1 // { dg-do compile { target powerpc*-*-* ia64-*-* i?86-*-* x86_64-*-* } }
2 // { dg-options "-O3 -fselective-scheduling2 -Wno-return-type" }
3 
4 namespace std {
5 
6 typedef long unsigned int size_t;
7 
8 template<typename _Tp> class new_allocator { public: typedef size_t size_type; typedef _Tp* pointer; };
9 template<typename _Tp> class allocator: public new_allocator<_Tp> { public: typedef size_t size_type; template<typename _Tp1> struct rebind { typedef allocator<_Tp1> other; }; };
10 
11 class back_insert_iterator { };
back_inserter(_Container & __x)12 template<typename _Container> back_insert_iterator back_inserter(_Container& __x) { return back_insert_iterator(); };
13 
14 class vector { };
15 
16 struct _List_node_base { };
17 struct _List_node : public _List_node_base { };
_List_iterator_List_iterator18 template<typename _Tp> struct _List_iterator { typedef _List_iterator<_Tp> _Self; typedef _Tp& reference; explicit _List_iterator(_List_node_base* __x) : _M_node(__x) { } reference operator*() const { } _Self& operator++() { } bool operator!=(const _Self& __x) const { return _M_node != __x._M_node; } _List_node_base* _M_node; };
19 template<typename _Tp, typename _Alloc> class _List_base { protected: typedef typename _Alloc::template rebind<_List_node >::other _Node_alloc_type; struct _List_impl : public _Node_alloc_type { _List_node_base _M_node; }; _List_impl _M_impl; };
end()20 template<typename _Tp, typename _Alloc = std::allocator<_Tp> > class list : protected _List_base<_Tp, _Alloc> { public: typedef _Tp value_type; typedef _List_iterator<_Tp> iterator; iterator begin() { } iterator end() { return iterator(&this->_M_impl._M_node); } };
21 
beginarray22 namespace tr1 { template<typename _Tp, size_t _Nm> struct array { typedef _Tp value_type; typedef const value_type& const_reference; typedef const value_type* const_iterator; typedef size_t size_type; value_type _M_instance[_Nm ? _Nm : 1]; const_iterator begin() const { return const_iterator(&_M_instance[0]); } const_reference operator[](size_type __n) const { return _M_instance[__n]; } }; }
23 }
24 
25 namespace X {
26 
27 class Object { };
28 struct Has_qrt { };
29 template <typename F> struct qrt_or_not { typedef const typename F::result_type & type; };
30 template <typename Functor, typename P1 = void> struct Qualified_result_of : qrt_or_not<Functor> { };
31 
32 using std::tr1::array;
33 
34 template <class R_> class Point_2 : public R_::Kernel_base::Point_2 {
35 public:
36   typedef typename R_::Kernel_base::Point_2 RPoint_2;
37   typedef RPoint_2 Rep;
rep()38   const Rep& rep() const { }
39 };
40 
41 template <class R_> class Vector_2 : public R_::Kernel_base::Vector_2 {
42 public:
43   typedef typename R_::Kernel_base::Vector_2 RVector_2;
44   typedef RVector_2 Rep;
rep()45   const Rep& rep() const { return *this; }
46   typedef R_ R;
x()47   typename Qualified_result_of<typename R::Compute_x_2,Vector_2>::type x() const { return R().compute_x_2_object()(*this); }
y()48   typename Qualified_result_of<typename R::Compute_y_2,Vector_2>::type y() const { return R().compute_y_2_object()(*this); }
cartesian(int i)49   typename Qualified_result_of<typename R::Compute_y_2,Vector_2>::type cartesian(int i) const { return (i==0) ? x() : y(); }
hx()50   typename Qualified_result_of<typename R::Compute_hx_2,Vector_2>::type hx() const { return R().compute_hx_2_object()(*this); }
hy()51   typename Qualified_result_of<typename R::Compute_hy_2,Vector_2>::type hy() const { return R().compute_hy_2_object()(*this); }
hw()52   typename Qualified_result_of<typename R::Compute_hw_2,Vector_2>::type hw() const { return R().compute_hw_2_object()(*this); }
