1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             S E M _ U T I L                              --
6--                                                                          --
7--                                 S p e c                                  --
8--                                                                          --
9--          Copyright (C) 1992-2021, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26--  Package containing utility procedures used throughout the semantics
27
28with Aspects;        use Aspects;
29with Atree;          use Atree;
30with Einfo;          use Einfo;
31with Einfo.Entities; use Einfo.Entities;
32with Exp_Tss;        use Exp_Tss;
33with Namet;          use Namet;
34with Opt;            use Opt;
35with Snames;         use Snames;
36with Types;          use Types;
37with Uintp;          use Uintp;
38with Urealp;         use Urealp;
39
40package Sem_Util is
41
42   function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
43   --  The list of interfaces implemented by Typ. Empty if there are none,
44   --  including the cases where there can't be any because e.g. the type is
45   --  not tagged.
46
47   type Accessibility_Level_Kind is
48     (Dynamic_Level,
49      Object_Decl_Level,
50      Zero_On_Dynamic_Level);
51   --  Accessibility_Level_Kind is an enumerated type which captures the
52   --  different modes in which an accessibility level could be obtained for
53   --  a given expression.
54
55   --  When in the context of the function Accessibility_Level,
56   --  Accessibility_Level_Kind signals what type of accessibility level to
57   --  obtain. For example, when Level is Dynamic_Level, a defining identifier
58   --  associated with a SAOOAAT may be returned or an N_Integer_Literal node.
59   --  When the level is Object_Decl_Level, an N_Integer_Literal node is
60   --  returned containing the level of the declaration of the object if
61   --  relevant (be it a SAOOAAT or otherwise). Finally, Zero_On_Dynamic_Level
62   --  returns library level for all cases where the accessibility level is
63   --  dynamic (used to bypass static accessibility checks in dynamic cases).
64
65   function Accessibility_Level
66     (Expr              : Node_Id;
67      Level             : Accessibility_Level_Kind;
68      In_Return_Context : Boolean := False;
69      Allow_Alt_Model   : Boolean := True) return Node_Id;
70   --  Centralized accessibility level calculation routine for finding the
71   --  accessibility level of a given expression Expr.
72
73   --  In_Return_Context forces the Accessibility_Level calculations to be
74   --  carried out "as if" Expr existed in a return value. This is useful for
75   --  calculating the accessibility levels for discriminant associations
76   --  and return aggregates.
77
78   --  The Allow_Alt_Model parameter allows the alternative level calculation
79   --  under the restriction No_Dynamic_Accessibility_Checks to be performed.
80
81   function Acquire_Warning_Match_String (Str_Lit : Node_Id) return String;
82   --  Used by pragma Warnings (Off, string), and Warn_As_Error (string) to get
83   --  the given string argument, adding leading and trailing asterisks if they
84   --  are not already present.  Str_Lit is the static value of the pragma
85   --  argument.
86
87   procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
88   --  Add A to the list of access types to process when expanding the
89   --  freeze node of E.
90
91   procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id);
92   --  Given a block statement N, generate an internal E_Block label and make
93   --  it the identifier of the block. Id denotes the generated entity. If the
94   --  block already has an identifier, Id returns the entity of its label.
95
96   procedure Add_Global_Declaration (N : Node_Id);
97   --  These procedures adds a declaration N at the library level, to be
98   --  elaborated before any other code in the unit. It is used for example
99   --  for the entity that marks whether a unit has been elaborated. The
100   --  declaration is added to the Declarations list of the Aux_Decls_Node
101   --  for the current unit. The declarations are added in the current scope,
102   --  so the caller should push a new scope as required before the call.
103
104   function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
105   --  Returns the name of E adding Suffix
106
107   function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
108   --  Given two types, returns True if we are in Allow_Integer_Address mode
109   --  and one of the types is (a descendant of) System.Address (and this type
110   --  is private), and the other type is any integer type.
111
112   function Address_Value (N : Node_Id) return Node_Id;
113   --  Return the underlying value of the expression N of an address clause
114
115   function Addressable (V : Uint) return Boolean;
116   function Addressable (V : Int)  return Boolean;
117   pragma Inline (Addressable);
118   --  Returns True if the value of V is the word size or an addressable factor
119   --  or multiple of the word size (typically 8, 16, 32, 64 or 128).
120
121   procedure Aggregate_Constraint_Checks
122     (Exp       : Node_Id;
123      Check_Typ : Entity_Id);
124   --  Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
125   --  and Check_Typ a constrained record type with discriminants, we generate
126   --  the appropriate discriminant checks. If Exp is an array aggregate then
127   --  emit the appropriate length checks. If Exp is a scalar type, or a string
128   --  literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
129   --  are performed at run time. Also used for expressions in the argument of
130   --  'Update, which shares some of the features of an aggregate.
131
132   function Alignment_In_Bits (E : Entity_Id) return Uint;
133   --  If the alignment of the type or object E is currently known to the
134   --  compiler, then this function returns the alignment value in bits.
135   --  Otherwise Uint_0 is returned, indicating that the alignment of the
136   --  entity is not yet known to the compiler.
137
138   function All_Composite_Constraints_Static (Constr : Node_Id) return Boolean;
139   --  Used to implement pragma Restrictions (No_Dynamic_Sized_Objects).
140   --  Given a constraint or subtree of a constraint on a composite
141   --  subtype/object, returns True if there are no nonstatic constraints,
142   --  which might cause objects to be created with dynamic size.
143   --  Called for subtype declarations (including implicit ones created for
144   --  subtype indications in object declarations, as well as discriminated
145   --  record aggregate cases). For record aggregates, only records containing
146   --  discriminant-dependent arrays matter, because the discriminants must be
147   --  static when governing a variant part. Access discriminants are
148   --  irrelevant. Also called for array aggregates, but only named notation,
149   --  because those are the only dynamic cases.
150
151   procedure Append_Entity_Name (Buf : in out Bounded_String; E : Entity_Id);
152   --  Recursive procedure to construct string for qualified name of enclosing
153   --  program unit. The qualification stops at an enclosing scope has no
154   --  source name (block or loop). If entity is a subprogram instance, skip
155   --  enclosing wrapper package. The name is appended to Buf.
156
157   procedure Append_Inherited_Subprogram (S : Entity_Id);
158   --  If the parent of the operation is declared in the visible part of
159   --  the current scope, the inherited operation is visible even though the
160   --  derived type that inherits the operation may be completed in the private
161   --  part of the current package.
162
163   procedure Apply_Compile_Time_Constraint_Error
164     (N            : Node_Id;
165      Msg          : String;
166      Reason       : RT_Exception_Code;
167      Ent          : Entity_Id  := Empty;
168      Typ          : Entity_Id  := Empty;
169      Loc          : Source_Ptr := No_Location;
170      Warn         : Boolean    := False;
171      Emit_Message : Boolean    := True);
172   --  N is a subexpression that will raise Constraint_Error when evaluated
173   --  at run time. Msg is a message that explains the reason for raising the
174   --  exception. The last character is ? if the message is always a warning,
175   --  even in Ada 95, and is not a ? if the message represents an illegality
176   --  (because of violation of static expression rules) in Ada 95 (but not
177   --  in Ada 83). Typically this routine posts all messages at the Sloc of
178   --  node N. However, if Loc /= No_Location, Loc is the Sloc used to output
179   --  the message. After posting the appropriate message, this routine
180   --  replaces the expression with an appropriate N_Raise_Constraint_Error
181   --  node using the given Reason code. This node is then marked as being
182   --  static if the original node is static, but sets the flag
183   --  Raises_Constraint_Error, preventing further evaluation. The error
184   --  message may contain a } or & insertion character. This normally
185   --  references Etype (N), unless the Ent argument is given explicitly, in
186   --  which case it is used instead. The type of the raise node that is built
187   --  is normally Etype (N), but if the Typ parameter is present, this is used
188   --  instead. Warn is normally False. If it is True then the message is
189   --  treated as a warning even though it does not end with a ? (this is used
190   --  when the caller wants to parameterize whether an error or warning is
191   --  given), or when the message should be treated as a warning even when
192   --  SPARK_Mode is On (which otherwise would force an error).
193   --  If Emit_Message is False, then do not emit any message.
194
195   function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
196   --  Id should be the entity of a state abstraction, an object, or a type.
197   --  Returns True iff Id is subject to external property Async_Readers.
198
199   function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
200   --  Id should be the entity of a state abstraction, an object, or a type.
201   --  Returns True iff Id is subject to external property Async_Writers.
202
203   function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
204   --  If at the point of declaration an array type has a private or limited
205   --  component, several array operations are not available on the type, and
206   --  the array type is flagged accordingly. If in the immediate scope of
207   --  the array type the component becomes non-private or non-limited, these
208   --  operations become available. This can happen if the scopes of both types
209   --  are open, and the scope of the array is not outside the scope of the
210   --  component.
211
212   procedure Bad_Aspect
213     (N    : Node_Id;
214      Nam  : Name_Id;
215      Warn : Boolean := False);
216   --  Called when node N is expected to contain a valid aspect name, and
217   --  Nam is found instead. If Warn is set True this is a warning, else this
218   --  is an error.
219
220   procedure Bad_Attribute
221     (N    : Node_Id;
222      Nam  : Name_Id;
223      Warn : Boolean := False);
224   --  Called when node N is expected to contain a valid attribute name, and
225   --  Nam is found instead. If Warn is set True this is a warning, else this
226   --  is an error.
227
228   procedure Bad_Predicated_Subtype_Use
229     (Msg            : String;
230      N              : Node_Id;
231      Typ            : Entity_Id;
232      Suggest_Static : Boolean := False);
233   --  This is called when Typ, a predicated subtype, is used in a context
234   --  which does not allow the use of a predicated subtype. Msg is passed to
235   --  Error_Msg_FE to output an appropriate message using N as the location,
236   --  and Typ as the entity. The caller must set up any insertions other than
237   --  the & for the type itself. Note that if Typ is a generic actual type,
238   --  then the message will be output as a warning, and a raise Program_Error
239   --  is inserted using Insert_Action with node N as the insertion point. Node
240   --  N also supplies the source location for construction of the raise node.
241   --  If Typ does not have any predicates, the call has no effect. Set flag
242   --  Suggest_Static when the context warrants an advice on how to avoid the
243   --  use error.
244
245   function Bad_Unordered_Enumeration_Reference
246     (N : Node_Id;
247      T : Entity_Id) return Boolean;
248   --  Node N contains a potentially dubious reference to type T, either an
249   --  explicit comparison, or an explicit range. This function returns True
250   --  if the type T is an enumeration type for which No pragma Order has been
251   --  given, and the reference N is not in the same extended source unit as
252   --  the declaration of T.
253
254   function Begin_Keyword_Location (N : Node_Id) return Source_Ptr;
255   --  Given block statement, entry body, package body, subprogram body, or
256   --  task body N, return the closest source location to the "begin" keyword.
257
258   function Build_Actual_Subtype
259     (T : Entity_Id;
260      N : Node_Or_Entity_Id) return Node_Id;
261   --  Build an anonymous subtype for an entity or expression, using the
262   --  bounds of the entity or the discriminants of the enclosing record.
263   --  T is the type for which the actual subtype is required, and N is either
264   --  a defining identifier, or any subexpression.
265
266   function Build_Actual_Subtype_Of_Component
267     (T : Entity_Id;
268      N : Node_Id) return Node_Id;
269   --  Determine whether a selected component has a type that depends on
270   --  discriminants, and build actual subtype for it if so.
271
272   --  Handling of inherited primitives whose ancestors have class-wide
273   --  pre/postconditions.
274
275   --  If a primitive operation of a parent type has a class-wide pre/post-
276   --  condition that includes calls to other primitives, and that operation
277   --  is inherited by a descendant type that also overrides some of these
278   --  other primitives, the condition that applies to the inherited
279   --  operation has a modified condition in which the overridden primitives
280   --  have been replaced by the primitives of the descendent type. A call
281   --  to the inherited operation cannot be simply a call to the parent
282   --  operation (with an appropriate conversion) as is the case for other
283   --  inherited operations, but must appear with a wrapper subprogram to which
284   --  the modified conditions apply. Furthermore the call to the parent
285   --  operation must not be subject to the original class-wide condition,
286   --  given that modified conditions apply. To implement these semantics
287   --  economically we create a subprogram body (a "class-wide clone") to
288   --  which no pre/postconditions apply, and we create bodies for the
289   --  original and the inherited operation that have their respective
290   --  pre/postconditions and simply call the clone. The following operations
291   --  take care of constructing declaration and body of the clone, and
292   --  building the calls to it within the appropriate wrappers.
293
294   procedure Build_Constrained_Itype
295     (N              : Node_Id;
296      Typ            : Entity_Id;
297      New_Assoc_List : List_Id);
298   --  Build a constrained itype for the newly created record aggregate N and
299   --  set it as a type of N. The itype will have Typ as its base type and
300   --  will be constrained by the values of discriminants from the component
301   --  association list New_Assoc_List.
302
303   --  ??? This code used to be pretty much a copy of Build_Subtype, but now
304   --  those two routines behave differently for types with unknown
305   --  discriminants. They are both exported in from this package in the hope
306   --  to eventually unify them (a not duplicate them even more until then).
307
308   --  ??? Performance WARNING. The current implementation creates a new itype
309   --  for all aggregates whose base type is discriminated. This means that
310   --  for record aggregates nested inside an array aggregate we will create
311   --  a new itype for each record aggregate if the array component type has
312   --  discriminants. For large aggregates this may be a problem. What should
313   --  be done in this case is to reuse itypes as much as possible.
314
315   function Build_Default_Subtype
316     (T : Entity_Id;
317      N : Node_Id) return Entity_Id;
318   --  If T is an unconstrained type with defaulted discriminants, build a
319   --  subtype constrained by the default values, insert the subtype
320   --  declaration in the tree before N, and return the entity of that
321   --  subtype. Otherwise, simply return T.
322
323   function Build_Discriminal_Subtype_Of_Component
324     (T : Entity_Id) return Node_Id;
325   --  Determine whether a record component has a type that depends on
326   --  discriminants, and build actual subtype for it if so.
327
328   procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
329   --  Given a compilation unit node N, allocate an elaboration counter for
330   --  the compilation unit, and install it in the Elaboration_Entity field
331   --  of Spec_Id, the entity for the compilation unit.
332
333   procedure Build_Explicit_Dereference
334     (Expr : Node_Id;
335      Disc : Entity_Id);
336   --  AI05-139: Names with implicit dereference. If the expression N is a
337   --  reference type and the context imposes the corresponding designated
338   --  type, convert N into N.Disc.all. Such expressions are always over-
339   --  loaded with both interpretations, and the dereference interpretation
340   --  carries the name of the reference discriminant.
341
342   function Build_Overriding_Spec
343     (Op  : Entity_Id;
344      Typ : Entity_Id) return Node_Id;
345   --  Build a subprogram specification for the wrapper of an inherited
346   --  operation with a modified pre- or postcondition (See AI12-0113).
347   --  Op is the parent operation, and Typ is the descendant type that
348   --  inherits the operation.
349
350   function Build_Subtype
351     (Related_Node : Node_Id;
352      Loc          : Source_Ptr;
353      Typ          : Entity_Id;
354      Constraints  : List_Id)
355      return Entity_Id;
356   --  Typ is an array or discriminated type, Constraints is a list of
357   --  constraints that apply to Typ. This routine builds the constrained
358   --  subtype using Loc as the source location and attached this subtype
359   --  declaration to Related_Node. The returned subtype inherits predicates
360   --  from Typ.
361
362   --  ??? The routine is mostly a duplicate of Build_Constrained_Itype, so be
363   --  careful which of the two better suits your needs (and certainly do not
364   --  duplicate their code).
365
366   function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
367   --  Returns True if the expression cannot possibly raise Constraint_Error.
368   --  The response is conservative in the sense that a result of False does
369   --  not necessarily mean that CE could be raised, but a response of True
370   --  means that for sure CE cannot be raised.
371
372   procedure Check_Ambiguous_Aggregate (Call : Node_Id);
373   --  Additional information on an ambiguous call in Ada_2022 when a
374   --  subprogram call has an actual that is an aggregate, and the
375   --  presence of container aggregates (or types with the corresponding
376   --  aspect)  provides an additional interpretation. Message indicates
377   --  that an aggregate actual should carry a type qualification.
378
379   procedure Check_Dynamically_Tagged_Expression
380     (Expr        : Node_Id;
381      Typ         : Entity_Id;
382      Related_Nod : Node_Id);
383   --  Check wrong use of dynamically tagged expression
384
385   procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
386   --  Verify that the full declaration of type T has been seen. If not, place
387   --  error message on node N. Used in object declarations, type conversions
388   --  and qualified expressions.
389
390   procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id);
391   --  A subprogram that has an Address parameter and is declared in a Pure
392   --  package is not considered Pure, because the parameter may be used as a
393   --  pointer and the referenced data may change even if the address value
394   --  itself does not.
395   --  If the programmer gave an explicit Pure_Function pragma, then we respect
396   --  the pragma and leave the subprogram Pure.
397
398   procedure Check_Function_Writable_Actuals (N : Node_Id);
399   --  (Ada 2012): If the construct N has two or more direct constituents that
400   --  are names or expressions whose evaluation may occur in an arbitrary
401   --  order, at least one of which contains a function call with an in out or
402   --  out parameter, then the construct is legal only if: for each name that
403   --  is passed as a parameter of mode in out or out to some inner function
404   --  call C2 (not including the construct N itself), there is no other name
405   --  anywhere within a direct constituent of the construct C other than
406   --  the one containing C2, that is known to refer to the same object (RM
407   --  6.4.1(6.17/3)).
408
409   procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
410   --  AI05-139-2: Accessors and iterators for containers. This procedure
411   --  checks whether T is a reference type, and if so it adds an interprettion
412   --  to N whose type is the designated type of the reference_discriminant.
413   --  If N is a generalized indexing operation, the interpretation is added
414   --  both to the corresponding function call, and to the indexing node.
415
416   procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
417   --  Within a protected function, the current object is a constant, and
418   --  internal calls to a procedure or entry are illegal. Similarly, other
419   --  uses of a protected procedure in a renaming or a generic instantiation
420   --  in the context of a protected function are illegal (AI05-0225).
421
422   procedure Check_Later_Vs_Basic_Declarations
423     (Decls          : List_Id;
424      During_Parsing : Boolean);
425   --  If During_Parsing is True, check for misplacement of later vs basic
426   --  declarations in Ada 83. If During_Parsing is False, and the SPARK
427   --  restriction is set, do the same: although SPARK 95 removes the
428   --  distinction between initial and later declarative items, the distinction
429   --  remains in the Examiner (JB01-005). Note that the Examiner does not
430   --  count package declarations in later declarative items.
431
432   procedure Check_No_Hidden_State (Id : Entity_Id);
433   --  Determine whether object or state Id introduces a hidden state. If this
434   --  is the case, emit an error.
435
436   procedure Check_Inherited_Nonoverridable_Aspects
437     (Inheritor      : Entity_Id;
438      Interface_List : List_Id;
439      Parent_Type    : Entity_Id);
440   --  Verify consistency of inherited nonoverridable aspects
441   --  when aspects are inherited from more than one source.
442   --  Parent_Type may be void (e.g., for a tagged task/protected type
443   --  whose declaration includes a non-empty interface list).
444   --  In the error case, error message is associate with Inheritor;
445   --  Inheritor parameter is otherwise unused.
446
447   procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id);
448   --  Verify that the profile of nonvolatile function Func_Id does not contain
449   --  effectively volatile parameters or return type for reading.
450
451   procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id);
452   --  Verify the legality of reference Ref to variable Var_Id when the
453   --  variable is a constituent of a single protected/task type.
454
455   procedure Check_Potentially_Blocking_Operation (N : Node_Id);
456   --  N is one of the statement forms that is a potentially blocking
457   --  operation. If it appears within a protected action, emit warning.
458
459   procedure Check_Previous_Null_Procedure
460     (Decl : Node_Id;
461      Prev : Entity_Id);
462   --  A null procedure or a subprogram renaming can complete a previous
463   --  declaration, unless that previous declaration is itself a null
464   --  procedure. This must be treated specially because the analysis of
465   --  the null procedure leaves the corresponding entity as having no
466   --  completion, because its completion is provided by a generated body
467   --  inserted after all other declarations.
468
469   procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
470   --  Determine whether the contract of subprogram Subp_Id mentions attribute
471   --  'Result and it contains an expression that evaluates differently in pre-
472   --  and post-state.
473
474   procedure Check_State_Refinements
475     (Context      : Node_Id;
476      Is_Main_Unit : Boolean := False);
477   --  Verify that all abstract states declared in a block statement, entry
478   --  body, package body, protected body, subprogram body, task body, or a
479   --  package declaration denoted by Context have proper refinement. Emit an
480   --  error if this is not the case. Flag Is_Main_Unit should be set when
481   --  Context denotes the main compilation unit.
