1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             E X P _ I N T R                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2021, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;          use Atree;
27with Checks;         use Checks;
28with Einfo;          use Einfo;
29with Einfo.Entities; use Einfo.Entities;
30with Einfo.Utils;    use Einfo.Utils;
31with Elists;         use Elists;
32with Expander;       use Expander;
33with Exp_Atag;       use Exp_Atag;
34with Exp_Ch7;        use Exp_Ch7;
35with Exp_Ch11;       use Exp_Ch11;
36with Exp_Code;       use Exp_Code;
37with Exp_Fixd;       use Exp_Fixd;
38with Exp_Util;       use Exp_Util;
39with Freeze;         use Freeze;
40with Inline;         use Inline;
41with Nmake;          use Nmake;
42with Nlists;         use Nlists;
43with Opt;            use Opt;
44with Restrict;       use Restrict;
45with Rident;         use Rident;
46with Rtsfind;        use Rtsfind;
47with Sem;            use Sem;
48with Sem_Aux;        use Sem_Aux;
49with Sem_Eval;       use Sem_Eval;
50with Sem_Res;        use Sem_Res;
51with Sem_Type;       use Sem_Type;
52with Sem_Util;       use Sem_Util;
53with Sinfo;          use Sinfo;
54with Sinfo.Nodes;    use Sinfo.Nodes;
55with Sinfo.Utils;    use Sinfo.Utils;
56with Sinput;         use Sinput;
57with Snames;         use Snames;
58with Stand;          use Stand;
59with Tbuild;         use Tbuild;
60with Uintp;          use Uintp;
61
62package body Exp_Intr is
63
64   -----------------------
65   -- Local Subprograms --
66   -----------------------
67
68   procedure Expand_Binary_Operator_Call (N : Node_Id);
69   --  Expand a call to an intrinsic arithmetic operator when the operand
70   --  types or sizes are not identical.
71
72   procedure Expand_Dispatching_Constructor_Call (N : Node_Id);
73   --  Expand a call to an instantiation of Generic_Dispatching_Constructor
74   --  into a dispatching call to the actual subprogram associated with the
75   --  Constructor formal subprogram, passing it the Parameters actual of
76   --  the call to the instantiation and dispatching based on call's Tag
77   --  parameter.
78
79   procedure Expand_Exception_Call (N : Node_Id; Ent : RE_Id);
80   --  Expand a call to Exception_Information/Message/Name. The first
81   --  parameter, N, is the node for the function call, and Ent is the
82   --  entity for the corresponding routine in the Ada.Exceptions package.
83
84   procedure Expand_Import_Call (N : Node_Id);
85   --  Expand a call to Import_Address/Longest_Integer/Value. The parameter
86   --  N is the node for the function call.
87
88   procedure Expand_Shift (N : Node_Id; E : Entity_Id; K : Node_Kind);
89   --  Expand an intrinsic shift operation, N and E are from the call to
90   --  Expand_Intrinsic_Call (call node and subprogram spec entity) and
91   --  K is the kind for the shift node
92
93   procedure Expand_Unc_Conversion (N : Node_Id; E : Entity_Id);
94   --  Expand a call to an instantiation of Unchecked_Conversion into a node
95   --  N_Unchecked_Type_Conversion.
96
97   procedure Expand_Unc_Deallocation (N : Node_Id);
98   --  Expand a call to an instantiation of Unchecked_Deallocation into a node
99   --  N_Free_Statement and appropriate context.
100
101   procedure Expand_To_Address (N : Node_Id);
102   procedure Expand_To_Pointer (N : Node_Id);
103   --  Expand a call to corresponding function, declared in an instance of
104   --  System.Address_To_Access_Conversions.
105
106   procedure Expand_Source_Info (N : Node_Id; Nam : Name_Id);
107   --  Rewrite the node as the appropriate string literal or positive
108   --  constant. Nam is the name of one of the intrinsics declared in
109   --  GNAT.Source_Info; see g-souinf.ads for documentation of these
110   --  intrinsics.
111
112   ---------------------
113   -- Add_Source_Info --
114   ---------------------
115
116   procedure Add_Source_Info
117     (Buf : in out Bounded_String;
118      Loc : Source_Ptr;
119      Nam : Name_Id)
120   is
121   begin
122      case Nam is
123         when Name_Line =>
124            Append (Buf, Nat (Get_Logical_Line_Number (Loc)));
125
126         when Name_File =>
127            Append (Buf, Reference_Name (Get_Source_File_Index (Loc)));
128
129         when Name_Source_Location =>
130            Build_Location_String (Buf, Loc);
131
132         when Name_Enclosing_Entity =>
133
134            --  Skip enclosing blocks to reach enclosing unit
135
136            declare
137               Ent : Entity_Id := Current_Scope;
138            begin
139               while Present (Ent) loop
140                  exit when Ekind (Ent) not in E_Block | E_Loop;
141                  Ent := Scope (Ent);
142               end loop;
143
144               --  Ent now points to the relevant defining entity
145
146               Append_Entity_Name (Buf, Ent);
147            end;
148
149         when Name_Compilation_ISO_Date =>
150            Append (Buf, Opt.Compilation_Time (1 .. 10));
151
152         when Name_Compilation_Date =>
153            declare
154               subtype S13 is String (1 .. 3);
155               Months : constant array (1 .. 12) of S13 :=
156                          ("Jan", "Feb", "Mar", "Apr", "May", "Jun",
157                           "Jul", "Aug", "Sep", "Oct", "Nov", "Dec");
158
159               M1 : constant Character := Opt.Compilation_Time (6);
160               M2 : constant Character := Opt.Compilation_Time (7);
161
162               MM : constant Natural range 1 .. 12 :=
163                      (Character'Pos (M1) - Character'Pos ('0')) * 10 +
164                      (Character'Pos (M2) - Character'Pos ('0'));
165
166            begin
167               --  Reformat ISO date into MMM DD YYYY (__DATE__) format
168
169               Append (Buf, Months (MM));
170               Append (Buf, ' ');
171               Append (Buf, Opt.Compilation_Time (9 .. 10));
172               Append (Buf, ' ');
173               Append (Buf, Opt.Compilation_Time (1 .. 4));
174            end;
175
176         when Name_Compilation_Time =>
177            Append (Buf, Opt.Compilation_Time (12 .. 19));
178
179         when others =>
180            raise Program_Error;
181      end case;
182   end Add_Source_Info;
183
184   ---------------------------------
185   -- Expand_Binary_Operator_Call --
186   ---------------------------------
187
188   procedure Expand_Binary_Operator_Call (N : Node_Id) is
189      T1  : constant Entity_Id := Underlying_Type (Etype (Left_Opnd  (N)));
190      T2  : constant Entity_Id := Underlying_Type (Etype (Right_Opnd (N)));
191      TR  : constant Entity_Id := Etype (N);
192      T3  : Entity_Id;
193      Res : Node_Id;
194
195      Siz : constant Uint := UI_Max (RM_Size (T1), RM_Size (T2));
196      --  Maximum of operand sizes
197
198   begin
199      --  Nothing to do if the operands have the same modular type
200
201      if Base_Type (T1) = Base_Type (T2)
202        and then Is_Modular_Integer_Type (T1)
203      then
204         return;
205      end if;
206
207      --  Use the appropriate type for the size
208
209      if Siz <= 32 then
210         T3 := RTE (RE_Unsigned_32);
211
212      elsif Siz <= 64 then
213         T3 := RTE (RE_Unsigned_64);
214
215      else pragma Assert (Siz <= 128);
216         T3 := RTE (RE_Unsigned_128);
217      end if;
218
219      --  Copy operator node, and reset type and entity fields, for
220      --  subsequent reanalysis.