homogeneous(int i)53   typename Qualified_result_of<typename R::Compute_hx_2,Vector_2>::type homogeneous(int i) const { return (i==0) ? hx() : (i==1)? hy() : hw(); }
54 };
55 
56 template <class R_> class Segment_2 : public R_::Kernel_base::Segment_2 { };
57 template <class R_> class Iso_rectangle_2 : public R_::Kernel_base::Iso_rectangle_2 { };
58 
constant()59 template <typename T, int i > const T& constant() { static const T t(i); return t; }
Ptr()60 template <class T, class Alloc = std::allocator<T > > class Handle_for { struct RefCounted { T t; }; typedef typename Alloc::template rebind<RefCounted>::other Allocator; typedef typename Allocator::pointer pointer; pointer ptr_; public: typedef T element_type; const T * Ptr() const { return &(ptr_->t); } };
get(const Handle_for<T,Allocator> & h)61 template <class T, class Allocator> const T& get(const Handle_for<T, Allocator> &h) { return *(h.Ptr()); }
62 
63 template <class R_> class PointC2 {
64 public:
65   typedef typename R_::Vector_2 Vector_2; Vector_2 base;
cartesian_begin()66   typedef typename Vector_2::Cartesian_const_iterator Cartesian_const_iterator; Cartesian_const_iterator cartesian_begin() const { return base.cartesian_begin(); }
67 };
68 
69 template <class R_> class VectorC2 {
70 public:
71   typedef typename R_::FT FT;
72   typedef array<FT, 2> Rep;
73   typedef typename R_::template Handle<Rep>::type Base;
74   Base base;
75   typedef typename Rep::const_iterator Cartesian_const_iterator;
x()76   const FT & x() const { return X::get(base)[0]; }
y()77   const FT & y() const { return X::get(base)[1]; }
hx()78   const FT & hx() const { return x(); }
hy()79   const FT & hy() const { return y(); }
hw()80   const FT & hw() const { return constant<FT, 1>(); }
cartesian_begin()81   Cartesian_const_iterator cartesian_begin() const { return X::get(base).begin(); }
82 };
83 
84 template <class R_> class SegmentC2 { };
85 template <class R_> class Iso_rectangleC2 { };
86 
87 namespace internal {
88   template <class K> class Segment_2_Iso_rectangle_2_pair {
89     public:
90       enum Intersection_results { NO_INTERSECTION };
91       Segment_2_Iso_rectangle_2_pair(typename K::Segment_2 const *seg, typename K::Iso_rectangle_2 const *rect) ;
92       Intersection_results intersection_type() const;
93       mutable Intersection_results _result;
94       typename K::Point_2 _ref_point;
95       typename K::Vector_2 _dir;
96       typename K::Point_2 _isomin;
97       typename K::Point_2 _isomax;
98       mutable typename K::FT _min, _max;
99   };
intersection(const typename K::Segment_2 & seg,const typename K::Iso_rectangle_2 & iso,const K &)100   template <class K> Object intersection( const typename K::Segment_2 &seg, const typename K::Iso_rectangle_2 &iso, const K&) {
101     typedef Segment_2_Iso_rectangle_2_pair<K> is_t; is_t ispair(&seg, &iso); switch (ispair.intersection_type()) { }
102     return Object();
103   }
intersection_type()104   template <class K> typename Segment_2_Iso_rectangle_2_pair<K>::Intersection_results Segment_2_Iso_rectangle_2_pair<K>::intersection_type() const {
105     typedef typename K::RT RT;
106     typedef typename K::FT FT;
107     typename K::Construct_cartesian_const_iterator_2 construct_cccit;
108     typename K::Cartesian_const_iterator_2 ref_point_it = construct_cccit(_ref_point);
109     typename K::Cartesian_const_iterator_2 end = construct_cccit(_ref_point, 0);
110     typename K::Cartesian_const_iterator_2 isomin_it = construct_cccit(_isomin);
111     typename K::Cartesian_const_iterator_2 isomax_it = construct_cccit(_isomax);
112     for (unsigned int i=0; ref_point_it != end; ++i, ++ref_point_it, ++isomin_it, ++isomax_it) {
113       if (_dir.homogeneous(i) == RT(0)) {
