1------------------------------------------------------------------------------ 2-- -- 3-- GNAT COMPILER COMPONENTS -- 4-- -- 5-- S E M _ U T I L -- 6-- -- 7-- S p e c -- 8-- -- 9-- Copyright (C) 1992-2021, Free Software Foundation, Inc. -- 10-- -- 11-- GNAT is free software; you can redistribute it and/or modify it under -- 12-- terms of the GNU General Public License as published by the Free Soft- -- 13-- ware Foundation; either version 3, or (at your option) any later ver- -- 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- 15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- 16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- 17-- for more details. You should have received a copy of the GNU General -- 18-- Public License distributed with GNAT; see file COPYING3. If not, go to -- 19-- http://www.gnu.org/licenses for a complete copy of the license. -- 20-- -- 21-- GNAT was originally developed by the GNAT team at New York University. -- 22-- Extensive contributions were provided by Ada Core Technologies Inc. -- 23-- -- 24------------------------------------------------------------------------------ 25 26-- Package containing utility procedures used throughout the semantics 27 28with Aspects; use Aspects; 29with Atree; use Atree; 30with Einfo; use Einfo; 31with Einfo.Entities; use Einfo.Entities; 32with Exp_Tss; use Exp_Tss; 33with Namet; use Namet; 34with Opt; use Opt; 35with Snames; use Snames; 36with Types; use Types; 37with Uintp; use Uintp; 38with Urealp; use Urealp; 39 40package Sem_Util is 41 42 function Abstract_Interface_List (Typ : Entity_Id) return List_Id; 43 -- The list of interfaces implemented by Typ. Empty if there are none, 44 -- including the cases where there can't be any because e.g. the type is 45 -- not tagged. 46 47 type Accessibility_Level_Kind is 48 (Dynamic_Level, 49 Object_Decl_Level, 50 Zero_On_Dynamic_Level); 51 -- Accessibility_Level_Kind is an enumerated type which captures the 52 -- different modes in which an accessibility level could be obtained for 53 -- a given expression. 54 55 -- When in the context of the function Accessibility_Level, 56 -- Accessibility_Level_Kind signals what type of accessibility level to 57 -- obtain. For example, when Level is Dynamic_Level, a defining identifier 58 -- associated with a SAOOAAT may be returned or an N_Integer_Literal node. 59 -- When the level is Object_Decl_Level, an N_Integer_Literal node is 60 -- returned containing the level of the declaration of the object if 61 -- relevant (be it a SAOOAAT or otherwise). Finally, Zero_On_Dynamic_Level 62 -- returns library level for all cases where the accessibility level is 63 -- dynamic (used to bypass static accessibility checks in dynamic cases). 64 65 function Accessibility_Level 66 (Expr : Node_Id; 67 Level : Accessibility_Level_Kind; 68 In_Return_Context : Boolean := False; 69 Allow_Alt_Model : Boolean := True) return Node_Id; 70 -- Centralized accessibility level calculation routine for finding the 71 -- accessibility level of a given expression Expr. 72 73 -- In_Return_Context forces the Accessibility_Level calculations to be 74 -- carried out "as if" Expr existed in a return value. This is useful for 75 -- calculating the accessibility levels for discriminant associations 76 -- and return aggregates. 77 78 -- The Allow_Alt_Model parameter allows the alternative level calculation 79 -- under the restriction No_Dynamic_Accessibility_Checks to be performed. 80 81 function Acquire_Warning_Match_String (Str_Lit : Node_Id) return String; 82 -- Used by pragma Warnings (Off, string), and Warn_As_Error (string) to get 83 -- the given string argument, adding leading and trailing asterisks if they 84 -- are not already present. Str_Lit is the static value of the pragma 85 -- argument. 86 87 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id); 88 -- Add A to the list of access types to process when expanding the 89 -- freeze node of E. 90 91 procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id); 92 -- Given a block statement N, generate an internal E_Block label and make 93 -- it the identifier of the block. Id denotes the generated entity. If the 94 -- block already has an identifier, Id returns the entity of its label. 95 96 procedure Add_Global_Declaration (N : Node_Id); 97 -- These procedures adds a declaration N at the library level, to be 98 -- elaborated before any other code in the unit. It is used for example 99 -- for the entity that marks whether a unit has been elaborated. The 100 -- declaration is added to the Declarations list of the Aux_Decls_Node 101 -- for the current unit. The declarations are added in the current scope, 102 -- so the caller should push a new scope as required before the call. 103 104 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id; 105 -- Returns the name of E adding Suffix 106 107 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean; 108 -- Given two types, returns True if we are in Allow_Integer_Address mode 109 -- and one of the types is (a descendant of) System.Address (and this type 110 -- is private), and the other type is any integer type. 111 112 function Address_Value (N : Node_Id) return Node_Id; 113 -- Return the underlying value of the expression N of an address clause 114 115 function Addressable (V : Uint) return Boolean; 116 function Addressable (V : Int) return Boolean; 117 pragma Inline (Addressable); 118 -- Returns True if the value of V is the word size or an addressable factor 119 -- or multiple of the word size (typically 8, 16, 32, 64 or 128). 120 121 procedure Aggregate_Constraint_Checks 122 (Exp : Node_Id; 123 Check_Typ : Entity_Id); 124 -- Checks expression Exp against subtype Check_Typ. If Exp is an aggregate 125 -- and Check_Typ a constrained record type with discriminants, we generate 126 -- the appropriate discriminant checks. If Exp is an array aggregate then 127 -- emit the appropriate length checks. If Exp is a scalar type, or a string 128 -- literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks 129 -- are performed at run time. Also used for expressions in the argument of 130 -- 'Update, which shares some of the features of an aggregate. 131 132 function Alignment_In_Bits (E : Entity_Id) return Uint; 133 -- If the alignment of the type or object E is currently known to the 134 -- compiler, then this function returns the alignment value in bits. 135 -- Otherwise Uint_0 is returned, indicating that the alignment of the 136 -- entity is not yet known to the compiler. 137 138 function All_Composite_Constraints_Static (Constr : Node_Id) return Boolean; 139 -- Used to implement pragma Restrictions (No_Dynamic_Sized_Objects). 140 -- Given a constraint or subtree of a constraint on a composite 141 -- subtype/object, returns True if there are no nonstatic constraints, 142 -- which might cause objects to be created with dynamic size. 143 -- Called for subtype declarations (including implicit ones created for 144 -- subtype indications in object declarations, as well as discriminated 145 -- record aggregate cases). For record aggregates, only records containing 146 -- discriminant-dependent arrays matter, because the discriminants must be 147 -- static when governing a variant part. Access discriminants are 148 -- irrelevant. Also called for array aggregates, but only named notation, 149 -- because those are the only dynamic cases. 150 151 procedure Append_Entity_Name (Buf : in out Bounded_String; E : Entity_Id); 152 -- Recursive procedure to construct string for qualified name of enclosing 153 -- program unit. The qualification stops at an enclosing scope has no 154 -- source name (block or loop). If entity is a subprogram instance, skip 155 -- enclosing wrapper package. The name is appended to Buf. 156 157 procedure Append_Inherited_Subprogram (S : Entity_Id); 158 -- If the parent of the operation is declared in the visible part of 159 -- the current scope, the inherited operation is visible even though the 160 -- derived type that inherits the operation may be completed in the private 161 -- part of the current package. 162 163 procedure Apply_Compile_Time_Constraint_Error 164 (N : Node_Id; 165 Msg : String; 166 Reason : RT_Exception_Code; 167 Ent : Entity_Id := Empty; 168 Typ : Entity_Id := Empty; 169 Loc : Source_Ptr := No_Location; 170 Warn : Boolean := False; 171 Emit_Message : Boolean := True); 172 -- N is a subexpression that will raise Constraint_Error when evaluated 173 -- at run time. Msg is a message that explains the reason for raising the 174 -- exception. The last character is ? if the message is always a warning, 175 -- even in Ada 95, and is not a ? if the message represents an illegality 176 -- (because of violation of static expression rules) in Ada 95 (but not 177 -- in Ada 83). Typically this routine posts all messages at the Sloc of 178 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output 179 -- the message. After posting the appropriate message, this routine 180 -- replaces the expression with an appropriate N_Raise_Constraint_Error 181 -- node using the given Reason code. This node is then marked as being 182 -- static if the original node is static, but sets the flag 183 -- Raises_Constraint_Error, preventing further evaluation. The error 184 -- message may contain a } or & insertion character. This normally 185 -- references Etype (N), unless the Ent argument is given explicitly, in 186 -- which case it is used instead. The type of the raise node that is built 187 -- is normally Etype (N), but if the Typ parameter is present, this is used 188 -- instead. Warn is normally False. If it is True then the message is 189 -- treated as a warning even though it does not end with a ? (this is used 190 -- when the caller wants to parameterize whether an error or warning is 191 -- given), or when the message should be treated as a warning even when 192 -- SPARK_Mode is On (which otherwise would force an error). 193 -- If Emit_Message is False, then do not emit any message. 194 195 function Async_Readers_Enabled (Id : Entity_Id) return Boolean; 196 -- Id should be the entity of a state abstraction, an object, or a type. 197 -- Returns True iff Id is subject to external property Async_Readers. 198 199 function Async_Writers_Enabled (Id : Entity_Id) return Boolean; 200 -- Id should be the entity of a state abstraction, an object, or a type. 201 -- Returns True iff Id is subject to external property Async_Writers. 202 203 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean; 204 -- If at the point of declaration an array type has a private or limited 205 -- component, several array operations are not available on the type, and 206 -- the array type is flagged accordingly. If in the immediate scope of 207 -- the array type the component becomes non-private or non-limited, these 208 -- operations become available. This can happen if the scopes of both types 209 -- are open, and the scope of the array is not outside the scope of the 210 -- component. 211 212 procedure Bad_Aspect 213 (N : Node_Id; 214 Nam : Name_Id; 215 Warn : Boolean := False); 216 -- Called when node N is expected to contain a valid aspect name, and 217 -- Nam is found instead. If Warn is set True this is a warning, else this 218 -- is an error. 219 220 procedure Bad_Attribute 221 (N : Node_Id; 222 Nam : Name_Id; 223 Warn : Boolean := False); 224 -- Called when node N is expected to contain a valid attribute name, and 225 -- Nam is found instead. If Warn is set True this is a warning, else this 226 -- is an error. 227 228 procedure Bad_Predicated_Subtype_Use 229 (Msg : String; 230 N : Node_Id; 231 Typ : Entity_Id; 232 Suggest_Static : Boolean := False); 233 -- This is called when Typ, a predicated subtype, is used in a context 234 -- which does not allow the use of a predicated subtype. Msg is passed to 235 -- Error_Msg_FE to output an appropriate message using N as the location, 236 -- and Typ as the entity. The caller must set up any insertions other than 237 -- the & for the type itself. Note that if Typ is a generic actual type, 238 -- then the message will be output as a warning, and a raise Program_Error 239 -- is inserted using Insert_Action with node N as the insertion point. Node 240 -- N also supplies the source location for construction of the raise node. 241 -- If Typ does not have any predicates, the call has no effect. Set flag 242 -- Suggest_Static when the context warrants an advice on how to avoid the 243 -- use error. 244 245 function Bad_Unordered_Enumeration_Reference 246 (N : Node_Id; 247 T : Entity_Id) return Boolean; 248 -- Node N contains a potentially dubious reference to type T, either an 249 -- explicit comparison, or an explicit range. This function returns True 250 -- if the type T is an enumeration type for which No pragma Order has been 251 -- given, and the reference N is not in the same extended source unit as 252 -- the declaration of T. 253 254 function Begin_Keyword_Location (N : Node_Id) return Source_Ptr; 255 -- Given block statement, entry body, package body, subprogram body, or 256 -- task body N, return the closest source location to the "begin" keyword. 257 258 function Build_Actual_Subtype 259 (T : Entity_Id; 260 N : Node_Or_Entity_Id) return Node_Id; 261 -- Build an anonymous subtype for an entity or expression, using the 262 -- bounds of the entity or the discriminants of the enclosing record. 263 -- T is the type for which the actual subtype is required, and N is either 264 -- a defining identifier, or any subexpression. 265 266 function Build_Actual_Subtype_Of_Component 267 (T : Entity_Id; 268 N : Node_Id) return Node_Id; 269 -- Determine whether a selected component has a type that depends on 270 -- discriminants, and build actual subtype for it if so. 271 272 -- Handling of inherited primitives whose ancestors have class-wide 273 -- pre/postconditions. 274 275 -- If a primitive operation of a parent type has a class-wide pre/post- 276 -- condition that includes calls to other primitives, and that operation 277 -- is inherited by a descendant type that also overrides some of these 278 -- other primitives, the condition that applies to the inherited 279 -- operation has a modified condition in which the overridden primitives 280 -- have been replaced by the primitives of the descendent type. A call 281 -- to the inherited operation cannot be simply a call to the parent 282 -- operation (with an appropriate conversion) as is the case for other 283 -- inherited operations, but must appear with a wrapper subprogram to which 284 -- the modified conditions apply. Furthermore the call to the parent 285 -- operation must not be subject to the original class-wide condition, 286 -- given that modified conditions apply. To implement these semantics 287 -- economically we create a subprogram body (a "class-wide clone") to 288 -- which no pre/postconditions apply, and we create bodies for the 289 -- original and the inherited operation that have their respective 290 -- pre/postconditions and simply call the clone. The following operations 291 -- take care of constructing declaration and body of the clone, and 292 -- building the calls to it within the appropriate wrappers. 293 294 procedure Build_Constrained_Itype 295 (N : Node_Id; 296 Typ : Entity_Id; 297 New_Assoc_List : List_Id); 298 -- Build a constrained itype for the newly created record aggregate N and 299 -- set it as a type of N. The itype will have Typ as its base type and 300 -- will be constrained by the values of discriminants from the component 301 -- association list New_Assoc_List. 302 303 -- ??? This code used to be pretty much a copy of Build_Subtype, but now 304 -- those two routines behave differently for types with unknown 305 -- discriminants. They are both exported in from this package in the hope 306 -- to eventually unify them (a not duplicate them even more until then). 307 308 -- ??? Performance WARNING. The current implementation creates a new itype 309 -- for all aggregates whose base type is discriminated. This means that 310 -- for record aggregates nested inside an array aggregate we will create 311 -- a new itype for each record aggregate if the array component type has 312 -- discriminants. For large aggregates this may be a problem. What should 313 -- be done in this case is to reuse itypes as much as possible. 314 315 function Build_Default_Subtype 316 (T : Entity_Id; 317 N : Node_Id) return Entity_Id; 318 -- If T is an unconstrained type with defaulted discriminants, build a 319 -- subtype constrained by the default values, insert the subtype 320 -- declaration in the tree before N, and return the entity of that 321 -- subtype. Otherwise, simply return T. 322 323 function Build_Discriminal_Subtype_Of_Component 324 (T : Entity_Id) return Node_Id; 325 -- Determine whether a record component has a type that depends on 326 -- discriminants, and build actual subtype for it if so. 327 328 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id); 329 -- Given a compilation unit node N, allocate an elaboration counter for 330 -- the compilation unit, and install it in the Elaboration_Entity field 331 -- of Spec_Id, the entity for the compilation unit. 332 333 procedure Build_Explicit_Dereference 334 (Expr : Node_Id; 335 Disc : Entity_Id); 336 -- AI05-139: Names with implicit dereference. If the expression N is a 337 -- reference type and the context imposes the corresponding designated 338 -- type, convert N into N.Disc.all. Such expressions are always over- 339 -- loaded with both interpretations, and the dereference interpretation 340 -- carries the name of the reference discriminant. 341 342 function Build_Overriding_Spec 343 (Op : Entity_Id; 344 Typ : Entity_Id) return Node_Id; 345 -- Build a subprogram specification for the wrapper of an inherited 346 -- operation with a modified pre- or postcondition (See AI12-0113). 