482
483   procedure Check_Unused_Body_States (Body_Id : Entity_Id);
484   --  Verify that all abstract states and objects declared in the state space
485   --  of package body Body_Id are used as constituents. Emit an error if this
486   --  is not the case.
487
488   procedure Check_Unprotected_Access
489     (Context : Node_Id;
490      Expr    : Node_Id);
491   --  Check whether the expression is a pointer to a protected component,
492   --  and the context is external to the protected operation, to warn against
493   --  a possible unlocked access to data.
494
495   procedure Check_Volatility_Compatibility
496     (Id1, Id2                     : Entity_Id;
497      Description_1, Description_2 : String;
498      Srcpos_Bearer                : Node_Id);
499   --  Id1 and Id2 should each be the entity of a state abstraction, a
500   --  variable, or a type (i.e., something suitable for passing to
501   --  Async_Readers_Enabled and similar functions).
502   --  Does nothing if SPARK_Mode /= On. Otherwise, flags a legality violation
503   --  if one or more of the four volatility-related aspects is False for Id1
504   --  and True for Id2. The two descriptions are included in the error message
505   --  text; the source position for the generated message is determined by
506   --  Srcpos_Bearer.
507
508   function Choice_List (N : Node_Id) return List_Id;
509   --  Utility to retrieve the choices of a Component_Association or the
510   --  Discrete_Choices of an Iterated_Component_Association. For various
511   --  reasons these nodes have a different structure even though they play
512   --  similar roles in array aggregates.
513
514   type Condition_Kind is
515     (Ignored_Class_Precondition,
516      Ignored_Class_Postcondition,
517      Class_Precondition,
518      Class_Postcondition);
519   --  Kind of class-wide conditions
520
521   function Class_Condition
522     (Kind : Condition_Kind;
523      Subp : Entity_Id) return Node_Id;
524   --  Class-wide Kind condition of Subp
525
526   function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id;
527   --  Gather the entities of all abstract states and objects declared in the
528   --  body state space of package body Body_Id.
529
530   procedure Collect_Interfaces
531     (T               : Entity_Id;
532      Ifaces_List     : out Elist_Id;
533      Exclude_Parents : Boolean := False;
534      Use_Full_View   : Boolean := True);
535   --  Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
536   --  directly or indirectly implemented by T. Exclude_Parents is used to
537   --  avoid the addition of inherited interfaces to the generated list.
538   --  Use_Full_View is used to collect the interfaces using the full-view
539   --  (if available).
540
541   procedure Collect_Interface_Components
542     (Tagged_Type     : Entity_Id;
543      Components_List : out Elist_Id);
544   --  Ada 2005 (AI-251): Collect all the tag components associated with the
545   --  secondary dispatch tables of a tagged type.
546
547   procedure Collect_Interfaces_Info
548     (T               : Entity_Id;
549      Ifaces_List     : out Elist_Id;
550      Components_List : out Elist_Id;
551      Tags_List       : out Elist_Id);
552   --  Ada 2005 (AI-251): Collect all the interfaces associated with T plus
553   --  the record component and tag associated with each of these interfaces.
554   --  On exit Ifaces_List, Components_List and Tags_List have the same number
555   --  of elements, and elements at the same position on these tables provide
556   --  information on the same interface type.
557
558   procedure Collect_Parents
559     (T             : Entity_Id;
560      List          : out Elist_Id;
561      Use_Full_View : Boolean := True);
562   --  Collect all the parents of Typ. Use_Full_View is used to collect them
563   --  using the full-view of private parents (if available).
564
565   function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
566   --  Called upon type derivation and extension. We scan the declarative part
567   --  in which the type appears, and collect subprograms that have one
568   --  subsidiary subtype of the type. These subprograms can only appear after
569   --  the type itself.
570
571   function Compile_Time_Constraint_Error
572     (N         : Node_Id;
573      Msg       : String;
574      Ent       : Entity_Id  := Empty;
575      Loc       : Source_Ptr := No_Location;
576      Warn      : Boolean    := False;
577      Extra_Msg : String     := "") return Node_Id;
578   --  This is similar to Apply_Compile_Time_Constraint_Error in that it
579   --  generates a warning (or error) message in the same manner, but it does
580   --  not replace any nodes. For convenience, the function always returns its
581   --  first argument. The message is a warning if the message ends with ?, or
582   --  we are operating in Ada 83 mode, or the Warn parameter is set to True.
583   --  If Extra_Msg is not a null string, then it's associated with N and
584   --  emitted immediately after the main message (and before output of any
585   --  message indicating that Constraint_Error will be raised).
586
587   procedure Compute_Returns_By_Ref (Func : Entity_Id);
588   --  Set the Returns_By_Ref flag on Func if appropriate
589
590   generic
591      with function Predicate (Typ : Entity_Id) return Boolean;
592   function Collect_Types_In_Hierarchy
593     (Typ                : Entity_Id;
594      Examine_Components : Boolean := False) return Elist_Id;
595   --  Inspect the ancestor and progenitor types of Typ and Typ itself -
596   --  collecting those for which function Predicate is True. The resulting
597   --  list is ordered in a type-to-ultimate-ancestor fashion.
598
599   --  When Examine_Components is True, components types in the hierarchy also
600   --  get collected.
601
602   procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
603   --  Sets the Has_Delayed_Freeze flag of New_Ent if the Delayed_Freeze flag
604   --  of Old_Ent is set and Old_Ent has not yet been Frozen (i.e. Is_Frozen is
605   --  False).
606
607   function Copy_Component_List
608     (R_Typ : Entity_Id;
609      Loc   : Source_Ptr) return List_Id;
610   --  Copy components from record type R_Typ that come from source. Used to
611   --  create a new compatible record type. Loc is the source location assigned
612   --  to the created nodes.
613
614   function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
615   --  Utility to create a parameter profile for a new subprogram spec, when
616   --  the subprogram has a body that acts as spec. This is done for some cases
617   --  of inlining, and for private protected ops. Also used to create bodies
618   --  for stubbed subprograms.
619
620   procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id);
621   --  Copy the SPARK_Mode aspect if present in the aspect specifications
622   --  of node From to node To. On entry it is assumed that To does not have
623   --  aspect specifications. If From has no aspects, the routine has no
624   --  effect.
625
626   function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id;
627   --  Replicate a function or a procedure specification denoted by Spec. The
628   --  resulting tree is an exact duplicate of the original tree. New entities
629   --  are created for the unit name and the formal parameters.
630
631   function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
632   --  If a type is a generic actual type, return the corresponding formal in
633   --  the generic parent unit. There is no direct link in the tree for this
634   --  attribute, except in the case of formal private and derived types.
635   --  Possible optimization???
636
637   function Corresponding_Primitive_Op
638       (Ancestor_Op     : Entity_Id;
639        Descendant_Type : Entity_Id) return Entity_Id;
640   --  Given a primitive subprogram of a tagged type and a (distinct)
641   --  descendant type of that type, find the corresponding primitive
642   --  subprogram of the descendant type.
643
644   function Current_Entity (N : Node_Id) return Entity_Id;
645   pragma Inline (Current_Entity);
646   --  Find the currently visible definition for a given identifier, that is to
647   --  say the first entry in the visibility chain for the Chars of N.
648
649   function Current_Entity_In_Scope (N : Name_Id) return Entity_Id;
650   function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
651   --  Find whether there is a previous definition for name or identifier N in
652   --  the current scope. Because declarations for a scope are not necessarily
653   --  contiguous (e.g. for packages) the first entry on the visibility chain
654   --  for N is not necessarily in the current scope.
655
656   function Current_Scope return Entity_Id;
657   --  Get entity representing current scope
658
659   function Current_Scope_No_Loops return Entity_Id;
660   --  Return the current scope ignoring internally generated loops
661
662   function Current_Subprogram return Entity_Id;
663   --  Returns current enclosing subprogram. If Current_Scope is a subprogram,
664   --  then that is what is returned, otherwise the Enclosing_Subprogram of the
665   --  Current_Scope is returned. The returned value is Empty if this is called
666   --  from a library package which is not within any subprogram.
667
668   function CW_Or_Has_Controlled_Part (T : Entity_Id) return Boolean;
669   --  True if T is a class-wide type, or if it has controlled parts ("part"
670   --  means T or any of its subcomponents). Same as Needs_Finalization, except
671   --  when pragma Restrictions (No_Finalization) applies, in which case we
672   --  know that class-wide objects do not contain controlled parts.
673
674   function Deepest_Type_Access_Level
675     (Typ             : Entity_Id;
676      Allow_Alt_Model : Boolean := True) return Uint;
677
678   --  Same as Type_Access_Level, except that if the type is the type of an Ada
679   --  2012 stand-alone object of an anonymous access type, then return the
680   --  static accessibility level of the object. In that case, the dynamic
681   --  accessibility level of the object may take on values in a range. The low
682   --  bound of that range is returned by Type_Access_Level; this function
683   --  yields the high bound of that range. Also differs from Type_Access_Level
684   --  in the case of a descendant of a generic formal type (returns Int'Last
685   --  instead of 0).
686
687   --  The Allow_Alt_Model parameter allows the alternative level calculation
688   --  under the restriction No_Dynamic_Accessibility_Checks to be performed.
689
690   function Defining_Entity (N : Node_Id) return Entity_Id;
691   --  Given a declaration N, returns the associated defining entity. If the
692   --  declaration has a specification, the entity is obtained from the
693   --  specification. If the declaration has a defining unit name, then the
694   --  defining entity is obtained from the defining unit name ignoring any
695   --  child unit prefixes.
696   --
697   --  Iterator loops also have a defining entity, which holds the list of
698   --  local entities declared during loop expansion. These entities need
699   --  debugging information, generated through Qualify_Entity_Names, and
700   --  the loop declaration must be placed in the table Name_Qualify_Units.
701
702   --  WARNING: There is a matching C declaration of this subprogram in fe.h
703
704   function Defining_Entity_Or_Empty (N : Node_Id) return Entity_Id;
705   --  This is equivalent to Defining_Entity but it returns Empty for nodes
706   --  without an entity instead of raising Program_Error.
707
708   function Denotes_Discriminant
709     (N                : Node_Id;
710      Check_Concurrent : Boolean := False) return Boolean;
711   --  Returns True if node N is an Entity_Name node for a discriminant. If the
712   --  flag Check_Concurrent is true, function also returns true when N denotes
713   --  the discriminal of the discriminant of a concurrent type. This is needed
714   --  to disable some optimizations on private components of protected types,
715   --  and constraint checks on entry families constrained by discriminants.
716
717   function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
718   --  Detect suspicious overlapping between actuals in a call, when both are
719   --  writable (RM 2012 6.4.1(6.4/3)).
720
721   function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
722   --  Functions to detect suspicious overlapping between actuals in a call,
723   --  when one of them is writable. The predicates are those proposed in
724   --  AI05-0144, to detect dangerous order dependence in complex calls.
725   --  I would add a parameter Warn which enables more extensive testing of
726   --  cases as we find appropriate when we are only warning ??? Or perhaps
727   --  return an indication of (Error, Warn, OK) ???
728
729   function Denotes_Variable (N : Node_Id) return Boolean;
730   --  Returns True if node N denotes a single variable without parentheses
731
732   function Depends_On_Discriminant (N : Node_Id) return Boolean;
733   --  Returns True if N denotes a discriminant or if N is a range, a subtype
734   --  indication or a scalar subtype where one of the bounds is a
735   --  discriminant.
736
737   function Derivation_Too_Early_To_Inherit
738     (Typ : Entity_Id; Streaming_Op : TSS_Name_Type) return Boolean;
739   --  Returns True if Typ is a derived type, the given Streaming_Op
740   --  (one of Read, Write, Input, or Output) is explicitly specified
741   --  for Typ's parent type, and that attribute specification is *not*
742   --  inherited by Typ because the declaration of Typ precedes that
743   --  of the attribute specification.
744
745   function Designate_Same_Unit
746     (Name1 : Node_Id;
747      Name2 : Node_Id) return  Boolean;
748   --  Returns True if Name1 and Name2 designate the same unit name; each of
749   --  these names is supposed to be a selected component name, an expanded
750   --  name, a defining program unit name or an identifier.
751
752   procedure Diagnose_Iterated_Component_Association (N : Node_Id);
753   --  Emit an error if iterated component association N is actually an illegal
754   --  quantified expression lacking a quantifier.
755
756   function Discriminated_Size (Comp : Entity_Id) return Boolean;
757   --  If a component size is not static then a warning will be emitted
758   --  in Ravenscar or other restricted contexts. When a component is non-
759   --  static because of a discriminant constraint we can specialize the
760   --  warning by mentioning discriminants explicitly. This was created for
761   --  private components of protected objects, but is generally useful when
762   --  restriction No_Implicit_Heap_Allocation is active.
763
764   function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
765   --  Same as Einfo.Extra_Accessibility except thtat object renames
766   --  are looked through.
767
768   function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
769   --  Id should be the entity of a state abstraction, an object, or a type.
770   --  Returns True iff Id is subject to external property Effective_Reads.
771
772   function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
773   --  Id should be the entity of a state abstraction, an object, or a type.
774   --  Returns True iff Id is subject to external property Effective_Writes.
775
776   function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
777   --  Returns the enclosing N_Compilation_Unit node that is the root of a
778   --  subtree containing N.
779
780   function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
781   --  Returns the closest ancestor of Typ that is a CPP type.
782
783   function Enclosing_Declaration (N : Node_Id) return Node_Id;
784   --  Returns the declaration node enclosing N (including possibly N itself),
785   --  if any, or Empty otherwise.
786
787   function Enclosing_Generic_Body (N : Node_Id) return Node_Id;
788   --  Returns the Node_Id associated with the innermost enclosing generic
789   --  body, if any. If none, then returns Empty.
790
791   function Enclosing_Generic_Unit (N : Node_Id) return Node_Id;
792   --  Returns the Node_Id associated with the innermost enclosing generic
793   --  unit, if any. If none, then returns Empty.
794
795   function Enclosing_HSS (Stmt : Node_Id) return Node_Id;
796   --  Returns the nearest handled sequence of statements that encloses a given
797   --  statement, or Empty.
798
799   function Enclosing_Lib_Unit_Entity
800     (E : Entity_Id := Current_Scope) return Entity_Id;
801   --  Returns the entity of enclosing library unit node which is the root of
802   --  the current scope (which must not be Standard_Standard, and the caller
803   --  is responsible for ensuring this condition) or other specified entity.
804
805   function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
806   --  Returns the N_Compilation_Unit node of the library unit that is directly
807   --  or indirectly (through a subunit) at the root of a subtree containing
808   --  N. This may be either the same as Enclosing_Comp_Unit_Node, or if
809   --  Enclosing_Comp_Unit_Node returns a subunit, then the corresponding
810   --  library unit. If no such item is found, returns Empty.
811
812   function Enclosing_Package (E : Entity_Id) return Entity_Id;
813   --  Utility function to return the Ada entity of the package enclosing
814   --  the entity E, if any. Returns Empty if no enclosing package.
815
816   function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id;
817   --  Returns the entity of the package or subprogram enclosing E, if any.
818   --  Returns Empty if no enclosing package or subprogram.
819
820   function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
821   --  Utility function to return the Ada entity of the subprogram enclosing
822   --  the entity E, if any. Returns Empty if no enclosing subprogram.
823
824   function End_Keyword_Location (N : Node_Id) return Source_Ptr;
825   --  Given block statement, entry body, package body, package declaration,
826   --  protected body, [single] protected type declaration, subprogram body,
827   --  task body, or [single] task type declaration N, return the closest
828   --  source location of the "end" keyword.
829
830   procedure Ensure_Freeze_Node (E : Entity_Id);
831   --  Make sure a freeze node is allocated for entity E. If necessary, build
832   --  and initialize a new freeze node and set Has_Delayed_Freeze True for E.
833
834   procedure Enter_Name (Def_Id : Entity_Id);
835   --  Insert new name in symbol table of current scope with check for
836   --  duplications (error message is issued if a conflict is found).
837   --  Note: Enter_Name is not used for overloadable entities, instead these
838   --  are entered using Sem_Ch6.Enter_Overloaded_Entity.
839
840   function Entity_Of (N : Node_Id) return Entity_Id;
841   --  Obtain the entity of arbitrary node N. If N is a renaming, return the
842   --  entity of the earliest renamed source abstract state or whole object.
843   --  If no suitable entity is available, return Empty. This routine carries
844   --  out actions that are tied to SPARK semantics.
845
846   function Exceptions_OK return Boolean;
847   --  Determine whether exceptions are allowed to be caught, propagated, or
848   --  raised.
849
850   procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
851   --  This procedure is called after issuing a message complaining about an
852   --  inappropriate use of limited type T. If useful, it adds additional
853   --  continuation lines to the message explaining why type T is limited.
854   --  Messages are placed at node N.
855
856   function Expression_Of_Expression_Function
857     (Subp : Entity_Id) return Node_Id;
858   --  Return the expression of expression function Subp
859
860   type Extensions_Visible_Mode is
861     (Extensions_Visible_None,
862      --  Extensions_Visible does not yield a mode when SPARK_Mode is off. This
863      --  value acts as a default in a non-SPARK compilation.
864
865      Extensions_Visible_False,
866      --  A value of "False" signifies that Extensions_Visible is either
867      --  missing or the pragma is present and the value of its Boolean
868      --  expression is False.
869
870      Extensions_Visible_True);
871      --  A value of "True" signifies that Extensions_Visible is present and
872      --  the value of its Boolean expression is True.
873
874   function Extensions_Visible_Status
875     (Id : Entity_Id) return Extensions_Visible_Mode;
876   --  Given the entity of a subprogram or formal parameter subject to pragma
877   --  Extensions_Visible, return the Boolean value denoted by the expression
878   --  of the pragma.
879
880   procedure Find_Actual
881     (N      : Node_Id;
882      Formal : out Entity_Id;
883      Call   : out Node_Id);
884   --  Determines if the node N is an actual parameter of a function or a
885   --  procedure call. If so, then Formal points to the entity for the formal
886   --  (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
887   --  Call is set to the node for the corresponding call. If the node N is not
888   --  an actual parameter then Formal and Call are set to Empty.
889
890   function Find_Body_Discriminal
891     (Spec_Discriminant : Entity_Id) return Entity_Id;
892   --  Given a discriminant of the record type that implements a task or
893   --  protected type, return the discriminal of the corresponding discriminant
894   --  of the actual concurrent type.
895
896   function Find_Corresponding_Discriminant
897     (Id   : Node_Id;
898      Typ  : Entity_Id) return Entity_Id;
899   --  Because discriminants may have different names in a generic unit and in
900   --  an instance, they are resolved positionally when possible. A reference
901   --  to a discriminant carries the discriminant that it denotes when it is
902   --  analyzed. Subsequent uses of this id on a different type denotes the
903   --  discriminant at the same position in this new type.
904
905   function Find_DIC_Type (Typ : Entity_Id) return Entity_Id;
906   --  Subsidiary to all Build_DIC_Procedure_xxx routines. Find the type which
907   --  defines the Default_Initial_Condition pragma of type Typ. This is either
908   --  Typ itself or a parent type when the pragma is inherited.
909
910   function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
911   --  Find the nearest iterator loop which encloses arbitrary entity Id. If
912   --  such a loop exists, return the entity of its identifier (E_Loop scope),
913   --  otherwise return Empty.
914
915   function Find_Enclosing_Scope (N : Node_Id) return Entity_Id;
916   --  Find the nearest scope which encloses arbitrary node N
917
918   function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
919   --  Find the nested loop statement in a conditional block. Loops subject to
920   --  attribute 'Loop_Entry are transformed into blocks. Parts of the original
921   --  loop are nested within the block.
922
923   procedure Find_Overlaid_Entity
924     (N   : Node_Id;
925      Ent : out Entity_Id;
926      Off : out Boolean);
927   --  The node N should be an address representation clause. Determines if the
928   --  target expression is the address of an entity with an optional offset.
929   --  If so, set Ent to the entity and, if there is an offset, set Off to
930   --  True, otherwise to False. If it is not possible to determine that the
931   --  address is of this form, then set Ent to Empty.
932
933   function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
934   --  Return the type of formal parameter Param as determined by its
935   --  specification.
936
937   --  The following type describes the placement of an arbitrary entity with
938   --  respect to SPARK visible / hidden state space.
939
940   type State_Space_Kind is
941     (Not_In_Package,
942      --  An entity is not in the visible, private or body state space when
943      --  the immediate enclosing construct is not a package.
944
945      Visible_State_Space,
946      --  An entity is in the visible state space when it appears immediately
947      --  within the visible declarations of a package or when it appears in
948      --  the visible state space of a nested package which in turn is declared
949      --  in the visible declarations of an enclosing package:
950
951      --    package Pack is
952      --       Visible_Variable : ...
953      --       package Nested
954      --         with Abstract_State => Visible_State
955      --       is
956      --          Visible_Nested_Variable : ...