221
222      Res := New_Copy (N);
223      Set_Etype (Res, T3);
224
225      case Nkind (N) is
226         when N_Op_And => Set_Entity (Res, Standard_Op_And);
227         when N_Op_Or  => Set_Entity (Res, Standard_Op_Or);
228         when N_Op_Xor => Set_Entity (Res, Standard_Op_Xor);
229         when others   => raise Program_Error;
230      end case;
231
232      --  Convert operands to large enough intermediate type
233
234      Set_Left_Opnd (Res,
235        Unchecked_Convert_To (T3, Relocate_Node (Left_Opnd (N))));
236      Set_Right_Opnd (Res,
237        Unchecked_Convert_To (T3, Relocate_Node (Right_Opnd (N))));
238
239      --  Analyze and resolve result formed by conversion to target type
240
241      Rewrite (N, Unchecked_Convert_To (TR, Res));
242      Analyze_And_Resolve (N, TR);
243   end Expand_Binary_Operator_Call;
244
245   -----------------------------------------
246   -- Expand_Dispatching_Constructor_Call --
247   -----------------------------------------
248
249   --  Transform a call to an instantiation of Generic_Dispatching_Constructor
250   --  of the form:
251
252   --     GDC_Instance (The_Tag, Parameters'Access)
253
254   --  to a class-wide conversion of a dispatching call to the actual
255   --  associated with the formal subprogram Construct, designating The_Tag
256   --  as the controlling tag of the call:
257
258   --     T'Class (Construct'Actual (Params)) -- Controlling tag is The_Tag
259
260   --  which will eventually be expanded to the following:
261
262   --     T'Class (The_Tag.all (Construct'Actual'Index).all (Params))
263
264   --  A class-wide membership test is also generated, preceding the call, to
265   --  ensure that the controlling tag denotes a type in T'Class.
266
267   procedure Expand_Dispatching_Constructor_Call (N : Node_Id) is
268      Loc        : constant Source_Ptr := Sloc (N);
269      Tag_Arg    : constant Node_Id    := First_Actual (N);
270      Param_Arg  : constant Node_Id    := Next_Actual (Tag_Arg);
271      Subp_Decl  : constant Node_Id    := Parent (Parent (Entity (Name (N))));
272      Inst_Pkg   : constant Node_Id    := Parent (Subp_Decl);
273      Act_Rename : Node_Id;
274      Act_Constr : Entity_Id;
275      Iface_Tag  : Node_Id := Empty;
276      Cnstr_Call : Node_Id;
277      Result_Typ : Entity_Id;
278
279   begin
280      --  Remove side effects from tag argument early, before rewriting
281      --  the dispatching constructor call, as Remove_Side_Effects relies
282      --  on Tag_Arg's Parent link properly attached to the tree (once the
283      --  call is rewritten, the Parent is inconsistent as it points to the
284      --  rewritten node, which is not the syntactic parent of the Tag_Arg
285      --  anymore).
286
287      Remove_Side_Effects (Tag_Arg);
288
289      --  Check that we have a proper tag
290
291      Insert_Action (N,
292        Make_Implicit_If_Statement (N,
293          Condition       => Make_Op_Eq (Loc,
294            Left_Opnd  => New_Copy_Tree (Tag_Arg),
295            Right_Opnd => New_Occurrence_Of (RTE (RE_No_Tag), Loc)),
296
297          Then_Statements => New_List (
298            Make_Raise_Statement (Loc,
299              New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
300
301      --  Check that it is not the tag of an abstract type
302
303      Insert_Action (N,
304        Make_Implicit_If_Statement (N,
305          Condition       => Make_Function_Call (Loc,
306             Name                   =>
307               New_Occurrence_Of (RTE (RE_Is_Abstract), Loc),
308             Parameter_Associations => New_List (New_Copy_Tree (Tag_Arg))),
309
310          Then_Statements => New_List (
311            Make_Raise_Statement (Loc,
312              New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
313
314      --  The subprogram is the third actual in the instantiation, and is
315      --  retrieved from the corresponding renaming declaration. However,
316      --  freeze nodes may appear before, so we retrieve the declaration
317      --  with an explicit loop.
318
319      Act_Rename := First (Visible_Declarations (Inst_Pkg));
320      while Nkind (Act_Rename) /= N_Subprogram_Renaming_Declaration loop
321         Next (Act_Rename);
322      end loop;
323
324      Act_Constr := Entity (Name (Act_Rename));
325      Result_Typ := Class_Wide_Type (Etype (Act_Constr));
326
327      --  Check that the accessibility level of the tag is no deeper than that
328      --  of the constructor function (unless CodePeer_Mode).
329
330      if not CodePeer_Mode then
331         Insert_Action (N,
332           Make_Implicit_If_Statement (N,
333             Condition       =>
334               Make_Op_Gt (Loc,
335                 Left_Opnd  =>
336                   Build_Get_Access_Level (Loc, New_Copy_Tree (Tag_Arg)),
337                 Right_Opnd =>
338                   Make_Integer_Literal
339                     (Loc, Scope_Depth_Default_0 (Act_Constr))),
340
341             Then_Statements => New_List (
342               Make_Raise_Statement (Loc,
343                 New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
344      end if;
345
346      if Is_Interface (Etype (Act_Constr)) then
347
348         --  If the result type is not known to be a parent of Tag_Arg then we
349         --  need to locate the tag of the secondary dispatch table.