347 -- Op is the parent operation, and Typ is the descendant type that 348 -- inherits the operation. 349 350 function Build_Subtype 351 (Related_Node : Node_Id; 352 Loc : Source_Ptr; 353 Typ : Entity_Id; 354 Constraints : List_Id) 355 return Entity_Id; 356 -- Typ is an array or discriminated type, Constraints is a list of 357 -- constraints that apply to Typ. This routine builds the constrained 358 -- subtype using Loc as the source location and attached this subtype 359 -- declaration to Related_Node. The returned subtype inherits predicates 360 -- from Typ. 361 362 -- ??? The routine is mostly a duplicate of Build_Constrained_Itype, so be 363 -- careful which of the two better suits your needs (and certainly do not 364 -- duplicate their code). 365 366 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean; 367 -- Returns True if the expression cannot possibly raise Constraint_Error. 368 -- The response is conservative in the sense that a result of False does 369 -- not necessarily mean that CE could be raised, but a response of True 370 -- means that for sure CE cannot be raised. 371 372 procedure Check_Ambiguous_Aggregate (Call : Node_Id); 373 -- Additional information on an ambiguous call in Ada_2022 when a 374 -- subprogram call has an actual that is an aggregate, and the 375 -- presence of container aggregates (or types with the corresponding 376 -- aspect) provides an additional interpretation. Message indicates 377 -- that an aggregate actual should carry a type qualification. 378 379 procedure Check_Dynamically_Tagged_Expression 380 (Expr : Node_Id; 381 Typ : Entity_Id; 382 Related_Nod : Node_Id); 383 -- Check wrong use of dynamically tagged expression 384 385 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id); 386 -- Verify that the full declaration of type T has been seen. If not, place 387 -- error message on node N. Used in object declarations, type conversions 388 -- and qualified expressions. 389 390 procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id); 391 -- A subprogram that has an Address parameter and is declared in a Pure 392 -- package is not considered Pure, because the parameter may be used as a 393 -- pointer and the referenced data may change even if the address value 394 -- itself does not. 395 -- If the programmer gave an explicit Pure_Function pragma, then we respect 396 -- the pragma and leave the subprogram Pure. 397 398 procedure Check_Function_Writable_Actuals (N : Node_Id); 399 -- (Ada 2012): If the construct N has two or more direct constituents that 400 -- are names or expressions whose evaluation may occur in an arbitrary 401 -- order, at least one of which contains a function call with an in out or 402 -- out parameter, then the construct is legal only if: for each name that 403 -- is passed as a parameter of mode in out or out to some inner function 404 -- call C2 (not including the construct N itself), there is no other name 405 -- anywhere within a direct constituent of the construct C other than 406 -- the one containing C2, that is known to refer to the same object (RM 407 -- 6.4.1(6.17/3)). 408 409 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id); 410 -- AI05-139-2: Accessors and iterators for containers. This procedure 411 -- checks whether T is a reference type, and if so it adds an interprettion 412 -- to N whose type is the designated type of the reference_discriminant. 413 -- If N is a generalized indexing operation, the interpretation is added 414 -- both to the corresponding function call, and to the indexing node. 415 416 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id); 417 -- Within a protected function, the current object is a constant, and 418 -- internal calls to a procedure or entry are illegal. Similarly, other 419 -- uses of a protected procedure in a renaming or a generic instantiation 420 -- in the context of a protected function are illegal (AI05-0225). 421 422 procedure Check_Later_Vs_Basic_Declarations 423 (Decls : List_Id; 424 During_Parsing : Boolean); 425 -- If During_Parsing is True, check for misplacement of later vs basic 426 -- declarations in Ada 83. If During_Parsing is False, and the SPARK 427 -- restriction is set, do the same: although SPARK 95 removes the 428 -- distinction between initial and later declarative items, the distinction 429 -- remains in the Examiner (JB01-005). Note that the Examiner does not 430 -- count package declarations in later declarative items. 431 432 procedure Check_No_Hidden_State (Id : Entity_Id); 433 -- Determine whether object or state Id introduces a hidden state. If this 434 -- is the case, emit an error. 435 436 procedure Check_Inherited_Nonoverridable_Aspects 437 (Inheritor : Entity_Id; 438 Interface_List : List_Id; 439 Parent_Type : Entity_Id); 440 -- Verify consistency of inherited nonoverridable aspects 441 -- when aspects are inherited from more than one source. 442 -- Parent_Type may be void (e.g., for a tagged task/protected type 443 -- whose declaration includes a non-empty interface list). 444 -- In the error case, error message is associate with Inheritor; 445 -- Inheritor parameter is otherwise unused. 446 447 procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id); 448 -- Verify that the profile of nonvolatile function Func_Id does not contain 449 -- effectively volatile parameters or return type for reading. 450 451 procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id); 452 -- Verify the legality of reference Ref to variable Var_Id when the 453 -- variable is a constituent of a single protected/task type. 454 455 procedure Check_Potentially_Blocking_Operation (N : Node_Id); 456 -- N is one of the statement forms that is a potentially blocking 457 -- operation. If it appears within a protected action, emit warning. 458 459 procedure Check_Previous_Null_Procedure 460 (Decl : Node_Id; 461 Prev : Entity_Id); 462 -- A null procedure or a subprogram renaming can complete a previous 463 -- declaration, unless that previous declaration is itself a null 464 -- procedure. This must be treated specially because the analysis of 465 -- the null procedure leaves the corresponding entity as having no 466 -- completion, because its completion is provided by a generated body 467 -- inserted after all other declarations. 468 469 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id); 470 -- Determine whether the contract of subprogram Subp_Id mentions attribute 471 -- 'Result and it contains an expression that evaluates differently in pre- 472 -- and post-state. 473 474 procedure Check_State_Refinements 475 (Context : Node_Id; 476 Is_Main_Unit : Boolean := False); 477 -- Verify that all abstract states declared in a block statement, entry 478 -- body, package body, protected body, subprogram body, task body, or a 479 -- package declaration denoted by Context have proper refinement. Emit an 480 -- error if this is not the case. Flag Is_Main_Unit should be set when 481 -- Context denotes the main compilation unit. 482 483 procedure Check_Unused_Body_States (Body_Id : Entity_Id); 484 -- Verify that all abstract states and objects declared in the state space 485 -- of package body Body_Id are used as constituents. Emit an error if this 486 -- is not the case. 487 488 procedure Check_Unprotected_Access 489 (Context : Node_Id; 490 Expr : Node_Id); 491 -- Check whether the expression is a pointer to a protected component, 492 -- and the context is external to the protected operation, to warn against 493 -- a possible unlocked access to data. 494 495 procedure Check_Volatility_Compatibility 496 (Id1, Id2 : Entity_Id; 497 Description_1, Description_2 : String; 498 Srcpos_Bearer : Node_Id); 499 -- Id1 and Id2 should each be the entity of a state abstraction, a 500 -- variable, or a type (i.e., something suitable for passing to 501 -- Async_Readers_Enabled and similar functions). 502 -- Does nothing if SPARK_Mode /= On. Otherwise, flags a legality violation 503 -- if one or more of the four volatility-related aspects is False for Id1 504 -- and True for Id2. The two descriptions are included in the error message 505 -- text; the source position for the generated message is determined by 506 -- Srcpos_Bearer. 507 508 function Choice_List (N : Node_Id) return List_Id; 509 -- Utility to retrieve the choices of a Component_Association or the 510 -- Discrete_Choices of an Iterated_Component_Association. For various 511 -- reasons these nodes have a different structure even though they play 512 -- similar roles in array aggregates. 513 514 type Condition_Kind is 515 (Ignored_Class_Precondition, 516 Ignored_Class_Postcondition, 517 Class_Precondition, 518 Class_Postcondition); 519 -- Kind of class-wide conditions 520 521 function Class_Condition 522 (Kind : Condition_Kind; 523 Subp : Entity_Id) return Node_Id; 524 -- Class-wide Kind condition of Subp 525 526 function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id; 527 -- Gather the entities of all abstract states and objects declared in the 528 -- body state space of package body Body_Id. 529 530 procedure Collect_Interfaces 531 (T : Entity_Id; 532 Ifaces_List : out Elist_Id; 533 Exclude_Parents : Boolean := False; 534 Use_Full_View : Boolean := True); 535 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are 536 -- directly or indirectly implemented by T. Exclude_Parents is used to 537 -- avoid the addition of inherited interfaces to the generated list. 538 -- Use_Full_View is used to collect the interfaces using the full-view 539 -- (if available). 540 541 procedure Collect_Interface_Components 542 (Tagged_Type : Entity_Id; 543 Components_List : out Elist_Id); 544 -- Ada 2005 (AI-251): Collect all the tag components associated with the 545 -- secondary dispatch tables of a tagged type. 546 547 procedure Collect_Interfaces_Info 548 (T : Entity_Id; 549 Ifaces_List : out Elist_Id; 550 Components_List : out Elist_Id; 551 Tags_List : out Elist_Id); 552 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus 553 -- the record component and tag associated with each of these interfaces. 554 -- On exit Ifaces_List, Components_List and Tags_List have the same number 555 -- of elements, and elements at the same position on these tables provide 556 -- information on the same interface type. 557 558 procedure Collect_Parents 559 (T : Entity_Id; 560 List : out Elist_Id; 561 Use_Full_View : Boolean := True); 562 -- Collect all the parents of Typ. Use_Full_View is used to collect them 563 -- using the full-view of private parents (if available). 564 565 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id; 566 -- Called upon type derivation and extension. We scan the declarative part 567 -- in which the type appears, and collect subprograms that have one 568 -- subsidiary subtype of the type. These subprograms can only appear after 569 -- the type itself. 570 571 function Compile_Time_Constraint_Error 572 (N : Node_Id; 573 Msg : String; 574 Ent : Entity_Id := Empty; 575 Loc : Source_Ptr := No_Location; 576 Warn : Boolean := False; 577 Extra_Msg : String := "") return Node_Id; 578 -- This is similar to Apply_Compile_Time_Constraint_Error in that it 579 -- generates a warning (or error) message in the same manner, but it does 580 -- not replace any nodes. For convenience, the function always returns its 581 -- first argument. The message is a warning if the message ends with ?, or 582 -- we are operating in Ada 83 mode, or the Warn parameter is set to True. 583 -- If Extra_Msg is not a null string, then it's associated with N and 584 -- emitted immediately after the main message (and before output of any 585 -- message indicating that Constraint_Error will be raised). 586 587 procedure Compute_Returns_By_Ref (Func : Entity_Id); 588 -- Set the Returns_By_Ref flag on Func if appropriate 589 590 generic 591 with function Predicate (Typ : Entity_Id) return Boolean; 592 function Collect_Types_In_Hierarchy 593 (Typ : Entity_Id; 594 Examine_Components : Boolean := False) return Elist_Id; 595 -- Inspect the ancestor and progenitor types of Typ and Typ itself - 596 -- collecting those for which function Predicate is True. The resulting 597 -- list is ordered in a type-to-ultimate-ancestor fashion. 598 599 -- When Examine_Components is True, components types in the hierarchy also 600 -- get collected. 601 602 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id); 603 -- Sets the Has_Delayed_Freeze flag of New_Ent if the Delayed_Freeze flag 604 -- of Old_Ent is set and Old_Ent has not yet been Frozen (i.e. Is_Frozen is 605 -- False). 606 607 function Copy_Component_List 608 (R_Typ : Entity_Id; 609 Loc : Source_Ptr) return List_Id; 610 -- Copy components from record type R_Typ that come from source. Used to 611 -- create a new compatible record type. Loc is the source location assigned 612 -- to the created nodes. 613 614 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id; 615 -- Utility to create a parameter profile for a new subprogram spec, when 616 -- the subprogram has a body that acts as spec. This is done for some cases 617 -- of inlining, and for private protected ops. Also used to create bodies 618 -- for stubbed subprograms. 619 620 procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id); 621 -- Copy the SPARK_Mode aspect if present in the aspect specifications 622 -- of node From to node To. On entry it is assumed that To does not have 623 -- aspect specifications. If From has no aspects, the routine has no 624 -- effect. 625 626 function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id; 627 -- Replicate a function or a procedure specification denoted by Spec. The 628 -- resulting tree is an exact duplicate of the original tree. New entities 629 -- are created for the unit name and the formal parameters. 630 631 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id; 632 -- If a type is a generic actual type, return the corresponding formal in 633 -- the generic parent unit. There is no direct link in the tree for this 634 -- attribute, except in the case of formal private and derived types. 635 -- Possible optimization??? 636 637 function Corresponding_Primitive_Op 638 (Ancestor_Op : Entity_Id; 639 Descendant_Type : Entity_Id) return Entity_Id; 640 -- Given a primitive subprogram of a tagged type and a (distinct) 641 -- descendant type of that type, find the corresponding primitive 642 -- subprogram of the descendant type. 643 644 function Current_Entity (N : Node_Id) return Entity_Id; 645 pragma Inline (Current_Entity); 646 -- Find the currently visible definition for a given identifier, that is to 647 -- say the first entry in the visibility chain for the Chars of N. 648 649 function Current_Entity_In_Scope (N : Name_Id) return Entity_Id; 650 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id; 651 -- Find whether there is a previous definition for name or identifier N in 652 -- the current scope. Because declarations for a scope are not necessarily 653 -- contiguous (e.g. for packages) the first entry on the visibility chain 654 -- for N is not necessarily in the current scope. 655 656 function Current_Scope return Entity_Id; 657 -- Get entity representing current scope 658 659 function Current_Scope_No_Loops return Entity_Id; 660 -- Return the current scope ignoring internally generated loops 661 662 function Current_Subprogram return Entity_Id; 663 -- Returns current enclosing subprogram. If Current_Scope is a subprogram, 664 -- then that is what is returned, otherwise the Enclosing_Subprogram of the 665 -- Current_Scope is returned. The returned value is Empty if this is called 666 -- from a library package which is not within any subprogram. 667 668 function CW_Or_Has_Controlled_Part (T : Entity_Id) return Boolean; 669 -- True if T is a class-wide type, or if it has controlled parts ("part" 670 -- means T or any of its subcomponents). Same as Needs_Finalization, except 671 -- when pragma Restrictions (No_Finalization) applies, in which case we 672 -- know that class-wide objects do not contain controlled parts. 673 674 function Deepest_Type_Access_Level 675 (Typ : Entity_Id; 676 Allow_Alt_Model : Boolean := True) return Uint; 677 678 -- Same as Type_Access_Level, except that if the type is the type of an Ada 679 -- 2012 stand-alone object of an anonymous access type, then return the 680 -- static accessibility level of the object. In that case, the dynamic 681 -- accessibility level of the object may take on values in a range. The low 682 -- bound of that range is returned by Type_Access_Level; this function 683 -- yields the high bound of that range. Also differs from Type_Access_Level 684 -- in the case of a descendant of a generic formal type (returns Int'Last 685 -- instead of 0). 686 687 -- The Allow_Alt_Model parameter allows the alternative level calculation 688 -- under the restriction No_Dynamic_Accessibility_Checks to be performed. 689 690 function Defining_Entity (N : Node_Id) return Entity_Id; 691 -- Given a declaration N, returns the associated defining entity. If the 692 -- declaration has a specification, the entity is obtained from the 693 -- specification. If the declaration has a defining unit name, then the 694 -- defining entity is obtained from the defining unit name ignoring any 695 -- child unit prefixes. 696 -- 697 -- Iterator loops also have a defining entity, which holds the list of 698 -- local entities declared during loop expansion. These entities need 699 -- debugging information, generated through Qualify_Entity_Names, and 700 -- the loop declaration must be placed in the table Name_Qualify_Units. 701 702 -- WARNING: There is a matching C declaration of this subprogram in fe.h 703 704 function Defining_Entity_Or_Empty (N : Node_Id) return Entity_Id; 705 -- This is equivalent to Defining_Entity but it returns Empty for nodes 706 -- without an entity instead of raising Program_Error. 