957      --       end Nested;
958      --    end Pack;
959
960      --  Entities associated with a package instantiation inherit the state
961      --  space from the instance placement:
962
963      --     generic
964      --     package Gen is
965      --        Generic_Variable : ...
966      --     end Gen;
967
968      --     with Gen;
969      --     package Pack is
970      --        package Inst is new Gen;
971      --        --  Generic_Variable is in the visible state space of Pack
972      --     end Pack;
973
974      Private_State_Space,
975      --  An entity is in the private state space when it appears immediately
976      --  within the private declarations of a package or when it appears in
977      --  the visible state space of a nested package which in turn is declared
978      --  in the private declarations of an enclosing package:
979
980      --    package Pack is
981      --    private
982      --       Private_Variable : ...
983      --       package Nested
984      --         with Abstract_State => Private_State
985      --       is
986      --          Private_Nested_Variable : ...
987      --       end Nested;
988      --    end Pack;
989
990      --  The same placement principle applies to package instantiations
991
992      Body_State_Space);
993      --  An entity is in the body state space when it appears immediately
994      --  within the declarations of a package body or when it appears in the
995      --  visible state space of a nested package which in turn is declared in
996      --  the declarations of an enclosing package body:
997
998      --    package body Pack is
999      --       Body_Variable : ...
1000      --       package Nested
1001      --         with Abstract_State => Body_State
1002      --       is
1003      --          Body_Nested_Variable : ...
1004      --       end Nested;
1005      --    end Pack;
1006
1007      --  The same placement principle applies to package instantiations
1008
1009   procedure Find_Placement_In_State_Space
1010     (Item_Id   : Entity_Id;
1011      Placement : out State_Space_Kind;
1012      Pack_Id   : out Entity_Id);
1013   --  Determine the state space placement of an item. Item_Id denotes the
1014   --  entity of an abstract state, object, or package instantiation. Placement
1015   --  captures the precise placement of the item in the enclosing state space.
1016   --  If the state space is that of a package, Pack_Id denotes its entity,
1017   --  otherwise Pack_Id is Empty.
1018
1019   function Find_Primitive_Eq (Typ : Entity_Id) return Entity_Id;
1020   --  Locate primitive equality for type if it exists. Return Empty if it is
1021   --  not available.
1022
1023   function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
1024   --  Find specific type of a class-wide type, and handle the case of an
1025   --  incomplete type coming either from a limited_with clause or from an
1026   --  incomplete type declaration. If resulting type is private return its
1027   --  full view.
1028
1029   function Find_Static_Alternative (N : Node_Id) return Node_Id;
1030   --  N is a case statement whose expression is a compile-time value.
1031   --  Determine the alternative chosen, so that the code of non-selected
1032   --  alternatives, and the warnings that may apply to them, are removed.
1033
1034   function First_Actual (Node : Node_Id) return Node_Id;
1035   --  Node is an N_Function_Call, N_Procedure_Call_Statement or
1036   --  N_Entry_Call_Statement node. The result returned is the first actual
1037   --  parameter in declaration order (not the order of parameters as they
1038   --  appeared in the source, which can be quite different as a result of the
1039   --  use of named parameters). Empty is returned for a call with no
1040   --  parameters. The procedure for iterating through the actuals in
1041   --  declaration order is to use this function to find the first actual, and
1042   --  then use Next_Actual to obtain the next actual in declaration order.
1043   --  Note that the value returned is always the expression (not the
1044   --  N_Parameter_Association nodes, even if named association is used).
1045
1046   --  WARNING: There is a matching C declaration of this subprogram in fe.h
1047
1048   function First_Global
1049     (Subp        : Entity_Id;
1050      Global_Mode : Name_Id;
1051      Refined     : Boolean := False) return Node_Id;
1052   --  Returns the first global item of mode Global_Mode (which can be
1053   --  Name_Input, Name_Output, Name_In_Out or Name_Proof_In) associated to
1054   --  subprogram Subp, or Empty otherwise. If Refined is True, the global item
1055   --  is retrieved from the Refined_Global aspect/pragma associated to the
1056   --  body of Subp if present. Next_Global can be used to get the next global
1057   --  item with the same mode.
1058
1059   function Fix_Msg (Id : Entity_Id; Msg : String) return String;
1060   --  Replace all occurrences of a particular word in string Msg depending on
1061   --  the Ekind of Id as follows:
1062   --    * Replace "subprogram" with
1063   --      - "entry" when Id is an entry [family]
1064   --      - "task type" when Id is a single task object, task type or task
1065   --         body.
1066   --    * Replace "protected" with
1067   --      - "task" when Id is a single task object, task type or task body
1068   --  All other non-matching words remain as is
1069
1070   function From_Nested_Package (T : Entity_Id) return Boolean;
1071   --  A type declared in a nested package may be frozen by a declaration
1072   --  appearing after the package but before the package is frozen. If the
1073   --  type has aspects that generate subprograms, these may contain references
1074   --  to entities local to the nested package. In that case the package must
1075   --  be installed on the scope stack to prevent spurious visibility errors.
1076
1077   procedure Gather_Components
1078     (Typ                   : Entity_Id;
1079      Comp_List             : Node_Id;
1080      Governed_By           : List_Id;
1081      Into                  : Elist_Id;
1082      Report_Errors         : out Boolean;
1083      Allow_Compile_Time    : Boolean := False;
1084      Include_Interface_Tag : Boolean := False);
1085   --  The purpose of this procedure is to gather the valid components in a
1086   --  record type according to the values of its discriminants, in order to
1087   --  validate the components of a record aggregate.
1088   --
1089   --    Typ is the type of the aggregate when its constrained discriminants
1090   --      need to be collected, otherwise it is Empty.
1091   --
1092   --    Comp_List is an N_Component_List node.
1093   --
1094   --    Governed_By is a list of N_Component_Association nodes, where each
1095   --     choice list contains the name of a discriminant and the expression
1096   --     field gives its value. The values of the discriminants governing
1097   --     the (possibly nested) variant parts in Comp_List are found in this
1098   --     Component_Association List.
1099   --
1100   --    Into is the list where the valid components are appended. Note that
1101   --     Into need not be an Empty list. If it's not, components are attached
1102   --     to its tail.
1103   --
1104   --    Report_Errors is set to True if the values of the discriminants are
1105   --     insufficiently static (see body for details of what that means).
1106
1107   --
1108   --    Allow_Compile_Time if set to True, allows compile time known values in
1109   --     Governed_By expressions in addition to static expressions.
1110   --
1111   --    Include_Interface_Tag if set to True, gather any interface tag
1112   --     component, otherwise exclude them.
1113   --
1114   --  This procedure is also used when building a record subtype. If the
1115   --  discriminant constraint of the subtype is static, the components of the
1116   --  subtype are only those of the variants selected by the values of the
1117   --  discriminants. Otherwise all components of the parent must be included
1118   --  in the subtype for semantic analysis.
1119
1120   function Get_Dynamic_Accessibility (E : Entity_Id) return Entity_Id;
1121   --  Obtain the accessibility level for a given entity formal taking into
1122   --  account both extra and minimum accessibility.
1123
1124   function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
1125   --  Given a node for an expression, obtain the actual subtype of the
1126   --  expression. In the case of a parameter where the formal is an
1127   --  unconstrained array or discriminated type, this will be the previously
1128   --  constructed subtype of the actual. Note that this is not quite the
1129   --  "Actual Subtype" of the RM, since it is always a constrained type, i.e.
1130   --  it is the subtype of the value of the actual. The actual subtype is also
1131   --  returned in other cases where it has already been constructed for an
1132   --  object. Otherwise the expression type is returned unchanged, except for
1133   --  the case of an unconstrained array type, where an actual subtype is
1134   --  created, using Insert_Actions if necessary to insert any associated
1135   --  actions.
1136
1137   function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
1138   --  This is like Get_Actual_Subtype, except that it never constructs an
1139   --  actual subtype. If an actual subtype is already available, i.e. the
1140   --  Actual_Subtype field of the corresponding entity is set, then it is
1141   --  returned. Otherwise the Etype of the node is returned.
1142
1143   function Get_Body_From_Stub (N : Node_Id) return Node_Id;
1144   --  Return the body node for a stub
1145
1146   function Get_Cursor_Type
1147     (Aspect : Node_Id;
1148      Typ    : Entity_Id) return Entity_Id;
1149   --  Find Cursor type in scope of type Typ with Iterable aspect, by locating
1150   --  primitive operation First. For use in resolving the other primitive
1151   --  operations of an Iterable type and expanding loops and quantified
1152   --  expressions over formal containers.
1153
1154   function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
1155   --  Find Cursor type in scope of type Typ with Iterable aspect, by locating
1156   --  primitive operation First. For use after resolving the primitive
1157   --  operations of an Iterable type.
1158
1159   function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
1160   --  This is used to construct the string literal node representing a
1161   --  default external name, i.e. one that is constructed from the name of an
1162   --  entity, or (in the case of extended DEC import/export pragmas) an
1163   --  identifier provided as the external name. Letters in the name are
1164   --  according to the setting of Opt.External_Name_Default_Casing.
1165
1166   function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
1167   --  If expression N references a part of an object, return this object.
1168   --  Otherwise return Empty. Expression N should have been resolved already.
1169
1170   function Get_Generic_Entity (N : Node_Id) return Entity_Id;
1171   --  Returns the true generic entity in an instantiation. If the name in the
1172   --  instantiation is a renaming, the function returns the renamed generic.
1173
1174   function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
1175   --  Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
1176   --  in a child unit a derived type is within the derivation class of an
1177   --  ancestor declared in a parent unit, even if there is an intermediate
1178   --  derivation that does not see the full view of that ancestor.
1179
1180   procedure Get_Index_Bounds
1181     (N             : Node_Id;
1182      L             : out Node_Id;
1183      H             : out Node_Id;
1184      Use_Full_View : Boolean := False);
1185   --  This procedure assigns to L and H respectively the values of the low and
1186   --  high bounds of node N, which must be a range, subtype indication, or the
1187   --  name of a scalar subtype. The result in L, H may be set to Error if
1188   --  there was an earlier error in the range.
1189   --  Use_Full_View is intended for use by clients other than the compiler
1190   --  (specifically, gnat2scil) to indicate that we want the full view if
1191   --  the index type turns out to be a partial view; this case should not
1192   --  arise during normal compilation of semantically correct programs.
1193
1194   type Range_Nodes is record
1195      First, Last : Node_Id; -- First and Last nodes of a discrete_range
1196   end record;
1197
1198   type Range_Values is record
1199      First, Last : Uint; -- First and Last values of a discrete_range
1200   end record;
1201
1202   function Get_Index_Bounds
1203     (N             : Node_Id;
1204      Use_Full_View : Boolean := False) return Range_Nodes;
1205   --  Same as the above procedure, but returns the result as a record.
1206   --  ???This should probably replace the procedure.
1207
1208   function Get_Index_Bounds
1209     (N             : Node_Id;
1210      Use_Full_View : Boolean := False) return Range_Values;
1211   --  Same as the above function, but returns the values, which must be known
1212   --  at compile time.
1213
1214   procedure Get_Interfacing_Aspects
1215     (Iface_Asp : Node_Id;
1216      Conv_Asp  : out Node_Id;
1217      EN_Asp    : out Node_Id;
1218      Expo_Asp  : out Node_Id;
1219      Imp_Asp   : out Node_Id;
1220      LN_Asp    : out Node_Id;
1221      Do_Checks : Boolean := False);
1222   --  Given a single interfacing aspect Iface_Asp, retrieve other interfacing
1223   --  aspects that apply to the same related entity. The aspects considered by
1224   --  this routine are as follows:
1225   --
1226   --    Conv_Asp - aspect Convention
1227   --    EN_Asp   - aspect External_Name
1228   --    Expo_Asp - aspect Export
1229   --    Imp_Asp  - aspect Import
1230   --    LN_Asp   - aspect Link_Name
1231   --
1232   --  When flag Do_Checks is set, this routine will flag duplicate uses of
1233   --  aspects.
1234
1235   function Get_Enum_Lit_From_Pos
1236     (T   : Entity_Id;
1237      Pos : Uint;
1238      Loc : Source_Ptr) return Node_Id;
1239   --  This function returns an identifier denoting the E_Enumeration_Literal
1240   --  entity for the specified value from the enumeration type or subtype T.
1241   --  The second argument is the Pos value. Constraint_Error is raised if
1242   --  argument Pos is not in range. The third argument supplies a source
1243   --  location for constructed nodes returned by this function. If No_Location
1244   --  is supplied as source location, the location of the returned node is
1245   --  copied from the original source location for the enumeration literal,
1246   --  when available.
1247
1248   function Get_Iterable_Type_Primitive
1249     (Typ : Entity_Id;
1250      Nam : Name_Id) return Entity_Id;
1251   --  Retrieve one of the primitives First, Last, Next, Previous, Has_Element,
1252   --  Element from the value of the Iterable aspect of a type.
1253
1254   procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
1255   --  Retrieve the fully expanded name of the library unit declared by
1256   --  Decl_Node into the name buffer.
1257
1258   function Get_Max_Queue_Length (Id : Entity_Id) return Uint;
1259   --  Return the argument of pragma Max_Queue_Length or zero if the annotation
1260   --  is not present. It is assumed that Id denotes an entry.
1261
1262   function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
1263   pragma Inline (Get_Name_Entity_Id);
1264   --  An entity value is associated with each name in the name table. The
1265   --  Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
1266   --  is the innermost visible entity with the given name. See the body of
1267   --  Sem_Ch8 for further details on handling of entity visibility.
1268
1269   function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
1270   --  Return the Name component of Test_Case pragma N
1271   --  Bad name now that this no longer applies to Contract_Case ???
1272
1273   function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
1274   --  Get defining entity of parent unit of a child unit. In most cases this
1275   --  is the defining entity of the unit, but for a child instance whose
1276   --  parent needs a body for inlining, the instantiation node of the parent
1277   --  has not yet been rewritten as a package declaration, and the entity has
1278   --  to be retrieved from the Instance_Spec of the unit.
1279
1280   function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
1281   pragma Inline (Get_Pragma_Id);
1282   --  Obtains the Pragma_Id from Pragma_Name_Unmapped (N)
1283
1284   function Get_Qualified_Name
1285     (Id     : Entity_Id;
1286      Suffix : Entity_Id := Empty) return Name_Id;
1287   --  Obtain the fully qualified form of entity Id. The format is:
1288   --    scope_of_id-1__scope_of_id__chars_of_id__chars_of_suffix
1289
1290   function Get_Qualified_Name
1291     (Nam    : Name_Id;
1292      Suffix : Name_Id   := No_Name;
1293      Scop   : Entity_Id := Current_Scope) return Name_Id;
1294   --  Obtain the fully qualified form of name Nam assuming it appears in scope
1295   --  Scop. The format is:
1296   --    scop-1__scop__nam__suffix
1297
1298   procedure Get_Reason_String (N : Node_Id);
1299   --  Recursive routine to analyze reason argument for pragma Warnings. The
1300   --  value of the reason argument is appended to the current string using
1301   --  Store_String_Chars. The reason argument is expected to be a string
1302   --  literal or concatenation of string literals. An error is given for
1303   --  any other form.
1304
1305   function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id;
1306   --  If Typ has Implicit_Dereference, return discriminant specified in the
1307   --  corresponding aspect.
1308
1309   function Get_Referenced_Object (N : Node_Id) return Node_Id;
1310   --  Given an arbitrary node, return the renamed object if the node
1311   --  represents a renamed object; otherwise return the node unchanged.
1312   --  The node can represent an arbitrary expression or any other kind of
1313   --  node (such as the name of a type).
1314
1315   function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
1316   --  Given an entity for an exception, package, subprogram or generic unit,
1317   --  returns the ultimately renamed entity if this is a renaming. If this is
1318   --  not a renamed entity, returns its argument. It is an error to call this
1319   --  with any other kind of entity.
1320
1321   function Get_Return_Object (N : Node_Id) return Entity_Id;
1322   --  Given an extended return statement, return the corresponding return
1323   --  object, identified as the one for which Is_Return_Object = True.
1324
1325   function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
1326   --  Nod is either a procedure call statement, or a function call, or an
1327   --  accept statement node. This procedure finds the Entity_Id of the related
1328   --  subprogram or entry and returns it, or if no subprogram can be found,
1329   --  returns Empty.
1330
1331   function Get_Task_Body_Procedure (E : Entity_Id) return Entity_Id;
1332   --  Given an entity for a task type or subtype, retrieves the
1333   --  Task_Body_Procedure field from the corresponding task type declaration.
1334
1335   function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id;
1336   --  For a type entity, return the entity of the primitive equality function
1337   --  for the type if it exists, otherwise return Empty.
1338
1339   procedure Get_Views
1340     (Typ       : Entity_Id;
1341      Priv_Typ  : out Entity_Id;
1342      Full_Typ  : out Entity_Id;
1343      UFull_Typ : out Entity_Id;
1344      CRec_Typ  : out Entity_Id);
1345   --  Obtain the partial and full views of type Typ and in addition any extra
1346   --  types the full views may have. The return entities are as follows:
1347   --
1348   --    Priv_Typ  - the partial view (a private type)
1349   --    Full_Typ  - the full view
1350   --    UFull_Typ - the underlying full view, if the full view is private
1351   --    CRec_Typ  - the corresponding record type of the full views
1352
1353   function Get_Fullest_View
1354     (E : Entity_Id; Include_PAT : Boolean := True) return Entity_Id;
1355   --  Get the fullest possible view of E, looking through private, limited,
1356   --  packed array and other implementation types. If Include_PAT is False,
1357   --  don't look inside packed array types.
1358
1359   function Has_Access_Values (T : Entity_Id) return Boolean;
1360   --  Returns true if the underlying type of T is an access type, or has a
1361   --  component (at any recursive level) that is an access type. This is a
1362   --  conservative predicate, if it is not known whether or not T contains
1363   --  access values (happens for generic formals in some cases), then False is
1364   --  returned.  Note that tagged types return False. Even though the tag is
1365   --  implemented as an access type internally, this function tests only for
1366   --  access types known to the programmer. See also Has_Tagged_Component.
1367
1368   function Has_Anonymous_Access_Discriminant (Typ : Entity_Id) return Boolean;
1369   --  Returns True if Typ has one or more anonymous access discriminants
1370
1371   type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
1372   --  Result of Has_Compatible_Alignment test, description found below. Note
1373   --  that the values are arranged in increasing order of problematicness.
1374
1375   function Has_Compatible_Alignment
1376     (Obj         : Entity_Id;
1377      Expr        : Node_Id;
1378      Layout_Done : Boolean) return Alignment_Result;
1379   --  Obj is an object entity, and expr is a node for an object reference. If
1380   --  the alignment of the object referenced by Expr is known to be compatible
1381   --  with the alignment of Obj (i.e. is larger or the same), then the result
1382   --  is Known_Compatible. If the alignment of the object referenced by Expr
1383   --  is known to be less than the alignment of Obj, then Known_Incompatible
1384   --  is returned. If neither condition can be reliably established at compile
1385   --  time, then Unknown is returned. If Layout_Done is True, the function can
1386   --  assume that the information on size and alignment of types and objects
1387   --  is present in the tree. This is used to determine if alignment checks
1388   --  are required for address clauses (Layout_Done is False in this case) as
1389   --  well as to issue appropriate warnings for them in the post compilation
1390   --  phase (Layout_Done is True in this case).
1391   --
1392   --  Note: Known_Incompatible does not mean that at run time the alignment
1393   --  of Expr is known to be wrong for Obj, just that it can be determined
1394   --  that alignments have been explicitly or implicitly specified which are
1395   --  incompatible (whereas Unknown means that even this is not known). The
1396   --  appropriate reaction of a caller to Known_Incompatible is to treat it as
1397   --  Unknown, but issue a warning that there may be an alignment error.
1398
1399   function Has_Declarations (N : Node_Id) return Boolean;
1400   --  Determines if the node can have declarations
1401
1402   function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
1403   --  Simple predicate to test for defaulted discriminants
1404
1405   function Has_Denormals (E : Entity_Id) return Boolean;
1406   --  Determines if the floating-point type E supports denormal numbers.
1407   --  Returns False if E is not a floating-point type.
1408
1409   function Has_Discriminant_Dependent_Constraint
1410     (Comp : Entity_Id) return Boolean;
1411   --  Returns True if and only if Comp has a constrained subtype that depends
1412   --  on a discriminant.
1413
1414   function Has_Effectively_Volatile_Profile
1415     (Subp_Id : Entity_Id) return Boolean;
1416   --  Determine whether subprogram Subp_Id has an effectively volatile formal
1417   --  parameter for reading or returns an effectively volatile value for
1418   --  reading.
1419
1420   function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean;
1421   --  Determine whether type Typ defines "full default initialization" as
1422   --  specified by SPARK RM 3.1. To qualify as such, the type must be
1423   --    * A scalar type with specified Default_Value
1424   --    * An array-of-scalar type with specified Default_Component_Value
1425   --    * An array type whose element type defines full default initialization
1426   --    * A protected type, record type or type extension whose components
1427   --      either include a default expression or have a type which defines
1428   --      full default initialization. In the case of type extensions, the
1429   --      parent type defines full default initialization.