350
351         if not Is_Ancestor (Etype (Result_Typ), Etype (Tag_Arg),
352                             Use_Full_View => True)
353           and then Tagged_Type_Expansion
354         then
355            --  Obtain the reference to the Ada.Tags service before generating
356            --  the Object_Declaration node to ensure that if this service is
357            --  not available in the runtime then we generate a clear error.
358
359            declare
360               Fname : constant Node_Id :=
361                         New_Occurrence_Of (RTE (RE_Secondary_Tag), Loc);
362
363            begin
364               pragma Assert (not Is_Interface (Etype (Tag_Arg)));
365
366               --  The tag is the first entry in the dispatch table of the
367               --  return type of the constructor.
368
369               Iface_Tag :=
370                 Make_Object_Declaration (Loc,
371                   Defining_Identifier => Make_Temporary (Loc, 'V'),
372                   Object_Definition   =>
373                     New_Occurrence_Of (RTE (RE_Tag), Loc),
374                   Expression          =>
375                     Make_Function_Call (Loc,
376                       Name                   => Fname,
377                       Parameter_Associations => New_List (
378                         Relocate_Node (Tag_Arg),
379                         New_Occurrence_Of
380                           (Node (First_Elmt
381                                    (Access_Disp_Table (Etype (Act_Constr)))),
382                            Loc))));
383               Insert_Action (N, Iface_Tag);
384            end;
385         end if;
386      end if;
387
388      --  Create the call to the actual Constructor function
389
390      Cnstr_Call :=
391        Make_Function_Call (Loc,
392          Name                   => New_Occurrence_Of (Act_Constr, Loc),
393          Parameter_Associations => New_List (Relocate_Node (Param_Arg)));
394
395      --  Establish its controlling tag from the tag passed to the instance
396      --  The tag may be given by a function call, in which case a temporary
397      --  should be generated now, to prevent out-of-order insertions during
398      --  the expansion of that call when stack-checking is enabled.
399
400      if Present (Iface_Tag) then
401         Set_Controlling_Argument (Cnstr_Call,
402           New_Occurrence_Of (Defining_Identifier (Iface_Tag), Loc));
403      else
404         Set_Controlling_Argument (Cnstr_Call,
405           Relocate_Node (Tag_Arg));
406      end if;
407
408      --  Rewrite and analyze the call to the instance as a class-wide
409      --  conversion of the call to the actual constructor. When the result
410      --  type is a class-wide interface type this conversion is required to
411      --  force the displacement of the pointer to the object to reference the
412      --  corresponding dispatch table.
413
414      Rewrite (N, Convert_To (Result_Typ, Cnstr_Call));
415
416      --  Do not generate a run-time check on the built object if tag
417      --  checks are suppressed for the result type or tagged type expansion
418      --  is disabled or if CodePeer_Mode.
419
420      if Tag_Checks_Suppressed (Etype (Result_Typ))
421        or else not Tagged_Type_Expansion
422        or else CodePeer_Mode
423      then
424         null;
425
426      --  Generate a class-wide membership test to ensure that the call's tag
427      --  argument denotes a type within the class. We must keep separate the
428      --  case in which the Result_Type of the constructor function is a tagged
429      --  type from the case in which it is an abstract interface because the
430      --  run-time subprogram required to check these cases differ (and have
431      --  one difference in their parameters profile).
432
433      --  Call CW_Membership if the Result_Type is a tagged type to look for
434      --  the tag in the table of ancestor tags.
435
436      elsif not Is_Interface (Result_Typ) then
437         Insert_Action (N,
438           Make_Implicit_If_Statement (N,
439             Condition =>
440               Make_Op_Not (Loc,
441                 Make_Function_Call (Loc,
442                    Name => New_Occurrence_Of (RTE (RE_CW_Membership), Loc),
443                    Parameter_Associations => New_List (
444                      New_Copy_Tree (Tag_Arg),
445                      New_Occurrence_Of (
446                        Node (First_Elmt (Access_Disp_Table (
447                                            Root_Type (Result_Typ)))), Loc)))),
448             Then_Statements =>
449               New_List (
450                 Make_Raise_Statement (Loc,
451                   Name => New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
452
453      --  Call IW_Membership test if the Result_Type is an abstract interface
454      --  to look for the tag in the table of interface tags.
455
456      else
457         Insert_Action (N,
458           Make_Implicit_If_Statement (N,
459             Condition =>
460               Make_Op_Not (Loc,
461                 Make_Function_Call (Loc,
462                    Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
463                    Parameter_Associations => New_List (
464                      Make_Attribute_Reference (Loc,
465                        Prefix         => New_Copy_Tree (Tag_Arg),
466                        Attribute_Name => Name_Address),
467
468                      New_Occurrence_Of (
469                        Node (First_Elmt (Access_Disp_Table (
470                                            Root_Type (Result_Typ)))), Loc)))),
471             Then_Statements =>
472               New_List (
473                 Make_Raise_Statement (Loc,
474                   Name => New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
475      end if;
476
477      Analyze_And_Resolve (N, Etype (Act_Constr));
478   end Expand_Dispatching_Constructor_Call;
479
480   ---------------------------
481   -- Expand_Exception_Call --
482   ---------------------------
483
484   --  If the function call is not within an exception handler, then the call
485   --  is replaced by a null string. Otherwise the appropriate routine in
486   --  Ada.Exceptions is called passing the choice parameter specification
487   --  from the enclosing handler. If the enclosing handler lacks a choice
488   --  parameter, then one is supplied.
489
490   procedure Expand_Exception_Call (N : Node_Id; Ent : RE_Id) is
491      Loc : constant Source_Ptr := Sloc (N);
492      P   : Node_Id;
493      E   : Entity_Id;
494
495   begin
496      --  Climb up parents to see if we are in exception handler
497
498      P := Parent (N);
499      loop
500         --  Case of not in exception handler, replace by null string
501
502         if No (P) then
503            Rewrite (N,
504              Make_String_Literal (Loc,
505                Strval => ""));
506            exit;
507
508         --  Case of in exception handler
509
510         elsif Nkind (P) = N_Exception_Handler then
511
512            --  Handler cannot be used for a local raise, and furthermore, this
513            --  is a violation of the No_Exception_Propagation restriction.
