterator bi;
1315   int ret = 1;
1316 
1317   /* Find the representative of the class of the equivalent invariants.  */
1318   inv = invariants[inv->eqto];
1319 
1320   *comp_cost = 0;
1321   if (! flag_ira_loop_pressure)
1322     regs_needed[0] = 0;
1323   else
1324     {
1325       for (i = 0; i < ira_pressure_classes_num; i++)
1326 	regs_needed[ira_pressure_classes[i]] = 0;
1327     }
1328 
1329   if (inv->move
1330       || inv->stamp == actual_stamp)
1331     return -1;
1332   inv->stamp = actual_stamp;
1333 
1334   if (! flag_ira_loop_pressure)
1335     regs_needed[0]++;
1336   else
1337     {
1338       int nregs;
1339       enum reg_class pressure_class;
1340 
1341       pressure_class = get_pressure_class_and_nregs (inv->insn, &nregs);
1342       regs_needed[pressure_class] += nregs;
1343       *cl = pressure_class;
1344       ret = 0;
1345     }
1346 
1347   if (!inv->cheap_address
1348       || inv->def->n_uses == 0
1349       || inv->def->n_addr_uses < inv->def->n_uses
1350       /* Count cost if the inv can't be propagated into address uses.  */
1351       || !inv->def->can_prop_to_addr_uses)
1352     (*comp_cost) += inv->cost * inv->eqno;
1353 
1354 #ifdef STACK_REGS
1355   {
1356     /* Hoisting constant pool constants into stack regs may cost more than
1357        just single register.  On x87, the balance is affected both by the
1358        small number of FP registers, and by its register stack organization,
1359        that forces us to add compensation code in and around the loop to
1360        shuffle the operands to the top of stack before use, and pop them
1361        from the stack after the loop finishes.
1362 
1363        To model this effect, we increase the number of registers needed for
1364        stack registers by two: one register push, and one register pop.
1365        This usually has the effect that FP constant loads from the constant
1366        pool are not moved out of the loop.
1367 
1368        Note that this also means that dependent invariants cannot be moved.
1369        However, the primary purpose of this pass is to move loop invariant
1370        address arithmetic out of loops, and address arithmetic that depends
1371        on floating point constants is unlikely to ever occur.  */
1372     rtx set = single_set (inv->insn);
1373     if (set
1374 	&& IS_STACK_MODE (GET_MODE (SET_SRC (set)))
1375 	&& constant_pool_constant_p (SET_SRC (set)))
1376       {
1377 	if (flag_ira_loop_pressure)
1378 	  regs_needed[ira_stack_reg_pressure_class] += 2;
1379 	else
1380 	  regs_needed[0] += 2;
1381       }
1382   }
1383 #endif
1384 
1385   EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, depno, bi)
1386     {
1387       bool check_p;
1388       enum reg_class dep_cl = ALL_REGS;
1389       int dep_ret;
1390 
1391       dep = invariants[depno];
1392 
1393       /* If DEP is moved out of the loop, it is not a depends_on any more.  */
1394       if (dep->move)
1395 	continue;
1396 
1397       dep_ret = get_inv_cost (dep, &acomp_cost, aregs_needed, &dep_cl);
1398 
1399       if (! flag_ira_loop_pressure)
1400 	check_p = aregs_needed[0] != 0;
1401       else
1402 	{
1403 	  for (i = 0; i < ira_pressure_classes_num; i++)
1404 	    if (aregs_needed[ira_pressure_classes[i]] != 0)
1405 	      break;
1406 	  check_p = i < ira_pressure_classes_num;
1407 
1408 	  if ((dep_ret == 1) || ((dep_ret == 0) && (*cl != dep_cl)))
1409 	    {
1410 	      *cl = ALL_REGS;
1411 	      ret = 1;
1412 	    }
1413 	}
1414       if (check_p
1415 	  /* We need to check always_executed, since if the original value of
1416 	     the invariant may be preserved, we may need to keep it in a
1417 	     separate register.  TODO check whether the register has an
1418 	     use outside of the loop.  */
1419 	  && dep->always_executed
1420 	  && !dep->def->uses->next)
1421 	{
1422 	  /* If this is a single use, after moving the dependency we will not
1423 	     need a new register.  */
1424 	  if (! flag_ira_loop_pressure)
1425 	    aregs_needed[0]--;
1426 	  else
1427 	    {
1428 	      int nregs;
1429 	      enum reg_class pressure_class;
1430 