1430   --    * A task type
1431   --    * A private type with pragma Default_Initial_Condition that provides
1432   --      full default initialization.
1433   --  This function is not used in GNATprove anymore, but is used in CodePeer.
1434
1435   function Has_Fully_Default_Initializing_DIC_Pragma
1436     (Typ : Entity_Id) return Boolean;
1437   --  Determine whether type Typ has a suitable Default_Initial_Condition
1438   --  pragma which provides the full default initialization of the type.
1439
1440   function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
1441   --  Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
1442   --  discriminants if it has a constrained nominal type, unless the object
1443   --  is a component of an enclosing Unchecked_Union object that is subject
1444   --  to a per-object constraint and the enclosing object lacks inferable
1445   --  discriminants.
1446   --
1447   --  An expression of an Unchecked_Union type has inferable discriminants
1448   --  if it is either a name of an object with inferable discriminants or a
1449   --  qualified expression whose subtype mark denotes a constrained subtype.
1450
1451   function Has_Infinities (E : Entity_Id) return Boolean;
1452   --  Determines if the range of the floating-point type E includes
1453   --  infinities. Returns False if E is not a floating-point type.
1454
1455   function Has_Interfaces
1456     (T             : Entity_Id;
1457      Use_Full_View : Boolean := True) return Boolean;
1458   --  Where T is a concurrent type or a record type, returns true if T covers
1459   --  any abstract interface types. In case of private types the argument
1460   --  Use_Full_View controls if the check is done using its full view (if
1461   --  available).
1462
1463   function Has_Max_Queue_Length (Id : Entity_Id) return Boolean;
1464   --  Determine whether Id is subject to pragma Max_Queue_Length. It is
1465   --  assumed that Id denotes an entry.
1466
1467   function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
1468   --  This is a simple minded function for determining whether an expression
1469   --  has no obvious side effects. It is used only for determining whether
1470   --  warnings are needed in certain situations, and is not guaranteed to
1471   --  be accurate in either direction. Exceptions may mean an expression
1472   --  does in fact have side effects, but this may be ignored and True is
1473   --  returned, or a complex expression may in fact be side effect free
1474   --  but we don't recognize it here and return False. The Side_Effect_Free
1475   --  routine in Remove_Side_Effects is much more extensive and perhaps could
1476   --  be shared, so that this routine would be more accurate.
1477
1478   function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean;
1479   --  Determine whether abstract state Id has at least one nonnull constituent
1480   --  as expressed in pragma Refined_State. This function does not take into
1481   --  account the visible refinement region of abstract state Id.
1482
1483   function Has_Non_Trivial_Precondition (Subp : Entity_Id) return Boolean;
1484   --  Determine whether subprogram Subp has a class-wide precondition that is
1485   --  not statically True.
1486
1487   function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
1488   --  Determine whether the body of procedure Proc_Id contains a sole null
1489   --  statement, possibly followed by an optional return. Used to optimize
1490   --  useless calls to assertion checks.
1491
1492   function Has_Null_Exclusion (N : Node_Id) return Boolean;
1493   --  Determine whether node N has a null exclusion
1494
1495   function Has_Null_Refinement (Id : Entity_Id) return Boolean;
1496   --  Determine whether abstract state Id has a null refinement as expressed
1497   --  in pragma Refined_State. This function does not take into account the
1498   --  visible refinement region of abstract state Id.
1499
1500   function Has_Non_Null_Statements (L : List_Id) return Boolean;
1501   --  Return True if L has non-null statements
1502
1503   function Side_Effect_Free_Statements (L : List_Id) return Boolean;
1504   --  Return True if L has no statements with side effects
1505
1506   function Side_Effect_Free_Loop (N : Node_Id) return Boolean;
1507   --  Return True if the loop has no side effect and can therefore be
1508   --  marked for removal. Return False if N is not a N_Loop_Statement.
1509
1510   subtype Static_Accessibility_Level_Kind
1511     is Accessibility_Level_Kind range Object_Decl_Level
1512                                         .. Zero_On_Dynamic_Level;
1513   --  Restrict the reange of Accessibility_Level_Kind to be non-dynamic for
1514   --  use in the static version of Accessibility_Level below.
1515
1516   function Static_Accessibility_Level
1517     (Expr              : Node_Id;
1518      Level             : Static_Accessibility_Level_Kind;
1519      In_Return_Context : Boolean := False) return Uint;
1520   --  Overloaded version of Accessibility_Level which returns a universal
1521   --  integer for use in compile-time checking. Note: Level is restricted to
1522   --  be non-dynamic.
1523
1524   function Is_Newly_Constructed
1525     (Exp : Node_Id; Context_Requires_NC : Boolean) return Boolean;
1526   --  Indicates whether a given expression is "newly constructed" (RM 4.4).
1527   --  Context_Requires_NC determines the result returned for cases like a
1528   --  raise expression or a conditional expression where some-but-not-all
1529   --  operative constituents are newly constructed. Thus, this is a
1530   --  somewhat unusual predicate in that the result required in order to
1531   --  satisfy whatever legality rule is being checked can influence the
1532   --  result of the predicate. Context_Requires_NC might be True for
1533   --  something like the "newly constructed" rule for a limited expression
1534   --  of a return statement, and False for something like the
1535   --  "newly constructed" rule pertaining to a limited object renaming in a
1536   --  declare expression. Eventually, the code to implement every
1537   --  RM legality rule requiring/prohibiting a "newly constructed" expression
1538   --  should be implemented by calling this function; that's not done yet.
1539   --  The function name doesn't quite match the RM definition of the term if
1540   --  Context_Requires_NC = False; in that case, "Might_Be_Newly_Constructed"
1541   --  might be a more accurate name.
1542
1543   function Is_Prim_Of_Abst_Type_With_Nonstatic_CW_Pre_Post
1544     (Subp : Entity_Id) return Boolean;
1545   --  Return True if Subp is a primitive of an abstract type, where the
1546   --  primitive has a class-wide pre- or postcondition whose expression
1547   --  is nonstatic.
1548
1549   function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
1550   --  Predicate to determine whether a controlled type has a user-defined
1551   --  Initialize primitive (and, in Ada 2012, whether that primitive is
1552   --  non-null), which causes the type to not have preelaborable
1553   --  initialization.
1554
1555   function Has_Preelaborable_Initialization
1556     (E                 : Entity_Id;
1557      Preelab_Init_Expr : Node_Id := Empty) return Boolean;
1558   --  Return True iff type E has preelaborable initialization as defined in
1559   --  Ada 2005 (see AI-161 for details of the definition of this attribute).
1560   --  If Preelab_Init_Expr is present, indicates that the function should
1561   --  presume that for any subcomponent of E that is of a formal private or
1562   --  derived type that is referenced by a Preelaborable_Initialization
1563   --  attribute within the expression Preelab_Init_Expr, the formal type has
1564   --  preelaborable initialization (RM 10.2.1(11.8/5) and AI12-0409).
1565
1566   function Has_Prefix (N : Node_Id) return Boolean;
1567   --  Return True if N has attribute Prefix
1568
1569   function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1570   --  Check if a type has a (sub)component of a private type that has not
1571   --  yet received a full declaration.
1572
1573   function Has_Relaxed_Initialization (E : Entity_Id) return Boolean;
1574   --  Returns True iff entity E is subject to the Relaxed_Initialization
1575   --  aspect. Entity E can be either type, variable, constant, subprogram,
1576   --  entry or an abstract state. For private types and deferred constants
1577   --  E should be the private view, because aspect can only be attached there.
1578
1579   function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1580   --  Determines if the floating-point type E supports signed zeros.
1581   --  Returns False if E is not a floating-point type.
1582
1583   function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1584   --  Determine whether subprogram [body] Subp_Id has a significant contract.
1585   --  All subprograms have a N_Contract node, but this does not mean that the
1586   --  contract is useful.
1587
1588   function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1589   --  Return whether an array type has static bounds
1590
1591   function Has_Static_Non_Empty_Array_Bounds (Typ : Node_Id) return Boolean;
1592   --  Determine whether array type Typ has static non-empty bounds
1593
1594   function Has_Stream (T : Entity_Id) return Boolean;
1595   --  Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1596   --  case of a composite type, has a component for which this predicate is
1597   --  True, and if so returns True. Otherwise a result of False means that
1598   --  there is no Stream type in sight. For a private type, the test is
1599   --  applied to the underlying type (or returns False if there is no
1600   --  underlying type).
1601
1602   function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1603   --  Returns true if the last character of E is Suffix. Used in Assertions.
1604
1605   function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1606   --  Returns True if Typ is a composite type (array or record) that is either
1607   --  a tagged type or has a subcomponent that is tagged. Returns False for a
1608   --  noncomposite type, or if no tagged subcomponents are present.
1609
1610   function Has_Unconstrained_Access_Discriminants
1611     (Subtyp : Entity_Id) return Boolean;
1612   --  Returns True if the given subtype is unconstrained and has one or more
1613   --  access discriminants.
1614
1615   function Has_Undefined_Reference (Expr : Node_Id) return Boolean;
1616   --  Given arbitrary expression Expr, determine whether it contains at
1617   --  least one name whose entity is Any_Id.
1618
1619   function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1620   --  Given arbitrary type Typ, determine whether it contains at least one
1621   --  volatile component.
1622
1623   function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1624   --  Subp is a subprogram marked with pragma Implemented. Return the specific
1625   --  implementation requirement which the pragma imposes. The return value is
1626   --  either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1627
1628   function Implements_Interface
1629     (Typ_Ent         : Entity_Id;
1630      Iface_Ent       : Entity_Id;
1631      Exclude_Parents : Boolean := False) return Boolean;
1632   --  Returns true if the Typ_Ent implements interface Iface_Ent
1633
1634   function Implicitly_Designated_Type (Typ : Entity_Id) return Entity_Id;
1635   --  Called when Typ is the type of the prefix of an implicit dereference.
1636   --  Return the designated type of Typ, taking into account that this type
1637   --  may be a limited view, when the nonlimited view is visible.
1638
1639   function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1640   --  Returns True if node N appears within a pragma that acts as an assertion
1641   --  expression. See Sem_Prag for the list of qualifying pragmas.
1642
1643   function In_Check_Node (N : Node_Id) return Boolean;
1644   --  Return True if N is part of a N_Raise_xxx_Error node
1645
1646   function In_Generic_Formal_Package (E : Entity_Id) return Boolean;
1647   --  Returns True if entity E is inside a generic formal package
1648
1649   function In_Generic_Scope (E : Entity_Id) return Boolean;
1650   --  Returns True if entity E is inside a generic scope
1651
1652   function In_Instance return Boolean;
1653   --  Returns True if the current scope is within a generic instance
1654
1655   function In_Instance_Body return Boolean;
1656   --  Returns True if current scope is within the body of an instance, where
1657   --  several semantic checks (e.g. accessibility checks) are relaxed.
1658
1659   function In_Instance_Not_Visible return Boolean;
1660   --  Returns True if current scope is with the private part or the body of
1661   --  an instance. Other semantic checks are suppressed in this context.
1662
1663   function In_Instance_Visible_Part
1664     (Id : Entity_Id := Current_Scope) return Boolean;
1665   --  Returns True if arbitrary entity Id is within the visible part of a
1666   --  package instance, where several additional semantic checks apply.
1667
1668   function In_Package_Body return Boolean;
1669   --  Returns True if current scope is within a package body
1670
1671   function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1672   --  Returns true if the expression N occurs within a pragma with name Nam
1673
1674   function In_Pre_Post_Condition
1675     (N : Node_Id; Class_Wide_Only : Boolean := False) return Boolean;
1676   --  Returns True if node N appears within a pre/postcondition pragma. Note
1677   --  the pragma Check equivalents are NOT considered. If Class_Wide_Only is
1678   --  True, then tests for N appearing within a class-wide pre/postcondition.
1679
1680   function In_Quantified_Expression (N : Node_Id) return Boolean;
1681   --  Returns true if the expression N occurs within a quantified expression
1682
1683   function In_Return_Value (Expr : Node_Id) return Boolean;
1684   --  Returns true if the expression Expr occurs within a simple return
1685   --  statement or is part of an assignment to the return object in an
1686   --  extended return statement.
1687
1688   function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1689   --  Returns True if N denotes a component or subcomponent in a record or
1690   --  array that has Reverse_Storage_Order.
1691
1692   function In_Same_Declarative_Part
1693     (Context : Node_Id;
1694      N       : Node_Id) return Boolean;
1695   --  True if the node N appears within the same declarative part denoted by
1696   --  the node Context.
1697
1698   function In_Subprogram_Or_Concurrent_Unit return Boolean;
1699   --  Determines if the current scope is within a subprogram compilation unit
1700   --  (inside a subprogram declaration, subprogram body, or generic subprogram
1701   --  declaration) or within a task or protected body. The test is for
1702   --  appearing anywhere within such a construct (that is it does not need
1703   --  to be directly within).
1704
1705   function In_Subtree (N : Node_Id; Root : Node_Id) return Boolean;
1706   --  Determine whether node N is within the subtree rooted at Root
1707
1708   function In_Subtree
1709     (N     : Node_Id;
1710      Root1 : Node_Id;
1711      Root2 : Node_Id) return Boolean;
1712   --  Determine whether node N is within the subtree rooted at Root1 or Root2.
1713   --  This version is more efficient than calling the single root version of
1714   --  Is_Subtree twice.
1715
1716   function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1717   --  Determine whether a declaration occurs within the visible part of a
1718   --  package specification. The package must be on the scope stack, and the
1719   --  corresponding private part must not.
1720
1721   function In_While_Loop_Condition (N : Node_Id) return Boolean;
1722   --  Returns true if the expression N occurs within the condition of a while
1723
1724   function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1725   --  Given the entity of a constant or a type, retrieve the incomplete or
1726   --  partial view of the same entity. Note that Id may not have a partial
1727   --  view in which case the function returns Empty.
1728
1729   function Incomplete_View_From_Limited_With
1730     (Typ : Entity_Id) return Entity_Id;
1731   --  Typ is a type entity. This normally returns Typ. However, if there is
1732   --  an incomplete view of this entity that comes from a limited-with'ed
1733   --  package, then this returns that incomplete view.
1734
1735   function Indexed_Component_Bit_Offset (N : Node_Id) return Uint;
1736   --  Given an N_Indexed_Component node, return the first bit position of the
1737   --  component if it is known at compile time. A value of No_Uint means that
1738   --  either the value is not yet known before back-end processing or it is
1739   --  not known at compile time after back-end processing.
1740
1741   procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
1742   --  Propagate static and dynamic predicate flags from a parent to the
1743   --  subtype in a subtype declaration with and without constraints.
1744
1745   procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1746   --  Inherit the rep item chain of type From_Typ without clobbering any
1747   --  existing rep items on Typ's chain. Typ is the destination type.
1748
1749   function Inherits_From_Tagged_Full_View (Typ : Entity_Id) return Boolean;
1750   pragma Inline (Inherits_From_Tagged_Full_View);
1751   --  Return True if Typ is an untagged private type completed with a
1752   --  derivation of an untagged private type declaration whose full view
1753   --  is a tagged type.
1754
1755   procedure Insert_Explicit_Dereference (N : Node_Id);
1756   --  In a context that requires a composite or subprogram type and where a
1757   --  prefix is an access type, rewrite the access type node N (which is the
1758   --  prefix, e.g. of an indexed component) as an explicit dereference.
1759
1760   procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1761   --  Examine all deferred constants in the declaration list Decls and check
1762   --  whether they have been completed by a full constant declaration or an
1763   --  Import pragma. Emit the error message if that is not the case.
1764
1765   procedure Install_Elaboration_Model (Unit_Id : Entity_Id);
1766   --  Install the elaboration model specified by pragma Elaboration_Checks
1767   --  associated with compilation unit Unit_Id. No action is taken when the
1768   --  unit lacks such pragma.
1769
1770   procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1771   --  Install both the generic formal parameters and the formal parameters of
1772   --  generic subprogram Subp_Id into visibility.
1773
1774   procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
1775   --  Establish the SPARK_Mode and SPARK_Mode_Pragma currently in effect
1776
1777   function Invalid_Scalar_Value
1778     (Loc      : Source_Ptr;
1779      Scal_Typ : Scalar_Id) return Node_Id;
1780   --  Obtain the invalid value for scalar type Scal_Typ as either specified by
1781   --  pragma Initialize_Scalars or by the binder. Return an expression created
1782   --  at source location Loc, which denotes the invalid value.
1783
1784   function Is_Anonymous_Access_Actual (N : Node_Id) return Boolean;
1785   --  Determine if N is used as an actual for a call whose corresponding
1786   --  formal is of an anonymous access type.
1787
1788   function Is_Access_Subprogram_Wrapper (E : Entity_Id) return Boolean;
1789   --  True if E is the constructed wrapper for an access_to_subprogram
1790   --  type with Pre/Postconditions.
1791
1792   function Is_Access_Variable (E : Entity_Id) return Boolean;
1793   --  Determines if type E is an access-to-variable
1794
1795   function Is_Actual_In_Out_Parameter (N : Node_Id) return Boolean;
1796   --  Determines if N is an actual parameter of in-out mode in a subprogram
1797   --  call.
1798
1799   function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1800   --  Determines if N is an actual parameter of out mode in a subprogram call
1801
1802   function Is_Actual_Out_Or_In_Out_Parameter (N : Node_Id) return Boolean;
1803   --  Determines if N is an actual parameter of out or in out mode in a
1804   --  subprogram call.
1805
1806   function Is_Actual_Parameter (N : Node_Id) return Boolean;
1807   --  Determines if N is an actual parameter in a subprogram or entry call
1808
1809   function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1810   --  Determines if N is an actual parameter of a formal of tagged type in a
1811   --  subprogram call.
1812
1813   function Is_Aliased_View (Obj : Node_Id) return Boolean;
1814   --  Determine if Obj is an aliased view, i.e. the name of an object to which
1815   --  'Access or 'Unchecked_Access can apply. Note that this routine uses the
1816   --  rules of the language, it does not take into account the restriction
1817   --  No_Implicit_Aliasing, so it can return True if the restriction is active
1818   --  and Obj violates the restriction. The caller is responsible for calling
1819   --  Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1820   --  requirement for obeying the restriction in the call context.
1821
1822   function Is_Ancestor_Package
1823     (E1 : Entity_Id;
1824      E2 : Entity_Id) return Boolean;
1825   --  Determine whether package E1 is an ancestor of E2
1826
1827   function Is_Atomic_Object (N : Node_Id) return Boolean;
1828   --  Determine whether arbitrary node N denotes a reference to an atomic
1829   --  object as per RM C.6(7) and the crucial remark in RM C.6(8).
1830
1831   function Is_Attribute_Loop_Entry (N : Node_Id) return Boolean;
1832   --  Determine whether node N denotes attribute 'Loop_Entry
1833
1834   function Is_Attribute_Old (N : Node_Id) return Boolean;
1835   --  Determine whether node N denotes attribute 'Old
1836
1837   function Is_Attribute_Result (N : Node_Id) return Boolean;
1838   --  Determine whether node N denotes attribute 'Result
1839
1840   function Is_Attribute_Update (N : Node_Id) return Boolean;
1841   --  Determine whether node N denotes attribute 'Update
1842
1843   function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
1844   --  Determine whether node N denotes a body or a package declaration
1845
1846   function Is_Bounded_String (T : Entity_Id) return Boolean;
1847   --  True if T is a bounded string type. Used to make sure "=" composes
1848   --  properly for bounded string types.
1849
1850   function Is_By_Protected_Procedure (Id : Entity_Id) return Boolean;
1851   --  Determine whether entity Id denotes a procedure with synchronization
1852   --  kind By_Protected_Procedure.
1853
1854   function Is_Confirming (Aspect : Nonoverridable_Aspect_Id;
1855                           Aspect_Spec_1, Aspect_Spec_2 : Node_Id)
1856                          return Boolean;
1857   --  Returns true if the two specifications of the given
1858   --  nonoverridable aspect are compatible.
1859
1860   function Is_Conjunction_Of_Formal_Preelab_Init_Attributes
1861     (Expr : Node_Id) return Boolean;
1862   --  Returns True if Expr is a Preelaborable_Initialization attribute applied
1863   --  to a formal type, or a sequence of two or more such attributes connected
1864   --  by "and" operators, or if the Original_Node of Expr or its constituents
1865   --  is such an attribute.
1866
1867   function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1868   --  Exp is the expression for an array bound. Determines whether the
1869   --  bound is a compile-time known value, or a constant entity, or an
1870   --  enumeration literal, or an expression composed of constant-bound
1871   --  subexpressions which are evaluated by means of standard operators.