514
515            Set_Local_Raise_Not_OK (P);
516            Check_Restriction (No_Exception_Propagation, N);
517
518            --  If no choice parameter present, then put one there. Note that
519            --  we do not need to put it on the entity chain, since no one will
520            --  be referencing it by normal visibility methods.
521
522            if No (Choice_Parameter (P)) then
523               E := Make_Temporary (Loc, 'E');
524               Set_Choice_Parameter (P, E);
525               Mutate_Ekind (E, E_Variable);
526               Set_Etype (E, RTE (RE_Exception_Occurrence));
527               Set_Scope (E, Current_Scope);
528            end if;
529
530            Rewrite (N,
531              Make_Function_Call (Loc,
532                Name => New_Occurrence_Of (RTE (Ent), Loc),
533                Parameter_Associations => New_List (
534                  New_Occurrence_Of (Choice_Parameter (P), Loc))));
535            exit;
536
537         --  Keep climbing
538
539         else
540            P := Parent (P);
541         end if;
542      end loop;
543
544      Analyze_And_Resolve (N, Standard_String);
545   end Expand_Exception_Call;
546
547   ------------------------
548   -- Expand_Import_Call --
549   ------------------------
550
551   --  The function call must have a static string as its argument. We create
552   --  a dummy variable which uses this string as the external name in an
553   --  Import pragma. The result is then obtained as the address of this
554   --  dummy variable, converted to the appropriate target type.
555
556   procedure Expand_Import_Call (N : Node_Id) is
557      Loc : constant Source_Ptr := Sloc (N);
558      Ent : constant Entity_Id  := Entity (Name (N));
559      Str : constant Node_Id    := First_Actual (N);
560      Dum : constant Entity_Id  := Make_Temporary (Loc, 'D');
561
562   begin
563      Insert_Actions (N, New_List (
564        Make_Object_Declaration (Loc,
565          Defining_Identifier => Dum,
566          Object_Definition   =>
567            New_Occurrence_Of (Standard_Character, Loc)),
568
569        Make_Pragma (Loc,
570          Chars                        => Name_Import,
571          Pragma_Argument_Associations => New_List (
572            Make_Pragma_Argument_Association (Loc,
573              Expression => Make_Identifier (Loc, Name_Ada)),
574
575            Make_Pragma_Argument_Association (Loc,
576              Expression => Make_Identifier (Loc, Chars (Dum))),
577
578            Make_Pragma_Argument_Association (Loc,
579              Chars => Name_Link_Name,
580              Expression => Relocate_Node (Str))))));
581
582      Rewrite (N,
583        Unchecked_Convert_To (Etype (Ent),
584          Make_Attribute_Reference (Loc,
585            Prefix         => Make_Identifier (Loc, Chars (Dum)),
586            Attribute_Name => Name_Address)));
587
588      Analyze_And_Resolve (N, Etype (Ent));
589   end Expand_Import_Call;
590
591   ---------------------------
592   -- Expand_Intrinsic_Call --
593   ---------------------------
594
595   procedure Expand_Intrinsic_Call (N : Node_Id; E : Entity_Id) is
596      Nam : Name_Id;
597
598   begin
599      --  If an external name is specified for the intrinsic, it is handled
600      --  by the back-end: leave the call node unchanged for now.
601
602      if Present (Interface_Name (E)) then
603         return;
604      end if;
605
606      --  If the intrinsic subprogram is generic, gets its original name
607
608      if Present (Parent (E))
609        and then Present (Generic_Parent (Parent (E)))
610      then
611         Nam := Chars (Generic_Parent (Parent (E)));
612      else
613         Nam := Chars (E);
614      end if;
615
616      if Nam = Name_Asm then
617         Expand_Asm_Call (N);
618
619      elsif Nam = Name_Divide then
620         Expand_Decimal_Divide_Call (N);
621
622      elsif Nam = Name_Exception_Information then
623         Expand_Exception_Call (N, RE_Exception_Information);
624
625      elsif Nam = Name_Exception_Message then
626         Expand_Exception_Call (N, RE_Exception_Message);
627
628      elsif Nam = Name_Exception_Name then
629         Expand_Exception_Call (N, RE_Exception_Name_Simple);
630
631      elsif Nam = Name_Generic_Dispatching_Constructor then
632         Expand_Dispatching_Constructor_Call (N);
633
634      elsif Nam in Name_Import_Address
635                 | Name_Import_Largest_Value
636                 | Name_Import_Value
637      then
638         Expand_Import_Call (N);
639
640      elsif Nam = Name_Rotate_Left then
641         Expand_Shift (N, E, N_Op_Rotate_Left);
642
643      elsif Nam = Name_Rotate_Right then
644         Expand_Shift (N, E, N_Op_Rotate_Right);
645
646      elsif Nam = Name_Shift_Left then
647         Expand_Shift (N, E, N_Op_Shift_Left);
648
649      elsif Nam = Name_Shift_Right then
650         Expand_Shift (N, E, N_Op_Shift_Right);
651
652      elsif Nam = Name_Shift_Right_Arithmetic then
653         Expand_Shift (N, E, N_Op_Shift_Right_Arithmetic);
654
655      elsif Nam = Name_Unchecked_Conversion then
656         Expand_Unc_Conversion (N, E);
657
658      elsif Nam = Name_Unchecked_Deallocation then
659         Expand_Unc_Deallocation (N);
660
661      elsif Nam = Name_To_Address then
662         Expand_To_Address (N);
663
664      elsif Nam = Name_To_Pointer then
665         Expand_To_Pointer (N);
666
667      elsif Nam in Name_File
668                 | Name_Line
669                 | Name_Source_Location
670                 | Name_Enclosing_Entity
671                 | Name_Compilation_ISO_Date
672                 | Name_Compilation_Date
673                 | Name_Compilation_Time
674      then
675         Expand_Source_Info (N, Nam);
676
677      --  If we have a renaming, expand the call to the original operation,
678      --  which must itself be intrinsic, since renaming requires matching
679      --  conventions and this has already been checked.