1431 	      pressure_class = get_pressure_class_and_nregs (inv->insn, &nregs);
1432 	      aregs_needed[pressure_class] -= nregs;
1433 	    }
1434 	}
1435 
1436       if (! flag_ira_loop_pressure)
1437 	regs_needed[0] += aregs_needed[0];
1438       else
1439 	{
1440 	  for (i = 0; i < ira_pressure_classes_num; i++)
1441 	    regs_needed[ira_pressure_classes[i]]
1442 	      += aregs_needed[ira_pressure_classes[i]];
1443 	}
1444       (*comp_cost) += acomp_cost;
1445     }
1446   return ret;
1447 }
1448 
1449 /* Calculates gain for eliminating invariant INV.  REGS_USED is the number
1450    of registers used in the loop, NEW_REGS is the number of new variables
1451    already added due to the invariant motion.  The number of registers needed
1452    for it is stored in *REGS_NEEDED.  SPEED and CALL_P are flags passed
1453    through to estimate_reg_pressure_cost. */
1454 
1455 static int
gain_for_invariant(struct invariant * inv,unsigned * regs_needed,unsigned * new_regs,unsigned regs_used,bool speed,bool call_p)1456 gain_for_invariant (struct invariant *inv, unsigned *regs_needed,
1457 		    unsigned *new_regs, unsigned regs_used,
1458 		    bool speed, bool call_p)
1459 {
1460   int comp_cost, size_cost;
1461   /* Workaround -Wmaybe-uninitialized false positive during
1462      profiledbootstrap by initializing it.  */
1463   enum reg_class cl = NO_REGS;
1464   int ret;
1465 
1466   actual_stamp++;
1467 
1468   ret = get_inv_cost (inv, &comp_cost, regs_needed, &cl);
1469 
1470   if (! flag_ira_loop_pressure)
1471     {
1472       size_cost = (estimate_reg_pressure_cost (new_regs[0] + regs_needed[0],
1473 					       regs_used, speed, call_p)
1474 		   - estimate_reg_pressure_cost (new_regs[0],
1475 						 regs_used, speed, call_p));
1476     }
1477   else if (ret < 0)
1478     return -1;
1479   else if ((ret == 0) && (cl == NO_REGS))
1480     /* Hoist it anyway since it does not impact register pressure.  */
1481     return 1;
1482   else
1483     {
1484       int i;
1485       enum reg_class pressure_class;
1486 
1487       for (i = 0; i < ira_pressure_classes_num; i++)
1488 	{
1489 	  pressure_class = ira_pressure_classes[i];
1490 
1491 	  if (!reg_classes_intersect_p (pressure_class, cl))
1492 	    continue;
1493 
1494 	  if ((int) new_regs[pressure_class]
1495 	      + (int) regs_needed[pressure_class]
1496 	      + LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
1497 	      + param_ira_loop_reserved_regs
1498 	      > ira_class_hard_regs_num[pressure_class])
1499 	    break;
1500 	}
1501       if (i < ira_pressure_classes_num)
1502 	/* There will be register pressure excess and we want not to
1503 	   make this loop invariant motion.  All loop invariants with
1504 	   non-positive gains will be rejected in function
1505 	   find_invariants_to_move.  Therefore we return the negative
1506 	   number here.
1507 
1508 	   One could think that this rejects also expensive loop
1509 	   invariant motions and this will hurt code performance.
1510 	   However numerous experiments with different heuristics
1511 	   taking invariant cost into account did not confirm this
1512 	   assumption.  There are possible explanations for this
1513 	   result:
1514            o probably all expensive invariants were already moved out
1515              of the loop by PRE and gimple invariant motion pass.
1516            o expensive invariant execution will be hidden by insn
1517              scheduling or OOO processor hardware because usually such
1518              invariants have a lot of freedom to be executed
1519              out-of-order.
1520 	   Another reason for ignoring invariant cost vs spilling cost
1521 	   heuristics is also in difficulties to evaluate accurately
1522 	   spill cost at this stage.  */
1523 	return -1;
1524       else
1525 	size_cost = 0;
1526     }
1527 
1528   return comp_cost - size_cost;
1529 }
1530 
1531 /* Finds invariant with best gain for moving.  Returns the gain, stores
1532    the invariant in *BEST and number of registers needed for it to
1533    *REGS_NEEDED.  REGS_USED is the number of registers used in the loop.