707 708 function Denotes_Discriminant 709 (N : Node_Id; 710 Check_Concurrent : Boolean := False) return Boolean; 711 -- Returns True if node N is an Entity_Name node for a discriminant. If the 712 -- flag Check_Concurrent is true, function also returns true when N denotes 713 -- the discriminal of the discriminant of a concurrent type. This is needed 714 -- to disable some optimizations on private components of protected types, 715 -- and constraint checks on entry families constrained by discriminants. 716 717 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean; 718 -- Detect suspicious overlapping between actuals in a call, when both are 719 -- writable (RM 2012 6.4.1(6.4/3)). 720 721 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean; 722 -- Functions to detect suspicious overlapping between actuals in a call, 723 -- when one of them is writable. The predicates are those proposed in 724 -- AI05-0144, to detect dangerous order dependence in complex calls. 725 -- I would add a parameter Warn which enables more extensive testing of 726 -- cases as we find appropriate when we are only warning ??? Or perhaps 727 -- return an indication of (Error, Warn, OK) ??? 728 729 function Denotes_Variable (N : Node_Id) return Boolean; 730 -- Returns True if node N denotes a single variable without parentheses 731 732 function Depends_On_Discriminant (N : Node_Id) return Boolean; 733 -- Returns True if N denotes a discriminant or if N is a range, a subtype 734 -- indication or a scalar subtype where one of the bounds is a 735 -- discriminant. 736 737 function Derivation_Too_Early_To_Inherit 738 (Typ : Entity_Id; Streaming_Op : TSS_Name_Type) return Boolean; 739 -- Returns True if Typ is a derived type, the given Streaming_Op 740 -- (one of Read, Write, Input, or Output) is explicitly specified 741 -- for Typ's parent type, and that attribute specification is *not* 742 -- inherited by Typ because the declaration of Typ precedes that 743 -- of the attribute specification. 744 745 function Designate_Same_Unit 746 (Name1 : Node_Id; 747 Name2 : Node_Id) return Boolean; 748 -- Returns True if Name1 and Name2 designate the same unit name; each of 749 -- these names is supposed to be a selected component name, an expanded 750 -- name, a defining program unit name or an identifier. 751 752 procedure Diagnose_Iterated_Component_Association (N : Node_Id); 753 -- Emit an error if iterated component association N is actually an illegal 754 -- quantified expression lacking a quantifier. 755 756 function Discriminated_Size (Comp : Entity_Id) return Boolean; 757 -- If a component size is not static then a warning will be emitted 758 -- in Ravenscar or other restricted contexts. When a component is non- 759 -- static because of a discriminant constraint we can specialize the 760 -- warning by mentioning discriminants explicitly. This was created for 761 -- private components of protected objects, but is generally useful when 762 -- restriction No_Implicit_Heap_Allocation is active. 763 764 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id; 765 -- Same as Einfo.Extra_Accessibility except thtat object renames 766 -- are looked through. 767 768 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean; 769 -- Id should be the entity of a state abstraction, an object, or a type. 770 -- Returns True iff Id is subject to external property Effective_Reads. 771 772 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean; 773 -- Id should be the entity of a state abstraction, an object, or a type. 774 -- Returns True iff Id is subject to external property Effective_Writes. 775 776 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id; 777 -- Returns the enclosing N_Compilation_Unit node that is the root of a 778 -- subtree containing N. 779 780 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id; 781 -- Returns the closest ancestor of Typ that is a CPP type. 782 783 function Enclosing_Declaration (N : Node_Id) return Node_Id; 784 -- Returns the declaration node enclosing N (including possibly N itself), 785 -- if any, or Empty otherwise. 786 787 function Enclosing_Generic_Body (N : Node_Id) return Node_Id; 788 -- Returns the Node_Id associated with the innermost enclosing generic 789 -- body, if any. If none, then returns Empty. 790 791 function Enclosing_Generic_Unit (N : Node_Id) return Node_Id; 792 -- Returns the Node_Id associated with the innermost enclosing generic 793 -- unit, if any. If none, then returns Empty. 794 795 function Enclosing_HSS (Stmt : Node_Id) return Node_Id; 796 -- Returns the nearest handled sequence of statements that encloses a given 797 -- statement, or Empty. 798 799 function Enclosing_Lib_Unit_Entity 800 (E : Entity_Id := Current_Scope) return Entity_Id; 801 -- Returns the entity of enclosing library unit node which is the root of 802 -- the current scope (which must not be Standard_Standard, and the caller 803 -- is responsible for ensuring this condition) or other specified entity. 804 805 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id; 806 -- Returns the N_Compilation_Unit node of the library unit that is directly 807 -- or indirectly (through a subunit) at the root of a subtree containing 808 -- N. This may be either the same as Enclosing_Comp_Unit_Node, or if 809 -- Enclosing_Comp_Unit_Node returns a subunit, then the corresponding 810 -- library unit. If no such item is found, returns Empty. 811 812 function Enclosing_Package (E : Entity_Id) return Entity_Id; 813 -- Utility function to return the Ada entity of the package enclosing 814 -- the entity E, if any. Returns Empty if no enclosing package. 815 816 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id; 817 -- Returns the entity of the package or subprogram enclosing E, if any. 818 -- Returns Empty if no enclosing package or subprogram. 819 820 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id; 821 -- Utility function to return the Ada entity of the subprogram enclosing 822 -- the entity E, if any. Returns Empty if no enclosing subprogram. 823 824 function End_Keyword_Location (N : Node_Id) return Source_Ptr; 825 -- Given block statement, entry body, package body, package declaration, 826 -- protected body, [single] protected type declaration, subprogram body, 827 -- task body, or [single] task type declaration N, return the closest 828 -- source location of the "end" keyword. 829 830 procedure Ensure_Freeze_Node (E : Entity_Id); 831 -- Make sure a freeze node is allocated for entity E. If necessary, build 832 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E. 833 834 procedure Enter_Name (Def_Id : Entity_Id); 835 -- Insert new name in symbol table of current scope with check for 836 -- duplications (error message is issued if a conflict is found). 837 -- Note: Enter_Name is not used for overloadable entities, instead these 838 -- are entered using Sem_Ch6.Enter_Overloaded_Entity. 839 840 function Entity_Of (N : Node_Id) return Entity_Id; 841 -- Obtain the entity of arbitrary node N. If N is a renaming, return the 842 -- entity of the earliest renamed source abstract state or whole object. 843 -- If no suitable entity is available, return Empty. This routine carries 844 -- out actions that are tied to SPARK semantics. 845 846 function Exceptions_OK return Boolean; 847 -- Determine whether exceptions are allowed to be caught, propagated, or 848 -- raised. 849 850 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id); 851 -- This procedure is called after issuing a message complaining about an 852 -- inappropriate use of limited type T. If useful, it adds additional 853 -- continuation lines to the message explaining why type T is limited. 854 -- Messages are placed at node N. 855 856 function Expression_Of_Expression_Function 857 (Subp : Entity_Id) return Node_Id; 858 -- Return the expression of expression function Subp 859 860 type Extensions_Visible_Mode is 861 (Extensions_Visible_None, 862 -- Extensions_Visible does not yield a mode when SPARK_Mode is off. This 863 -- value acts as a default in a non-SPARK compilation. 864 865 Extensions_Visible_False, 866 -- A value of "False" signifies that Extensions_Visible is either 867 -- missing or the pragma is present and the value of its Boolean 868 -- expression is False. 869 870 Extensions_Visible_True); 871 -- A value of "True" signifies that Extensions_Visible is present and 872 -- the value of its Boolean expression is True. 873 874 function Extensions_Visible_Status 875 (Id : Entity_Id) return Extensions_Visible_Mode; 876 -- Given the entity of a subprogram or formal parameter subject to pragma 877 -- Extensions_Visible, return the Boolean value denoted by the expression 878 -- of the pragma. 879 880 procedure Find_Actual 881 (N : Node_Id; 882 Formal : out Entity_Id; 883 Call : out Node_Id); 884 -- Determines if the node N is an actual parameter of a function or a 885 -- procedure call. If so, then Formal points to the entity for the formal 886 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and 887 -- Call is set to the node for the corresponding call. If the node N is not 888 -- an actual parameter then Formal and Call are set to Empty. 889 890 function Find_Body_Discriminal 891 (Spec_Discriminant : Entity_Id) return Entity_Id; 892 -- Given a discriminant of the record type that implements a task or 893 -- protected type, return the discriminal of the corresponding discriminant 894 -- of the actual concurrent type. 895 896 function Find_Corresponding_Discriminant 897 (Id : Node_Id; 898 Typ : Entity_Id) return Entity_Id; 899 -- Because discriminants may have different names in a generic unit and in 900 -- an instance, they are resolved positionally when possible. A reference 901 -- to a discriminant carries the discriminant that it denotes when it is 902 -- analyzed. Subsequent uses of this id on a different type denotes the 903 -- discriminant at the same position in this new type. 904 905 function Find_DIC_Type (Typ : Entity_Id) return Entity_Id; 906 -- Subsidiary to all Build_DIC_Procedure_xxx routines. Find the type which 907 -- defines the Default_Initial_Condition pragma of type Typ. This is either 908 -- Typ itself or a parent type when the pragma is inherited. 909 910 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id; 911 -- Find the nearest iterator loop which encloses arbitrary entity Id. If 912 -- such a loop exists, return the entity of its identifier (E_Loop scope), 913 -- otherwise return Empty. 914 915 function Find_Enclosing_Scope (N : Node_Id) return Entity_Id; 916 -- Find the nearest scope which encloses arbitrary node N 917 918 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id; 919 -- Find the nested loop statement in a conditional block. Loops subject to 920 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original 921 -- loop are nested within the block. 922 923 procedure Find_Overlaid_Entity 924 (N : Node_Id; 925 Ent : out Entity_Id; 926 Off : out Boolean); 927 -- The node N should be an address representation clause. Determines if the 928 -- target expression is the address of an entity with an optional offset. 929 -- If so, set Ent to the entity and, if there is an offset, set Off to 930 -- True, otherwise to False. If it is not possible to determine that the 931 -- address is of this form, then set Ent to Empty. 932 933 function Find_Parameter_Type (Param : Node_Id) return Entity_Id; 934 -- Return the type of formal parameter Param as determined by its 935 -- specification. 936 937 -- The following type describes the placement of an arbitrary entity with 938 -- respect to SPARK visible / hidden state space. 939 940 type State_Space_Kind is 941 (Not_In_Package, 942 -- An entity is not in the visible, private or body state space when 943 -- the immediate enclosing construct is not a package. 944 945 Visible_State_Space, 946 -- An entity is in the visible state space when it appears immediately 947 -- within the visible declarations of a package or when it appears in 948 -- the visible state space of a nested package which in turn is declared 949 -- in the visible declarations of an enclosing package: 950 951 -- package Pack is 952 -- Visible_Variable : ... 953 -- package Nested 954 -- with Abstract_State => Visible_State 955 -- is 956 -- Visible_Nested_Variable : ... 957 -- end Nested; 958 -- end Pack; 959 960 -- Entities associated with a package instantiation inherit the state 961 -- space from the instance placement: 962 963 -- generic 964 -- package Gen is 965 -- Generic_Variable : ... 966 -- end Gen; 967 968 -- with Gen; 969 -- package Pack is 970 -- package Inst is new Gen; 971 -- -- Generic_Variable is in the visible state space of Pack 972 -- end Pack; 973 974 Private_State_Space, 975 -- An entity is in the private state space when it appears immediately 976 -- within the private declarations of a package or when it appears in 977 -- the visible state space of a nested package which in turn is declared 978 -- in the private declarations of an enclosing package: 979 980 -- package Pack is 981 -- private 982 -- Private_Variable : ... 983 -- package Nested 984 -- with Abstract_State => Private_State 985 -- is 986 -- Private_Nested_Variable : ... 987 -- end Nested; 988 -- end Pack; 989 990 -- The same placement principle applies to package instantiations 991 992 Body_State_Space); 993 -- An entity is in the body state space when it appears immediately 994 -- within the declarations of a package body or when it appears in the 995 -- visible state space of a nested package which in turn is declared in 996 -- the declarations of an enclosing package body: 997 998 -- package body Pack is 999 -- Body_Variable : ... 1000 -- package Nested 1001 -- with Abstract_State => Body_State 1002 -- is 1003 -- Body_Nested_Variable : ... 1004 -- end Nested; 1005 -- end Pack; 1006 1007 -- The same placement principle applies to package instantiations 1008 1009 procedure Find_Placement_In_State_Space 1010 (Item_Id : Entity_Id; 1011 Placement : out State_Space_Kind; 1012 Pack_Id : out Entity_Id); 1013 -- Determine the state space placement of an item. Item_Id denotes the 1014 -- entity of an abstract state, object, or package instantiation. Placement 1015 -- captures the precise placement of the item in the enclosing state space. 1016 -- If the state space is that of a package, Pack_Id denotes its entity, 1017 -- otherwise Pack_Id is Empty. 1018 1019 function Find_Primitive_Eq (Typ : Entity_Id) return Entity_Id; 1020 -- Locate primitive equality for type if it exists. Return Empty if it is 1021 -- not available. 1022 1023 function Find_Specific_Type (CW : Entity_Id) return Entity_Id; 1024 -- Find specific type of a class-wide type, and handle the case of an 1025 -- incomplete type coming either from a limited_with clause or from an 1026 -- incomplete type declaration. If resulting type is private return its 1027 -- full view. 1028 1029 function Find_Static_Alternative (N : Node_Id) return Node_Id; 1030 -- N is a case statement whose expression is a compile-time value. 1031 -- Determine the alternative chosen, so that the code of non-selected 1032 -- alternatives, and the warnings that may apply to them, are removed. 1033 1034 function First_Actual (Node : Node_Id) return Node_Id; 1035 -- Node is an N_Function_Call, N_Procedure_Call_Statement or 1036 -- N_Entry_Call_Statement node. The result returned is the first actual 1037 -- parameter in declaration order (not the order of parameters as they 1038 -- appeared in the source, which can be quite different as a result of the 1039 -- use of named parameters). Empty is returned for a call with no 1040 -- parameters. The procedure for iterating through the actuals in 1041 -- declaration order is to use this function to find the first actual, and 1042 -- then use Next_Actual to obtain the next actual in declaration order. 1043 -- Note that the value returned is always the expression (not the 1044 -- N_Parameter_Association nodes, even if named association is used). 1045 1046 -- WARNING: There is a matching C declaration of this subprogram in fe.h 1047 1048 function First_Global 1049 (Subp : Entity_Id; 1050 Global_Mode : Name_Id; 1051 Refined : Boolean := False) return Node_Id; 1052 -- Returns the first global item of mode Global_Mode (which can be 1053 -- Name_Input, Name_Output, Name_In_Out or Name_Proof_In) associated to 1054 -- subprogram Subp, or Empty otherwise. If Refined is True, the global item 1055 -- is retrieved from the Refined_Global aspect/pragma associated to the 1056 -- body of Subp if present. Next_Global can be used to get the next global 1057 -- item with the same mode. 1058 1059 function Fix_Msg (Id : Entity_Id; Msg : String) return String; 1060 -- Replace all occurrences of a particular word in string Msg depending on 1061 -- the Ekind of Id as follows: 1062 -- * Replace "subprogram" with 1063 -- - "entry" when Id is an entry [family] 1064 -- - "task type" when Id is a single task object, task type or task 1065 -- body. 1066 -- * Replace "protected" with 1067 -- - "task" when Id is a single task object, task type or task body 1068 -- All other non-matching words remain as is 1069 1070 function From_Nested_Package (T : Entity_Id) return Boolean; 1071 -- A type declared in a nested package may be frozen by a declaration 1072 -- appearing after the package but before the package is frozen. If the 1073 -- type has aspects that generate subprograms, these may contain references 1074 -- to entities local to the nested package. In that case the package must 1075 -- be installed on the scope stack to prevent spurious visibility errors. 