680
681      elsif Present (Alias (E)) then
682         Expand_Intrinsic_Call (N, Alias (E));
683
684      elsif Nkind (N) in N_Binary_Op then
685         Expand_Binary_Operator_Call (N);
686
687      --  The only other case is where an external name was specified, since
688      --  this is the only way that an otherwise unrecognized name could
689      --  escape the checking in Sem_Prag. Nothing needs to be done in such
690      --  a case, since we pass such a call to the back end unchanged.
691
692      else
693         null;
694      end if;
695   end Expand_Intrinsic_Call;
696
697   ------------------
698   -- Expand_Shift --
699   ------------------
700
701   --  This procedure is used to convert a call to a shift function to the
702   --  corresponding operator node. This conversion is not done by the usual
703   --  circuit for converting calls to operator functions (e.g. "+"(1,2)) to
704   --  operator nodes, because shifts are not predefined operators.
705
706   --  As a result, whenever a shift is used in the source program, it will
707   --  remain as a call until converted by this routine to the operator node
708   --  form which the back end is expecting to see.
709
710   --  Note: it is possible for the expander to generate shift operator nodes
711   --  directly, which will be analyzed in the normal manner by calling Analyze
712   --  and Resolve. Such shift operator nodes will not be seen by Expand_Shift.
713
714   procedure Expand_Shift (N : Node_Id; E : Entity_Id; K : Node_Kind) is
715      Entyp : constant Entity_Id  := Etype (E);
716      Left  : constant Node_Id    := First_Actual (N);
717      Loc   : constant Source_Ptr := Sloc (N);
718      Right : constant Node_Id    := Next_Actual (Left);
719      Ltyp  : constant Node_Id    := Etype (Left);
720      Rtyp  : constant Node_Id    := Etype (Right);
721      Typ   : constant Entity_Id  := Etype (N);
722      Snode : Node_Id;
723
724   begin
725      Snode := New_Node (K, Loc);
726      Set_Right_Opnd (Snode, Relocate_Node (Right));
727      Set_Chars      (Snode, Chars (E));
728      Set_Etype      (Snode, Base_Type (Entyp));
729      Set_Entity     (Snode, E);
730
731      if Compile_Time_Known_Value (Type_High_Bound (Rtyp))
732        and then Expr_Value (Type_High_Bound (Rtyp)) < Esize (Ltyp)
733      then
734         Set_Shift_Count_OK (Snode, True);
735      end if;
736
737      if Typ = Entyp then
738
739         --  Note that we don't call Analyze and Resolve on this node, because
740         --  it already got analyzed and resolved when it was a function call.
741
742         Set_Left_Opnd (Snode, Relocate_Node (Left));
743         Rewrite (N, Snode);
744         Set_Analyzed (N);
745
746         --  However, we do call the expander, so that the expansion for
747         --  rotates and shift_right_arithmetic happens if Modify_Tree_For_C
748         --  is set.
749
750         if Expander_Active then
751            Expand (N);
752         end if;
753
754      else
755         --  If the context type is not the type of the operator, it is an
756         --  inherited operator for a derived type. Wrap the node in a
757         --  conversion so that it is type-consistent for possible further
758         --  expansion (e.g. within a lock-free protected type).
759
760         Set_Left_Opnd (Snode,
761           Unchecked_Convert_To (Base_Type (Entyp), Relocate_Node (Left)));
762         Rewrite (N, Unchecked_Convert_To (Typ, Snode));
763
764         --  Analyze and resolve result formed by conversion to target type
765
766         Analyze_And_Resolve (N, Typ);
767      end if;
768   end Expand_Shift;
769
770   ------------------------
771   -- Expand_Source_Info --
772   ------------------------
773
774   procedure Expand_Source_Info (N : Node_Id; Nam : Name_Id) is
775      Loc : constant Source_Ptr := Sloc (N);
776   begin
777      --  Integer cases
778
779      if Nam = Name_Line then
780         Rewrite (N,
781           Make_Integer_Literal (Loc,
782             Intval => UI_From_Int (Int (Get_Logical_Line_Number (Loc)))));
783         Analyze_And_Resolve (N, Standard_Positive);
784
785      --  String cases
786
787      else
788         declare
789            Buf : Bounded_String;
790         begin
791            Add_Source_Info (Buf, Loc, Nam);
792            Rewrite (N, Make_String_Literal (Loc, Strval => +Buf));
793            Analyze_And_Resolve (N, Standard_String);
794         end;
795      end if;
796
797      Set_Is_Static_Expression (N);
798   end Expand_Source_Info;
799
800   ---------------------------
801   -- Expand_Unc_Conversion --
802   ---------------------------
803
804   procedure Expand_Unc_Conversion (N : Node_Id; E : Entity_Id) is
805      Func : constant Entity_Id := Entity (Name (N));
806      Conv : Node_Id;
807      Ftyp : Entity_Id;
808      Ttyp : Entity_Id;
809
810   begin
811      --  Rewrite as unchecked conversion node. Note that we must convert
812      --  the operand to the formal type of the input parameter of the
813      --  function, so that the resulting N_Unchecked_Type_Conversion
814      --  call indicates the correct types for Gigi.
815
816      --  Right now, we only do this if a scalar type is involved. It is
817      --  not clear if it is needed in other cases. If we do attempt to
818      --  do the conversion unconditionally, it crashes 3411-018. To be
819      --  investigated further ???
820
821      Conv := Relocate_Node (First_Actual (N));
822      Ftyp := Etype (First_Formal (Func));
823
824      if Is_Scalar_Type (Ftyp) then
825         Conv := Convert_To (Ftyp, Conv);
826         Set_Parent (Conv, N);
827         Analyze_And_Resolve (Conv);
828      end if;
829
830      --  The instantiation of Unchecked_Conversion creates a wrapper package,
831      --  and the target type is declared as a subtype of the actual. Recover
832      --  the actual, which is the subtype indic. in the subtype declaration
833      --  for the target type. This is semantically correct, and avoids
834      --  anomalies with access subtypes. For entities, leave type as is.
835
836      --  We do the analysis here, because we do not want the compiler
837      --  to try to optimize or otherwise reorganize the unchecked
838      --  conversion node.