1534    NEW_REGS is the number of new variables already added due to invariant
1535    motion.  */
1536 
1537 static int
best_gain_for_invariant(struct invariant ** best,unsigned * regs_needed,unsigned * new_regs,unsigned regs_used,bool speed,bool call_p)1538 best_gain_for_invariant (struct invariant **best, unsigned *regs_needed,
1539 			 unsigned *new_regs, unsigned regs_used,
1540 			 bool speed, bool call_p)
1541 {
1542   struct invariant *inv;
1543   int i, gain = 0, again;
1544   unsigned aregs_needed[N_REG_CLASSES], invno;
1545 
1546   FOR_EACH_VEC_ELT (invariants, invno, inv)
1547     {
1548       if (inv->move)
1549 	continue;
1550 
1551       /* Only consider the "representatives" of equivalent invariants.  */
1552       if (inv->eqto != inv->invno)
1553 	continue;
1554 
1555       again = gain_for_invariant (inv, aregs_needed, new_regs, regs_used,
1556       				  speed, call_p);
1557       if (again > gain)
1558 	{
1559 	  gain = again;
1560 	  *best = inv;
1561 	  if (! flag_ira_loop_pressure)
1562 	    regs_needed[0] = aregs_needed[0];
1563 	  else
1564 	    {
1565 	      for (i = 0; i < ira_pressure_classes_num; i++)
1566 		regs_needed[ira_pressure_classes[i]]
1567 		  = aregs_needed[ira_pressure_classes[i]];
1568 	    }
1569 	}
1570     }
1571 
1572   return gain;
1573 }
1574 
1575 /* Marks invariant INVNO and all its dependencies for moving.  */
1576 
1577 static void
set_move_mark(unsigned invno,int gain)1578 set_move_mark (unsigned invno, int gain)
1579 {
1580   struct invariant *inv = invariants[invno];
1581   bitmap_iterator bi;
1582 
1583   /* Find the representative of the class of the equivalent invariants.  */
1584   inv = invariants[inv->eqto];
1585 
1586   if (inv->move)
1587     return;
1588   inv->move = true;
1589 
1590   if (dump_file)
1591     {
1592       if (gain >= 0)
1593 	fprintf (dump_file, "Decided to move invariant %d -- gain %d\n",
1594 		 invno, gain);
1595       else
1596 	fprintf (dump_file, "Decided to move dependent invariant %d\n",
1597 		 invno);
1598     };
1599 
1600   EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, invno, bi)
1601     {
1602       set_move_mark (invno, -1);
1603     }
1604 }
1605 
1606 /* Determines which invariants to move.  */
1607 
1608 static void
find_invariants_to_move(bool speed,bool call_p)1609 find_invariants_to_move (bool speed, bool call_p)
1610 {
1611   int gain;
1612   unsigned i, regs_used, regs_needed[N_REG_CLASSES], new_regs[N_REG_CLASSES];
1613   struct invariant *inv = NULL;
1614 
1615   if (!invariants.length ())
1616     return;
1617 
1618   if (flag_ira_loop_pressure)
1619     /* REGS_USED is actually never used when the flag is on.  */
1620     regs_used = 0;
1621   else
1622     /* We do not really do a good job in estimating number of
1623        registers used; we put some initial bound here to stand for
1624        induction variables etc.  that we do not detect.  */
1625     {
1626       unsigned int n_regs = DF_REG_SIZE (df);
1627 
1628       regs_used = 2;
1629 
1630       for (i = 0; i < n_regs; i++)
1631 	{
1632 	  if (!DF_REGNO_FIRST_DEF (i) && DF_REGNO_LAST_USE (i))
1633 	    {
1634 	      /* This is a value that is used but not changed inside loop.  */
1635 	      regs_used++;
1636 	    }
1637 	}
1638     }
1639 
1640   if (! flag_ira_loop_pressure)
1641     new_regs[0] = regs_needed[0] = 0;
1642   else
1643     {
1644       for (i = 0; (int) i < ira_pressure_classes_num; i++)
1645 	new_regs[ira_pressure_classes[i]] = 0;
1646     }
1647   while ((gain = best_gain_for_invariant (&inv, regs_needed,
1648 					  new_regs, regs_used,
1649 					  speed, call_p)) > 0)
1650     {
1651       set_move_mark (inv->invno, gain);
1652       if (! flag_ira_loop_pressure)
1653 	new_regs[0] += regs_needed[0];
1654       else
1655 	{
1656 	  for (i = 0; (int) i < ira_pressure_classes_num; i++)
1657 	    new_regs[ira_pressure_classes[i]]
1658 	      += regs_needed[ira_pressure_classes[i]];
1659 	}
1660     }
1661 }
1662 
1663 /* Replace the uses, reached by the definition of invariant INV, by REG.
1664 
1665    IN_GROUP is nonzero if this is part of a group of changes that must be
1666    performed as a group.  In that case, the changes will be stored.  The
1667    function `apply_change_group' will validate and apply the changes.  */
1668 
1669 static int
replace_uses(struct invariant * inv,rtx reg,bool in_group)1670 replace_uses (struct invariant *inv, rtx reg, bool in_group)
1671 {
1672   /* Replace the uses we know to be dominated.  It saves work for copy
1673      propagation, and also it is necessary so that dependent invariants
1674      are computed right.  */
1675   if (inv->def)
1676     {
1677       struct use *use;
1678       for (use = inv->def->uses; use; use = use->next)
1679 	validate_change (use->insn, use->pos, reg, true);
1680 
1681       /* If we aren't part of a larger group, apply the changes now.  */
1682       if (!in_group)
1683 	return apply_change_group ();
1684     }
1685 
1686   return 1;
1687 }
1688 
1689 /* Whether invariant INV setting REG can be moved out of LOOP, at the end of
1690    the block preceding its header.  */
1691 
1692 static bool
can_move_invariant_reg(class loop * loop,struct invariant * inv,rtx reg)1693 can_move_invariant_reg (class loop *loop, struct invariant *inv, rtx reg)
1694 {
1695   df_ref def, use;
1696   unsigned int dest_regno, defs_in_loop_count = 0;
1697   rtx_insn *insn = inv->insn;
1698   basic_block bb = BLOCK_FOR_INSN (inv->insn);
1699 
1700   /* We ignore hard register and memory access for cost and complexity reasons.