1076 1077 procedure Gather_Components 1078 (Typ : Entity_Id; 1079 Comp_List : Node_Id; 1080 Governed_By : List_Id; 1081 Into : Elist_Id; 1082 Report_Errors : out Boolean; 1083 Allow_Compile_Time : Boolean := False; 1084 Include_Interface_Tag : Boolean := False); 1085 -- The purpose of this procedure is to gather the valid components in a 1086 -- record type according to the values of its discriminants, in order to 1087 -- validate the components of a record aggregate. 1088 -- 1089 -- Typ is the type of the aggregate when its constrained discriminants 1090 -- need to be collected, otherwise it is Empty. 1091 -- 1092 -- Comp_List is an N_Component_List node. 1093 -- 1094 -- Governed_By is a list of N_Component_Association nodes, where each 1095 -- choice list contains the name of a discriminant and the expression 1096 -- field gives its value. The values of the discriminants governing 1097 -- the (possibly nested) variant parts in Comp_List are found in this 1098 -- Component_Association List. 1099 -- 1100 -- Into is the list where the valid components are appended. Note that 1101 -- Into need not be an Empty list. If it's not, components are attached 1102 -- to its tail. 1103 -- 1104 -- Report_Errors is set to True if the values of the discriminants are 1105 -- insufficiently static (see body for details of what that means). 1106 1107 -- 1108 -- Allow_Compile_Time if set to True, allows compile time known values in 1109 -- Governed_By expressions in addition to static expressions. 1110 -- 1111 -- Include_Interface_Tag if set to True, gather any interface tag 1112 -- component, otherwise exclude them. 1113 -- 1114 -- This procedure is also used when building a record subtype. If the 1115 -- discriminant constraint of the subtype is static, the components of the 1116 -- subtype are only those of the variants selected by the values of the 1117 -- discriminants. Otherwise all components of the parent must be included 1118 -- in the subtype for semantic analysis. 1119 1120 function Get_Dynamic_Accessibility (E : Entity_Id) return Entity_Id; 1121 -- Obtain the accessibility level for a given entity formal taking into 1122 -- account both extra and minimum accessibility. 1123 1124 function Get_Actual_Subtype (N : Node_Id) return Entity_Id; 1125 -- Given a node for an expression, obtain the actual subtype of the 1126 -- expression. In the case of a parameter where the formal is an 1127 -- unconstrained array or discriminated type, this will be the previously 1128 -- constructed subtype of the actual. Note that this is not quite the 1129 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e. 1130 -- it is the subtype of the value of the actual. The actual subtype is also 1131 -- returned in other cases where it has already been constructed for an 1132 -- object. Otherwise the expression type is returned unchanged, except for 1133 -- the case of an unconstrained array type, where an actual subtype is 1134 -- created, using Insert_Actions if necessary to insert any associated 1135 -- actions. 1136 1137 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id; 1138 -- This is like Get_Actual_Subtype, except that it never constructs an 1139 -- actual subtype. If an actual subtype is already available, i.e. the 1140 -- Actual_Subtype field of the corresponding entity is set, then it is 1141 -- returned. Otherwise the Etype of the node is returned. 1142 1143 function Get_Body_From_Stub (N : Node_Id) return Node_Id; 1144 -- Return the body node for a stub 1145 1146 function Get_Cursor_Type 1147 (Aspect : Node_Id; 1148 Typ : Entity_Id) return Entity_Id; 1149 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating 1150 -- primitive operation First. For use in resolving the other primitive 1151 -- operations of an Iterable type and expanding loops and quantified 1152 -- expressions over formal containers. 1153 1154 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id; 1155 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating 1156 -- primitive operation First. For use after resolving the primitive 1157 -- operations of an Iterable type. 1158 1159 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id; 1160 -- This is used to construct the string literal node representing a 1161 -- default external name, i.e. one that is constructed from the name of an 1162 -- entity, or (in the case of extended DEC import/export pragmas) an 1163 -- identifier provided as the external name. Letters in the name are 1164 -- according to the setting of Opt.External_Name_Default_Casing. 1165 1166 function Get_Enclosing_Object (N : Node_Id) return Entity_Id; 1167 -- If expression N references a part of an object, return this object. 1168 -- Otherwise return Empty. Expression N should have been resolved already. 1169 1170 function Get_Generic_Entity (N : Node_Id) return Entity_Id; 1171 -- Returns the true generic entity in an instantiation. If the name in the 1172 -- instantiation is a renaming, the function returns the renamed generic. 1173 1174 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id; 1175 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3): 1176 -- in a child unit a derived type is within the derivation class of an 1177 -- ancestor declared in a parent unit, even if there is an intermediate 1178 -- derivation that does not see the full view of that ancestor. 1179 1180 procedure Get_Index_Bounds 1181 (N : Node_Id; 1182 L : out Node_Id; 1183 H : out Node_Id; 1184 Use_Full_View : Boolean := False); 1185 -- This procedure assigns to L and H respectively the values of the low and 1186 -- high bounds of node N, which must be a range, subtype indication, or the 1187 -- name of a scalar subtype. The result in L, H may be set to Error if 1188 -- there was an earlier error in the range. 1189 -- Use_Full_View is intended for use by clients other than the compiler 1190 -- (specifically, gnat2scil) to indicate that we want the full view if 1191 -- the index type turns out to be a partial view; this case should not 1192 -- arise during normal compilation of semantically correct programs. 1193 1194 type Range_Nodes is record 1195 First, Last : Node_Id; -- First and Last nodes of a discrete_range 1196 end record; 1197 1198 type Range_Values is record 1199 First, Last : Uint; -- First and Last values of a discrete_range 1200 end record; 1201 1202 function Get_Index_Bounds 1203 (N : Node_Id; 1204 Use_Full_View : Boolean := False) return Range_Nodes; 1205 -- Same as the above procedure, but returns the result as a record. 1206 -- ???This should probably replace the procedure. 1207 1208 function Get_Index_Bounds 1209 (N : Node_Id; 1210 Use_Full_View : Boolean := False) return Range_Values; 1211 -- Same as the above function, but returns the values, which must be known 1212 -- at compile time. 1213 1214 procedure Get_Interfacing_Aspects 1215 (Iface_Asp : Node_Id; 1216 Conv_Asp : out Node_Id; 1217 EN_Asp : out Node_Id; 1218 Expo_Asp : out Node_Id; 1219 Imp_Asp : out Node_Id; 1220 LN_Asp : out Node_Id; 1221 Do_Checks : Boolean := False); 1222 -- Given a single interfacing aspect Iface_Asp, retrieve other interfacing 1223 -- aspects that apply to the same related entity. The aspects considered by 1224 -- this routine are as follows: 1225 -- 1226 -- Conv_Asp - aspect Convention 1227 -- EN_Asp - aspect External_Name 1228 -- Expo_Asp - aspect Export 1229 -- Imp_Asp - aspect Import 1230 -- LN_Asp - aspect Link_Name 1231 -- 1232 -- When flag Do_Checks is set, this routine will flag duplicate uses of 1233 -- aspects. 1234 1235 function Get_Enum_Lit_From_Pos 1236 (T : Entity_Id; 1237 Pos : Uint; 1238 Loc : Source_Ptr) return Node_Id; 1239 -- This function returns an identifier denoting the E_Enumeration_Literal 1240 -- entity for the specified value from the enumeration type or subtype T. 1241 -- The second argument is the Pos value. Constraint_Error is raised if 1242 -- argument Pos is not in range. The third argument supplies a source 1243 -- location for constructed nodes returned by this function. If No_Location 1244 -- is supplied as source location, the location of the returned node is 1245 -- copied from the original source location for the enumeration literal, 1246 -- when available. 1247 1248 function Get_Iterable_Type_Primitive 1249 (Typ : Entity_Id; 1250 Nam : Name_Id) return Entity_Id; 1251 -- Retrieve one of the primitives First, Last, Next, Previous, Has_Element, 1252 -- Element from the value of the Iterable aspect of a type. 1253 1254 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id); 1255 -- Retrieve the fully expanded name of the library unit declared by 1256 -- Decl_Node into the name buffer. 1257 1258 function Get_Max_Queue_Length (Id : Entity_Id) return Uint; 1259 -- Return the argument of pragma Max_Queue_Length or zero if the annotation 1260 -- is not present. It is assumed that Id denotes an entry. 1261 1262 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id; 1263 pragma Inline (Get_Name_Entity_Id); 1264 -- An entity value is associated with each name in the name table. The 1265 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which 1266 -- is the innermost visible entity with the given name. See the body of 1267 -- Sem_Ch8 for further details on handling of entity visibility. 1268 1269 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id; 1270 -- Return the Name component of Test_Case pragma N 1271 -- Bad name now that this no longer applies to Contract_Case ??? 1272 1273 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id; 1274 -- Get defining entity of parent unit of a child unit. In most cases this 1275 -- is the defining entity of the unit, but for a child instance whose 1276 -- parent needs a body for inlining, the instantiation node of the parent 1277 -- has not yet been rewritten as a package declaration, and the entity has 1278 -- to be retrieved from the Instance_Spec of the unit. 1279 1280 function Get_Pragma_Id (N : Node_Id) return Pragma_Id; 1281 pragma Inline (Get_Pragma_Id); 1282 -- Obtains the Pragma_Id from Pragma_Name_Unmapped (N) 1283 1284 function Get_Qualified_Name 1285 (Id : Entity_Id; 1286 Suffix : Entity_Id := Empty) return Name_Id; 1287 -- Obtain the fully qualified form of entity Id. The format is: 1288 -- scope_of_id-1__scope_of_id__chars_of_id__chars_of_suffix 1289 1290 function Get_Qualified_Name 1291 (Nam : Name_Id; 1292 Suffix : Name_Id := No_Name; 1293 Scop : Entity_Id := Current_Scope) return Name_Id; 1294 -- Obtain the fully qualified form of name Nam assuming it appears in scope 1295 -- Scop. The format is: 1296 -- scop-1__scop__nam__suffix 1297 1298 procedure Get_Reason_String (N : Node_Id); 1299 -- Recursive routine to analyze reason argument for pragma Warnings. The 1300 -- value of the reason argument is appended to the current string using 1301 -- Store_String_Chars. The reason argument is expected to be a string 1302 -- literal or concatenation of string literals. An error is given for 1303 -- any other form. 1304 1305 function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id; 1306 -- If Typ has Implicit_Dereference, return discriminant specified in the 1307 -- corresponding aspect. 1308 1309 function Get_Referenced_Object (N : Node_Id) return Node_Id; 1310 -- Given an arbitrary node, return the renamed object if the node 1311 -- represents a renamed object; otherwise return the node unchanged. 1312 -- The node can represent an arbitrary expression or any other kind of 1313 -- node (such as the name of a type). 1314 1315 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id; 1316 -- Given an entity for an exception, package, subprogram or generic unit, 1317 -- returns the ultimately renamed entity if this is a renaming. If this is 1318 -- not a renamed entity, returns its argument. It is an error to call this 1319 -- with any other kind of entity. 1320 1321 function Get_Return_Object (N : Node_Id) return Entity_Id; 1322 -- Given an extended return statement, return the corresponding return 1323 -- object, identified as the one for which Is_Return_Object = True. 1324 1325 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id; 1326 -- Nod is either a procedure call statement, or a function call, or an 1327 -- accept statement node. This procedure finds the Entity_Id of the related 1328 -- subprogram or entry and returns it, or if no subprogram can be found, 1329 -- returns Empty. 1330 1331 function Get_Task_Body_Procedure (E : Entity_Id) return Entity_Id; 1332 -- Given an entity for a task type or subtype, retrieves the 1333 -- Task_Body_Procedure field from the corresponding task type declaration. 1334 1335 function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id; 1336 -- For a type entity, return the entity of the primitive equality function 1337 -- for the type if it exists, otherwise return Empty. 1338 1339 procedure Get_Views 1340 (Typ : Entity_Id; 1341 Priv_Typ : out Entity_Id; 1342 Full_Typ : out Entity_Id; 1343 UFull_Typ : out Entity_Id; 1344 CRec_Typ : out Entity_Id); 1345 -- Obtain the partial and full views of type Typ and in addition any extra 1346 -- types the full views may have. The return entities are as follows: 1347 -- 1348 -- Priv_Typ - the partial view (a private type) 1349 -- Full_Typ - the full view 1350 -- UFull_Typ - the underlying full view, if the full view is private 1351 -- CRec_Typ - the corresponding record type of the full views 1352 1353 function Get_Fullest_View 1354 (E : Entity_Id; Include_PAT : Boolean := True) return Entity_Id; 1355 -- Get the fullest possible view of E, looking through private, limited, 1356 -- packed array and other implementation types. If Include_PAT is False, 1357 -- don't look inside packed array types. 1358 1359 function Has_Access_Values (T : Entity_Id) return Boolean; 1360 -- Returns true if the underlying type of T is an access type, or has a 1361 -- component (at any recursive level) that is an access type. This is a 1362 -- conservative predicate, if it is not known whether or not T contains 1363 -- access values (happens for generic formals in some cases), then False is 1364 -- returned. Note that tagged types return False. Even though the tag is 1365 -- implemented as an access type internally, this function tests only for 1366 -- access types known to the programmer. See also Has_Tagged_Component. 1367 1368 function Has_Anonymous_Access_Discriminant (Typ : Entity_Id) return Boolean; 1369 -- Returns True if Typ has one or more anonymous access discriminants 1370 1371 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible); 1372 -- Result of Has_Compatible_Alignment test, description found below. Note 1373 -- that the values are arranged in increasing order of problematicness. 1374 1375 function Has_Compatible_Alignment 1376 (Obj : Entity_Id; 1377 Expr : Node_Id; 1378 Layout_Done : Boolean) return Alignment_Result; 1379 -- Obj is an object entity, and expr is a node for an object reference. If 1380 -- the alignment of the object referenced by Expr is known to be compatible 1381 -- with the alignment of Obj (i.e. is larger or the same), then the result 1382 -- is Known_Compatible. If the alignment of the object referenced by Expr 1383 -- is known to be less than the alignment of Obj, then Known_Incompatible 1384 -- is returned. If neither condition can be reliably established at compile 1385 -- time, then Unknown is returned. If Layout_Done is True, the function can 1386 -- assume that the information on size and alignment of types and objects 1387 -- is present in the tree. This is used to determine if alignment checks 1388 -- are required for address clauses (Layout_Done is False in this case) as 1389 -- well as to issue appropriate warnings for them in the post compilation 1390 -- phase (Layout_Done is True in this case). 1391 -- 1392 -- Note: Known_Incompatible does not mean that at run time the alignment 1393 -- of Expr is known to be wrong for Obj, just that it can be determined 1394 -- that alignments have been explicitly or implicitly specified which are 1395 -- incompatible (whereas Unknown means that even this is not known). The 1396 -- appropriate reaction of a caller to Known_Incompatible is to treat it as 1397 -- Unknown, but issue a warning that there may be an alignment error. 1398 1399 function Has_Declarations (N : Node_Id) return Boolean; 1400 -- Determines if the node can have declarations 1401 1402 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean; 1403 -- Simple predicate to test for defaulted discriminants 1404 1405 function Has_Denormals (E : Entity_Id) return Boolean; 1406 -- Determines if the floating-point type E supports denormal numbers. 1407 -- Returns False if E is not a floating-point type. 1408 1409 function Has_Discriminant_Dependent_Constraint 1410 (Comp : Entity_Id) return Boolean; 1411 -- Returns True if and only if Comp has a constrained subtype that depends 1412 -- on a discriminant. 1413 1414 function Has_Effectively_Volatile_Profile 1415 (Subp_Id : Entity_Id) return Boolean; 1416 -- Determine whether subprogram Subp_Id has an effectively volatile formal 1417 -- parameter for reading or returns an effectively volatile value for 1418 -- reading. 1419 1420 function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean; 1421 -- Determine whether type Typ defines "full default initialization" as 1422 -- specified by SPARK RM 3.1. To qualify as such, the type must be 1423 -- * A scalar type with specified Default_Value 1424 -- * An array-of-scalar type with specified Default_Component_Value 1425 -- * An array type whose element type defines full default initialization 1426 -- * A protected type, record type or type extension whose components 1427 -- either include a default expression or have a type which defines 1428 -- full default initialization. In the case of type extensions, the 1429 -- parent type defines full default initialization. 