839
840      Ttyp := Etype (E);
841
842      if Is_Entity_Name (Conv) then
843         null;
844
845      elsif Nkind (Parent (Ttyp)) = N_Subtype_Declaration then
846         Ttyp := Entity (Subtype_Indication (Parent (Etype (E))));
847
848      elsif Is_Itype (Ttyp) then
849         Ttyp :=
850           Entity (Subtype_Indication (Associated_Node_For_Itype (Ttyp)));
851      else
852         raise Program_Error;
853      end if;
854
855      Rewrite (N, Unchecked_Convert_To (Ttyp, Conv));
856      Analyze_And_Resolve (N, Ttyp);
857   end Expand_Unc_Conversion;
858
859   -----------------------------
860   -- Expand_Unc_Deallocation --
861   -----------------------------
862
863   procedure Expand_Unc_Deallocation (N : Node_Id) is
864      Arg       : constant Node_Id    := First_Actual (N);
865      Loc       : constant Source_Ptr := Sloc (N);
866      Typ       : constant Entity_Id  := Etype (Arg);
867      Desig_Typ : constant Entity_Id  :=
868                    Available_View (Designated_Type (Typ));
869      Needs_Fin : constant Boolean    := Needs_Finalization (Desig_Typ);
870      Root_Typ  : constant Entity_Id  := Underlying_Type (Root_Type (Typ));
871      Pool      : constant Entity_Id  := Associated_Storage_Pool (Root_Typ);
872      Stmts     : constant List_Id    := New_List;
873
874      Arg_Known_Non_Null : constant Boolean := Known_Non_Null (N);
875      --  This captures whether we know the argument to be non-null so that
876      --  we can avoid the test. The reason that we need to capture this is
877      --  that we analyze some generated statements before properly attaching
878      --  them to the tree, and that can disturb current value settings.
879
880      Exceptions_OK : constant Boolean :=
881                        not Restriction_Active (No_Exception_Propagation);
882
883      Abrt_Blk    : Node_Id := Empty;
884      Abrt_Blk_Id : Entity_Id;
885      Abrt_HSS    : Node_Id;
886      AUD         : Entity_Id;
887      Fin_Blk     : Node_Id;
888      Fin_Call    : Node_Id;
889      Fin_Data    : Finalization_Exception_Data;
890      Free_Arg    : Node_Id;
891      Free_Nod    : Node_Id;
892      Gen_Code    : Node_Id;
893      Obj_Ref     : Node_Id;
894
895   begin
896      --  Nothing to do if we know the argument is null
897
898      if Known_Null (N) then
899         return;
900      end if;
901
902      --  Processing for pointer to controlled types. Generate:
903
904      --    Abrt   : constant Boolean := ...;
905      --    Ex     : Exception_Occurrence;
906      --    Raised : Boolean := False;
907
908      --    begin
909      --       Abort_Defer;
910
911      --       begin
912      --          [Deep_]Finalize (Obj_Ref);
913
914      --       exception
915      --          when others =>
916      --             if not Raised then
917      --                Raised := True;
918      --                Save_Occurrence (Ex, Get_Current_Excep.all.all);
919      --       end;
920      --    at end
921      --       Abort_Undefer_Direct;
922      --    end;
923
924      --  Depending on whether exception propagation is enabled and/or aborts
925      --  are allowed, the generated code may lack block statements.
926
927      if Needs_Fin then
928
929         --  Ada 2005 (AI-251): In case of abstract interface type we displace
930         --  the pointer to reference the base of the object to deallocate its
931         --  memory, unless we're targetting a VM, in which case no special
932         --  processing is required.
933
934         if Is_Interface (Directly_Designated_Type (Typ))
935           and then Tagged_Type_Expansion
936         then
937            Obj_Ref :=
938              Make_Explicit_Dereference (Loc,
939                Prefix =>
940                  Unchecked_Convert_To (Typ,
941                    Make_Function_Call (Loc,
942                      Name                   =>
943                        New_Occurrence_Of (RTE (RE_Base_Address), Loc),
944                      Parameter_Associations => New_List (
945                        Unchecked_Convert_To (RTE (RE_Address),
946                          Duplicate_Subexpr_No_Checks (Arg))))));
947
948         else
949            Obj_Ref :=
950              Make_Explicit_Dereference (Loc,
951                Prefix => Duplicate_Subexpr_No_Checks (Arg));
952         end if;
953
954         --  If the designated type is tagged, the finalization call must
955         --  dispatch because the designated type may not be the actual type
956         --  of the object. If the type is synchronized, the deallocation
957         --  applies to the corresponding record type.
958
959         if Is_Tagged_Type (Desig_Typ) then
960            if Is_Concurrent_Type (Desig_Typ) then
961               Obj_Ref :=
962                 Unchecked_Convert_To
963                   (Class_Wide_Type (Corresponding_Record_Type (Desig_Typ)),
964                      Obj_Ref);
965
966            elsif not Is_Class_Wide_Type (Desig_Typ) then
967               Obj_Ref :=
968                 Unchecked_Convert_To (Class_Wide_Type (Desig_Typ), Obj_Ref);
969            end if;
970
971         --  Otherwise the designated type is untagged. Set the type of the
972         --  dereference explicitly to force a conversion when needed given
973         --  that [Deep_]Finalize may be inherited from a parent type.
974
975         else
976            Set_Etype (Obj_Ref, Desig_Typ);
977         end if;
978
979         --  Generate:
980         --    [Deep_]Finalize (Obj_Ref);
981
982         Fin_Call := Make_Final_Call (Obj_Ref => Obj_Ref, Typ => Desig_Typ);
983
984         --  Generate:
985         --    Abrt   : constant Boolean := ...;
986         --    Ex     : Exception_Occurrence;
987         --    Raised : Boolean := False;
988
989         --    begin
990         --       <Fin_Call>
991
992         --    exception
993         --       when others =>
994         --          if not Raised then
995         --             Raised := True;
996         --             Save_Occurrence (Ex, Get_Current_Excep.all.all);
997         --    end;
998
999         if Exceptions_OK then
1000            Build_Object_Declarations (Fin_Data, Stmts, Loc);
1001
1002            Fin_Blk :=
1003              Make_Block_Statement (Loc,
1004                Handled_Statement_Sequence =>
1005                  Make_Handled_Sequence_Of_Statements (Loc,
1006                    Statements         => New_List (Fin_Call),
1007                    Exception_Handlers => New_List (
1008                      Build_Exception_Handler (Fin_Data))));
1009
1010         --  Otherwise exception propagation is not allowed
1011
1012         else
1013            Fin_Blk := Fin_Call;
1014         end if;
1015
1016         --  The finalization action must be protected by an abort defer and
1017         --  undefer pair when aborts are allowed. Generate:
1018
1019         --    begin
1020         --       Abort_Defer;
1021         --       <Fin_Blk>
1022         --    at end
1023         --       Abort_Undefer_Direct;
1024         --    end;
1025
1026         if Abort_Allowed then
1027            AUD := RTE (RE_Abort_Undefer_Direct);
1028
1029            Abrt_HSS :=
1030              Make_Handled_Sequence_Of_Statements (Loc,
1031                Statements  => New_List (
1032                  Build_Runtime_Call (Loc, RE_Abort_Defer),
1033                  Fin_Blk),
1034                At_End_Proc => New_Occurrence_Of (AUD, Loc));
1035
1036            Abrt_Blk :=
1037              Make_Block_Statement (Loc,
1038                Handled_Statement_Sequence => Abrt_HSS);
1039
1040            Add_Block_Identifier  (Abrt_Blk, Abrt_Blk_Id);
1041            Expand_At_End_Handler (Abrt_HSS, Abrt_Blk_Id);
1042
1043            --  Present the Abort_Undefer_Direct function to the backend so
1044            --  that it can inline the call to the function.