1701      Hard register are few at this stage and expensive to consider as they
1702      require building a separate data flow.  Memory access would require using
1703      df_simulate_* and can_move_insns_across functions and is more complex.  */
1704   if (!REG_P (reg) || HARD_REGISTER_P (reg))
1705     return false;
1706 
1707   /* Check whether the set is always executed.  We could omit this condition if
1708      we know that the register is unused outside of the loop, but it does not
1709      seem worth finding out.  */
1710   if (!inv->always_executed)
1711     return false;
1712 
1713   /* Check that all uses that would be dominated by def are already dominated
1714      by it.  */
1715   dest_regno = REGNO (reg);
1716   for (use = DF_REG_USE_CHAIN (dest_regno); use; use = DF_REF_NEXT_REG (use))
1717     {
1718       rtx_insn *use_insn;
1719       basic_block use_bb;
1720 
1721       use_insn = DF_REF_INSN (use);
1722       use_bb = BLOCK_FOR_INSN (use_insn);
1723 
1724       /* Ignore instruction considered for moving.  */
1725       if (use_insn == insn)
1726 	continue;
1727 
1728       /* Don't consider uses outside loop.  */
1729       if (!flow_bb_inside_loop_p (loop, use_bb))
1730 	continue;
1731 
1732       /* Don't move if a use is not dominated by def in insn.  */
1733       if (use_bb == bb && DF_INSN_LUID (insn) >= DF_INSN_LUID (use_insn))
1734 	return false;
1735       if (!dominated_by_p (CDI_DOMINATORS, use_bb, bb))
1736 	return false;
1737     }
1738 
1739   /* Check for other defs.  Any other def in the loop might reach a use
1740      currently reached by the def in insn.  */
1741   for (def = DF_REG_DEF_CHAIN (dest_regno); def; def = DF_REF_NEXT_REG (def))
1742     {
1743       basic_block def_bb = DF_REF_BB (def);
1744 
1745       /* Defs in exit block cannot reach a use they weren't already.  */
1746       if (single_succ_p (def_bb))
1747 	{
1748 	  basic_block def_bb_succ;
1749 
1750 	  def_bb_succ = single_succ (def_bb);
1751 	  if (!flow_bb_inside_loop_p (loop, def_bb_succ))
1752 	    continue;
1753 	}
1754 
1755       if (++defs_in_loop_count > 1)
1756 	return false;
1757     }
1758 
1759   return true;
1760 }
1761 
1762 /* Move invariant INVNO out of the LOOP.  Returns true if this succeeds, false
1763    otherwise.  */
1764 
1765 static bool
move_invariant_reg(class loop * loop,unsigned invno)1766 move_invariant_reg (class loop *loop, unsigned invno)
1767 {
1768   struct invariant *inv = invariants[invno];
1769   struct invariant *repr = invariants[inv->eqto];
1770   unsigned i;
1771   basic_block preheader = loop_preheader_edge (loop)->src;
1772   rtx reg, set, dest, note;
1773   bitmap_iterator bi;
1774   int regno = -1;
1775 
1776   if (inv->reg)
1777     return true;
1778   if (!repr->move)
1779     return false;
1780 
1781   /* If this is a representative of the class of equivalent invariants,
1782      really move the invariant.  Otherwise just replace its use with
1783      the register used for the representative.  */
1784   if (inv == repr)
1785     {
1786       if (inv->depends_on)
1787 	{
1788 	  EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, i, bi)
1789 	    {
1790 	      if (!move_invariant_reg (loop, i))
1791 		goto fail;
1792 	    }
1793 	}
1794 
1795       /* If possible, just move the set out of the loop.  Otherwise, we
1796 	 need to create a temporary register.  */
1797       set = single_set (inv->insn);
1798       reg = dest = SET_DEST (set);
1799       if (GET_CODE (reg) == SUBREG)
1800 	reg = SUBREG_REG (reg);
1801       if (REG_P (reg))
1802 	regno = REGNO (reg);
1803 
1804       if (!can_move_invariant_reg (loop, inv, dest))
1805 	{
1806 	  reg = gen_reg_rtx_and_attrs (dest);
1807 
1808 	  /* Try replacing the destination by a new pseudoregister.  */
1809 	  validate_change (inv->insn, &SET_DEST (set), reg, true);
1810 
1811 	  /* As well as all the dominated uses.  */