1872
1873   function Is_Container_Element (Exp : Node_Id) return Boolean;
1874   --  This routine recognizes expressions that denote an element of one of
1875   --  the predefined containers, when the source only contains an indexing
1876   --  operation and an implicit dereference is inserted by the compiler.
1877   --  In the absence of this optimization, the indexing creates a temporary
1878   --  controlled cursor that sets the tampering bit of the container, and
1879   --  restricts the use of the convenient notation C (X) to contexts that
1880   --  do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1881   --  explicit dereference. The transformation applies when it has the form
1882   --  F (X).Discr.all.
1883
1884   function Is_Contract_Annotation (Item : Node_Id) return Boolean;
1885   --  Determine whether aspect specification or pragma Item is a contract
1886   --  annotation.
1887
1888   function Is_Controlling_Limited_Procedure
1889     (Proc_Nam : Entity_Id) return Boolean;
1890   --  Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1891   --  of a limited interface with a controlling first parameter.
1892
1893   function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1894   --  Returns True if N is a call to a CPP constructor
1895
1896   function Is_CCT_Instance
1897     (Ref_Id     : Entity_Id;
1898      Context_Id : Entity_Id) return Boolean;
1899   --  Subsidiary to the analysis of pragmas [Refined_]Depends and [Refined_]
1900   --  Global; also used when analyzing default expressions of protected and
1901   --  record components. Determine whether entity Ref_Id (which must represent
1902   --  either a protected type or a task type) denotes the current instance of
1903   --  a concurrent type. Context_Id denotes the associated context where the
1904   --  pragma appears.
1905
1906   function Is_Child_Or_Sibling
1907     (Pack_1 : Entity_Id;
1908      Pack_2 : Entity_Id) return Boolean;
1909   --  Determine the following relations between two arbitrary packages:
1910   --    1) One package is the parent of a child package
1911   --    2) Both packages are siblings and share a common parent
1912
1913   function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1914   --  First determine whether type T is an interface and then check whether
1915   --  it is of protected, synchronized or task kind.
1916
1917   function Is_Current_Instance (N : Node_Id) return Boolean;
1918   --  Predicate is true if N legally denotes a type name within its own
1919   --  declaration. Prior to Ada 2012 this covered only synchronized type
1920   --  declarations. In Ada 2012 it also covers type and subtype declarations
1921   --  with aspects: Invariant, Predicate, and Default_Initial_Condition.
1922
1923   function Is_Current_Instance_Reference_In_Type_Aspect
1924     (N : Node_Id) return Boolean;
1925   --  True if N is a reference to a current instance object that occurs within
1926   --  an aspect_specification for a type or subtype. In this case N will be
1927   --  a formal parameter of a subprogram created for a predicate, invariant,
1928   --  or Default_Initial_Condition aspect.
1929
1930   function Is_Declaration
1931     (N                : Node_Id;
1932      Body_OK          : Boolean := True;
1933      Concurrent_OK    : Boolean := True;
1934      Formal_OK        : Boolean := True;
1935      Generic_OK       : Boolean := True;
1936      Instantiation_OK : Boolean := True;
1937      Renaming_OK      : Boolean := True;
1938      Stub_OK          : Boolean := True;
1939      Subprogram_OK    : Boolean := True;
1940      Type_OK          : Boolean := True) return Boolean;
1941   --  Determine whether arbitrary node N denotes a declaration depending
1942   --  on the allowed subsets of declarations. Set the following flags to
1943   --  consider specific subsets of declarations:
1944   --
1945   --    * Body_OK - body declarations
1946   --
1947   --    * Concurrent_OK - concurrent type declarations
1948   --
1949   --    * Formal_OK - formal declarations
1950   --
1951   --    * Generic_OK - generic declarations, including generic renamings
1952   --
1953   --    * Instantiation_OK - generic instantiations
1954   --
1955   --    * Renaming_OK - renaming declarations, including generic renamings
1956   --
1957   --    * Stub_OK - stub declarations
1958   --
1959   --    * Subprogram_OK - entry, expression function, and subprogram
1960   --      declarations.
1961   --
1962   --    * Type_OK - type declarations, including concurrent types
1963
1964   function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
1965   --  Returns True iff component Comp is declared within a variant part
1966
1967   function Is_Dependent_Component_Of_Mutable_Object
1968     (Object : Node_Id) return Boolean;
1969   --  Returns True if Object is the name of a subcomponent that depends on
1970   --  discriminants of a variable whose nominal subtype is unconstrained and
1971   --  not indefinite, and the variable is not aliased. Otherwise returns
1972   --  False. The nodes passed to this function are assumed to denote objects.
1973
1974   function Is_Dereferenced (N : Node_Id) return Boolean;
1975   --  N is a subexpression node of an access type. This function returns true
1976   --  if N appears as the prefix of a node that does a dereference of the
1977   --  access value (selected/indexed component, explicit dereference or a
1978   --  slice), and false otherwise.
1979
1980   function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1981   --  Returns True if type T1 is a descendant of type T2, and false otherwise.
1982   --  This is the RM definition, a type is a descendant of another type if it
1983   --  is the same type or is derived from a descendant of the other type.
1984
1985   function Is_Descendant_Of_Suspension_Object
1986     (Typ : Entity_Id) return Boolean;
1987   --  Determine whether type Typ is a descendant of type Suspension_Object
1988   --  defined in Ada.Synchronous_Task_Control. This version is different from
1989   --  Is_Descendant_Of as the detection of Suspension_Object does not involve
1990   --  an entity and by extension a call to RTSfind.
1991
1992   function Is_Double_Precision_Floating_Point_Type
1993     (E : Entity_Id) return Boolean;
1994   --  Return whether E is a double precision floating point type,
1995   --  characterized by:
1996   --  . machine_radix = 2
1997   --  . machine_mantissa = 53
1998   --  . machine_emax = 2**10
1999   --  . machine_emin = 3 - machine_emax
2000
2001   function Is_Effectively_Volatile
2002     (Id               : Entity_Id;
2003      Ignore_Protected : Boolean := False) return Boolean;
2004   --  Determine whether a type or object denoted by entity Id is effectively
2005   --  volatile (SPARK RM 7.1.2). To qualify as such, the entity must be either
2006   --    * Volatile without No_Caching
2007   --    * An array type subject to aspect Volatile_Components
2008   --    * An array type whose component type is effectively volatile
2009   --    * A protected type
2010   --    * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
2011   --
2012   --  If Ignore_Protected is True, then a protected object/type is treated
2013   --  like a non-protected record object/type for computing the result of
2014   --  this query.
2015
2016   function Is_Effectively_Volatile_For_Reading
2017     (Id               : Entity_Id;
2018      Ignore_Protected : Boolean := False) return Boolean;
2019   --  Determine whether a type or object denoted by entity Id is effectively
2020   --  volatile for reading (SPARK RM 7.1.2). To qualify as such, the entity
2021   --  must be either
2022   --    * Volatile without No_Caching and have Async_Writers or
2023   --      Effective_Reads set to True
2024   --    * An array type subject to aspect Volatile_Components, unless it has
2025   --      Async_Writers and Effective_Reads set to False
2026   --    * An array type whose component type is effectively volatile for
2027   --      reading
2028   --    * A protected type
2029   --    * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
2030   --
2031   --  If Ignore_Protected is True, then a protected object/type is treated
2032   --  like a non-protected record object/type for computing the result of
2033   --  this query.
2034
2035   function Is_Effectively_Volatile_Object
2036     (N : Node_Id) return Boolean;
2037   --  Determine whether an arbitrary node denotes an effectively volatile
2038   --  object (SPARK RM 7.1.2).
2039
2040   function Is_Effectively_Volatile_Object_For_Reading
2041     (N : Node_Id) return Boolean;
2042   --  Determine whether an arbitrary node denotes an effectively volatile
2043   --  object for reading (SPARK RM 7.1.2).
2044
2045   function Is_Entry_Body (Id : Entity_Id) return Boolean;
2046   --  Determine whether entity Id is the body entity of an entry [family]
2047
2048   function Is_Entry_Declaration (Id : Entity_Id) return Boolean;
2049   --  Determine whether entity Id is the spec entity of an entry [family]
2050
2051   function Is_Explicitly_Aliased (N : Node_Id) return Boolean;
2052   --  Determine if a given node N is an explicitly aliased formal parameter.
2053
2054   function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean;
2055   --  Check whether a function in a call is an expanded priority attribute,
2056   --  which is transformed into an Rtsfind call to Get_Ceiling. This expansion
2057   --  does not take place in a configurable runtime.
2058
2059   function Is_Expression_Function (Subp : Entity_Id) return Boolean;
2060   --  Determine whether subprogram [body] Subp denotes an expression function
2061
2062   function Is_Expression_Function_Or_Completion
2063     (Subp : Entity_Id) return Boolean;
2064   --  Determine whether subprogram [body] Subp denotes an expression function
2065   --  or is completed by an expression function body.
2066
2067   function Is_Extended_Precision_Floating_Point_Type
2068     (E : Entity_Id) return Boolean;
2069   --  Return whether E is an extended precision floating point type,
2070   --  characterized by:
2071   --  . machine_radix = 2
2072   --  . machine_mantissa = 64
2073   --  . machine_emax = 2**14
2074   --  . machine_emin = 3 - machine_emax
2075
2076   function Is_EVF_Expression (N : Node_Id) return Boolean;
2077   --  Determine whether node N denotes a reference to a formal parameter of
2078   --  a specific tagged type whose related subprogram is subject to pragma
2079   --  Extensions_Visible with value "False" (SPARK RM 6.1.7). Several other
2080   --  constructs fall under this category:
2081   --    1) A qualified expression whose operand is EVF
2082   --    2) A type conversion whose operand is EVF
2083   --    3) An if expression with at least one EVF dependent_expression
2084   --    4) A case expression with at least one EVF dependent_expression
2085
2086   function Is_False (U : Opt_Ubool) return Boolean;
2087   pragma Inline (Is_False);
2088   --  True if U is Boolean'Pos (False) (i.e. Uint_0)
2089
2090   function Is_True (U : Opt_Ubool) return Boolean;
2091   pragma Inline (Is_True);
2092   --  True if U is Boolean'Pos (True) (i.e. Uint_1). Also True if U is
2093   --  No_Uint; we allow No_Uint because Static_Boolean returns that in
2094   --  case of error. It doesn't really matter whether the error case is
2095   --  considered True or False, but we don't want this to blow up in that
2096   --  case.
2097
2098   function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
2099   --  Returns True iff the number U is a model number of the fixed-point type
2100   --  T, i.e. if it is an exact multiple of Small.
2101
2102   function Is_Full_Access_Object (N : Node_Id) return Boolean;
2103   --  Determine whether arbitrary node N denotes a reference to a full access
2104   --  object as per Ada 2022 RM C.6(8.2).
2105
2106   function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
2107   --  Typ is a type entity. This function returns true if this type is fully
2108   --  initialized, meaning that an object of the type is fully initialized.
2109   --  Note that initialization resulting from use of pragma Normalize_Scalars
2110   --  does not count. Note that this is only used for the purpose of issuing
2111   --  warnings for objects that are potentially referenced uninitialized. This
2112   --  means that the result returned is not crucial, but should err on the
2113   --  side of thinking things are fully initialized if it does not know.
2114
2115   function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean;
2116   --  Determine whether arbitrary declaration Decl denotes a generic package,
2117   --  a generic subprogram or a generic body.
2118
2119   function Is_Independent_Object (N : Node_Id) return Boolean;
2120   --  Determine whether arbitrary node N denotes a reference to an independent
2121   --  object as per RM C.6(8).
2122
2123   function Is_Inherited_Operation (E : Entity_Id) return Boolean;
2124   --  E is a subprogram. Return True is E is an implicit operation inherited
2125   --  by a derived type declaration.
2126
2127   function Is_Inherited_Operation_For_Type
2128     (E   : Entity_Id;
2129      Typ : Entity_Id) return Boolean;
2130   --  E is a subprogram. Return True is E is an implicit operation inherited
2131   --  by the derived type declaration for type Typ.
2132
2133   function Is_Inlinable_Expression_Function (Subp : Entity_Id) return Boolean;
2134   --  Return True if Subp is an expression function that fulfills all the
2135   --  following requirements for inlining:
2136   --     1. pragma/aspect Inline_Always
2137   --     2. No formals
2138   --     3. No contracts
2139   --     4. No dispatching primitive
2140   --     5. Result subtype controlled (or with controlled components)
2141   --     6. Result subtype not subject to type-invariant checks
2142   --     7. Result subtype not a class-wide type
2143   --     8. Return expression naming an object global to the function
2144   --     9. Nominal subtype of the returned object statically compatible
2145   --        with the result subtype of the expression function.
2146
2147   function Is_Iterator (Typ : Entity_Id) return Boolean;
2148   --  AI05-0139-2: Check whether Typ is one of the predefined interfaces in
2149   --  Ada.Iterator_Interfaces, or it is derived from one.
2150
2151   function Is_Iterator_Over_Array (N : Node_Id) return Boolean;
2152   --  N is an iterator specification. Returns True iff N is an iterator over
2153   --  an array, either inside a loop of the form 'for X of A' or a quantified
2154   --  expression of the form 'for all/some X of A' where A is of array type.
2155
2156   type Is_LHS_Result is (Yes, No, Unknown);
2157   function Is_LHS (N : Node_Id) return Is_LHS_Result;
2158   --  Returns Yes if N is definitely used as Name in an assignment statement.
2159   --  Returns No if N is definitely NOT used as a Name in an assignment
2160   --  statement. Returns Unknown if we can't tell at this stage (happens in
2161   --  the case where we don't know the type of N yet, and we have something
2162   --  like N.A := 3, where this counts as N being used on the left side of
2163   --  an assignment only if N is not an access type. If it is an access type
2164   --  then it is N.all.A that is assigned, not N.
2165
2166   function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
2167   --  A library-level declaration is one that is accessible from Standard,
2168   --  i.e. a library unit or an entity declared in a library package.
2169
2170   function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
2171   --  Determine whether a given type is a limited class-wide type, in which
2172   --  case it needs a Master_Id, because extensions of its designated type
2173   --  may include task components. A class-wide type that comes from a
2174   --  limited view must be treated in the same way.
2175
2176   function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
2177   --  Determines whether Expr is a reference to a variable or formal parameter
2178   --  of mode OUT or IN OUT of the current enclosing subprogram.
2179
2180   function Is_Master (N : Node_Id) return Boolean;
2181   --  Determine if the given node N constitutes a finalization master
2182
2183   function Is_Name_Reference (N : Node_Id) return Boolean;
2184   --  Determine whether arbitrary node N is a reference to a name. This is
2185   --  similar to Is_Object_Reference but returns True only if N can be renamed
2186   --  without the need for a temporary, the typical example of an object not
2187   --  in this category being a function call.
2188
2189   function Is_Non_Preelaborable_Construct (N : Node_Id) return Boolean;
2190   --  Determine whether arbitrary construct N violates preelaborability as
2191   --  defined in ARM 10.2.1 5-9/3. This routine takes into account both the
2192   --  syntactic and semantic properties of the construct.
2193
2194   function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean;
2195   --  Determine whether entity Id denotes the procedure that verifies the
2196   --  assertion expression of pragma Default_Initial_Condition and if it does,
2197   --  the encapsulated expression is nontrivial.
2198
2199   function Is_Null_Extension
2200    (T : Entity_Id; Ignore_Privacy : Boolean := False) return Boolean;
2201   --  Given a tagged type, returns True if argument is a type extension
2202   --  that introduces no new components (discriminant or nondiscriminant).
2203   --  Ignore_Privacy should be True for use in implementing dynamic semantics.
2204
2205   function Is_Null_Extension_Of
2206     (Descendant, Ancestor : Entity_Id) return Boolean;
2207   --  Given two tagged types, the first a descendant of the second,
2208   --  returns True if every component of Descendant is inherited
2209   --  (directly or indirectly) from Ancestor. Privacy is ignored.
2210
2211   function Is_Null_Record_Definition (Record_Def : Node_Id) return Boolean;
2212   --  Returns True for an N_Record_Definition node that has no user-defined
2213   --  components (and no variant part).
2214
2215   function Is_Null_Record_Type
2216     (T : Entity_Id; Ignore_Privacy : Boolean := False) return Boolean;
2217   --  Determine whether T is declared with a null record definition, a
2218   --  null component list, or as a type derived from a null record type
2219   --  (with a null extension if tagged). Returns True for interface types,
2220   --  False for discriminated types.
2221
2222   function Is_Object_Image (Prefix : Node_Id) return Boolean;
2223   --  Returns True if an 'Img, 'Image, 'Wide_Image, or 'Wide_Wide_Image
2224   --  attribute is applied to an object.
2225
2226   function Is_Object_Reference (N : Node_Id) return Boolean;
2227   --  Determines if the tree referenced by N represents an object. Both
2228   --  variable and constant objects return True (compare Is_Variable).
2229
2230   function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
2231   --  Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
2232   --  Note that the Is_Variable function is not quite the right test because
2233   --  this is a case in which conversions whose expression is a variable (in
2234   --  the Is_Variable sense) with an untagged type target are considered view
2235   --  conversions and hence variables.
2236
2237   function Is_OK_Volatile_Context
2238     (Context       : Node_Id;
2239      Obj_Ref       : Node_Id;
2240      Check_Actuals : Boolean) return Boolean;
2241   --  Determine whether node Context denotes a "non-interfering context" (as
2242   --  defined in SPARK RM 7.1.3(10)) where volatile reference Obj_Ref can
2243   --  safely reside. When examining references that might be located within
2244   --  actual parameters of a subprogram call that has not been resolved yet,
2245   --  Check_Actuals should be False; such references will be assumed to be
2246   --  legal. They will need to be checked again after subprogram call has
2247   --  been resolved.
2248
2249   function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean;
2250   --  Determine whether aspect specification or pragma Item is one of the
2251   --  following package contract annotations:
2252   --    Abstract_State
2253   --    Initial_Condition
2254   --    Initializes
2255   --    Refined_State
2256
2257   function Is_Partially_Initialized_Type
2258     (Typ              : Entity_Id;
2259      Include_Implicit : Boolean := True) return Boolean;
2260   --  Typ is a type entity. This function returns true if this type is partly
2261   --  initialized, meaning that an object of the type is at least partly
2262   --  initialized (in particular in the record case, that at least one
2263   --  component has an initialization expression, including via Default_Value
2264   --  and Default_Component_Value aspects). Note that initialization
2265   --  resulting from the use of pragma Normalize_Scalars does not count.
2266   --  Include_Implicit controls whether implicit initialization of access
2267   --  values to null, and of discriminant values, is counted as making the
2268   --  type be partially initialized. For the default setting of True, these
2269   --  implicit cases do count, and discriminated types or types containing
2270   --  access values not explicitly initialized will return True. Otherwise
2271   --  if Include_Implicit is False, these cases do not count as making the
2272   --  type be partially initialized.
2273
2274   function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
2275   --  Predicate to implement definition given in RM 6.1.1 (20/3)
2276
2277   function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
2278   --  Determines if type T is a potentially persistent type. A potentially
2279   --  persistent type is defined (recursively) as a scalar type, an untagged
2280   --  record whose components are all of a potentially persistent type, or an
2281   --  array with all static constraints whose component type is potentially
2282   --  persistent. A private type is potentially persistent if the full type
2283   --  is potentially persistent.
2284
2285   function Is_Predefined_Dispatching_Operation (E : Entity_Id) return Boolean;
2286   --  Ada 2005 (AI-251): Determines if E is a predefined primitive operation
2287
2288   function Is_Predefined_Interface_Primitive (E : Entity_Id) return Boolean;
2289   --  Ada 2005 (AI-345): Returns True if E is one of the predefined primitives
2290   --  required to implement interfaces.
2291
2292   function Is_Predefined_Internal_Operation (E : Entity_Id) return Boolean;
2293   --  Similar to the previous one, but excludes stream operations, because
2294   --  these may be overridden, and need extra formals, like user-defined
2295   --  operations.
2296
2297   function Is_Preelaborable_Aggregate (Aggr : Node_Id) return Boolean;
2298   --  Determine whether aggregate Aggr violates the restrictions of
2299   --  preelaborable constructs as defined in ARM 10.2.1(5-9).
2300
2301   function Is_Preelaborable_Construct (N : Node_Id) return Boolean;
2302   --  Determine whether arbitrary node N violates the restrictions of
2303   --  preelaborable constructs as defined in ARM 10.2.1(5-9). Routine
2304   --  Is_Non_Preelaborable_Construct takes into account the syntactic
2305   --  and semantic properties of N for a more accurate diagnostic.
2306
2307   function Is_Private_Library_Unit (Unit : Entity_Id) return Boolean;
2308   --  Returns True if and only if the library unit is declared with an
2309   --  explicit designation of private.
2310
2311   function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
2312   --  Return True if node N denotes a protected type name which represents
2313   --  the current instance of a protected object according to RM 9.4(21/2).
2314
2315   function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
2316   --  Return True if a compilation unit is the specification or the
2317   --  body of a remote call interface package.