1430 -- * A task type 1431 -- * A private type with pragma Default_Initial_Condition that provides 1432 -- full default initialization. 1433 -- This function is not used in GNATprove anymore, but is used in CodePeer. 1434 1435 function Has_Fully_Default_Initializing_DIC_Pragma 1436 (Typ : Entity_Id) return Boolean; 1437 -- Determine whether type Typ has a suitable Default_Initial_Condition 1438 -- pragma which provides the full default initialization of the type. 1439 1440 function Has_Inferable_Discriminants (N : Node_Id) return Boolean; 1441 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable 1442 -- discriminants if it has a constrained nominal type, unless the object 1443 -- is a component of an enclosing Unchecked_Union object that is subject 1444 -- to a per-object constraint and the enclosing object lacks inferable 1445 -- discriminants. 1446 -- 1447 -- An expression of an Unchecked_Union type has inferable discriminants 1448 -- if it is either a name of an object with inferable discriminants or a 1449 -- qualified expression whose subtype mark denotes a constrained subtype. 1450 1451 function Has_Infinities (E : Entity_Id) return Boolean; 1452 -- Determines if the range of the floating-point type E includes 1453 -- infinities. Returns False if E is not a floating-point type. 1454 1455 function Has_Interfaces 1456 (T : Entity_Id; 1457 Use_Full_View : Boolean := True) return Boolean; 1458 -- Where T is a concurrent type or a record type, returns true if T covers 1459 -- any abstract interface types. In case of private types the argument 1460 -- Use_Full_View controls if the check is done using its full view (if 1461 -- available). 1462 1463 function Has_Max_Queue_Length (Id : Entity_Id) return Boolean; 1464 -- Determine whether Id is subject to pragma Max_Queue_Length. It is 1465 -- assumed that Id denotes an entry. 1466 1467 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean; 1468 -- This is a simple minded function for determining whether an expression 1469 -- has no obvious side effects. It is used only for determining whether 1470 -- warnings are needed in certain situations, and is not guaranteed to 1471 -- be accurate in either direction. Exceptions may mean an expression 1472 -- does in fact have side effects, but this may be ignored and True is 1473 -- returned, or a complex expression may in fact be side effect free 1474 -- but we don't recognize it here and return False. The Side_Effect_Free 1475 -- routine in Remove_Side_Effects is much more extensive and perhaps could 1476 -- be shared, so that this routine would be more accurate. 1477 1478 function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean; 1479 -- Determine whether abstract state Id has at least one nonnull constituent 1480 -- as expressed in pragma Refined_State. This function does not take into 1481 -- account the visible refinement region of abstract state Id. 1482 1483 function Has_Non_Trivial_Precondition (Subp : Entity_Id) return Boolean; 1484 -- Determine whether subprogram Subp has a class-wide precondition that is 1485 -- not statically True. 1486 1487 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean; 1488 -- Determine whether the body of procedure Proc_Id contains a sole null 1489 -- statement, possibly followed by an optional return. Used to optimize 1490 -- useless calls to assertion checks. 1491 1492 function Has_Null_Exclusion (N : Node_Id) return Boolean; 1493 -- Determine whether node N has a null exclusion 1494 1495 function Has_Null_Refinement (Id : Entity_Id) return Boolean; 1496 -- Determine whether abstract state Id has a null refinement as expressed 1497 -- in pragma Refined_State. This function does not take into account the 1498 -- visible refinement region of abstract state Id. 1499 1500 function Has_Non_Null_Statements (L : List_Id) return Boolean; 1501 -- Return True if L has non-null statements 1502 1503 function Side_Effect_Free_Statements (L : List_Id) return Boolean; 1504 -- Return True if L has no statements with side effects 1505 1506 function Side_Effect_Free_Loop (N : Node_Id) return Boolean; 1507 -- Return True if the loop has no side effect and can therefore be 1508 -- marked for removal. Return False if N is not a N_Loop_Statement. 1509 1510 subtype Static_Accessibility_Level_Kind 1511 is Accessibility_Level_Kind range Object_Decl_Level 1512 .. Zero_On_Dynamic_Level; 1513 -- Restrict the reange of Accessibility_Level_Kind to be non-dynamic for 1514 -- use in the static version of Accessibility_Level below. 1515 1516 function Static_Accessibility_Level 1517 (Expr : Node_Id; 1518 Level : Static_Accessibility_Level_Kind; 1519 In_Return_Context : Boolean := False) return Uint; 1520 -- Overloaded version of Accessibility_Level which returns a universal 1521 -- integer for use in compile-time checking. Note: Level is restricted to 1522 -- be non-dynamic. 1523 1524 function Is_Newly_Constructed 1525 (Exp : Node_Id; Context_Requires_NC : Boolean) return Boolean; 1526 -- Indicates whether a given expression is "newly constructed" (RM 4.4). 1527 -- Context_Requires_NC determines the result returned for cases like a 1528 -- raise expression or a conditional expression where some-but-not-all 1529 -- operative constituents are newly constructed. Thus, this is a 1530 -- somewhat unusual predicate in that the result required in order to 1531 -- satisfy whatever legality rule is being checked can influence the 1532 -- result of the predicate. Context_Requires_NC might be True for 1533 -- something like the "newly constructed" rule for a limited expression 1534 -- of a return statement, and False for something like the 1535 -- "newly constructed" rule pertaining to a limited object renaming in a 1536 -- declare expression. Eventually, the code to implement every 1537 -- RM legality rule requiring/prohibiting a "newly constructed" expression 1538 -- should be implemented by calling this function; that's not done yet. 1539 -- The function name doesn't quite match the RM definition of the term if 1540 -- Context_Requires_NC = False; in that case, "Might_Be_Newly_Constructed" 1541 -- might be a more accurate name. 1542 1543 function Is_Prim_Of_Abst_Type_With_Nonstatic_CW_Pre_Post 1544 (Subp : Entity_Id) return Boolean; 1545 -- Return True if Subp is a primitive of an abstract type, where the 1546 -- primitive has a class-wide pre- or postcondition whose expression 1547 -- is nonstatic. 1548 1549 function Has_Overriding_Initialize (T : Entity_Id) return Boolean; 1550 -- Predicate to determine whether a controlled type has a user-defined 1551 -- Initialize primitive (and, in Ada 2012, whether that primitive is 1552 -- non-null), which causes the type to not have preelaborable 1553 -- initialization. 1554 1555 function Has_Preelaborable_Initialization 1556 (E : Entity_Id; 1557 Preelab_Init_Expr : Node_Id := Empty) return Boolean; 1558 -- Return True iff type E has preelaborable initialization as defined in 1559 -- Ada 2005 (see AI-161 for details of the definition of this attribute). 1560 -- If Preelab_Init_Expr is present, indicates that the function should 1561 -- presume that for any subcomponent of E that is of a formal private or 1562 -- derived type that is referenced by a Preelaborable_Initialization 1563 -- attribute within the expression Preelab_Init_Expr, the formal type has 1564 -- preelaborable initialization (RM 10.2.1(11.8/5) and AI12-0409). 1565 1566 function Has_Prefix (N : Node_Id) return Boolean; 1567 -- Return True if N has attribute Prefix 1568 1569 function Has_Private_Component (Type_Id : Entity_Id) return Boolean; 1570 -- Check if a type has a (sub)component of a private type that has not 1571 -- yet received a full declaration. 1572 1573 function Has_Relaxed_Initialization (E : Entity_Id) return Boolean; 1574 -- Returns True iff entity E is subject to the Relaxed_Initialization 1575 -- aspect. Entity E can be either type, variable, constant, subprogram, 1576 -- entry or an abstract state. For private types and deferred constants 1577 -- E should be the private view, because aspect can only be attached there. 1578 1579 function Has_Signed_Zeros (E : Entity_Id) return Boolean; 1580 -- Determines if the floating-point type E supports signed zeros. 1581 -- Returns False if E is not a floating-point type. 1582 1583 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean; 1584 -- Determine whether subprogram [body] Subp_Id has a significant contract. 1585 -- All subprograms have a N_Contract node, but this does not mean that the 1586 -- contract is useful. 1587 1588 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean; 1589 -- Return whether an array type has static bounds 1590 1591 function Has_Static_Non_Empty_Array_Bounds (Typ : Node_Id) return Boolean; 1592 -- Determine whether array type Typ has static non-empty bounds 1593 1594 function Has_Stream (T : Entity_Id) return Boolean; 1595 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the 1596 -- case of a composite type, has a component for which this predicate is 1597 -- True, and if so returns True. Otherwise a result of False means that 1598 -- there is no Stream type in sight. For a private type, the test is 1599 -- applied to the underlying type (or returns False if there is no 1600 -- underlying type). 1601 1602 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean; 1603 -- Returns true if the last character of E is Suffix. Used in Assertions. 1604 1605 function Has_Tagged_Component (Typ : Entity_Id) return Boolean; 1606 -- Returns True if Typ is a composite type (array or record) that is either 1607 -- a tagged type or has a subcomponent that is tagged. Returns False for a 1608 -- noncomposite type, or if no tagged subcomponents are present. 1609 1610 function Has_Unconstrained_Access_Discriminants 1611 (Subtyp : Entity_Id) return Boolean; 1612 -- Returns True if the given subtype is unconstrained and has one or more 1613 -- access discriminants. 1614 1615 function Has_Undefined_Reference (Expr : Node_Id) return Boolean; 1616 -- Given arbitrary expression Expr, determine whether it contains at 1617 -- least one name whose entity is Any_Id. 1618 1619 function Has_Volatile_Component (Typ : Entity_Id) return Boolean; 1620 -- Given arbitrary type Typ, determine whether it contains at least one 1621 -- volatile component. 1622 1623 function Implementation_Kind (Subp : Entity_Id) return Name_Id; 1624 -- Subp is a subprogram marked with pragma Implemented. Return the specific 1625 -- implementation requirement which the pragma imposes. The return value is 1626 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure. 1627 1628 function Implements_Interface 1629 (Typ_Ent : Entity_Id; 1630 Iface_Ent : Entity_Id; 1631 Exclude_Parents : Boolean := False) return Boolean; 1632 -- Returns true if the Typ_Ent implements interface Iface_Ent 1633 1634 function Implicitly_Designated_Type (Typ : Entity_Id) return Entity_Id; 1635 -- Called when Typ is the type of the prefix of an implicit dereference. 1636 -- Return the designated type of Typ, taking into account that this type 1637 -- may be a limited view, when the nonlimited view is visible. 1638 1639 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean; 1640 -- Returns True if node N appears within a pragma that acts as an assertion 1641 -- expression. See Sem_Prag for the list of qualifying pragmas. 1642 1643 function In_Check_Node (N : Node_Id) return Boolean; 1644 -- Return True if N is part of a N_Raise_xxx_Error node 1645 1646 function In_Generic_Formal_Package (E : Entity_Id) return Boolean; 1647 -- Returns True if entity E is inside a generic formal package 1648 1649 function In_Generic_Scope (E : Entity_Id) return Boolean; 1650 -- Returns True if entity E is inside a generic scope 1651 1652 function In_Instance return Boolean; 1653 -- Returns True if the current scope is within a generic instance 1654 1655 function In_Instance_Body return Boolean; 1656 -- Returns True if current scope is within the body of an instance, where 1657 -- several semantic checks (e.g. accessibility checks) are relaxed. 1658 1659 function In_Instance_Not_Visible return Boolean; 1660 -- Returns True if current scope is with the private part or the body of 1661 -- an instance. Other semantic checks are suppressed in this context. 1662 1663 function In_Instance_Visible_Part 1664 (Id : Entity_Id := Current_Scope) return Boolean; 1665 -- Returns True if arbitrary entity Id is within the visible part of a 1666 -- package instance, where several additional semantic checks apply. 1667 1668 function In_Package_Body return Boolean; 1669 -- Returns True if current scope is within a package body 1670 1671 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean; 1672 -- Returns true if the expression N occurs within a pragma with name Nam 1673 1674 function In_Pre_Post_Condition 1675 (N : Node_Id; Class_Wide_Only : Boolean := False) return Boolean; 1676 -- Returns True if node N appears within a pre/postcondition pragma. Note 1677 -- the pragma Check equivalents are NOT considered. If Class_Wide_Only is 1678 -- True, then tests for N appearing within a class-wide pre/postcondition. 1679 1680 function In_Quantified_Expression (N : Node_Id) return Boolean; 1681 -- Returns true if the expression N occurs within a quantified expression 1682 1683 function In_Return_Value (Expr : Node_Id) return Boolean; 1684 -- Returns true if the expression Expr occurs within a simple return 1685 -- statement or is part of an assignment to the return object in an 1686 -- extended return statement. 1687 1688 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean; 1689 -- Returns True if N denotes a component or subcomponent in a record or 1690 -- array that has Reverse_Storage_Order. 1691 1692 function In_Same_Declarative_Part 1693 (Context : Node_Id; 1694 N : Node_Id) return Boolean; 1695 -- True if the node N appears within the same declarative part denoted by 1696 -- the node Context. 1697 1698 function In_Subprogram_Or_Concurrent_Unit return Boolean; 1699 -- Determines if the current scope is within a subprogram compilation unit 1700 -- (inside a subprogram declaration, subprogram body, or generic subprogram 1701 -- declaration) or within a task or protected body. The test is for 1702 -- appearing anywhere within such a construct (that is it does not need 1703 -- to be directly within). 1704 1705 function In_Subtree (N : Node_Id; Root : Node_Id) return Boolean; 1706 -- Determine whether node N is within the subtree rooted at Root 1707 1708 function In_Subtree 1709 (N : Node_Id; 1710 Root1 : Node_Id; 1711 Root2 : Node_Id) return Boolean; 1712 -- Determine whether node N is within the subtree rooted at Root1 or Root2. 1713 -- This version is more efficient than calling the single root version of 1714 -- Is_Subtree twice. 1715 1716 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean; 1717 -- Determine whether a declaration occurs within the visible part of a 1718 -- package specification. The package must be on the scope stack, and the 1719 -- corresponding private part must not. 1720 1721 function In_While_Loop_Condition (N : Node_Id) return Boolean; 1722 -- Returns true if the expression N occurs within the condition of a while 1723 1724 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id; 1725 -- Given the entity of a constant or a type, retrieve the incomplete or 1726 -- partial view of the same entity. Note that Id may not have a partial 1727 -- view in which case the function returns Empty. 1728 1729 function Incomplete_View_From_Limited_With 1730 (Typ : Entity_Id) return Entity_Id; 1731 -- Typ is a type entity. This normally returns Typ. However, if there is 1732 -- an incomplete view of this entity that comes from a limited-with'ed 1733 -- package, then this returns that incomplete view. 1734 1735 function Indexed_Component_Bit_Offset (N : Node_Id) return Uint; 1736 -- Given an N_Indexed_Component node, return the first bit position of the 1737 -- component if it is known at compile time. A value of No_Uint means that 1738 -- either the value is not yet known before back-end processing or it is 1739 -- not known at compile time after back-end processing. 1740 1741 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id); 1742 -- Propagate static and dynamic predicate flags from a parent to the 1743 -- subtype in a subtype declaration with and without constraints. 1744 1745 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id); 1746 -- Inherit the rep item chain of type From_Typ without clobbering any 1747 -- existing rep items on Typ's chain. Typ is the destination type. 1748 1749 function Inherits_From_Tagged_Full_View (Typ : Entity_Id) return Boolean; 1750 pragma Inline (Inherits_From_Tagged_Full_View); 1751 -- Return True if Typ is an untagged private type completed with a 1752 -- derivation of an untagged private type declaration whose full view 1753 -- is a tagged type. 1754 1755 procedure Insert_Explicit_Dereference (N : Node_Id); 1756 -- In a context that requires a composite or subprogram type and where a 1757 -- prefix is an access type, rewrite the access type node N (which is the 1758 -- prefix, e.g. of an indexed component) as an explicit dereference. 1759 1760 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id); 1761 -- Examine all deferred constants in the declaration list Decls and check 1762 -- whether they have been completed by a full constant declaration or an 1763 -- Import pragma. Emit the error message if that is not the case. 1764 1765 procedure Install_Elaboration_Model (Unit_Id : Entity_Id); 1766 -- Install the elaboration model specified by pragma Elaboration_Checks 1767 -- associated with compilation unit Unit_Id. No action is taken when the 1768 -- unit lacks such pragma. 