1812 	  replace_uses (inv, reg, true);
1813 
1814 	  /* And validate all the changes.  */
1815 	  if (!apply_change_group ())
1816 	    goto fail;
1817 
1818 	  emit_insn_after (gen_move_insn (dest, reg), inv->insn);
1819 	}
1820       else if (dump_file)
1821 	fprintf (dump_file, "Invariant %d moved without introducing a new "
1822 			    "temporary register\n", invno);
1823       reorder_insns (inv->insn, inv->insn, BB_END (preheader));
1824       df_recompute_luids (preheader);
1825 
1826       /* If there is a REG_EQUAL note on the insn we just moved, and the
1827 	 insn is in a basic block that is not always executed or the note
1828 	 contains something for which we don't know the invariant status,
1829 	 the note may no longer be valid after we move the insn.  Note that
1830 	 uses in REG_EQUAL notes are taken into account in the computation
1831 	 of invariants, so it is safe to retain the note even if it contains
1832 	 register references for which we know the invariant status.  */
1833       if ((note = find_reg_note (inv->insn, REG_EQUAL, NULL_RTX))
1834 	  && (!inv->always_executed
1835 	      || !check_maybe_invariant (XEXP (note, 0))))
1836 	remove_note (inv->insn, note);
1837     }
1838   else
1839     {
1840       if (!move_invariant_reg (loop, repr->invno))
1841 	goto fail;
1842       reg = repr->reg;
1843       regno = repr->orig_regno;
1844       if (!replace_uses (inv, reg, false))
1845 	goto fail;
1846       set = single_set (inv->insn);
1847       emit_insn_after (gen_move_insn (SET_DEST (set), reg), inv->insn);
1848       delete_insn (inv->insn);
1849     }
1850 
1851   inv->reg = reg;
1852   inv->orig_regno = regno;
1853 
1854   return true;
1855 
1856 fail:
1857   /* If we failed, clear move flag, so that we do not try to move inv
1858      again.  */
1859   if (dump_file)
1860     fprintf (dump_file, "Failed to move invariant %d\n", invno);
1861   inv->move = false;
1862   inv->reg = NULL_RTX;
1863   inv->orig_regno = -1;
1864 
1865   return false;
1866 }
1867 
1868 /* Move selected invariant out of the LOOP.  Newly created regs are marked
1869    in TEMPORARY_REGS.  */
1870 
1871 static void
move_invariants(class loop * loop)1872 move_invariants (class loop *loop)
1873 {
1874   struct invariant *inv;
1875   unsigned i;
1876 
1877   FOR_EACH_VEC_ELT (invariants, i, inv)
1878     move_invariant_reg (loop, i);
1879   if (flag_ira_loop_pressure && resize_reg_info ())
1880     {
1881       FOR_EACH_VEC_ELT (invariants, i, inv)
1882 	if (inv->reg != NULL_RTX)
1883 	  {
1884 	    if (inv->orig_regno >= 0)
1885 	      setup_reg_classes (REGNO (inv->reg),
1886 				 reg_preferred_class (inv->orig_regno),
1887 				 reg_alternate_class (inv->orig_regno),
1888 				 reg_allocno_class (inv->orig_regno));
1889 	    else
1890 	      setup_reg_classes (REGNO (inv->reg),
1891 				 GENERAL_REGS, NO_REGS, GENERAL_REGS);
1892 	  }
1893     }
1894   /* Remove the DF_UD_CHAIN problem added in find_defs before rescanning,
1895      to save a bit of compile time.  */
1896   df_remove_problem (df_chain);
1897   df_process_deferred_rescans ();
1898 }
1899 
1900 /* Initializes invariant motion data.  */
1901 
1902 static void
init_inv_motion_data(void)1903 init_inv_motion_data (void)
1904 {
1905   actual_stamp = 1;
1906 
1907   invariants.create (100);
1908 }
1909 
1910 /* Frees the data allocated by invariant motion.  */
1911 
1912 static void
free_inv_motion_data(void)1913 free_inv_motion_data (void)
1914 {
1915   unsigned i;
1916   struct def *def;
1917   struct invariant *inv;
1918 
1919   check_invariant_table_size ();
1920   for (i = 0; i < DF_DEFS_TABLE_SIZE (); i++)
1921     {
1922       inv = invariant_table[i];
1923       if (inv)
1924 	{
1925 	  def = inv->def;
1926 	  gcc_assert (def != NULL);
1927 
1928 	  free_use_list (def->uses);
1929 	  free (def);
1930 	  invariant_table[i] = NULL;
1931 	}
1932     }
1933 
1934   FOR_EACH_VEC_ELT (invariants, i, inv)
1935     {