2318
2319   function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
2320   --  Return True if E is a remote access-to-class-wide type
2321
2322   function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
2323   --  Return True if E is a remote access to subprogram type
2324
2325   function Is_Remote_Call (N : Node_Id) return Boolean;
2326   --  Return True if N denotes a potentially remote call
2327
2328   function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
2329   --  Return True if Proc_Nam is a procedure renaming of an entry
2330
2331   function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
2332   --  AI05-0139-2: Check whether Typ is derived from the predefined interface
2333   --  Ada.Iterator_Interfaces.Reversible_Iterator.
2334
2335   function Is_Selector_Name (N : Node_Id) return Boolean;
2336   --  Given an N_Identifier node N, determines if it is a Selector_Name.
2337   --  As described in Sinfo, Selector_Names are special because they
2338   --  represent use of the N_Identifier node for a true identifier, when
2339   --  normally such nodes represent a direct name.
2340
2341   function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean;
2342   --  Determine whether arbitrary entity Id denotes the anonymous object
2343   --  created for a single protected or single task type.
2344
2345   function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean;
2346   --  Determine whether arbitrary entity Id denotes a single protected or
2347   --  single task type.
2348
2349   function Is_Single_Concurrent_Type_Declaration (N : Node_Id) return Boolean;
2350   --  Determine whether arbitrary node N denotes the declaration of a single
2351   --  protected type or single task type.
2352
2353   function Is_Single_Precision_Floating_Point_Type
2354     (E : Entity_Id) return Boolean;
2355   --  Return whether E is a single precision floating point type,
2356   --  characterized by:
2357   --  . machine_radix = 2
2358   --  . machine_mantissa = 24
2359   --  . machine_emax = 2**7
2360   --  . machine_emin = 3 - machine_emax
2361
2362   function Is_Single_Protected_Object (Id : Entity_Id) return Boolean;
2363   --  Determine whether arbitrary entity Id denotes the anonymous object
2364   --  created for a single protected type.
2365
2366   function Is_Single_Task_Object (Id : Entity_Id) return Boolean;
2367   --  Determine whether arbitrary entity Id denotes the anonymous object
2368   --  created for a single task type.
2369
2370   function Is_Special_Aliased_Formal_Access
2371     (Exp               : Node_Id;
2372      In_Return_Context : Boolean := False) return Boolean;
2373   --  Determines whether a dynamic check must be generated for explicitly
2374   --  aliased formals within a function Scop for the expression Exp.
2375
2376   --  In_Return_Context forces Is_Special_Aliased_Formal_Access to assume
2377   --  that Exp is within a return value which is useful for checking
2378   --  expressions within discriminant associations of return objects.
2379
2380   --  More specially, Is_Special_Aliased_Formal_Access checks that Exp is a
2381   --  'Access attribute reference within a return statement where the ultimate
2382   --  prefix is an aliased formal of Scop and that Scop returns an anonymous
2383   --  access type. See RM 3.10.2 for more details.
2384
2385   function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
2386   --  Determine whether an arbitrary [private] type is specifically tagged
2387
2388   function Is_Statement (N : Node_Id) return Boolean;
2389   pragma Inline (Is_Statement);
2390   --  Check if the node N is a statement node. Note that this includes
2391   --  the case of procedure call statements (unlike the direct use of
2392   --  the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
2393   --  Note that a label is *not* a statement, and will return False.
2394
2395   function Is_Static_Discriminant_Component (N : Node_Id) return Boolean;
2396   --  Return True if N is guaranteed to a selected component containing a
2397   --  statically known discriminant.
2398   --  Note that this routine takes a conservative view and may return False
2399   --  in some cases where N would match the criteria. In other words this
2400   --  routine should be used to simplify or optimize the expanded code.
2401
2402   function Is_Static_Function (Subp : Entity_Id) return Boolean;
2403   --  Determine whether subprogram Subp denotes a static function,
2404   --  which is a function with the aspect Static with value True.
2405
2406   function Is_Static_Function_Call (Call : Node_Id) return Boolean;
2407   --  Determine whether Call is a static call to a static function,
2408   --  meaning that the name of the call denotes a static function
2409   --  and all of the call's actual parameters are given by static expressions.
2410
2411   function Is_Subcomponent_Of_Full_Access_Object (N : Node_Id) return Boolean;
2412   --  Determine whether arbitrary node N denotes a reference to a subcomponent
2413   --  of a full access object as per RM C.6(7).
2414
2415   function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean;
2416   --  Determine whether aspect specification or pragma Item is one of the
2417   --  following subprogram contract annotations:
2418   --    Contract_Cases
2419   --    Depends
2420   --    Extensions_Visible
2421   --    Global
2422   --    Post
2423   --    Post_Class
2424   --    Postcondition
2425   --    Pre
2426   --    Pre_Class
2427   --    Precondition
2428   --    Refined_Depends
2429   --    Refined_Global
2430   --    Refined_Post
2431   --    Subprogram_Variant
2432   --    Test_Case
2433
2434   function Is_Subprogram_Stub_Without_Prior_Declaration
2435     (N : Node_Id) return Boolean;
2436   --  Given an N_Subprogram_Body_Stub node N, return True if N is a subprogram
2437   --  stub with no prior subprogram declaration.
2438
2439   function Is_Suitable_Primitive (Subp_Id : Entity_Id) return Boolean;
2440   --  Determine whether arbitrary subprogram Subp_Id may act as a primitive of
2441   --  an arbitrary tagged type.
2442
2443   function Is_Synchronized_Object (Id : Entity_Id) return Boolean;
2444   --  Determine whether entity Id denotes an object and if it does, whether
2445   --  this object is synchronized as specified in SPARK RM 9.1. To qualify as
2446   --  such, the object must be
2447   --    * Of a type that yields a synchronized object
2448   --    * An atomic object with enabled Async_Writers
2449   --    * A constant not of access-to-variable type
2450   --    * A variable subject to pragma Constant_After_Elaboration
2451
2452   function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
2453   --  Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
2454
2455   function Is_Transfer (N : Node_Id) return Boolean;
2456   --  Returns True if the node N is a statement which is known to cause an
2457   --  unconditional transfer of control at run time, i.e. the following
2458   --  statement definitely will not be executed.
2459
2460   function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
2461   --  Determine whether an arbitrary entity denotes an instance of function
2462   --  Ada.Unchecked_Conversion.
2463
2464   function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
2465   pragma Inline (Is_Universal_Numeric_Type);
2466   --  True if T is Universal_Integer or Universal_Real
2467
2468   function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
2469   --  Determine whether an entity denotes a user-defined equality
2470
2471   function Is_Validation_Variable_Reference (N : Node_Id) return Boolean;
2472   --  Determine whether N denotes a reference to a variable which captures the
2473   --  value of an object for validation purposes.
2474
2475   function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
2476   --  Returns true if E has variable size components
2477
2478   function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
2479   --  Returns true if E has variable size components
2480
2481   --  WARNING: There is a matching C declaration of this subprogram in fe.h
2482
2483   function Is_Variable
2484     (N                 : Node_Id;
2485      Use_Original_Node : Boolean := True) return Boolean;
2486   --  Determines if the tree referenced by N represents a variable, i.e. can
2487   --  appear on the left side of an assignment. There is one situation (formal
2488   --  parameters) in which untagged type conversions are also considered
2489   --  variables, but Is_Variable returns False for such cases, since it has
2490   --  no knowledge of the context. Note that this is the point at which
2491   --  Assignment_OK is checked, and True is returned for any tree thus marked.
2492   --  Use_Original_Node is used to perform the test on Original_Node (N). By
2493   --  default is True since this routine is commonly invoked as part of the
2494   --  semantic analysis and it must not be disturbed by the rewriten nodes.
2495
2496   function Is_View_Conversion (N : Node_Id) return Boolean;
2497   --  Returns True if N is a type_conversion whose operand is the name of an
2498   --  object and both its target type and operand type are tagged, or it
2499   --  appears in a call as an actual parameter of mode out or in out
2500   --  (RM 4.6(5/2)).
2501
2502   function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
2503   --  Check whether T is derived from a visibly controlled type. This is true
2504   --  if the root type is declared in Ada.Finalization. If T is derived
2505   --  instead from a private type whose full view is controlled, an explicit
2506   --  Initialize/Adjust/Finalize subprogram does not override the inherited
2507   --  one.
2508
2509   function Is_Volatile_Full_Access_Object_Ref (N : Node_Id) return Boolean;
2510   --  Determine whether arbitrary node N denotes a reference to an object
2511   --  which is Volatile_Full_Access.
2512
2513   function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean;
2514   --  Determine whether [generic] function Func_Id is subject to enabled
2515   --  pragma Volatile_Function. Protected functions are treated as volatile
2516   --  (SPARK RM 7.1.2).
2517
2518   function Is_Volatile_Object_Ref (N : Node_Id) return Boolean;
2519   --  Determine whether arbitrary node N denotes a reference to a volatile
2520   --  object as per RM C.6(8). Note that the test here is for something that
2521   --  is actually declared as volatile, not for an object that gets treated
2522   --  as volatile (see Einfo.Treat_As_Volatile).
2523
2524   generic
2525      with procedure Handle_Parameter (Formal : Entity_Id; Actual : Node_Id);
2526   procedure Iterate_Call_Parameters (Call : Node_Id);
2527   --  Calls Handle_Parameter for each pair of formal and actual parameters of
2528   --  a function, procedure, or entry call.
2529
2530   function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
2531   --  Applies to Itypes. True if the Itype is attached to a declaration for
2532   --  the type through its Parent field, which may or not be present in the
2533   --  tree.
2534
2535   procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
2536   --  This procedure is called to clear all constant indications from all
2537   --  entities in the current scope and in any parent scopes if the current
2538   --  scope is a block or a package (and that recursion continues to the top
2539   --  scope that is not a block or a package). This is used when the
2540   --  sequential flow-of-control assumption is violated (occurrence of a
2541   --  label, head of a loop, or start of an exception handler). The effect of
2542   --  the call is to clear the Current_Value field (but we do not need to
2543   --  clear the Is_True_Constant flag, since that only gets reset if there
2544   --  really is an assignment somewhere in the entity scope). This procedure
2545   --  also calls Kill_All_Checks, since this is a special case of needing to
2546   --  forget saved values. This procedure also clears the Is_Known_Null and
2547   --  Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
2548   --  parameters since these are also not known to be trustable any more.
2549   --
2550   --  The Last_Assignment_Only flag is set True to clear only Last_Assignment
2551   --  fields and leave other fields unchanged. This is used when we encounter
2552   --  an unconditional flow of control change (return, goto, raise). In such
2553   --  cases we don't need to clear the current values, since it may be that
2554   --  the flow of control change occurs in a conditional context, and if it
2555   --  is not taken, then it is just fine to keep the current values. But the
2556   --  Last_Assignment field is different, if we have a sequence assign-to-v,
2557   --  conditional-return, assign-to-v, we do not want to complain that the
2558   --  second assignment clobbers the first.
2559
2560   procedure Kill_Current_Values
2561     (Ent                  : Entity_Id;
2562      Last_Assignment_Only : Boolean := False);
2563   --  This performs the same processing as described above for the form with
2564   --  no argument, but for the specific entity given. The call has no effect
2565   --  if the entity Ent is not for an object. Last_Assignment_Only has the
2566   --  same meaning as for the call with no Ent.
2567
2568   procedure Kill_Size_Check_Code (E : Entity_Id);
2569   --  Called when an address clause or pragma Import is applied to an entity.
2570   --  If the entity is a variable or a constant, and size check code is
2571   --  present, this size check code is killed, since the object will not be
2572   --  allocated by the program.
2573
2574   function Known_Non_Null (N : Node_Id) return Boolean;
2575   --  Given a node N for a subexpression of an access type, determines if
2576   --  this subexpression yields a value that is known at compile time to
2577   --  be non-null and returns True if so. Returns False otherwise. It is
2578   --  an error to call this function if N is not of an access type.
2579
2580   function Known_Null (N : Node_Id) return Boolean;
2581   --  Given a node N for a subexpression of an access type, determines if this
2582   --  subexpression yields a value that is known at compile time to be null
2583   --  and returns True if so. Returns False otherwise. It is an error to call
2584   --  this function if N is not of an access type.
2585
2586   function Known_To_Be_Assigned (N : Node_Id) return Boolean;
2587   --  The node N is an entity reference. This function determines whether the
2588   --  reference is for sure an assignment of the entity, returning True if
2589   --  so. This differs from May_Be_Lvalue in that it defaults in the other
2590   --  direction. Cases which may possibly be assignments but are not known to
2591   --  be may return True from May_Be_Lvalue, but False from this function.
2592
2593   function Last_Source_Statement (HSS : Node_Id) return Node_Id;
2594   --  HSS is a handled statement sequence. This function returns the last
2595   --  statement in Statements (HSS) that has Comes_From_Source set. If no
2596   --  such statement exists, Empty is returned.
2597
2598   procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
2599   --  Given a node which designates the context of analysis and an origin in
2600   --  the tree, traverse from Root_Nod and mark all allocators as either
2601   --  dynamic or static depending on Context_Nod. Any incorrect marking is
2602   --  cleaned up during resolution.
2603
2604   procedure Mark_Elaboration_Attributes
2605     (N_Id     : Node_Or_Entity_Id;
2606      Checks   : Boolean := False;
2607      Level    : Boolean := False;
2608      Modes    : Boolean := False;
2609      Warnings : Boolean := False);
2610   --  Preserve relevant elaboration-related properties of the context in
2611   --  arbitrary entity or node N_Id. The flags control the properties as
2612   --  follows:
2613   --
2614   --    Checks   - Save the status of Elaboration_Check
2615   --    Level    - Save the declaration level of N_Id (if appicable)
2616   --    Modes    - Save the Ghost and SPARK modes in effect (if applicable)
2617   --    Warnings - Save the status of Elab_Warnings
2618
2619   procedure Mark_Save_Invocation_Graph_Of_Body;
2620   --  Notify the body of the main unit that the invocation constructs and
2621   --  relations expressed within it must be recorded by the ABE mechanism.
2622
2623   function Matching_Static_Array_Bounds
2624     (L_Typ : Node_Id;
2625      R_Typ : Node_Id) return Boolean;
2626   --  L_Typ and R_Typ are two array types. Returns True when they have the
2627   --  same number of dimensions, and the same static bounds for each index
2628   --  position.
2629
2630   function May_Be_Lvalue (N : Node_Id) return Boolean;
2631   --  Determines if N could be an lvalue (e.g. an assignment left hand side).
2632   --  An lvalue is defined as any expression which appears in a context where
2633   --  a name is required by the syntax, and the identity, rather than merely
2634   --  the value of the node is needed (for example, the prefix of an Access
2635   --  attribute is in this category). Note that, as implied by the name, this
2636   --  test is conservative. If it cannot be sure that N is NOT an lvalue, then
2637   --  it returns True. It tries hard to get the answer right, but it is hard
2638   --  to guarantee this in all cases. Note that it is more possible to give
2639   --  correct answer if the tree is fully analyzed.
2640
2641   function Might_Raise (N : Node_Id) return Boolean;
2642   --  True if evaluation of N might raise an exception. This is conservative;
2643   --  if we're not sure, we return True. If N is a subprogram body, this is
2644   --  about whether execution of that body can raise.
2645
2646   function Nearest_Class_Condition_Subprogram
2647     (Kind    : Condition_Kind;
2648      Spec_Id : Entity_Id) return Entity_Id;
2649   --  Return the nearest ancestor containing the merged class-wide conditions
2650   --  that statically apply to Spec_Id; return Empty otherwise.
2651
2652   function Nearest_Enclosing_Instance (E : Entity_Id) return Entity_Id;
2653   --  Return the entity of the nearest enclosing instance which encapsulates
2654   --  entity E. If no such instance exits, return Empty.
2655
2656   function Needs_Finalization (Typ : Entity_Id) return Boolean;
2657   --  True if Typ requires finalization actions
2658
2659   function Needs_One_Actual (E : Entity_Id) return Boolean;
2660   --  Returns True if a function has defaults for all but its first formal,
2661   --  which is a controlling formal. Used in Ada 2005 mode to solve the
2662   --  syntactic ambiguity that results from an indexing of a function call
2663   --  that returns an array, so that Obj.F (X, Y) may mean F (Ob) (X, Y).
2664
2665   function Needs_Result_Accessibility_Level
2666     (Func_Id : Entity_Id) return Boolean;
2667   --  Ada 2012 (AI05-0234): Return True if the function needs an implicit
2668   --  parameter to identify the accessibility level of the function result
2669   --  "determined by the point of call".
2670
2671   function Needs_Simple_Initialization
2672     (Typ         : Entity_Id;
2673      Consider_IS : Boolean := True) return Boolean;
2674   --  Certain types need initialization even though there is no specific
2675   --  initialization routine:
2676   --    Access types (which need initializing to null)
2677   --    All scalar types if Normalize_Scalars mode set
2678   --    Descendants of standard string types if Normalize_Scalars mode set
2679   --    Scalar types having a Default_Value attribute
2680   --  Regarding Initialize_Scalars mode, this is ignored if Consider_IS is
2681   --  set to False, but if Consider_IS is set to True, then the cases above
2682   --  mentioning Normalize_Scalars also apply for Initialize_Scalars mode.
2683
2684   function Needs_Variable_Reference_Marker
2685     (N        : Node_Id;
2686      Calls_OK : Boolean) return Boolean;
2687   --  Determine whether arbitrary node N denotes a reference to a variable
2688   --  which is suitable for SPARK elaboration checks. Flag Calls_OK should
2689   --  be set when the reference is allowed to appear within calls.
2690
2691   function New_Copy_List_Tree (List : List_Id) return List_Id;
2692   --  Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
2693   --  below. As for New_Copy_Tree, it is illegal to attempt to copy extended
2694   --  nodes (entities) either directly or indirectly using this function.
2695
2696   function New_Copy_Separate_List (List : List_Id) return List_Id;
2697   --  Copy recursively a list of nodes using New_Copy_Separate_Tree
2698
2699   function New_Copy_Separate_Tree (Source : Node_Id) return Node_Id;
2700   --  Perform a deep copy of the subtree rooted at Source using New_Copy_Tree
2701   --  replacing entities of local declarations by new entities. This behavior
2702   --  is required by the backend to ensure entities uniqueness when a copy of
2703   --  a subtree is attached to the tree. The new entities keep their original
2704   --  names to facilitate debugging the tree copy.
2705
2706   function New_Copy_Tree
2707     (Source           : Node_Id;
2708      Map              : Elist_Id   := No_Elist;
2709      New_Sloc         : Source_Ptr := No_Location;
2710      New_Scope        : Entity_Id  := Empty;
2711      Scopes_In_EWA_OK : Boolean    := False) return Node_Id;
2712   --  Perform a deep copy of the subtree rooted at Source. Entities, itypes,
2713   --  and nodes are handled separately as follows:
2714   --
2715   --    * A node is replicated by first creating a shallow copy, then copying
2716   --      its syntactic fields, where all Parent pointers of the fields are
2717   --      updated to refer to the copy. In addition, the following semantic
2718   --      fields are recreated after the replication takes place.
2719   --
2720   --        First_Named_Actual
2721   --        First_Real_Statement
2722   --        Next_Named_Actual
2723   --
2724   --      If applicable, the Etype field (if any) is updated to refer to a
2725   --      local itype or type (see below).
2726   --
2727   --    * An entity defined within an N_Expression_With_Actions node in the
2728   --      subtree is given a new entity, and all references to the original
2729   --      entity are updated to refer to the new entity. In addition, the
2730   --      following semantic fields are replicated and/or updated to refer
2731   --      to a local entity or itype.
2732   --
2733   --        Discriminant_Constraint
2734   --        Etype
2735   --        First_Index
2736   --        Next_Entity
2737   --        Packed_Array_Impl_Type
2738   --        Scalar_Range
2739   --        Scope
2740   --
2741   --      Note that currently no other expression can define entities.
2742   --
2743   --    * An itype whose Associated_Node_For_Itype node is in the subtree
2744   --      is given a new entity, and all references to the original itype
2745   --      are updated to refer to the new itype. In addition, the following
2746   --      semantic fields are replicated and/or updated to refer to a local
2747   --      entity or itype.
2748   --
2749   --        Discriminant_Constraint
2750   --        Etype
2751   --        First_Index
2752   --        Next_Entity
2753   --        Packed_Array_Impl_Type
2754   --        Scalar_Range
2755   --        Scope
2756   --
2757   --      The Associated_Node_For_Itype is updated to refer to a replicated
2758   --      node.
2759   --
2760   --  The routine can replicate both analyzed and unanalyzed trees. Copying an
2761   --  Empty or Error node yields the same node.
2762   --
2763   --  Parameter Map may be used to specify a set of mappings between entities.
2764   --  These mappings are then taken into account when replicating entities.