114         if ( *(ref_point_it) <*(isomin_it) ) {
115           _result = NO_INTERSECTION;
116         }
117         if ( *(ref_point_it) > *(isomax_it)) {
118           _result = NO_INTERSECTION;
119         }
120       } else {
121         FT newmin, newmax;
122         if (_dir.homogeneous(i) > RT(0)) {
123           newmin = ( *(isomin_it) - (*ref_point_it)) / _dir.cartesian(i);
124           newmax = ( *(isomax_it) - (*ref_point_it)) / _dir.cartesian(i);
125         } else {
126           newmin = ( (*isomax_it) - (*ref_point_it)) / _dir.cartesian(i);
127           newmax = ( (*isomin_it) - (*ref_point_it)) / _dir.cartesian(i);
128         }
129         if (newmin > _min) _min = newmin;
130         if (newmax <_max) _max = newmax;
131         if (_max <_min) { return _result; }
132       }
133     }
134   }
135 }
136 
intersection(const Segment_2<K> & seg,const Iso_rectangle_2<K> & iso)137 template <class K> Object intersection(const Segment_2<K> &seg, const Iso_rectangle_2<K> &iso) { typedef typename K::Intersect_2 Intersect; return Intersect()(seg, iso); }
138 
139 namespace CommonKernelFunctors {
140   template <typename K> class Construct_cartesian_const_iterator_2 {
141     typedef typename K::Point_2 Point_2;
142     typedef typename K::Cartesian_const_iterator_2 Cartesian_const_iterator_2;
143 public:
144     typedef Cartesian_const_iterator_2 result_type;
operator()145     Cartesian_const_iterator_2 operator()( const Point_2& p) const { return p.rep().cartesian_begin(); }
operator()146     Cartesian_const_iterator_2 operator()( const Point_2& p, int) const { }
147   };
148   template <typename K> class Intersect_2 {
149     typedef typename K::Object_2 Object_2;
150   public:
151     typedef Object_2 result_type;
operator()152     template <class T1, class T2> Object_2 operator()(const T1& t1, const T2& t2) const { return internal::intersection(t1, t2, K()); }
153   };
154 }
155 
156 namespace CartesianKernelFunctors {
157   using namespace CommonKernelFunctors;
158   template <typename K> class Compute_x_2 : Has_qrt {
159     typedef typename K::FT FT;
160     typedef typename K::Vector_2 Vector_2;
161   public:
162     typedef FT result_type;
operator()163     const result_type & operator()(const Vector_2& v) const { return v.rep().x(); }
164   };
165   template <typename K> class Compute_y_2 : Has_qrt {
166     typedef typename K::FT FT;
167     typedef typename K::Vector_2 Vector_2;
168   public:
169     typedef FT result_type;
operator()170     const result_type & operator()(const Vector_2& v) const { return v.rep().y(); }
171   };
172   template <typename K> class Compute_hx_2 : public Has_qrt {
173     typedef typename K::FT FT;
174     typedef typename K::Vector_2 Vector_2;
175   public:
176     typedef FT result_type;
operator()177     const result_type & operator()(const Vector_2& v) const { return v.rep().hx(); }
178   };
179   template <typename K> class Compute_hy_2 : public Has_qrt {
180     typedef typename K::FT FT;
181     typedef typename K::Vector_2 Vector_2;
182   public:
183     typedef FT result_type;
operator()184     const result_type & operator()(const Vector_2& v) const { return v.rep().hy(); }
185   };
186   template <typename K> class Compute_hw_2 : public Has_qrt {
187     typedef typename K::FT FT;
188     typedef typename K::Vector_2 Vector_2;
189   public:
190     typedef FT result_type;
operator()191     const result_type & operator()(const Vector_2& v) const { return v.rep().hw(); }
192   };
193 }
194 
195 template <typename K_, typename FT_> struct Cartesian_base {
196   typedef K_ Kernel;
197   typedef X::Object Object_2;
198   typedef PointC2<Kernel> Point_2;