1936       BITMAP_FREE (inv->depends_on);
1937       free (inv);
1938     }
1939   invariants.release ();
1940 }
1941 
1942 /* Move the invariants out of the LOOP.  */
1943 
1944 static void
move_single_loop_invariants(class loop * loop)1945 move_single_loop_invariants (class loop *loop)
1946 {
1947   init_inv_motion_data ();
1948 
1949   find_invariants (loop);
1950   find_invariants_to_move (optimize_loop_for_speed_p (loop),
1951 			   LOOP_DATA (loop)->has_call);
1952   move_invariants (loop);
1953 
1954   free_inv_motion_data ();
1955 }
1956 
1957 /* Releases the auxiliary data for LOOP.  */
1958 
1959 static void
free_loop_data(class loop * loop)1960 free_loop_data (class loop *loop)
1961 {
1962   class loop_data *data = LOOP_DATA (loop);
1963   if (!data)
1964     return;
1965 
1966   bitmap_clear (&LOOP_DATA (loop)->regs_ref);
1967   bitmap_clear (&LOOP_DATA (loop)->regs_live);
1968   free (data);
1969   loop->aux = NULL;
1970 }
1971 
1972 
1973 
1974 /* Registers currently living.  */
1975 static bitmap_head curr_regs_live;
1976 
1977 /* Current reg pressure for each pressure class.  */
1978 static int curr_reg_pressure[N_REG_CLASSES];
1979 
1980 /* Record all regs that are set in any one insn.  Communication from
1981    mark_reg_{store,clobber} and global_conflicts.  Asm can refer to
1982    all hard-registers.  */
1983 static rtx regs_set[(FIRST_PSEUDO_REGISTER > MAX_RECOG_OPERANDS
1984 		     ? FIRST_PSEUDO_REGISTER : MAX_RECOG_OPERANDS) * 2];
1985 /* Number of regs stored in the previous array.  */
1986 static int n_regs_set;
1987 
1988 /* Return pressure class and number of needed hard registers (through
1989    *NREGS) of register REGNO.  */
1990 static enum reg_class
get_regno_pressure_class(int regno,int * nregs)1991 get_regno_pressure_class (int regno, int *nregs)
1992 {
1993   if (regno >= FIRST_PSEUDO_REGISTER)
1994     {
1995       enum reg_class pressure_class;
1996 
1997       pressure_class = reg_allocno_class (regno);
1998       pressure_class = ira_pressure_class_translate[pressure_class];
1999       *nregs
2000 	= ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
2001       return pressure_class;
2002     }
2003   else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
2004 	   && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
2005     {
2006       *nregs = 1;
2007       return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
2008     }
2009   else
2010     {
2011       *nregs = 0;
2012       return NO_REGS;
2013     }
2014 }
2015 
2016 /* Increase (if INCR_P) or decrease current register pressure for
2017    register REGNO.  */
2018 static void
change_pressure(int regno,bool incr_p)2019 change_pressure (int regno, bool incr_p)
2020 {
2021   int nregs;
2022   enum reg_class pressure_class;
2023 
2024   pressure_class = get_regno_pressure_class (regno, &nregs);
2025   if (! incr_p)
2026     curr_reg_pressure[pressure_class] -= nregs;
2027   else
2028     {
2029       curr_reg_pressure[pressure_class] += nregs;
2030       if (LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
2031 	  < curr_reg_pressure[pressure_class])
2032 	LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
2033 	  = curr_reg_pressure[pressure_class];
2034     }
2035 }
2036 
2037 /* Mark REGNO birth.  */
2038 static void
mark_regno_live(int regno)2039 mark_regno_live (int regno)
2040 {
2041   class loop *loop;
2042 
2043   for (loop = curr_loop;
2044        loop != current_loops->tree_root;
2045        loop = loop_outer (loop))
2046     bitmap_set_bit (&LOOP_DATA (loop)->regs_live, regno);
2047   if (!bitmap_set_bit (&curr_regs_live, regno))
2048     return;
2049   change_pressure (regno, true);
2050 }
2051 
2052 /* Mark REGNO death.  */
2053 static void
mark_regno_death(int regno)2054 mark_regno_death (int regno)
2055 {
2056   if (! bitmap_clear_bit (&curr_regs_live, regno))
2057     return;
2058   change_pressure (regno, false);
2059 }