2765   --  The format of Map must be as follows:
2766   --
2767   --    old entity 1
2768   --    new entity to replace references to entity 1
2769   --    old entity 2
2770   --    new entity to replace references to entity 2
2771   --    ...
2772   --
2773   --  Map and its contents are left unchanged.
2774   --
2775   --  Parameter New_Sloc may be used to specify a new source location for all
2776   --  replicated entities, itypes, and nodes. The Comes_From_Source indicator
2777   --  is defaulted if a new source location is provided.
2778   --
2779   --  Parameter New_Scope may be used to specify a new scope for all copied
2780   --  entities and itypes.
2781   --
2782   --  Parameter Scopes_In_EWA_OK may be used to force the replication of both
2783   --  scoping entities and non-scoping entities found within expression with
2784   --  actions nodes.
2785
2786   function New_External_Entity
2787     (Kind         : Entity_Kind;
2788      Scope_Id     : Entity_Id;
2789      Sloc_Value   : Source_Ptr;
2790      Related_Id   : Entity_Id;
2791      Suffix       : Character;
2792      Suffix_Index : Int := 0;
2793      Prefix       : Character := ' ') return Entity_Id;
2794   --  This function creates an N_Defining_Identifier node for an internal
2795   --  created entity, such as an implicit type or subtype, or a record
2796   --  initialization procedure. The entity name is constructed with a call
2797   --  to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
2798   --  that the generated name may be referenced as a public entry, and the
2799   --  Is_Public flag is set if needed (using Set_Public_Status). If the
2800   --  entity is for a type or subtype, the size/align fields are initialized
2801   --  to unknown (Uint_0).
2802
2803   function New_Internal_Entity
2804     (Kind       : Entity_Kind;
2805      Scope_Id   : Entity_Id;
2806      Sloc_Value : Source_Ptr;
2807      Id_Char    : Character) return Entity_Id;
2808   --  This function is similar to New_External_Entity, except that the
2809   --  name is constructed by New_Internal_Name (Id_Char). This is used
2810   --  when the resulting entity does not have to be referenced as a
2811   --  public entity (and in this case Is_Public is not set).
2812
2813   function Next_Actual (Actual_Id : Node_Id) return Node_Id;
2814   --  Find next actual parameter in declaration order. As described for
2815   --  First_Actual, this is the next actual in the declaration order, not
2816   --  the call order, so this does not correspond to simply taking the
2817   --  next entry of the Parameter_Associations list. The argument is an
2818   --  actual previously returned by a call to First_Actual or Next_Actual.
2819   --  Note that the result produced is always an expression, not a parameter
2820   --  association node, even if named notation was used.
2821
2822   --  WARNING: There is a matching C declaration of this subprogram in fe.h
2823
2824   procedure Next_Actual (Actual_Id : in out Node_Id);
2825   pragma Inline (Next_Actual);
2826   --  Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
2827   --  inline this procedural form, but not the functional form above.
2828
2829   function Next_Global (Node : Node_Id) return Node_Id;
2830   --  Node is a global item from a list, obtained through calling First_Global
2831   --  and possibly Next_Global a number of times. Returns the next global item
2832   --  with the same mode.
2833
2834   procedure Next_Global (Node : in out Node_Id);
2835   pragma Inline (Next_Global);
2836   --  Next_Global (N) is equivalent to N := Next_Global (N). Note that we
2837   --  inline this procedural form, but not the functional form above.
2838
2839   function No_Caching_Enabled (Id : Entity_Id) return Boolean;
2840   --  Given the entity of a variable, determine whether Id is subject to
2841   --  volatility property No_Caching and if it is, the related expression
2842   --  evaluates to True.
2843
2844   function No_Heap_Finalization (Typ : Entity_Id) return Boolean;
2845   --  Determine whether type Typ is subject to pragma No_Heap_Finalization
2846
2847   procedure Normalize_Actuals
2848     (N       : Node_Id;
2849      S       : Entity_Id;
2850      Report  : Boolean;
2851      Success : out Boolean);
2852   --  Reorders lists of actuals according to names of formals, value returned
2853   --  in Success indicates success of reordering. For more details, see body.
2854   --  Errors are reported only if Report is set to True.
2855
2856   procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
2857   --  This routine is called if the sub-expression N maybe the target of
2858   --  an assignment (e.g. it is the left side of an assignment, used as
2859   --  an out parameters, or used as prefixes of access attributes). It
2860   --  sets May_Be_Modified in the associated entity if there is one,
2861   --  taking into account the rule that in the case of renamed objects,
2862   --  it is the flag in the renamed object that must be set.
2863   --
2864   --  The parameter Sure is set True if the modification is sure to occur
2865   --  (e.g. target of assignment, or out parameter), and to False if the
2866   --  modification is only potential (e.g. address of entity taken).
2867
2868   function Null_To_Null_Address_Convert_OK
2869     (N   : Node_Id;
2870      Typ : Entity_Id := Empty) return Boolean;
2871   --  Return True if we are compiling in relaxed RM semantics mode and:
2872   --   1) N is a N_Null node and Typ is a descendant of System.Address, or
2873   --   2) N is a comparison operator, one of the operands is null, and the
2874   --      type of the other operand is a descendant of System.Address.
2875
2876   function Number_Of_Elements_In_Array (T : Entity_Id) return Int;
2877   --  Returns the number of elements in the array T if the index bounds of T
2878   --  is known at compile time. If the bounds are not known at compile time,
2879   --  the function returns the value zero.
2880
2881   function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
2882   --  Retrieve the name of aspect or pragma N, taking into account a possible
2883   --  rewrite and whether the pragma is generated from an aspect as the names
2884   --  may be different. The routine also deals with 'Class in which case it
2885   --  returns the following values:
2886   --
2887   --    Invariant            -> Name_uInvariant
2888   --    Post'Class           -> Name_uPost
2889   --    Pre'Class            -> Name_uPre
2890   --    Type_Invariant       -> Name_uType_Invariant
2891   --    Type_Invariant'Class -> Name_uType_Invariant
2892
2893   function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
2894   --  [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
2895   --  or overrides an inherited dispatching primitive S2, the original
2896   --  corresponding operation of S is the original corresponding operation of
2897   --  S2. Otherwise, it is S itself.
2898
2899   function Original_View_In_Visible_Part (Typ : Entity_Id) return Boolean;
2900   --  Returns True if the type Typ has a private view or if the public view
2901   --  appears in the visible part of a package spec.
2902
2903   procedure Output_Entity (Id : Entity_Id);
2904   --  Print entity Id to standard output. The name of the entity appears in
2905   --  fully qualified form.
2906   --
2907   --  WARNING: this routine should be used in debugging scenarios such as
2908   --  tracking down undefined symbols as it is fairly low level.
2909
2910   procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope);
2911   --  Print name Nam to standard output. The name appears in fully qualified
2912   --  form assuming it appears in scope Scop. Note that this may not reflect
2913   --  the final qualification as the entity which carries the name may be
2914   --  relocated to a different scope.
2915   --
2916   --  WARNING: this routine should be used in debugging scenarios such as
2917   --  tracking down undefined symbols as it is fairly low level.
2918
2919   function Param_Entity (N : Node_Id) return Entity_Id;
2920   --  Given an expression N, determines if the expression is a reference
2921   --  to a formal (of a subprogram or entry), and if so returns the Id
2922   --  of the corresponding formal entity, otherwise returns Empty. Also
2923   --  handles the case of references to renamings of formals.
2924
2925   function Policy_In_Effect (Policy : Name_Id) return Name_Id;
2926   --  Given a policy, return the policy identifier associated with it. If no
2927   --  such policy is in effect, the value returned is No_Name.
2928
2929   function Predicate_Enabled (Typ : Entity_Id) return Boolean;
2930   --  Return True if a predicate check should be emitted for the given type
2931   --  Typ, taking into account Predicates_Ignored and
2932   --  Predicate_Checks_Suppressed.
2933
2934   function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
2935   --  Subp is the entity for a subprogram call. This function returns True if
2936   --  predicate tests are required for the arguments in this call (this is the
2937   --  normal case). It returns False for special cases where these predicate
2938   --  tests should be skipped (see body for details).
2939
2940   function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
2941   --  Returns True if the names of both entities correspond with matching
2942   --  primitives. This routine includes support for the case in which one
2943   --  or both entities correspond with entities built by Derive_Subprogram
2944   --  with a special name to avoid being overridden (i.e. return true in case
2945   --  of entities with names "nameP" and "name" or vice versa).
2946
2947   function Private_Component (Type_Id : Entity_Id) return Entity_Id;
2948   --  Returns some private component (if any) of the given Type_Id.
2949   --  Used to enforce the rules on visibility of operations on composite
2950   --  types, that depend on the full view of the component type. For a
2951   --  record type there may be several such components, we just return
2952   --  the first one.
2953
2954   procedure Process_End_Label
2955     (N   : Node_Id;
2956      Typ : Character;
2957      Ent : Entity_Id);
2958   --  N is a node whose End_Label is to be processed, generating all
2959   --  appropriate cross-reference entries, and performing style checks
2960   --  for any identifier references in the end label. Typ is either
2961   --  'e' or 't indicating the type of the cross-reference entity
2962   --  (e for spec, t for body, see Lib.Xref spec for details). The
2963   --  parameter Ent gives the entity to which the End_Label refers,
2964   --  and to which cross-references are to be generated.
2965
2966   procedure Propagate_Concurrent_Flags
2967     (Typ      : Entity_Id;
2968      Comp_Typ : Entity_Id);
2969   --  Set Has_Task, Has_Protected, and Has_Timing_Event on Typ when the flags
2970   --  are set on Comp_Typ. This follows the definition of these flags, which
2971   --  are set (recursively) on any composite type that has a component marked
2972   --  by one of these flags. This procedure can only set flags for Typ, and
2973   --  never clear them. Comp_Typ is the type of a component or a parent.
2974
2975   procedure Propagate_DIC_Attributes
2976     (Typ      : Entity_Id;
2977      From_Typ : Entity_Id);
2978   --  Inherit all Default_Initial_Condition-related attributes from type
2979   --  From_Typ. Typ is the destination type.
2980
2981   procedure Propagate_Invariant_Attributes
2982     (Typ      : Entity_Id;
2983      From_Typ : Entity_Id);
2984   --  Inherit all invariant-related attributes from type From_Typ. Typ is the
2985   --  destination type.
2986
2987   procedure Propagate_Predicate_Attributes
2988     (Typ      : Entity_Id;
2989      From_Typ : Entity_Id);
2990   --  Inherit predicate functions and Has_Predicates flag from type From_Typ.
2991   --  Typ is the destination type.
2992
2993   procedure Record_Possible_Part_Of_Reference
2994     (Var_Id : Entity_Id;
2995      Ref    : Node_Id);
2996   --  Save reference Ref to variable Var_Id when the variable is subject to
2997   --  pragma Part_Of. If the variable is known to be a constituent of a single
2998   --  protected/task type, the legality of the reference is verified and the
2999   --  save does not take place.
3000
3001   function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
3002   --  Determine whether entity Id is referenced within expression Expr
3003
3004   function References_Generic_Formal_Type (N : Node_Id) return Boolean;
3005   --  Returns True if the expression Expr contains any references to a generic
3006   --  type. This can only happen within a generic template.
3007
3008   procedure Remove_Entity_And_Homonym (Id : Entity_Id);
3009   --  Remove arbitrary entity Id from both the homonym and scope chains. Use
3010   --  Remove_Overloaded_Entity for overloadable entities. Note: the removal
3011   --  performed by this routine does not affect the visibility of existing
3012   --  homonyms.
3013
3014   procedure Remove_Homonym (Id : Entity_Id);
3015   --  Removes entity Id from the homonym chain
3016
3017   procedure Remove_Overloaded_Entity (Id : Entity_Id);
3018   --  Remove arbitrary entity Id from the homonym chain, the scope chain and
3019   --  the primitive operations list of the associated controlling type. Use
3020   --  Remove_Entity for non-overloadable entities. Note: the removal performed
3021   --  by this routine does not affect the visibility of existing homonyms.
3022
3023   function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
3024   --  Returns the name of E without Suffix
3025
3026   procedure Replace_Null_By_Null_Address (N : Node_Id);
3027   --  N is N_Null or a binary comparison operator, we are compiling in relaxed
3028   --  RM semantics mode, and one of the operands is null. Replace null with
3029   --  System.Null_Address.
3030
3031   function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
3032   --  This is used to construct the second argument in a call to Rep_To_Pos
3033   --  which is Standard_True if range checks are enabled (E is an entity to
3034   --  which the Range_Checks_Suppressed test is applied), and Standard_False
3035   --  if range checks are suppressed. Loc is the location for the node that
3036   --  is returned (which is a New_Occurrence of the appropriate entity).
3037   --
3038   --  Note: one might think that it would be fine to always use True and
3039   --  to ignore the suppress in this case, but it is generally better to
3040   --  believe a request to suppress exceptions if possible, and further
3041   --  more there is at least one case in the generated code (the code for
3042   --  array assignment in a loop) that depends on this suppression.
3043
3044   procedure Require_Entity (N : Node_Id);
3045   --  N is a node which should have an entity value if it is an entity name.
3046   --  If not, then check if there were previous errors. If so, just fill
3047   --  in with Any_Id and ignore. Otherwise signal a program error exception.
3048   --  This is used as a defense mechanism against ill-formed trees caused by
3049   --  previous errors (particularly in -gnatq mode).
3050
3051   function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
3052   --  Id is a type entity. The result is True when temporaries of this type
3053   --  need to be wrapped in a transient scope to be reclaimed properly when a
3054   --  secondary stack is in use. Examples of types requiring such wrapping are
3055   --  controlled types and variable-sized types including unconstrained
3056   --  arrays.
3057
3058   --  WARNING: There is a matching C declaration of this subprogram in fe.h
3059
3060   procedure Reset_Analyzed_Flags (N : Node_Id);
3061   --  Reset the Analyzed flags in all nodes of the tree whose root is N
3062
3063   procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
3064   --  Set the current SPARK_Mode to Mode and SPARK_Mode_Pragma to Prag. This
3065   --  routine must be used in tandem with Set_SPARK_Mode.
3066
3067   function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
3068   --  Return true if Subp is a function that returns an unconstrained type
3069
3070   function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
3071   --  Similar to attribute Root_Type, but this version always follows the
3072   --  Full_View of a private type (if available) while searching for the
3073   --  ultimate derivation ancestor.
3074
3075   function Safe_To_Capture_Value
3076     (N    : Node_Id;
3077      Ent  : Entity_Id;
3078      Cond : Boolean := False) return Boolean;
3079   --  The caller is interested in capturing a value (either the current
3080   --  value, an indication that the value is [non-]null or an indication that
3081   --  the value is valid) for the given entity Ent. This value can only be
3082   --  captured if sequential execution semantics can be properly guaranteed so
3083   --  that a subsequent reference will indeed be sure that this current value
3084   --  indication is correct. The node N is the construct that resulted in the
3085   --  possible capture of the value (this is used to check if we are in a
3086   --  conditional).
3087   --
3088   --  Cond is used to skip the test for being inside a conditional. It is used
3089   --  in the case of capturing values from if/while tests, which already do a
3090   --  proper job of handling scoping issues without this help.
3091   --
3092   --  The only entities whose values can be captured are OUT and IN OUT formal
3093   --  parameters, and variables unless Cond is True, in which case we also
3094   --  allow IN formals, loop parameters and constants, where we cannot ever
3095   --  capture actual value information, but we can capture conditional tests.
3096
3097   function Same_Name (N1, N2 : Node_Id) return Boolean;
3098   --  Determine if two (possibly expanded) names are the same name. This is
3099   --  a purely syntactic test, and N1 and N2 need not be analyzed.
3100
3101   function Same_Object (Node1, Node2 : Node_Id) return Boolean;
3102   --  Determine if Node1 and Node2 are known to designate the same object.
3103   --  This is a semantic test and both nodes must be fully analyzed. A result
3104   --  of True is decisively correct. A result of False does not necessarily
3105   --  mean that different objects are designated, just that this could not
3106   --  be reliably determined at compile time.
3107
3108   function Same_Or_Aliased_Subprograms
3109     (S : Entity_Id;
3110      E : Entity_Id) return Boolean;
3111   --  Returns True if the subprogram entity S is the same as E or else S is an
3112   --  alias of E.
3113
3114   function Same_Type (T1, T2 : Entity_Id) return Boolean;
3115   --  Determines if T1 and T2 represent exactly the same type. Two types
3116   --  are the same if they are identical, or if one is an unconstrained
3117   --  subtype of the other, or they are both common subtypes of the same
3118   --  type with identical constraints. The result returned is conservative.
3119   --  It is True if the types are known to be the same, but a result of
3120   --  False is indecisive (e.g. the compiler may not be able to tell that
3121   --  two constraints are identical).
3122
3123   function Same_Value (Node1, Node2 : Node_Id) return Boolean;
3124   --  Determines if Node1 and Node2 are known to be the same value, which is
3125   --  true if they are both compile time known values and have the same value,
3126   --  or if they are the same object (in the sense of function Same_Object).
3127   --  A result of False does not necessarily mean they have different values,
3128   --  just that it is not possible to determine they have the same value.
3129
3130   function Scalar_Part_Present (Typ : Entity_Id) return Boolean;
3131   --  Determine whether arbitrary type Typ is a scalar type, or contains at
3132   --  least one scalar subcomponent.
3133
3134   function Scope_Within
3135     (Inner : Entity_Id;
3136      Outer : Entity_Id) return Boolean;
3137   --  Determine whether scope Inner appears within scope Outer. Note that
3138   --  scopes are partially ordered, so Scope_Within (A, B) and Scope_Within
3139   --  (B, A) may both return False.
3140
3141   function Scope_Within_Or_Same
3142     (Inner : Entity_Id;
3143      Outer : Entity_Id) return Boolean;
3144   --  Determine whether scope Inner appears within scope Outer or both denote
3145   --  the same scope. Note that scopes are partially ordered, so Scope_Within
3146   --  (A, B) and Scope_Within (B, A) may both return False.
3147
3148   procedure Set_Current_Entity (E : Entity_Id);
3149   pragma Inline (Set_Current_Entity);
3150   --  Establish the entity E as the currently visible definition of its
3151   --  associated name (i.e. the Node_Id associated with its name).
3152
3153   procedure Set_Debug_Info_Defining_Id (N : Node_Id);
3154   --  Call Set_Debug_Info_Needed on Defining_Identifier (N) if it comes
3155   --  from source.
3156
3157   procedure Set_Debug_Info_Needed (T : Entity_Id);
3158   --  Sets the Debug_Info_Needed flag on entity T , and also on any entities
3159   --  that are needed by T (for an object, the type of the object is needed,
3160   --  and for a type, various subsidiary types are needed -- see body for
3161   --  details). Never has any effect on T if the Debug_Info_Off flag is set.
3162   --  This routine should always be used instead of Set_Needs_Debug_Info to
3163   --  ensure that subsidiary entities are properly handled.
3164
3165   procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
3166   --  This procedure has the same calling sequence as Set_Entity, but it
3167   --  performs additional checks as follows:
3168   --
3169   --    If Style_Check is set, then it calls a style checking routine which
3170   --    can check identifier spelling style. This procedure also takes care
3171   --    of checking the restriction No_Implementation_Identifiers.
3172   --
3173   --    If restriction No_Abort_Statements is set, then it checks that the
3174   --    entity is not Ada.Task_Identification.Abort_Task.
3175   --
3176   --    If restriction No_Dynamic_Attachment is set, then it checks that the
3177   --    entity is not one of the restricted names for this restriction.
3178   --
3179   --    If restriction No_Long_Long_Integers is set, then it checks that the
3180   --    entity is not Standard.Long_Long_Integer.
3181   --
3182   --    If restriction No_Implementation_Identifiers is set, then it checks
3183   --    that the entity is not implementation defined.
3184
3185   procedure Set_Invalid_Scalar_Value
3186     (Scal_Typ : Float_Scalar_Id;
3187      Value    : Ureal);
3188   --  Associate invalid value Value with scalar type Scal_Typ as specified by
3189   --  pragma Initialize_Scalars.
3190
3191   procedure Set_Invalid_Scalar_Value
3192     (Scal_Typ : Integer_Scalar_Id;
3193      Value    : Uint);
3194   --  Associate invalid value Value with scalar type Scal_Typ as specified by
3195   --  pragma Initialize_Scalars.
3196
3197   procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
3198   pragma Inline (Set_Name_Entity_Id);
3199   --  Sets the Entity_Id value associated with the given name, which is the
3200   --  Id of the innermost visible entity with the given name. See the body
3201   --  of package Sem_Ch8 for further details on the handling of visibility.
3202
3203   procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
3204   --  The arguments may be parameter associations, whose descendants
3205   --  are the optional formal name and the actual parameter. Positional
3206   --  parameters are already members of a list, and do not need to be
3207   --  chained separately. See also First_Actual and Next_Actual.