199   typedef VectorC2<Kernel> Vector_2;
200   typedef SegmentC2<Kernel> Segment_2;
201   typedef Iso_rectangleC2<Kernel> Iso_rectangle_2;
202   typedef typename array<FT_, 2>::const_iterator Cartesian_const_iterator_2;
203 };
204 
205 template <typename K_base, typename Kernel_ > struct Type_equality_wrapper : public K_base {
206   typedef K_base Kernel_base;
207   typedef X::Point_2<Kernel_> Point_2;
208   typedef X::Vector_2<Kernel_> Vector_2;
209   typedef X::Segment_2<Kernel_> Segment_2;
210   typedef X::Iso_rectangle_2<Kernel_> Iso_rectangle_2;
211 };
212 
213 template <typename FT_, typename Kernel_ > struct Cartesian_base_ref_count : public Cartesian_base<Kernel_, FT_ > {
214   typedef FT_ RT;
215   typedef FT_ FT;
216   template <typename T > struct Handle { typedef Handle_for<T> type; };
217   typedef Kernel_ K;
218   typedef CartesianKernelFunctors::Compute_x_2<K> Compute_x_2;
compute_x_2_objectCartesian_base_ref_count219   Compute_x_2 compute_x_2_object() const { }
220   typedef CartesianKernelFunctors::Compute_y_2<K> Compute_y_2;
compute_y_2_objectCartesian_base_ref_count221   Compute_y_2 compute_y_2_object() const { }
222   typedef CartesianKernelFunctors::Compute_hx_2<K> Compute_hx_2;
compute_hx_2_objectCartesian_base_ref_count223   Compute_hx_2 compute_hx_2_object() const { }
224   typedef CartesianKernelFunctors::Compute_hy_2<K> Compute_hy_2;
compute_hy_2_objectCartesian_base_ref_count225   Compute_hy_2 compute_hy_2_object() const { }
226   typedef CartesianKernelFunctors::Compute_hw_2<K> Compute_hw_2;
compute_hw_2_objectCartesian_base_ref_count227   Compute_hw_2 compute_hw_2_object() const { }
228   typedef CartesianKernelFunctors::Construct_cartesian_const_iterator_2<K> Construct_cartesian_const_iterator_2;
229   typedef CartesianKernelFunctors::Intersect_2<K> Intersect_2;
230 };
231 
232 template <typename FT_ > struct Cartesian : public Type_equality_wrapper<Cartesian_base_ref_count<FT_, Cartesian<FT_> >, Cartesian<FT_> > { };
233 
234 template <class Kernel> class Ipelet_base {
235 public:
236   typedef typename X::Point_2<Kernel> Point_2;
237   typedef typename Kernel::Segment_2 Segment_2;
238   typedef typename Kernel::Iso_rectangle_2 Iso_rectangle_2;
239 
read_active_objects()240   Iso_rectangle_2 read_active_objects () const { }
241   struct Voronoi_from_tri{ std::list<Segment_2> seg_list; };
242 
cast_into_seg(const T & obj,const Iso_rectangle_2 & bbox,output_iterator out_it)243   template <class T,class output_iterator> bool cast_into_seg(const T& obj,const Iso_rectangle_2& bbox,output_iterator out_it) const{ X::intersection(obj,bbox); }
cast_into_seg(const iterator first,const iterator end,const Iso_rectangle_2 & bbox,output_iterator out_it)244   template<class iterator,class output_iterator> void cast_into_seg(const iterator first,const iterator end, const Iso_rectangle_2& bbox, output_iterator out_it) const { for (iterator it=first; it!=end; ++it) cast_into_seg(*it,bbox,out_it); }
draw_dual_(Voronoi_from_tri & v_recup,const Iso_rectangle_2 & bbox)245   void draw_dual_(Voronoi_from_tri& v_recup,const Iso_rectangle_2& bbox) const { std::vector seg_cont; cast_into_seg(v_recup.seg_list.begin(),v_recup.seg_list.end(),bbox,std::back_inserter(seg_cont)); }
draw_dual_in_ipe(const Iso_rectangle_2 & bbox)246   void draw_dual_in_ipe(const Iso_rectangle_2& bbox) const { Voronoi_from_tri v_recup; draw_dual_(v_recup,bbox); }
247 };
248 
249 typedef X::Cartesian<double> Kernel;
250 
251 class diagrammeIpelet : public X::Ipelet_base<Kernel> { void protected_run(); };
protected_run()252 void diagrammeIpelet::protected_run() { Iso_rectangle_2 bbox = read_active_objects( ); draw_dual_in_ipe(bbox); }
253 
254 }
255