1769 1770 procedure Install_Generic_Formals (Subp_Id : Entity_Id); 1771 -- Install both the generic formal parameters and the formal parameters of 1772 -- generic subprogram Subp_Id into visibility. 1773 1774 procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id); 1775 -- Establish the SPARK_Mode and SPARK_Mode_Pragma currently in effect 1776 1777 function Invalid_Scalar_Value 1778 (Loc : Source_Ptr; 1779 Scal_Typ : Scalar_Id) return Node_Id; 1780 -- Obtain the invalid value for scalar type Scal_Typ as either specified by 1781 -- pragma Initialize_Scalars or by the binder. Return an expression created 1782 -- at source location Loc, which denotes the invalid value. 1783 1784 function Is_Anonymous_Access_Actual (N : Node_Id) return Boolean; 1785 -- Determine if N is used as an actual for a call whose corresponding 1786 -- formal is of an anonymous access type. 1787 1788 function Is_Access_Subprogram_Wrapper (E : Entity_Id) return Boolean; 1789 -- True if E is the constructed wrapper for an access_to_subprogram 1790 -- type with Pre/Postconditions. 1791 1792 function Is_Access_Variable (E : Entity_Id) return Boolean; 1793 -- Determines if type E is an access-to-variable 1794 1795 function Is_Actual_In_Out_Parameter (N : Node_Id) return Boolean; 1796 -- Determines if N is an actual parameter of in-out mode in a subprogram 1797 -- call. 1798 1799 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean; 1800 -- Determines if N is an actual parameter of out mode in a subprogram call 1801 1802 function Is_Actual_Out_Or_In_Out_Parameter (N : Node_Id) return Boolean; 1803 -- Determines if N is an actual parameter of out or in out mode in a 1804 -- subprogram call. 1805 1806 function Is_Actual_Parameter (N : Node_Id) return Boolean; 1807 -- Determines if N is an actual parameter in a subprogram or entry call 1808 1809 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean; 1810 -- Determines if N is an actual parameter of a formal of tagged type in a 1811 -- subprogram call. 1812 1813 function Is_Aliased_View (Obj : Node_Id) return Boolean; 1814 -- Determine if Obj is an aliased view, i.e. the name of an object to which 1815 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the 1816 -- rules of the language, it does not take into account the restriction 1817 -- No_Implicit_Aliasing, so it can return True if the restriction is active 1818 -- and Obj violates the restriction. The caller is responsible for calling 1819 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a 1820 -- requirement for obeying the restriction in the call context. 1821 1822 function Is_Ancestor_Package 1823 (E1 : Entity_Id; 1824 E2 : Entity_Id) return Boolean; 1825 -- Determine whether package E1 is an ancestor of E2 1826 1827 function Is_Atomic_Object (N : Node_Id) return Boolean; 1828 -- Determine whether arbitrary node N denotes a reference to an atomic 1829 -- object as per RM C.6(7) and the crucial remark in RM C.6(8). 1830 1831 function Is_Attribute_Loop_Entry (N : Node_Id) return Boolean; 1832 -- Determine whether node N denotes attribute 'Loop_Entry 1833 1834 function Is_Attribute_Old (N : Node_Id) return Boolean; 1835 -- Determine whether node N denotes attribute 'Old 1836 1837 function Is_Attribute_Result (N : Node_Id) return Boolean; 1838 -- Determine whether node N denotes attribute 'Result 1839 1840 function Is_Attribute_Update (N : Node_Id) return Boolean; 1841 -- Determine whether node N denotes attribute 'Update 1842 1843 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean; 1844 -- Determine whether node N denotes a body or a package declaration 1845 1846 function Is_Bounded_String (T : Entity_Id) return Boolean; 1847 -- True if T is a bounded string type. Used to make sure "=" composes 1848 -- properly for bounded string types. 1849 1850 function Is_By_Protected_Procedure (Id : Entity_Id) return Boolean; 1851 -- Determine whether entity Id denotes a procedure with synchronization 1852 -- kind By_Protected_Procedure. 1853 1854 function Is_Confirming (Aspect : Nonoverridable_Aspect_Id; 1855 Aspect_Spec_1, Aspect_Spec_2 : Node_Id) 1856 return Boolean; 1857 -- Returns true if the two specifications of the given 1858 -- nonoverridable aspect are compatible. 1859 1860 function Is_Conjunction_Of_Formal_Preelab_Init_Attributes 1861 (Expr : Node_Id) return Boolean; 1862 -- Returns True if Expr is a Preelaborable_Initialization attribute applied 1863 -- to a formal type, or a sequence of two or more such attributes connected 1864 -- by "and" operators, or if the Original_Node of Expr or its constituents 1865 -- is such an attribute. 1866 1867 function Is_Constant_Bound (Exp : Node_Id) return Boolean; 1868 -- Exp is the expression for an array bound. Determines whether the 1869 -- bound is a compile-time known value, or a constant entity, or an 1870 -- enumeration literal, or an expression composed of constant-bound 1871 -- subexpressions which are evaluated by means of standard operators. 1872 1873 function Is_Container_Element (Exp : Node_Id) return Boolean; 1874 -- This routine recognizes expressions that denote an element of one of 1875 -- the predefined containers, when the source only contains an indexing 1876 -- operation and an implicit dereference is inserted by the compiler. 1877 -- In the absence of this optimization, the indexing creates a temporary 1878 -- controlled cursor that sets the tampering bit of the container, and 1879 -- restricts the use of the convenient notation C (X) to contexts that 1880 -- do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an 1881 -- explicit dereference. The transformation applies when it has the form 1882 -- F (X).Discr.all. 1883 1884 function Is_Contract_Annotation (Item : Node_Id) return Boolean; 1885 -- Determine whether aspect specification or pragma Item is a contract 1886 -- annotation. 1887 1888 function Is_Controlling_Limited_Procedure 1889 (Proc_Nam : Entity_Id) return Boolean; 1890 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure 1891 -- of a limited interface with a controlling first parameter. 1892 1893 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean; 1894 -- Returns True if N is a call to a CPP constructor 1895 1896 function Is_CCT_Instance 1897 (Ref_Id : Entity_Id; 1898 Context_Id : Entity_Id) return Boolean; 1899 -- Subsidiary to the analysis of pragmas [Refined_]Depends and [Refined_] 1900 -- Global; also used when analyzing default expressions of protected and 1901 -- record components. Determine whether entity Ref_Id (which must represent 1902 -- either a protected type or a task type) denotes the current instance of 1903 -- a concurrent type. Context_Id denotes the associated context where the 1904 -- pragma appears. 1905 1906 function Is_Child_Or_Sibling 1907 (Pack_1 : Entity_Id; 1908 Pack_2 : Entity_Id) return Boolean; 1909 -- Determine the following relations between two arbitrary packages: 1910 -- 1) One package is the parent of a child package 1911 -- 2) Both packages are siblings and share a common parent 1912 1913 function Is_Concurrent_Interface (T : Entity_Id) return Boolean; 1914 -- First determine whether type T is an interface and then check whether 1915 -- it is of protected, synchronized or task kind. 1916 1917 function Is_Current_Instance (N : Node_Id) return Boolean; 1918 -- Predicate is true if N legally denotes a type name within its own 1919 -- declaration. Prior to Ada 2012 this covered only synchronized type 1920 -- declarations. In Ada 2012 it also covers type and subtype declarations 1921 -- with aspects: Invariant, Predicate, and Default_Initial_Condition. 1922 1923 function Is_Current_Instance_Reference_In_Type_Aspect 1924 (N : Node_Id) return Boolean; 1925 -- True if N is a reference to a current instance object that occurs within 1926 -- an aspect_specification for a type or subtype. In this case N will be 1927 -- a formal parameter of a subprogram created for a predicate, invariant, 1928 -- or Default_Initial_Condition aspect. 1929 1930 function Is_Declaration 1931 (N : Node_Id; 1932 Body_OK : Boolean := True; 1933 Concurrent_OK : Boolean := True; 1934 Formal_OK : Boolean := True; 1935 Generic_OK : Boolean := True; 1936 Instantiation_OK : Boolean := True; 1937 Renaming_OK : Boolean := True; 1938 Stub_OK : Boolean := True; 1939 Subprogram_OK : Boolean := True; 1940 Type_OK : Boolean := True) return Boolean; 1941 -- Determine whether arbitrary node N denotes a declaration depending 1942 -- on the allowed subsets of declarations. Set the following flags to 1943 -- consider specific subsets of declarations: 1944 -- 1945 -- * Body_OK - body declarations 1946 -- 1947 -- * Concurrent_OK - concurrent type declarations 1948 -- 1949 -- * Formal_OK - formal declarations 1950 -- 1951 -- * Generic_OK - generic declarations, including generic renamings 1952 -- 1953 -- * Instantiation_OK - generic instantiations 1954 -- 1955 -- * Renaming_OK - renaming declarations, including generic renamings 1956 -- 1957 -- * Stub_OK - stub declarations 1958 -- 1959 -- * Subprogram_OK - entry, expression function, and subprogram 1960 -- declarations. 1961 -- 1962 -- * Type_OK - type declarations, including concurrent types 1963 1964 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean; 1965 -- Returns True iff component Comp is declared within a variant part 1966 1967 function Is_Dependent_Component_Of_Mutable_Object 1968 (Object : Node_Id) return Boolean; 1969 -- Returns True if Object is the name of a subcomponent that depends on 1970 -- discriminants of a variable whose nominal subtype is unconstrained and 1971 -- not indefinite, and the variable is not aliased. Otherwise returns 1972 -- False. The nodes passed to this function are assumed to denote objects. 1973 1974 function Is_Dereferenced (N : Node_Id) return Boolean; 1975 -- N is a subexpression node of an access type. This function returns true 1976 -- if N appears as the prefix of a node that does a dereference of the 1977 -- access value (selected/indexed component, explicit dereference or a 1978 -- slice), and false otherwise. 1979 1980 function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean; 1981 -- Returns True if type T1 is a descendant of type T2, and false otherwise. 1982 -- This is the RM definition, a type is a descendant of another type if it 1983 -- is the same type or is derived from a descendant of the other type. 1984 1985 function Is_Descendant_Of_Suspension_Object 1986 (Typ : Entity_Id) return Boolean; 1987 -- Determine whether type Typ is a descendant of type Suspension_Object 1988 -- defined in Ada.Synchronous_Task_Control. This version is different from 1989 -- Is_Descendant_Of as the detection of Suspension_Object does not involve 1990 -- an entity and by extension a call to RTSfind. 1991 1992 function Is_Double_Precision_Floating_Point_Type 1993 (E : Entity_Id) return Boolean; 1994 -- Return whether E is a double precision floating point type, 1995 -- characterized by: 1996 -- . machine_radix = 2 1997 -- . machine_mantissa = 53 1998 -- . machine_emax = 2**10 1999 -- . machine_emin = 3 - machine_emax 2000 2001 function Is_Effectively_Volatile 2002 (Id : Entity_Id; 2003 Ignore_Protected : Boolean := False) return Boolean; 2004 -- Determine whether a type or object denoted by entity Id is effectively 2005 -- volatile (SPARK RM 7.1.2). To qualify as such, the entity must be either 2006 -- * Volatile without No_Caching 2007 -- * An array type subject to aspect Volatile_Components 2008 -- * An array type whose component type is effectively volatile 2009 -- * A protected type 2010 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object 2011 -- 2012 -- If Ignore_Protected is True, then a protected object/type is treated 2013 -- like a non-protected record object/type for computing the result of 2014 -- this query. 2015 2016 function Is_Effectively_Volatile_For_Reading 2017 (Id : Entity_Id; 2018 Ignore_Protected : Boolean := False) return Boolean; 2019 -- Determine whether a type or object denoted by entity Id is effectively 2020 -- volatile for reading (SPARK RM 7.1.2). To qualify as such, the entity 2021 -- must be either 2022 -- * Volatile without No_Caching and have Async_Writers or 2023 -- Effective_Reads set to True 2024 -- * An array type subject to aspect Volatile_Components, unless it has 2025 -- Async_Writers and Effective_Reads set to False 2026 -- * An array type whose component type is effectively volatile for 2027 -- reading 2028 -- * A protected type 2029 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object 2030 -- 2031 -- If Ignore_Protected is True, then a protected object/type is treated 2032 -- like a non-protected record object/type for computing the result of 2033 -- this query. 2034 2035 function Is_Effectively_Volatile_Object 2036 (N : Node_Id) return Boolean; 2037 -- Determine whether an arbitrary node denotes an effectively volatile 2038 -- object (SPARK RM 7.1.2). 2039 2040 function Is_Effectively_Volatile_Object_For_Reading 2041 (N : Node_Id) return Boolean; 2042 -- Determine whether an arbitrary node denotes an effectively volatile 2043 -- object for reading (SPARK RM 7.1.2). 2044 2045 function Is_Entry_Body (Id : Entity_Id) return Boolean; 2046 -- Determine whether entity Id is the body entity of an entry [family] 2047 2048 function Is_Entry_Declaration (Id : Entity_Id) return Boolean; 2049 -- Determine whether entity Id is the spec entity of an entry [family] 2050 2051 function Is_Explicitly_Aliased (N : Node_Id) return Boolean; 2052 -- Determine if a given node N is an explicitly aliased formal parameter. 2053 2054 function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean; 2055 -- Check whether a function in a call is an expanded priority attribute, 2056 -- which is transformed into an Rtsfind call to Get_Ceiling. This expansion 2057 -- does not take place in a configurable runtime. 2058 2059 function Is_Expression_Function (Subp : Entity_Id) return Boolean; 2060 -- Determine whether subprogram [body] Subp denotes an expression function 2061 2062 function Is_Expression_Function_Or_Completion 2063 (Subp : Entity_Id) return Boolean; 2064 -- Determine whether subprogram [body] Subp denotes an expression function 2065 -- or is completed by an expression function body. 2066 2067 function Is_Extended_Precision_Floating_Point_Type 2068 (E : Entity_Id) return Boolean; 2069 -- Return whether E is an extended precision floating point type, 2070 -- characterized by: 2071 -- . machine_radix = 2 2072 -- . machine_mantissa = 64 2073 -- . machine_emax = 2**14 2074 -- . machine_emin = 3 - machine_emax 2075 2076 function Is_EVF_Expression (N : Node_Id) return Boolean; 2077 -- Determine whether node N denotes a reference to a formal parameter of 2078 -- a specific tagged type whose related subprogram is subject to pragma 2079 -- Extensions_Visible with value "False" (SPARK RM 6.1.7). Several other 2080 -- constructs fall under this category: 2081 -- 1) A qualified expression whose operand is EVF 2082 -- 2) A type conversion whose operand is EVF 2083 -- 3) An if expression with at least one EVF dependent_expression 2084 -- 4) A case expression with at least one EVF dependent_expression 2085 2086 function Is_False (U : Opt_Ubool) return Boolean; 2087 pragma Inline (Is_False); 2088 -- True if U is Boolean'Pos (False) (i.e. Uint_0) 2089 2090 function Is_True (U : Opt_Ubool) return Boolean; 2091 pragma Inline (Is_True); 2092 -- True if U is Boolean'Pos (True) (i.e. Uint_1). Also True if U is 2093 -- No_Uint; we allow No_Uint because Static_Boolean returns that in 2094 -- case of error. It doesn't really matter whether the error case is 2095 -- considered True or False, but we don't want this to blow up in that 2096 -- case. 2097 2098 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean; 2099 -- Returns True iff the number U is a model number of the fixed-point type 2100 -- T, i.e. if it is an exact multiple of Small. 2101 2102 function Is_Full_Access_Object (N : Node_Id) return Boolean; 2103 -- Determine whether arbitrary node N denotes a reference to a full access 2104 -- object as per Ada 2022 RM C.6(8.2). 2105 2106 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean; 2107 -- Typ is a type entity. This function returns true if this type is fully 2108 -- initialized, meaning that an object of the type is fully initialized. 2109 -- Note that initialization resulting from use of pragma Normalize_Scalars 2110 -- does not count. Note that this is only used for the purpose of issuing 2111 -- warnings for objects that are potentially referenced uninitialized. This 2112 -- means that the result returned is not crucial, but should err on the 2113 -- side of thinking things are fully initialized if it does not know. 2114 2115 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean; 2116 -- Determine whether arbitrary declaration Decl denotes a generic package, 2117 -- a generic subprogram or a generic body. 2118 2119 function Is_Independent_Object (N : Node_Id) return Boolean; 2120 -- Determine whether arbitrary node N denotes a reference to an independent 2121 -- object as per RM C.6(8). 2122 2123 function Is_Inherited_Operation (E : Entity_Id) return Boolean; 2124 -- E is a subprogram. Return True is E is an implicit operation inherited 2125 -- by a derived type declaration. 2126 2127 function Is_Inherited_Operation_For_Type 2128 (E : Entity_Id; 2129 Typ : Entity_Id) return Boolean; 2130 -- E is a subprogram. Return True is E is an implicit operation inherited 2131 -- by the derived type declaration for type Typ. 2132 2133 function Is_Inlinable_Expression_Function (Subp : Entity_Id) return Boolean; 2134 -- Return True if Subp is an expression function that fulfills all the 2135 -- following requirements for inlining: 2136 -- 1. pragma/aspect Inline_Always 2137 -- 2. No formals 2138 -- 3. No contracts 2139 -- 4. No dispatching primitive 2140 -- 5. Result subtype controlled (or with controlled components) 2141 -- 6. Result subtype not subject to type-invariant checks 2142 -- 7. Result subtype not a class-wide type 2143 -- 8. Return expression naming an object global to the function 2144 -- 9. Nominal subtype of the returned object statically compatible 2145 -- with the result subtype of the expression function. 