3208
3209   procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
3210   pragma Inline (Set_Optimize_Alignment_Flags);
3211   --  Sets Optimize_Alignment_Space/Time flags in E from current settings
3212
3213   procedure Set_Public_Status (Id : Entity_Id);
3214   --  If an entity (visible or otherwise) is defined in a library
3215   --  package, or a package that is itself public, then this subprogram
3216   --  labels the entity public as well.
3217
3218   procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
3219   --  N is the node for either a left hand side (Out_Param set to False),
3220   --  or an Out or In_Out parameter (Out_Param set to True). If there is
3221   --  an assignable entity being referenced, then the appropriate flag
3222   --  (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
3223   --  if Out_Param is True) is set True, and the other flag set False.
3224
3225   procedure Set_Rep_Info (T1 : Entity_Id; T2 : Entity_Id);
3226   pragma Inline (Set_Rep_Info);
3227   --  Copies the Is_Atomic, Is_Independent and Is_Volatile_Full_Access flags
3228   --  from sub(type) entity T2 to (sub)type entity T1, as well as Is_Volatile
3229   --  if T1 is a base type.
3230
3231   procedure Set_Scope_Is_Transient (V : Boolean := True);
3232   --  Set the flag Is_Transient of the current scope
3233
3234   procedure Set_Size_Info (T1, T2 : Entity_Id);
3235   pragma Inline (Set_Size_Info);
3236   --  Copies the Esize field and Has_Biased_Representation flag from sub(type)
3237   --  entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
3238   --  in the fixed-point and discrete cases, and also copies the alignment
3239   --  value from T2 to T1. It does NOT copy the RM_Size field, which must be
3240   --  separately set if this is required to be copied also.
3241
3242   procedure Set_SPARK_Mode (Context : Entity_Id);
3243   --  Establish the SPARK_Mode and SPARK_Mode_Pragma (if any) of a package or
3244   --  a subprogram denoted by Context. This routine must be used in tandem
3245   --  with Restore_SPARK_Mode.
3246
3247   function Scope_Is_Transient return Boolean;
3248   --  True if the current scope is transient
3249
3250   function Should_Ignore_Pragma_Par (Prag_Name : Name_Id) return Boolean;
3251   function Should_Ignore_Pragma_Sem (N : Node_Id) return Boolean;
3252   --  True if we should ignore pragmas with the specified name. In particular,
3253   --  this returns True if pragma Ignore_Pragma applies, and we are not in a
3254   --  predefined unit. The _Par version should be called only from the parser;
3255   --  the _Sem version should be called only during semantic analysis.
3256
3257   function Static_Boolean (N : Node_Id) return Opt_Ubool;
3258   --  This function analyzes the given expression node and then resolves it
3259   --  as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
3260   --  returned corresponding to the value, otherwise an error message is
3261   --  output and No_Uint is returned.
3262
3263   function Static_Integer (N : Node_Id) return Uint;
3264   --  This function analyzes the given expression node and then resolves it
3265   --  as any integer type. If the result is static, then the value of the
3266   --  universal expression is returned, otherwise an error message is output
3267   --  and a value of No_Uint is returned.
3268
3269   function Statically_Denotes_Entity (N : Node_Id) return Boolean;
3270   --  Return True iff N is a name that "statically denotes" an entity.
3271
3272   function Statically_Denotes_Object (N : Node_Id) return Boolean;
3273   --  Return True iff N is a name that "statically denotes" an object.
3274
3275   function Statically_Different (E1, E2 : Node_Id) return Boolean;
3276   --  Return True if it can be statically determined that the Expressions
3277   --  E1 and E2 refer to different objects
3278
3279   function Statically_Names_Object (N : Node_Id) return Boolean;
3280   --  Return True iff N is a name that "statically names" an object.
3281
3282   function String_From_Numeric_Literal (N : Node_Id) return String_Id;
3283   --  Return the string that corresponds to the numeric literal N as it
3284   --  appears in the source.
3285
3286   function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
3287   --  Determine whether node N is a loop statement subject to at least one
3288   --  'Loop_Entry attribute.
3289
3290   function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
3291   --  Return the accessibility level of the view denoted by Subp
3292
3293   function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
3294   --  Return True if Typ supports the GCC built-in atomic operations (i.e. if
3295   --  Typ is properly sized and aligned).
3296
3297   procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
3298   --  Print debugging information on entry to each unit being analyzed
3299
3300   procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
3301   --  Move a list of entities from one scope to another, and recompute
3302   --  Is_Public based upon the new scope.
3303
3304   generic
3305      with function Process (N : Node_Id) return Traverse_Result is <>;
3306      Process_Itypes : Boolean := False;
3307   function Traverse_More_Func (Node : Node_Id) return Traverse_Final_Result;
3308   --  This is a version of Atree.Traverse_Func that not only traverses
3309   --  syntactic children of nodes, but also semantic children which are
3310   --  logically children of the node. This concerns currently lists of
3311   --  action nodes and ranges under Itypes, both inserted by the compiler.
3312   --  Itypes are only traversed when Process_Itypes is True.
3313
3314   generic
3315      with function Process (N : Node_Id) return Traverse_Result is <>;
3316      Process_Itypes : Boolean := False;
3317   procedure Traverse_More_Proc (Node : Node_Id);
3318   pragma Inline (Traverse_More_Proc);
3319   --  This is the same as Traverse_More_Func except that no result is
3320   --  returned, i.e. Traverse_More_Func is called and the result is simply
3321   --  discarded.
3322
3323   function Type_Access_Level
3324     (Typ             : Entity_Id;
3325      Allow_Alt_Model : Boolean   := True;
3326      Assoc_Ent       : Entity_Id := Empty) return Uint;
3327   --  Return the accessibility level of Typ
3328
3329   --  The Allow_Alt_Model parameter allows the alternative level calculation
3330   --  under the restriction No_Dynamic_Accessibility_Checks to be performed.
3331
3332   --  Assoc_Ent allows for the optional specification of the entity associated
3333   --  with Typ. This gets utilized mostly for anonymous access type
3334   --  processing, where context matters in interpreting Typ's level.
3335
3336   function Type_Without_Stream_Operation
3337     (T  : Entity_Id;
3338      Op : TSS_Name_Type := TSS_Null) return Entity_Id;
3339   --  AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
3340   --  is active then we cannot generate stream subprograms for composite types
3341   --  with elementary subcomponents that lack user-defined stream subprograms.
3342   --  This predicate determines whether a type has such an elementary
3343   --  subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
3344   --  prevents the construction of a composite stream operation. If Op is
3345   --  specified we check only for the given stream operation.
3346
3347   function Ultimate_Overlaid_Entity (E : Entity_Id) return Entity_Id;
3348   --  If entity E is overlaying some other entity via an Address clause (which
3349   --  possibly overlays yet another entity via its own Address clause), then
3350   --  return the ultimate overlaid entity. If entity E is not overlaying any
3351   --  other entity (or the overlaid entity cannot be determined statically),
3352   --  then return Empty.
3353   --
3354   --  Subsidiary to the analysis of object overlays in SPARK.
3355
3356   function Ultimate_Prefix (N : Node_Id) return Node_Id;
3357   --  Obtain the "outermost" prefix of arbitrary node N. Return N if no such
3358   --  prefix exists.
3359
3360   function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
3361   --  Return the entity that represents declaration N, so that different
3362   --  views of the same entity have the same unique defining entity:
3363   --    * private view and full view of a deferred constant
3364   --        --> full view
3365   --    * entry spec and entry body
3366   --        --> entry spec
3367   --    * formal parameter on spec and body
3368   --        --> formal parameter on spec
3369   --    * package spec, body, and body stub
3370   --        --> package spec
3371   --    * protected type, protected body, and protected body stub
3372   --        --> protected type (full view if private)
3373   --    * subprogram spec, body, and body stub
3374   --        --> subprogram spec
3375   --    * task type, task body, and task body stub
3376   --        --> task type (full view if private)
3377   --    * private or incomplete view and full view of a type
3378   --        --> full view
3379   --  In other cases, return the defining entity for N.
3380
3381   function Unique_Entity (E : Entity_Id) return Entity_Id;
3382   --  Return the unique entity for entity E, which would be returned by
3383   --  Unique_Defining_Entity if applied to the enclosing declaration of E.
3384
3385   function Unique_Name (E : Entity_Id) return String;
3386   --  Return a unique name for entity E, which could be used to identify E
3387   --  across compilation units.
3388
3389   Child_Prefix : constant String := "ada___";
3390   --  Prefix for child packages when building a unique name for an entity. It
3391   --  is included here to share between Unique_Name and gnatprove.
3392
3393   function Unit_Is_Visible (U : Entity_Id) return Boolean;
3394   --  Determine whether a compilation unit is visible in the current context,
3395   --  because there is a with_clause that makes the unit available. Used to
3396   --  provide better messages on common visiblity errors on operators.
3397
3398   function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
3399   --  Yields Universal_Integer or Universal_Real if this is a candidate
3400
3401   function Unqualify (Expr : Node_Id) return Node_Id;
3402   pragma Inline (Unqualify);
3403   --  Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
3404   --  returns X. If Expr is not a qualified expression, returns Expr.
3405
3406   function Unqual_Conv (Expr : Node_Id) return Node_Id;
3407   pragma Inline (Unqual_Conv);
3408   --  Similar to Unqualify, but removes qualified expressions, type
3409   --  conversions, and unchecked conversions.
3410
3411   function Validated_View (Typ : Entity_Id) return Entity_Id;
3412   --  Obtain the "validated view" of arbitrary type Typ which is suitable for
3413   --  verification by attribute 'Valid_Scalars. This view is the type itself
3414   --  or its full view while stripping away concurrency, derivations, and
3415   --  privacy.
3416
3417   function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
3418   --  [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
3419   --  of a type extension or private extension declaration. If the full-view
3420   --  of private parents and progenitors is available then it is used to
3421   --  generate the list of visible ancestors; otherwise their partial
3422   --  view is added to the resulting list.
3423
3424   function Within_Init_Proc return Boolean;
3425   --  Determines if Current_Scope is within an init proc
3426
3427   function Within_Protected_Type (E : Entity_Id) return Boolean;
3428   --  Returns True if entity E is declared within a protected type
3429
3430   function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
3431   --  Returns True if entity E is declared within scope S
3432
3433   procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
3434   --  Output error message for incorrectly typed expression. Expr is the node
3435   --  for the incorrectly typed construct (Etype (Expr) is the type found),
3436   --  and Expected_Type is the entity for the expected type. Note that Expr
3437   --  does not have to be a subexpression, anything with an Etype field may
3438   --  be used.
3439
3440   function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean;
3441   --  Determine whether type Typ "yields synchronized object" as specified by
3442   --  SPARK RM 9.1. To qualify as such, a type must be
3443   --    * An array type whose element type yields a synchronized object
3444   --    * A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
3445   --    * A protected type
3446   --    * A record type or type extension without defaulted discriminants
3447   --      whose components are of a type that yields a synchronized object.
3448   --    * A synchronized interface type
3449   --    * A task type
3450
3451   function Yields_Universal_Type (N : Node_Id) return Boolean;
3452   --  Determine whether unanalyzed node N yields a universal type
3453
3454   procedure Preanalyze_Without_Errors (N : Node_Id);
3455   --  Preanalyze N without reporting errors
3456
3457   package Interval_Lists is
3458      type Discrete_Interval is
3459         record
3460            Low, High : Uint;
3461         end record;
3462
3463      type Discrete_Interval_List is
3464        array (Pos range <>) of Discrete_Interval;
3465      --  A sorted (in ascending order) list of non-empty pairwise-disjoint
3466      --  intervals, always with a gap of at least one value between
3467      --  successive intervals (i.e., mergeable intervals are merged).
3468      --  Low bound is one; high bound is nonnegative.
3469
3470      function Aggregate_Intervals (N : Node_Id) return Discrete_Interval_List;
3471      --  Given an array aggregate N, returns the (unique) interval list
3472      --  representing the values of the aggregate choices; if all the array
3473      --  components are covered by the others choice then the length of the
3474      --  result is zero.
3475
3476      function Choice_List_Intervals
3477        (Discrete_Choices : List_Id) return Discrete_Interval_List;
3478      --  Given a discrete choice list, returns the (unique) interval
3479      --  list representing the chosen values.
3480
3481      function Type_Intervals (Typ : Entity_Id) return Discrete_Interval_List;
3482      --  Given a static discrete type or subtype, returns the (unique)
3483      --  interval list representing the values of the type/subtype.
3484      --  If no static predicates are involved, the length of the result
3485      --  will be at most one.
3486
3487      function Is_Subset (Subset, Of_Set : Discrete_Interval_List)
3488        return Boolean;
3489      --  Returns True iff every value belonging to some interval of
3490      --  Subset also belongs to some interval of Of_Set.
3491
3492      --  When we get around to implementing "is statically compatible"
3493      --  correctly for real types with static predicates, we may need
3494      --  an analogous Real_Interval_List type. Most of the language
3495      --  rules that reference "is statically compatible" pertain to
3496      --  discriminants and therefore do not require support for real types;
3497      --  the exception is 12.5.1(8).
3498
3499      Intervals_Error : exception;
3500      --  Raised when the list of non-empty pair-wise disjoint intervals cannot
3501      --  be built.
3502   end Interval_Lists;
3503
3504   package Old_Attr_Util is
3505      --  Operations related to 'Old attribute evaluation. This
3506      --  includes cases where a level of indirection is needed due to
3507      --  conditional evaluation as well as support for the
3508      --  "known on entry" rules.
3509
3510      package Conditional_Evaluation is
3511         function Eligible_For_Conditional_Evaluation
3512           (Expr : Node_Id) return Boolean;
3513         --  Given a subexpression of a Postcondition expression
3514         --  (typically a 'Old attribute reference), returns True if
3515         --     - the expression is conditionally evaluated; and
3516         --     - its determining expressions are all known on entry; and
3517         --     - Ada_Version >= Ada_2022.
3518         --  See RM 6.1.1 for definitions of these terms.
3519         --
3520         --  Also returns True if Expr is of an anonymous access type;
3521         --  this is just because we want the code that knows how to build
3522         --  'Old temps in that case to reside in only one place.
3523
3524         function Conditional_Evaluation_Condition
3525           (Expr : Node_Id) return Node_Id;
3526         --  Given an expression which is eligible for conditional evaluation,
3527         --  build a Boolean expression whose value indicates whether the
3528         --  expression should be evaluated.
3529      end Conditional_Evaluation;
3530
3531      package Indirect_Temps is
3532         generic
3533            with procedure Append_Item (N : Node_Id; Is_Eval_Stmt : Boolean);
3534            --  If Is_Eval_Stmt is True, then N is a statement that should
3535            --  only be executed in the case where the 'Old prefix is to be
3536            --  evaluated. If Is_Eval_Stmt is False, then N is a declaration
3537            --  which should be elaborated unconditionally.
3538            --  Client is responsible for ensuring that any appended
3539            --  Eval_Stmt nodes are eventually analyzed.
3540
3541            Append_Decls_In_Reverse_Order : Boolean := False;
3542            --  This parameter is for the convenience of exp_prag.adb, where we
3543            --  want to Prepend rather than Append so it is better to get the
3544            --  Append calls in reverse order.
3545
3546         procedure Declare_Indirect_Temp
3547           (Attr_Prefix   : Node_Id; -- prefix of 'Old attribute (or similar?)
3548            Indirect_Temp : out Entity_Id);
3549         --  Indirect_Temp is of an access type; it is unconditionally
3550         --  declared but only conditionally initialized to reference the
3551         --  saved value of Attr_Prefix.
3552
3553         function Indirect_Temp_Needed (Typ : Entity_Id) return Boolean;
3554         --  Returns True for a specific tagged type because the temp must
3555         --  be of the class-wide type in order to preserve the underlying tag.
3556         --
3557         --  Also returns True in the case of an anonymous access type
3558         --  because we want the code that knows how to deal with
3559         --  this case to reside in only one place.
3560         --
3561         --  For an unconstrained-but-definite discriminated subtype, returns
3562         --  True if the potential difference in size between an
3563         --  unconstrained object and a constrained object is large.
3564         --  [This part is not implemented yet.]
3565         --
3566         --  Otherwise, returns False if a declaration of the form
3567         --     Temp : Typ;
3568         --  is legal and side-effect-free (assuming that default
3569         --  initialization is suppressed). For example, returns True if Typ is
3570         --  indefinite, or if Typ has a controlled part.
3571         --
3572
3573         function Indirect_Temp_Value
3574           (Temp : Entity_Id;
3575            Typ  : Entity_Id;
3576            Loc  : Source_Ptr) return Node_Id;
3577         --  Evaluate a temp declared by Declare_Indirect_Temp.
3578
3579         function Is_Access_Type_For_Indirect_Temp
3580           (T : Entity_Id) return Boolean;
3581         --  True for an access type that was declared via a call
3582         --  to Declare_Indirect_Temp.
3583         --  Indicates that the given access type should be treated
3584         --  the same with respect to finalization as a
3585         --  user-defined "comes from source" access type.
3586
3587      end Indirect_Temps;
3588   end Old_Attr_Util;
3589
3590   package Storage_Model_Support is
3591
3592      --  This package provides a set of utility functions related to support
3593      --  for the Storage_Model feature. These functions provide an interface
3594      --  that the compiler (in particular back-end phases such as gigi and
3595      --  GNAT-LLVM) can use to easily obtain entities and operations that
3596      --  are specified for types in the aspects Storage_Model_Type and
3597      --  Designated_Storage_Model.
3598
3599      function Get_Storage_Model_Type_Entity
3600        (Typ : Entity_Id;
3601         Nam : Name_Id) return Entity_Id;
3602      --  Given type Typ with aspect Storage_Model_Type, returns the Entity_Id
3603      --  corresponding to the entity associated with Nam in the aspect. If the
3604      --  type does not specify the aspect, or such an entity is not present,
3605      --  then returns Empty. (Note: This function is modeled on function
3606      --  Get_Iterable_Type_Primitive.)
3607
3608      function Has_Designated_Storage_Model_Aspect
3609        (Typ : Entity_Id) return Boolean;
3610      --  Returns True iff Typ specifies aspect Designated_Storage_Model
3611
3612      function Has_Storage_Model_Type_Aspect (Typ : Entity_Id) return Boolean;
3613      --  Returns True iff Typ specifies aspect Storage_Model_Type
3614
3615      function Storage_Model_Object (Typ : Entity_Id) return Entity_Id;
3616      --  Given an access type with aspect Designated_Storage_Model, returns
3617      --  the storage-model object associated with that type; returns Empty
3618      --  if there is no associated object.
3619
3620      function Storage_Model_Type (Obj : Entity_Id) return Entity_Id;
3621      --  Given an object Obj of a type specifying aspect Storage_Model_Type,
3622      --  returns that type; otherwise returns Empty.
3623
3624      function Storage_Model_Address_Type (Typ : Entity_Id) return Entity_Id;
3625      --  Given a type Typ that specifies aspect Storage_Model_Type, returns
3626      --  the type specified for the Address_Type choice in that aspect;
3627      --  returns Empty if the aspect or the type isn't specified.
3628
3629      function Storage_Model_Null_Address (Typ : Entity_Id) return Entity_Id;
3630      --  Given a type Typ that specifies aspect Storage_Model_Type, returns
3631      --  constant specified for Null_Address choice in that aspect; returns
3632      --  Empty if the aspect or the constant object isn't specified.
3633
3634      function Storage_Model_Allocate (Typ : Entity_Id) return Entity_Id;
3635      --  Given a type Typ that specifies aspect Storage_Model_Type, returns
3636      --  procedure specified for the Allocate choice in that aspect; returns
3637      --  Empty if the aspect or the procedure isn't specified.
3638
3639      function Storage_Model_Deallocate (Typ : Entity_Id) return Entity_Id;
3640      --  Given a type Typ that specifies aspect Storage_Model_Type, returns
3641      --  procedure specified for the Deallocate choice in that aspect; returns
3642      --  Empty if the aspect or the procedure isn't specified.
3643
3644      function Storage_Model_Copy_From (Typ : Entity_Id) return Entity_Id;
3645      --  Given a type Typ that specifies aspect Storage_Model_Type, returns
3646      --  procedure specified for the Copy_From choice in that aspect; returns
3647      --  Empty if the aspect or the procedure isn't specified.
3648
3649      function Storage_Model_Copy_To (Typ : Entity_Id) return Entity_Id;
3650      --  Given a type Typ that specifies aspect Storage_Model_Type, returns
3651      --  procedure specified for the Copy_To choice in that aspect; returns
3652      --  Empty if the aspect or the procedure isn't specified.
3653
3654      function Storage_Model_Storage_Size (Typ : Entity_Id) return Entity_Id;
3655      --  Given a type Typ that specifies aspect Storage_Model_Type, returns
3656      --  function specified for Storage_Size choice in that aspect; returns
3657      --  Empty if the aspect or the procedure isn't specified.
3658
3659   end Storage_Model_Support;
3660
3661end Sem_Util;
3662