2060 
2061 /* Mark setting register REG.  */
2062 static void
mark_reg_store(rtx reg,const_rtx setter ATTRIBUTE_UNUSED,void * data ATTRIBUTE_UNUSED)2063 mark_reg_store (rtx reg, const_rtx setter ATTRIBUTE_UNUSED,
2064 		void *data ATTRIBUTE_UNUSED)
2065 {
2066   if (GET_CODE (reg) == SUBREG)
2067     reg = SUBREG_REG (reg);
2068 
2069   if (! REG_P (reg))
2070     return;
2071 
2072   regs_set[n_regs_set++] = reg;
2073 
2074   unsigned int end_regno = END_REGNO (reg);
2075   for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
2076     mark_regno_live (regno);
2077 }
2078 
2079 /* Mark clobbering register REG.  */
2080 static void
mark_reg_clobber(rtx reg,const_rtx setter,void * data)2081 mark_reg_clobber (rtx reg, const_rtx setter, void *data)
2082 {
2083   if (GET_CODE (setter) == CLOBBER)
2084     mark_reg_store (reg, setter, data);
2085 }
2086 
2087 /* Mark register REG death.  */
2088 static void
mark_reg_death(rtx reg)2089 mark_reg_death (rtx reg)
2090 {
2091   unsigned int end_regno = END_REGNO (reg);
2092   for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
2093     mark_regno_death (regno);
2094 }
2095 
2096 /* Mark occurrence of registers in X for the current loop.  */
2097 static void
mark_ref_regs(rtx x)2098 mark_ref_regs (rtx x)
2099 {
2100   RTX_CODE code;
2101   int i;
2102   const char *fmt;
2103 
2104   if (!x)
2105     return;
2106 
2107   code = GET_CODE (x);
2108   if (code == REG)
2109     {
2110       class loop *loop;
2111 
2112       for (loop = curr_loop;
2113 	   loop != current_loops->tree_root;
2114 	   loop = loop_outer (loop))
2115 	bitmap_set_bit (&LOOP_DATA (loop)->regs_ref, REGNO (x));
2116       return;
2117     }
2118 
2119   fmt = GET_RTX_FORMAT (code);
2120   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2121     if (fmt[i] == 'e')
2122       mark_ref_regs (XEXP (x, i));
2123     else if (fmt[i] == 'E')
2124       {
2125 	int j;
2126 
2127 	for (j = 0; j < XVECLEN (x, i); j++)
2128 	  mark_ref_regs (XVECEXP (x, i, j));
2129       }
2130 }
2131 
2132 /* Calculate register pressure in the loops.  */
2133 static void
calculate_loop_reg_pressure(void)2134 calculate_loop_reg_pressure (void)
2135 {
2136   int i;
2137   unsigned int j;
2138   bitmap_iterator bi;
2139   basic_block bb;
2140   rtx_insn *insn;
2141   rtx link;
2142   class loop *loop, *parent;
2143 
2144   FOR_EACH_LOOP (loop, 0)
2145     if (loop->aux == NULL)
2146       {
2147 	loop->aux = xcalloc (1, sizeof (class loop_data));
2148 	bitmap_initialize (&LOOP_DATA (loop)->regs_ref, &reg_obstack);
2149 	bitmap_initialize (&LOOP_DATA (loop)->regs_live, &reg_obstack);
2150       }
2151   ira_setup_eliminable_regset ();
2152   bitmap_initialize (&curr_regs_live, &reg_obstack);
2153   FOR_EACH_BB_FN (bb, cfun)
2154     {
2155       curr_loop = bb->loop_father;
2156       if (curr_loop == current_loops->tree_root)
2157 	continue;
2158 
2159       for (loop = curr_loop;
2160 	   loop != current_loops->tree_root;
2161 	   loop = loop_outer (loop))
2162 	bitmap_ior_into (&LOOP_DATA (loop)->regs_live, DF_LR_IN (bb));
2163 
2164       bitmap_copy (&curr_regs_live, DF_LR_IN (bb));
2165       for (i = 0; i < ira_pressure_classes_num; i++)
2166 	curr_reg_pressure[ira_pressure_classes[i]] = 0;
2167       EXECUTE_IF_SET_IN_BITMAP (&curr_regs_live, 0, j, bi)
2168 	change_pressure (j, true);
2169 
2170       FOR_BB_INSNS (bb, insn)
2171 	{
2172 	  if (! NONDEBUG_INSN_P (insn))
2173 	    continue;
2174 
2175 	  mark_ref_regs (PATTERN (insn));
2176 	  n_regs_set = 0;
2177 	  note_stores (insn, mark_reg_clobber, NULL);
2178 
2179 	  /* Mark any registers dead after INSN as dead now.  */
2180 
2181 	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2182 	    if (REG_NOTE_KIND (link) == REG_DEAD)
2183 	      mark_reg_death (XEXP (link, 0));
2184 
2185 	  /* Mark any registers set in INSN as live,
2186 	     and mark them as conflicting with all other live regs.