2146 2147 function Is_Iterator (Typ : Entity_Id) return Boolean; 2148 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in 2149 -- Ada.Iterator_Interfaces, or it is derived from one. 2150 2151 function Is_Iterator_Over_Array (N : Node_Id) return Boolean; 2152 -- N is an iterator specification. Returns True iff N is an iterator over 2153 -- an array, either inside a loop of the form 'for X of A' or a quantified 2154 -- expression of the form 'for all/some X of A' where A is of array type. 2155 2156 type Is_LHS_Result is (Yes, No, Unknown); 2157 function Is_LHS (N : Node_Id) return Is_LHS_Result; 2158 -- Returns Yes if N is definitely used as Name in an assignment statement. 2159 -- Returns No if N is definitely NOT used as a Name in an assignment 2160 -- statement. Returns Unknown if we can't tell at this stage (happens in 2161 -- the case where we don't know the type of N yet, and we have something 2162 -- like N.A := 3, where this counts as N being used on the left side of 2163 -- an assignment only if N is not an access type. If it is an access type 2164 -- then it is N.all.A that is assigned, not N. 2165 2166 function Is_Library_Level_Entity (E : Entity_Id) return Boolean; 2167 -- A library-level declaration is one that is accessible from Standard, 2168 -- i.e. a library unit or an entity declared in a library package. 2169 2170 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean; 2171 -- Determine whether a given type is a limited class-wide type, in which 2172 -- case it needs a Master_Id, because extensions of its designated type 2173 -- may include task components. A class-wide type that comes from a 2174 -- limited view must be treated in the same way. 2175 2176 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean; 2177 -- Determines whether Expr is a reference to a variable or formal parameter 2178 -- of mode OUT or IN OUT of the current enclosing subprogram. 2179 2180 function Is_Master (N : Node_Id) return Boolean; 2181 -- Determine if the given node N constitutes a finalization master 2182 2183 function Is_Name_Reference (N : Node_Id) return Boolean; 2184 -- Determine whether arbitrary node N is a reference to a name. This is 2185 -- similar to Is_Object_Reference but returns True only if N can be renamed 2186 -- without the need for a temporary, the typical example of an object not 2187 -- in this category being a function call. 2188 2189 function Is_Non_Preelaborable_Construct (N : Node_Id) return Boolean; 2190 -- Determine whether arbitrary construct N violates preelaborability as 2191 -- defined in ARM 10.2.1 5-9/3. This routine takes into account both the 2192 -- syntactic and semantic properties of the construct. 2193 2194 function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean; 2195 -- Determine whether entity Id denotes the procedure that verifies the 2196 -- assertion expression of pragma Default_Initial_Condition and if it does, 2197 -- the encapsulated expression is nontrivial. 2198 2199 function Is_Null_Extension 2200 (T : Entity_Id; Ignore_Privacy : Boolean := False) return Boolean; 2201 -- Given a tagged type, returns True if argument is a type extension 2202 -- that introduces no new components (discriminant or nondiscriminant). 2203 -- Ignore_Privacy should be True for use in implementing dynamic semantics. 2204 2205 function Is_Null_Extension_Of 2206 (Descendant, Ancestor : Entity_Id) return Boolean; 2207 -- Given two tagged types, the first a descendant of the second, 2208 -- returns True if every component of Descendant is inherited 2209 -- (directly or indirectly) from Ancestor. Privacy is ignored. 2210 2211 function Is_Null_Record_Definition (Record_Def : Node_Id) return Boolean; 2212 -- Returns True for an N_Record_Definition node that has no user-defined 2213 -- components (and no variant part). 2214 2215 function Is_Null_Record_Type 2216 (T : Entity_Id; Ignore_Privacy : Boolean := False) return Boolean; 2217 -- Determine whether T is declared with a null record definition, a 2218 -- null component list, or as a type derived from a null record type 2219 -- (with a null extension if tagged). Returns True for interface types, 2220 -- False for discriminated types. 2221 2222 function Is_Object_Image (Prefix : Node_Id) return Boolean; 2223 -- Returns True if an 'Img, 'Image, 'Wide_Image, or 'Wide_Wide_Image 2224 -- attribute is applied to an object. 2225 2226 function Is_Object_Reference (N : Node_Id) return Boolean; 2227 -- Determines if the tree referenced by N represents an object. Both 2228 -- variable and constant objects return True (compare Is_Variable). 2229 2230 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean; 2231 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal. 2232 -- Note that the Is_Variable function is not quite the right test because 2233 -- this is a case in which conversions whose expression is a variable (in 2234 -- the Is_Variable sense) with an untagged type target are considered view 2235 -- conversions and hence variables. 2236 2237 function Is_OK_Volatile_Context 2238 (Context : Node_Id; 2239 Obj_Ref : Node_Id; 2240 Check_Actuals : Boolean) return Boolean; 2241 -- Determine whether node Context denotes a "non-interfering context" (as 2242 -- defined in SPARK RM 7.1.3(10)) where volatile reference Obj_Ref can 2243 -- safely reside. When examining references that might be located within 2244 -- actual parameters of a subprogram call that has not been resolved yet, 2245 -- Check_Actuals should be False; such references will be assumed to be 2246 -- legal. They will need to be checked again after subprogram call has 2247 -- been resolved. 2248 2249 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean; 2250 -- Determine whether aspect specification or pragma Item is one of the 2251 -- following package contract annotations: 2252 -- Abstract_State 2253 -- Initial_Condition 2254 -- Initializes 2255 -- Refined_State 2256 2257 function Is_Partially_Initialized_Type 2258 (Typ : Entity_Id; 2259 Include_Implicit : Boolean := True) return Boolean; 2260 -- Typ is a type entity. This function returns true if this type is partly 2261 -- initialized, meaning that an object of the type is at least partly 2262 -- initialized (in particular in the record case, that at least one 2263 -- component has an initialization expression, including via Default_Value 2264 -- and Default_Component_Value aspects). Note that initialization 2265 -- resulting from the use of pragma Normalize_Scalars does not count. 2266 -- Include_Implicit controls whether implicit initialization of access 2267 -- values to null, and of discriminant values, is counted as making the 2268 -- type be partially initialized. For the default setting of True, these 2269 -- implicit cases do count, and discriminated types or types containing 2270 -- access values not explicitly initialized will return True. Otherwise 2271 -- if Include_Implicit is False, these cases do not count as making the 2272 -- type be partially initialized. 2273 2274 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean; 2275 -- Predicate to implement definition given in RM 6.1.1 (20/3) 2276 2277 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean; 2278 -- Determines if type T is a potentially persistent type. A potentially 2279 -- persistent type is defined (recursively) as a scalar type, an untagged 2280 -- record whose components are all of a potentially persistent type, or an 2281 -- array with all static constraints whose component type is potentially 2282 -- persistent. A private type is potentially persistent if the full type 2283 -- is potentially persistent. 2284 2285 function Is_Predefined_Dispatching_Operation (E : Entity_Id) return Boolean; 2286 -- Ada 2005 (AI-251): Determines if E is a predefined primitive operation 2287 2288 function Is_Predefined_Interface_Primitive (E : Entity_Id) return Boolean; 2289 -- Ada 2005 (AI-345): Returns True if E is one of the predefined primitives 2290 -- required to implement interfaces. 2291 2292 function Is_Predefined_Internal_Operation (E : Entity_Id) return Boolean; 2293 -- Similar to the previous one, but excludes stream operations, because 2294 -- these may be overridden, and need extra formals, like user-defined 2295 -- operations. 2296 2297 function Is_Preelaborable_Aggregate (Aggr : Node_Id) return Boolean; 2298 -- Determine whether aggregate Aggr violates the restrictions of 2299 -- preelaborable constructs as defined in ARM 10.2.1(5-9). 2300 2301 function Is_Preelaborable_Construct (N : Node_Id) return Boolean; 2302 -- Determine whether arbitrary node N violates the restrictions of 2303 -- preelaborable constructs as defined in ARM 10.2.1(5-9). Routine 2304 -- Is_Non_Preelaborable_Construct takes into account the syntactic 2305 -- and semantic properties of N for a more accurate diagnostic. 2306 2307 function Is_Private_Library_Unit (Unit : Entity_Id) return Boolean; 2308 -- Returns True if and only if the library unit is declared with an 2309 -- explicit designation of private. 2310 2311 function Is_Protected_Self_Reference (N : Node_Id) return Boolean; 2312 -- Return True if node N denotes a protected type name which represents 2313 -- the current instance of a protected object according to RM 9.4(21/2). 2314 2315 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean; 2316 -- Return True if a compilation unit is the specification or the 2317 -- body of a remote call interface package. 2318 2319 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean; 2320 -- Return True if E is a remote access-to-class-wide type 2321 2322 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean; 2323 -- Return True if E is a remote access to subprogram type 2324 2325 function Is_Remote_Call (N : Node_Id) return Boolean; 2326 -- Return True if N denotes a potentially remote call 2327 2328 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean; 2329 -- Return True if Proc_Nam is a procedure renaming of an entry 2330 2331 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean; 2332 -- AI05-0139-2: Check whether Typ is derived from the predefined interface 2333 -- Ada.Iterator_Interfaces.Reversible_Iterator. 2334 2335 function Is_Selector_Name (N : Node_Id) return Boolean; 2336 -- Given an N_Identifier node N, determines if it is a Selector_Name. 2337 -- As described in Sinfo, Selector_Names are special because they 2338 -- represent use of the N_Identifier node for a true identifier, when 2339 -- normally such nodes represent a direct name. 2340 2341 function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean; 2342 -- Determine whether arbitrary entity Id denotes the anonymous object 2343 -- created for a single protected or single task type. 2344 2345 function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean; 2346 -- Determine whether arbitrary entity Id denotes a single protected or 2347 -- single task type. 2348 2349 function Is_Single_Concurrent_Type_Declaration (N : Node_Id) return Boolean; 2350 -- Determine whether arbitrary node N denotes the declaration of a single 2351 -- protected type or single task type. 2352 2353 function Is_Single_Precision_Floating_Point_Type 2354 (E : Entity_Id) return Boolean; 2355 -- Return whether E is a single precision floating point type, 2356 -- characterized by: 2357 -- . machine_radix = 2 2358 -- . machine_mantissa = 24 2359 -- . machine_emax = 2**7 2360 -- . machine_emin = 3 - machine_emax 2361 2362 function Is_Single_Protected_Object (Id : Entity_Id) return Boolean; 2363 -- Determine whether arbitrary entity Id denotes the anonymous object 2364 -- created for a single protected type. 2365 2366 function Is_Single_Task_Object (Id : Entity_Id) return Boolean; 2367 -- Determine whether arbitrary entity Id denotes the anonymous object 2368 -- created for a single task type. 2369 2370 function Is_Special_Aliased_Formal_Access 2371 (Exp : Node_Id; 2372 In_Return_Context : Boolean := False) return Boolean; 2373 -- Determines whether a dynamic check must be generated for explicitly 2374 -- aliased formals within a function Scop for the expression Exp. 2375 2376 -- In_Return_Context forces Is_Special_Aliased_Formal_Access to assume 2377 -- that Exp is within a return value which is useful for checking 2378 -- expressions within discriminant associations of return objects. 2379 2380 -- More specially, Is_Special_Aliased_Formal_Access checks that Exp is a 2381 -- 'Access attribute reference within a return statement where the ultimate 2382 -- prefix is an aliased formal of Scop and that Scop returns an anonymous 2383 -- access type. See RM 3.10.2 for more details. 2384 2385 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean; 2386 -- Determine whether an arbitrary [private] type is specifically tagged 2387 2388 function Is_Statement (N : Node_Id) return Boolean; 2389 pragma Inline (Is_Statement); 2390 -- Check if the node N is a statement node. Note that this includes 2391 -- the case of procedure call statements (unlike the direct use of 2392 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo). 2393 -- Note that a label is *not* a statement, and will return False. 2394 2395 function Is_Static_Discriminant_Component (N : Node_Id) return Boolean; 2396 -- Return True if N is guaranteed to a selected component containing a 2397 -- statically known discriminant. 2398 -- Note that this routine takes a conservative view and may return False 2399 -- in some cases where N would match the criteria. In other words this 2400 -- routine should be used to simplify or optimize the expanded code. 2401 2402 function Is_Static_Function (Subp : Entity_Id) return Boolean; 2403 -- Determine whether subprogram Subp denotes a static function, 2404 -- which is a function with the aspect Static with value True. 2405 2406 function Is_Static_Function_Call (Call : Node_Id) return Boolean; 2407 -- Determine whether Call is a static call to a static function, 2408 -- meaning that the name of the call denotes a static function 2409 -- and all of the call's actual parameters are given by static expressions. 2410 2411 function Is_Subcomponent_Of_Full_Access_Object (N : Node_Id) return Boolean; 2412 -- Determine whether arbitrary node N denotes a reference to a subcomponent 2413 -- of a full access object as per RM C.6(7). 2414 2415 function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean; 2416 -- Determine whether aspect specification or pragma Item is one of the 2417 -- following subprogram contract annotations: 2418 -- Contract_Cases 2419 -- Depends 2420 -- Extensions_Visible 2421 -- Global 2422 -- Post 2423 -- Post_Class 2424 -- Postcondition 2425 -- Pre 2426 -- Pre_Class 2427 -- Precondition 2428 -- Refined_Depends 2429 -- Refined_Global 2430 -- Refined_Post 2431 -- Subprogram_Variant 2432 -- Test_Case 2433 2434 function Is_Subprogram_Stub_Without_Prior_Declaration 2435 (N : Node_Id) return Boolean; 2436 -- Given an N_Subprogram_Body_Stub node N, return True if N is a subprogram 2437 -- stub with no prior subprogram declaration. 2438 2439 function Is_Suitable_Primitive (Subp_Id : Entity_Id) return Boolean; 2440 -- Determine whether arbitrary subprogram Subp_Id may act as a primitive of 2441 -- an arbitrary tagged type. 2442 2443 function Is_Synchronized_Object (Id : Entity_Id) return Boolean; 2444 -- Determine whether entity Id denotes an object and if it does, whether 2445 -- this object is synchronized as specified in SPARK RM 9.1. To qualify as 2446 -- such, the object must be 2447 -- * Of a type that yields a synchronized object 2448 -- * An atomic object with enabled Async_Writers 2449 -- * A constant not of access-to-variable type 2450 -- * A variable subject to pragma Constant_After_Elaboration 2451 2452 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean; 2453 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2)) 2454 2455 function Is_Transfer (N : Node_Id) return Boolean; 2456 -- Returns True if the node N is a statement which is known to cause an 2457 -- unconditional transfer of control at run time, i.e. the following 2458 -- statement definitely will not be executed. 2459 2460 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean; 2461 -- Determine whether an arbitrary entity denotes an instance of function 2462 -- Ada.Unchecked_Conversion. 2463 2464 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean; 2465 pragma Inline (Is_Universal_Numeric_Type); 2466 -- True if T is Universal_Integer or Universal_Real 2467 2468 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean; 2469 -- Determine whether an entity denotes a user-defined equality 2470 2471 function Is_Validation_Variable_Reference (N : Node_Id) return Boolean; 2472 -- Determine whether N denotes a reference to a variable which captures the 2473 -- value of an object for validation purposes. 2474 2475 function Is_Variable_Size_Array (E : Entity_Id) return Boolean; 2476 -- Returns true if E has variable size components 2477 2478 function Is_Variable_Size_Record (E : Entity_Id) return Boolean; 2479 -- Returns true if E has variable size components 2480 2481 -- WARNING: There is a matching C declaration of this subprogram in fe.h 2482 2483 function Is_Variable 2484 (N : Node_Id; 2485 Use_Original_Node : Boolean := True) return Boolean; 2486 -- Determines if the tree referenced by N represents a variable, i.e. can 2487 -- appear on the left side of an assignment. There is one situation (formal 2488 -- parameters) in which untagged type conversions are also considered 2489 -- variables, but Is_Variable returns False for such cases, since it has 2490 -- no knowledge of the context. Note that this is the point at which 2491 -- Assignment_OK is checked, and True is returned for any tree thus marked. 