1045
1046            Add_Inlined_Body (AUD, N);
1047
1048         --  Otherwise aborts are not allowed
1049
1050         else
1051            Abrt_Blk := Fin_Blk;
1052         end if;
1053
1054         Append_To (Stmts, Abrt_Blk);
1055      end if;
1056
1057      --  For a task type, call Free_Task before freeing the ATCB. We used to
1058      --  detect the case of Abort followed by a Free here, because the Free
1059      --  wouldn't actually free if it happens before the aborted task actually
1060      --  terminates. The warning was removed, because Free now works properly
1061      --  (the task will be freed once it terminates).
1062
1063      if Is_Task_Type (Desig_Typ) then
1064         Append_To (Stmts,
1065           Cleanup_Task (N, Duplicate_Subexpr_No_Checks (Arg)));
1066
1067      --  For composite types that contain tasks, recurse over the structure
1068      --  to build the selectors for the task subcomponents.
1069
1070      elsif Has_Task (Desig_Typ) then
1071         if Is_Array_Type (Desig_Typ) then
1072            Append_List_To (Stmts, Cleanup_Array (N, Arg, Desig_Typ));
1073
1074         elsif Is_Record_Type (Desig_Typ) then
1075            Append_List_To (Stmts, Cleanup_Record (N, Arg, Desig_Typ));
1076         end if;
1077      end if;
1078
1079      --  Same for simple protected types. Eventually call Finalize_Protection
1080      --  before freeing the PO for each protected component.
1081
1082      if Is_Simple_Protected_Type (Desig_Typ) then
1083         Append_To (Stmts,
1084           Cleanup_Protected_Object (N, Duplicate_Subexpr_No_Checks (Arg)));
1085
1086      elsif Has_Simple_Protected_Object (Desig_Typ) then
1087         if Is_Array_Type (Desig_Typ) then
1088            Append_List_To (Stmts, Cleanup_Array (N, Arg, Desig_Typ));
1089
1090         elsif Is_Record_Type (Desig_Typ) then
1091            Append_List_To (Stmts, Cleanup_Record (N, Arg, Desig_Typ));
1092         end if;
1093      end if;
1094
1095      --  Normal processing for non-controlled types. The argument to free is
1096      --  a renaming rather than a constant to ensure that the original context
1097      --  is always set to null after the deallocation takes place.
1098
1099      Free_Arg := Duplicate_Subexpr_No_Checks (Arg, Renaming_Req => True);
1100      Free_Nod := Make_Free_Statement (Loc, Empty);
1101      Append_To (Stmts, Free_Nod);
1102      Set_Storage_Pool (Free_Nod, Pool);
1103
1104      --  Attach to tree before analysis of generated subtypes below
1105
1106      Set_Parent (Stmts, Parent (N));
1107
1108      --  Deal with storage pool
1109
1110      if Present (Pool) then
1111
1112         --  Freeing the secondary stack is meaningless
1113
1114         if Is_RTE (Pool, RE_SS_Pool) then
1115            null;
1116
1117         --  If the pool object is of a simple storage pool type, then attempt
1118         --  to locate the type's Deallocate procedure, if any, and set the
1119         --  free operation's procedure to call. If the type doesn't have a
1120         --  Deallocate (which is allowed), then the actual will simply be set
1121         --  to null.
1122
1123         elsif Present
1124                 (Get_Rep_Pragma (Etype (Pool), Name_Simple_Storage_Pool_Type))
1125         then
1126            declare
1127               Pool_Typ : constant Entity_Id := Base_Type (Etype (Pool));
1128               Dealloc  : Entity_Id;
1129
1130            begin
1131               Dealloc := Get_Name_Entity_Id (Name_Deallocate);
1132               while Present (Dealloc) loop
1133                  if Scope (Dealloc) = Scope (Pool_Typ)
1134                    and then Present (First_Formal (Dealloc))
1135                    and then Etype (First_Formal (Dealloc)) = Pool_Typ
1136                  then
1137                     Set_Procedure_To_Call (Free_Nod, Dealloc);
1138                     exit;
1139                  else
1140                     Dealloc := Homonym (Dealloc);
1141                  end if;
1142               end loop;
1143            end;
1144
1145         --  Case of a class-wide pool type: make a dispatching call to
1146         --  Deallocate through the class-wide Deallocate_Any.
1147
1148         elsif Is_Class_Wide_Type (Etype (Pool)) then
1149            Set_Procedure_To_Call (Free_Nod, RTE (RE_Deallocate_Any));
1150
1151         --  Case of a specific pool type: make a statically bound call
1152
1153         else
1154            Set_Procedure_To_Call
1155              (Free_Nod, Find_Storage_Op (Etype (Pool), Name_Deallocate));
1156         end if;
1157      end if;
1158
1159      if Present (Procedure_To_Call (Free_Nod)) then
1160
1161         --  For all cases of a Deallocate call, the back-end needs to be able
1162         --  to compute the size of the object being freed. This may require
1163         --  some adjustments for objects of dynamic size.
1164         --
1165         --  If the type is class wide, we generate an implicit type with the
1166         --  right dynamic size, so that the deallocate call gets the right
1167         --  size parameter computed by GIGI. Same for an access to
1168         --  unconstrained packed array.