2187 	     Clobbers are processed again, so they conflict with
2188 	     the registers that are set.  */
2189 
2190 	  note_stores (insn, mark_reg_store, NULL);
2191 
2192 	  if (AUTO_INC_DEC)
2193 	    for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2194 	      if (REG_NOTE_KIND (link) == REG_INC)
2195 		mark_reg_store (XEXP (link, 0), NULL_RTX, NULL);
2196 
2197 	  while (n_regs_set-- > 0)
2198 	    {
2199 	      rtx note = find_regno_note (insn, REG_UNUSED,
2200 					  REGNO (regs_set[n_regs_set]));
2201 	      if (! note)
2202 		continue;
2203 
2204 	      mark_reg_death (XEXP (note, 0));
2205 	    }
2206 	}
2207     }
2208   bitmap_release (&curr_regs_live);
2209   if (flag_ira_region == IRA_REGION_MIXED
2210       || flag_ira_region == IRA_REGION_ALL)
2211     FOR_EACH_LOOP (loop, 0)
2212       {
2213 	EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_live, 0, j, bi)
2214 	  if (! bitmap_bit_p (&LOOP_DATA (loop)->regs_ref, j))
2215 	    {
2216 	      enum reg_class pressure_class;
2217 	      int nregs;
2218 
2219 	      pressure_class = get_regno_pressure_class (j, &nregs);
2220 	      LOOP_DATA (loop)->max_reg_pressure[pressure_class] -= nregs;
2221 	    }
2222       }
2223   if (dump_file == NULL)
2224     return;
2225   FOR_EACH_LOOP (loop, 0)
2226     {
2227       parent = loop_outer (loop);
2228       fprintf (dump_file, "\n  Loop %d (parent %d, header bb%d, depth %d)\n",
2229 	       loop->num, (parent == NULL ? -1 : parent->num),
2230 	       loop->header->index, loop_depth (loop));
2231       fprintf (dump_file, "\n    ref. regnos:");
2232       EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_ref, 0, j, bi)
2233 	fprintf (dump_file, " %d", j);
2234       fprintf (dump_file, "\n    live regnos:");
2235       EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_live, 0, j, bi)
2236 	fprintf (dump_file, " %d", j);
2237       fprintf (dump_file, "\n    Pressure:");
2238       for (i = 0; (int) i < ira_pressure_classes_num; i++)
2239 	{
2240 	  enum reg_class pressure_class;
2241 
2242 	  pressure_class = ira_pressure_classes[i];
2243 	  if (LOOP_DATA (loop)->max_reg_pressure[pressure_class] == 0)
2244 	    continue;
2245 	  fprintf (dump_file, " %s=%d", reg_class_names[pressure_class],
2246 		   LOOP_DATA (loop)->max_reg_pressure[pressure_class]);
2247 	}
2248       fprintf (dump_file, "\n");
2249     }
2250 }
2251 
2252 
2253 
2254 /* Move the invariants out of the loops.  */
2255 
2256 void
move_loop_invariants(void)2257 move_loop_invariants (void)
2258 {
2259   class loop *loop;
2260 
2261   if (optimize == 1)
2262     df_live_add_problem ();
2263   /* ??? This is a hack.  We should only need to call df_live_set_all_dirty
2264      for optimize == 1, but can_move_invariant_reg relies on DF_INSN_LUID
2265      being up-to-date.  That isn't always true (even after df_analyze)
2266      because df_process_deferred_rescans doesn't necessarily cause
2267      blocks to be rescanned.  */
2268   df_live_set_all_dirty ();
2269   if (flag_ira_loop_pressure)
2270     {
2271       df_analyze ();
2272       regstat_init_n_sets_and_refs ();
2273       ira_set_pseudo_classes (true, dump_file);
2274       calculate_loop_reg_pressure ();
2275       regstat_free_n_sets_and_refs ();
2276     }
2277   df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
2278   /* Process the loops, innermost first.  */
2279   FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2280     {
2281       curr_loop = loop;
2282       /* move_single_loop_invariants for very large loops is time consuming
2283 	 and might need a lot of memory.  For -O1 only do loop invariant
2284 	 motion for very small loops.  */
2285       unsigned max_bbs = param_loop_invariant_max_bbs_in_loop;
2286       if (optimize < 2)
2287 	max_bbs /= 10;
2288       if (loop->num_nodes <= max_bbs)
2289 	move_single_loop_invariants (loop);
2290     }
2291 
2292   FOR_EACH_LOOP (loop, 0)
2293     {
2294       free_loop_data (loop);
2295     }
2296 
2297   if (flag_ira_loop_pressure)
2298     /* There is no sense to keep this info because it was most
2299        probably outdated by subsequent passes.  */
2300     free_reg_info ();
2301   free (invariant_table);
2302   invariant_table = NULL;
2303   invariant_table_size = 0;
2304 
2305   if (optimize == 1)
2306     df_remove_problem (df_live);
2307 
2308   checking_verify_flow_info ();
2309 }
2310