1169
1170         if Is_Class_Wide_Type (Desig_Typ)
1171           or else
1172            (Is_Packed_Array (Desig_Typ)
1173              and then not Is_Constrained (Desig_Typ))
1174         then
1175            declare
1176               Deref    : constant Node_Id :=
1177                            Make_Explicit_Dereference (Loc,
1178                              Duplicate_Subexpr_No_Checks (Arg));
1179               D_Subtyp : Node_Id;
1180               D_Type   : Entity_Id;
1181
1182            begin
1183               --  Perform minor decoration as it is needed by the side effect
1184               --  removal mechanism.
1185
1186               Set_Etype  (Deref, Desig_Typ);
1187               Set_Parent (Deref, Free_Nod);
1188               D_Subtyp := Make_Subtype_From_Expr (Deref, Desig_Typ);
1189
1190               if Nkind (D_Subtyp) in N_Has_Entity then
1191                  D_Type := Entity (D_Subtyp);
1192
1193               else
1194                  D_Type := Make_Temporary (Loc, 'A');
1195                  Insert_Action (Deref,
1196                    Make_Subtype_Declaration (Loc,
1197                      Defining_Identifier => D_Type,
1198                      Subtype_Indication  => D_Subtyp));
1199               end if;
1200
1201               --  Force freezing at the point of the dereference. For the
1202               --  class wide case, this avoids having the subtype frozen
1203               --  before the equivalent type.
1204
1205               Freeze_Itype (D_Type, Deref);
1206
1207               Set_Actual_Designated_Subtype (Free_Nod, D_Type);
1208            end;
1209         end if;
1210      end if;
1211
1212      --  Ada 2005 (AI-251): In case of abstract interface type we must
1213      --  displace the pointer to reference the base of the object to
1214      --  deallocate its memory, unless we're targetting a VM, in which case
1215      --  no special processing is required.
1216
1217      --  Generate:
1218      --    free (Base_Address (Obj_Ptr))
1219
1220      if Is_Interface (Directly_Designated_Type (Typ))
1221        and then Tagged_Type_Expansion
1222      then
1223         Set_Expression (Free_Nod,
1224           Unchecked_Convert_To (Typ,
1225             Make_Function_Call (Loc,
1226               Name                   =>
1227                 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
1228               Parameter_Associations => New_List (
1229                 Unchecked_Convert_To (RTE (RE_Address), Free_Arg)))));
1230
1231      --  Generate:
1232      --    free (Obj_Ptr)
1233
1234      else
1235         Set_Expression (Free_Nod, Free_Arg);
1236      end if;
1237
1238      --  Only remaining step is to set result to null, or generate a raise of
1239      --  Constraint_Error if the target object is "not null".
1240
1241      if Can_Never_Be_Null (Etype (Arg)) then
1242         Append_To (Stmts,
1243           Make_Raise_Constraint_Error (Loc,
1244             Reason => CE_Access_Check_Failed));
1245
1246      else
1247         declare
1248            Lhs : constant Node_Id := Duplicate_Subexpr_No_Checks (Arg);
1249         begin
1250            Set_Assignment_OK (Lhs);
1251            Append_To (Stmts,
1252              Make_Assignment_Statement (Loc,
1253                Name       => Lhs,
1254                Expression => Make_Null (Loc)));
1255         end;
1256      end if;
1257
1258      --  Generate a test of whether any earlier finalization raised an
1259      --  exception, and in that case raise Program_Error with the previous
1260      --  exception occurrence.
1261
1262      --  Generate:
1263      --    if Raised and then not Abrt then
1264      --       raise Program_Error;                  --  for restricted RTS
1265      --         <or>
1266      --       Raise_From_Controlled_Operation (E);  --  all other cases
1267      --    end if;
1268
1269      if Needs_Fin and then Exceptions_OK then
1270         Append_To (Stmts, Build_Raise_Statement (Fin_Data));
1271      end if;
1272
1273      --  If we know the argument is non-null, then make a block statement
1274      --  that contains the required statements, no need for a test.
1275
1276      if Arg_Known_Non_Null then
1277         Gen_Code :=
1278           Make_Block_Statement (Loc,
1279             Handled_Statement_Sequence =>
1280               Make_Handled_Sequence_Of_Statements (Loc,
1281             Statements => Stmts));
1282
1283      --  If the argument may be null, wrap the statements inside an IF that
1284      --  does an explicit test to exclude the null case.
1285
1286      else
1287         Gen_Code :=
1288           Make_Implicit_If_Statement (N,
1289             Condition       =>
1290               Make_Op_Ne (Loc,
1291                 Left_Opnd  => Duplicate_Subexpr (Arg),
1292                 Right_Opnd => Make_Null (Loc)),
1293             Then_Statements => Stmts);
1294      end if;
1295
1296      --  Rewrite the call
1297
1298      Rewrite (N, Gen_Code);
1299      Analyze (N);
1300   end Expand_Unc_Deallocation;
1301
1302   -----------------------
1303   -- Expand_To_Address --
1304   -----------------------
1305
1306   procedure Expand_To_Address (N : Node_Id) is
1307      Loc : constant Source_Ptr := Sloc (N);
1308      Arg : constant Node_Id := First_Actual (N);
1309      Obj : Node_Id;
1310
1311   begin
1312      Remove_Side_Effects (Arg);
1313
1314      Obj := Make_Explicit_Dereference (Loc, Relocate_Node (Arg));
1315
1316      Rewrite (N,
1317        Make_If_Expression (Loc,
1318          Expressions => New_List (
1319            Make_Op_Eq (Loc,
1320              Left_Opnd => New_Copy_Tree (Arg),
1321              Right_Opnd => Make_Null (Loc)),
1322            New_Occurrence_Of (RTE (RE_Null_Address), Loc),
1323            Make_Attribute_Reference (Loc,
1324              Prefix         => Obj,
1325              Attribute_Name => Name_Address))));
1326
1327      Analyze_And_Resolve (N, RTE (RE_Address));
1328   end Expand_To_Address;
1329
1330   -----------------------
1331   -- Expand_To_Pointer --
1332   -----------------------
1333
1334   procedure Expand_To_Pointer (N : Node_Id) is
1335      Arg : constant Node_Id := First_Actual (N);
1336
1337   begin
1338      Rewrite (N, Unchecked_Convert_To (Etype (N), Arg));
1339      Analyze (N);
1340   end Expand_To_Pointer;
1341
1342end Exp_Intr;
1343