2492 -- Use_Original_Node is used to perform the test on Original_Node (N). By 2493 -- default is True since this routine is commonly invoked as part of the 2494 -- semantic analysis and it must not be disturbed by the rewriten nodes. 2495 2496 function Is_View_Conversion (N : Node_Id) return Boolean; 2497 -- Returns True if N is a type_conversion whose operand is the name of an 2498 -- object and both its target type and operand type are tagged, or it 2499 -- appears in a call as an actual parameter of mode out or in out 2500 -- (RM 4.6(5/2)). 2501 2502 function Is_Visibly_Controlled (T : Entity_Id) return Boolean; 2503 -- Check whether T is derived from a visibly controlled type. This is true 2504 -- if the root type is declared in Ada.Finalization. If T is derived 2505 -- instead from a private type whose full view is controlled, an explicit 2506 -- Initialize/Adjust/Finalize subprogram does not override the inherited 2507 -- one. 2508 2509 function Is_Volatile_Full_Access_Object_Ref (N : Node_Id) return Boolean; 2510 -- Determine whether arbitrary node N denotes a reference to an object 2511 -- which is Volatile_Full_Access. 2512 2513 function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean; 2514 -- Determine whether [generic] function Func_Id is subject to enabled 2515 -- pragma Volatile_Function. Protected functions are treated as volatile 2516 -- (SPARK RM 7.1.2). 2517 2518 function Is_Volatile_Object_Ref (N : Node_Id) return Boolean; 2519 -- Determine whether arbitrary node N denotes a reference to a volatile 2520 -- object as per RM C.6(8). Note that the test here is for something that 2521 -- is actually declared as volatile, not for an object that gets treated 2522 -- as volatile (see Einfo.Treat_As_Volatile). 2523 2524 generic 2525 with procedure Handle_Parameter (Formal : Entity_Id; Actual : Node_Id); 2526 procedure Iterate_Call_Parameters (Call : Node_Id); 2527 -- Calls Handle_Parameter for each pair of formal and actual parameters of 2528 -- a function, procedure, or entry call. 2529 2530 function Itype_Has_Declaration (Id : Entity_Id) return Boolean; 2531 -- Applies to Itypes. True if the Itype is attached to a declaration for 2532 -- the type through its Parent field, which may or not be present in the 2533 -- tree. 2534 2535 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False); 2536 -- This procedure is called to clear all constant indications from all 2537 -- entities in the current scope and in any parent scopes if the current 2538 -- scope is a block or a package (and that recursion continues to the top 2539 -- scope that is not a block or a package). This is used when the 2540 -- sequential flow-of-control assumption is violated (occurrence of a 2541 -- label, head of a loop, or start of an exception handler). The effect of 2542 -- the call is to clear the Current_Value field (but we do not need to 2543 -- clear the Is_True_Constant flag, since that only gets reset if there 2544 -- really is an assignment somewhere in the entity scope). This procedure 2545 -- also calls Kill_All_Checks, since this is a special case of needing to 2546 -- forget saved values. This procedure also clears the Is_Known_Null and 2547 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or 2548 -- parameters since these are also not known to be trustable any more. 2549 -- 2550 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment 2551 -- fields and leave other fields unchanged. This is used when we encounter 2552 -- an unconditional flow of control change (return, goto, raise). In such 2553 -- cases we don't need to clear the current values, since it may be that 2554 -- the flow of control change occurs in a conditional context, and if it 2555 -- is not taken, then it is just fine to keep the current values. But the 2556 -- Last_Assignment field is different, if we have a sequence assign-to-v, 2557 -- conditional-return, assign-to-v, we do not want to complain that the 2558 -- second assignment clobbers the first. 2559 2560 procedure Kill_Current_Values 2561 (Ent : Entity_Id; 2562 Last_Assignment_Only : Boolean := False); 2563 -- This performs the same processing as described above for the form with 2564 -- no argument, but for the specific entity given. The call has no effect 2565 -- if the entity Ent is not for an object. Last_Assignment_Only has the 2566 -- same meaning as for the call with no Ent. 2567 2568 procedure Kill_Size_Check_Code (E : Entity_Id); 2569 -- Called when an address clause or pragma Import is applied to an entity. 2570 -- If the entity is a variable or a constant, and size check code is 2571 -- present, this size check code is killed, since the object will not be 2572 -- allocated by the program. 2573 2574 function Known_Non_Null (N : Node_Id) return Boolean; 2575 -- Given a node N for a subexpression of an access type, determines if 2576 -- this subexpression yields a value that is known at compile time to 2577 -- be non-null and returns True if so. Returns False otherwise. It is 2578 -- an error to call this function if N is not of an access type. 2579 2580 function Known_Null (N : Node_Id) return Boolean; 2581 -- Given a node N for a subexpression of an access type, determines if this 2582 -- subexpression yields a value that is known at compile time to be null 2583 -- and returns True if so. Returns False otherwise. It is an error to call 2584 -- this function if N is not of an access type. 2585 2586 function Known_To_Be_Assigned (N : Node_Id) return Boolean; 2587 -- The node N is an entity reference. This function determines whether the 2588 -- reference is for sure an assignment of the entity, returning True if 2589 -- so. This differs from May_Be_Lvalue in that it defaults in the other 2590 -- direction. Cases which may possibly be assignments but are not known to 2591 -- be may return True from May_Be_Lvalue, but False from this function. 2592 2593 function Last_Source_Statement (HSS : Node_Id) return Node_Id; 2594 -- HSS is a handled statement sequence. This function returns the last 2595 -- statement in Statements (HSS) that has Comes_From_Source set. If no 2596 -- such statement exists, Empty is returned. 2597 2598 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id); 2599 -- Given a node which designates the context of analysis and an origin in 2600 -- the tree, traverse from Root_Nod and mark all allocators as either 2601 -- dynamic or static depending on Context_Nod. Any incorrect marking is 2602 -- cleaned up during resolution. 2603 2604 procedure Mark_Elaboration_Attributes 2605 (N_Id : Node_Or_Entity_Id; 2606 Checks : Boolean := False; 2607 Level : Boolean := False; 2608 Modes : Boolean := False; 2609 Warnings : Boolean := False); 2610 -- Preserve relevant elaboration-related properties of the context in 2611 -- arbitrary entity or node N_Id. The flags control the properties as 2612 -- follows: 2613 -- 2614 -- Checks - Save the status of Elaboration_Check 2615 -- Level - Save the declaration level of N_Id (if appicable) 2616 -- Modes - Save the Ghost and SPARK modes in effect (if applicable) 2617 -- Warnings - Save the status of Elab_Warnings 2618 2619 procedure Mark_Save_Invocation_Graph_Of_Body; 2620 -- Notify the body of the main unit that the invocation constructs and 2621 -- relations expressed within it must be recorded by the ABE mechanism. 2622 2623 function Matching_Static_Array_Bounds 2624 (L_Typ : Node_Id; 2625 R_Typ : Node_Id) return Boolean; 2626 -- L_Typ and R_Typ are two array types. Returns True when they have the 2627 -- same number of dimensions, and the same static bounds for each index 2628 -- position. 2629 2630 function May_Be_Lvalue (N : Node_Id) return Boolean; 2631 -- Determines if N could be an lvalue (e.g. an assignment left hand side). 2632 -- An lvalue is defined as any expression which appears in a context where 2633 -- a name is required by the syntax, and the identity, rather than merely 2634 -- the value of the node is needed (for example, the prefix of an Access 2635 -- attribute is in this category). Note that, as implied by the name, this 2636 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then 2637 -- it returns True. It tries hard to get the answer right, but it is hard 2638 -- to guarantee this in all cases. Note that it is more possible to give 2639 -- correct answer if the tree is fully analyzed. 2640 2641 function Might_Raise (N : Node_Id) return Boolean; 2642 -- True if evaluation of N might raise an exception. This is conservative; 2643 -- if we're not sure, we return True. If N is a subprogram body, this is 2644 -- about whether execution of that body can raise. 2645 2646 function Nearest_Class_Condition_Subprogram 2647 (Kind : Condition_Kind; 2648 Spec_Id : Entity_Id) return Entity_Id; 2649 -- Return the nearest ancestor containing the merged class-wide conditions 2650 -- that statically apply to Spec_Id; return Empty otherwise. 2651 2652 function Nearest_Enclosing_Instance (E : Entity_Id) return Entity_Id; 2653 -- Return the entity of the nearest enclosing instance which encapsulates 2654 -- entity E. If no such instance exits, return Empty. 2655 2656 function Needs_Finalization (Typ : Entity_Id) return Boolean; 2657 -- True if Typ requires finalization actions 2658 2659 function Needs_One_Actual (E : Entity_Id) return Boolean; 2660 -- Returns True if a function has defaults for all but its first formal, 2661 -- which is a controlling formal. Used in Ada 2005 mode to solve the 2662 -- syntactic ambiguity that results from an indexing of a function call 2663 -- that returns an array, so that Obj.F (X, Y) may mean F (Ob) (X, Y). 2664 2665 function Needs_Result_Accessibility_Level 2666 (Func_Id : Entity_Id) return Boolean; 2667 -- Ada 2012 (AI05-0234): Return True if the function needs an implicit 2668 -- parameter to identify the accessibility level of the function result 2669 -- "determined by the point of call". 2670 2671 function Needs_Simple_Initialization 2672 (Typ : Entity_Id; 2673 Consider_IS : Boolean := True) return Boolean; 2674 -- Certain types need initialization even though there is no specific 2675 -- initialization routine: 2676 -- Access types (which need initializing to null) 2677 -- All scalar types if Normalize_Scalars mode set 2678 -- Descendants of standard string types if Normalize_Scalars mode set 2679 -- Scalar types having a Default_Value attribute 2680 -- Regarding Initialize_Scalars mode, this is ignored if Consider_IS is 2681 -- set to False, but if Consider_IS is set to True, then the cases above 2682 -- mentioning Normalize_Scalars also apply for Initialize_Scalars mode. 2683 2684 function Needs_Variable_Reference_Marker 2685 (N : Node_Id; 2686 Calls_OK : Boolean) return Boolean; 2687 -- Determine whether arbitrary node N denotes a reference to a variable 2688 -- which is suitable for SPARK elaboration checks. Flag Calls_OK should 2689 -- be set when the reference is allowed to appear within calls. 2690 2691 function New_Copy_List_Tree (List : List_Id) return List_Id; 2692 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined 2693 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended 2694 -- nodes (entities) either directly or indirectly using this function. 2695 2696 function New_Copy_Separate_List (List : List_Id) return List_Id; 2697 -- Copy recursively a list of nodes using New_Copy_Separate_Tree 2698 2699 function New_Copy_Separate_Tree (Source : Node_Id) return Node_Id; 2700 -- Perform a deep copy of the subtree rooted at Source using New_Copy_Tree 2701 -- replacing entities of local declarations by new entities. This behavior 2702 -- is required by the backend to ensure entities uniqueness when a copy of 2703 -- a subtree is attached to the tree. The new entities keep their original 2704 -- names to facilitate debugging the tree copy. 2705 2706 function New_Copy_Tree 2707 (Source : Node_Id; 2708 Map : Elist_Id := No_Elist; 2709 New_Sloc : Source_Ptr := No_Location; 2710 New_Scope : Entity_Id := Empty; 2711 Scopes_In_EWA_OK : Boolean := False) return Node_Id; 2712 -- Perform a deep copy of the subtree rooted at Source. Entities, itypes, 2713 -- and nodes are handled separately as follows: 2714 -- 2715 -- * A node is replicated by first creating a shallow copy, then copying 2716 -- its syntactic fields, where all Parent pointers of the fields are 2717 -- updated to refer to the copy. In addition, the following semantic 2718 -- fields are recreated after the replication takes place. 2719 -- 2720 -- First_Named_Actual 2721 -- First_Real_Statement 2722 -- Next_Named_Actual 2723 -- 2724 -- If applicable, the Etype field (if any) is updated to refer to a 2725 -- local itype or type (see below). 2726 -- 2727 -- * An entity defined within an N_Expression_With_Actions node in the 2728 -- subtree is given a new entity, and all references to the original 2729 -- entity are updated to refer to the new entity. In addition, the 2730 -- following semantic fields are replicated and/or updated to refer 2731 -- to a local entity or itype. 2732 -- 2733 -- Discriminant_Constraint 2734 -- Etype 2735 -- First_Index 2736 -- Next_Entity 2737 -- Packed_Array_Impl_Type 2738 -- Scalar_Range 2739 -- Scope 2740 -- 2741 -- Note that currently no other expression can define entities. 2742 -- 2743 -- * An itype whose Associated_Node_For_Itype node is in the subtree 2744 -- is given a new entity, and all references to the original itype 2745 -- are updated to refer to the new itype. In addition, the following 2746 -- semantic fields are replicated and/or updated to refer to a local 2747 -- entity or itype. 2748 -- 2749 -- Discriminant_Constraint 2750 -- Etype 2751 -- First_Index 2752 -- Next_Entity 2753 -- Packed_Array_Impl_Type 2754 -- Scalar_Range 2755 -- Scope 2756 -- 2757 -- The Associated_Node_For_Itype is updated to refer to a replicated 2758 -- node. 2759 -- 2760 -- The routine can replicate both analyzed and unanalyzed trees. Copying an 2761 -- Empty or Error node yields the same node. 2762 -- 2763 -- Parameter Map may be used to specify a set of mappings between entities. 2764 -- These mappings are then taken into account when replicating entities. 2765 -- The format of Map must be as follows: 2766 -- 2767 -- old entity 1 2768 -- new entity to replace references to entity 1 2769 -- old entity 2 2770 -- new entity to replace references to entity 2 2771 -- ... 2772 -- 2773 -- Map and its contents are left unchanged. 2774 -- 2775 -- Parameter New_Sloc may be used to specify a new source location for all 2776 -- replicated entities, itypes, and nodes. The Comes_From_Source indicator 2777 -- is defaulted if a new source location is provided. 2778 -- 2779 -- Parameter New_Scope may be used to specify a new scope for all copied 2780 -- entities and itypes. 2781 -- 2782 -- Parameter Scopes_In_EWA_OK may be used to force the replication of both 2783 -- scoping entities and non-scoping entities found within expression with 2784 -- actions nodes. 2785 2786 function New_External_Entity 2787 (Kind : Entity_Kind; 2788 Scope_Id : Entity_Id; 2789 Sloc_Value : Source_Ptr; 2790 Related_Id : Entity_Id; 2791 Suffix : Character; 2792 Suffix_Index : Int := 0; 2793 Prefix : Character := ' ') return Entity_Id; 2794 -- This function creates an N_Defining_Identifier node for an internal 2795 -- created entity, such as an implicit type or subtype, or a record 2796 -- initialization procedure. The entity name is constructed with a call 2797 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so 2798 -- that the generated name may be referenced as a public entry, and the 2799 -- Is_Public flag is set if needed (using Set_Public_Status). If the 2800 -- entity is for a type or subtype, the size/align fields are initialized 2801 -- to unknown (Uint_0). 2802 2803 function New_Internal_Entity 2804 (Kind : Entity_Kind; 2805 Scope_Id : Entity_Id; 2806 Sloc_Value : Source_Ptr; 2807 Id_Char : Character) return Entity_Id; 2808 -- This function is similar to New_External_Entity, except that the 2809 -- name is constructed by New_Internal_Name (Id_Char). This is used 2810 -- when the resulting entity does not have to be referenced as a 2811 -- public entity (and in this case Is_Public is not set). 2812 2813 function Next_Actual (Actual_Id : Node_Id) return Node_Id; 2814 -- Find next actual parameter in declaration order. As described for 2815 -- First_Actual, this is the next actual in the declaration order, not 2816 -- the call order, so this does not correspond to simply taking the 2817 -- next entry of the Parameter_Associations list. The argument is an 2818 -- actual previously returned by a call to First_Actual or Next_Actual. 2819 -- Note that the result produced is always an expression, not a parameter 2820 -- association node, even if named notation was used. 2821 2822 -- WARNING: There is a matching C declaration of this subprogram in fe.h 2823 2824 procedure Next_Actual (Actual_Id : in out Node_Id); 2825 pragma Inline (Next_Actual); 2826 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we 2827 -- inline this procedural form, but not the functional form above. 2828 2829 function Next_Global (Node : Node_Id) return Node_Id; 2830 -- Node is a global item from a list, obtained through calling First_Global 2831 -- and possibly Next_Global a number of times. Returns the next global item 2832 -- with the same mode. 2833 2834 procedure Next_Global (Node : in out Node_Id); 2835 pragma Inline (Next_Global); 2836 -- Next_Global (N) is equivalent to N := Next_Global (N). Note that we 2837 -- inline this procedural form, but not the functional form above. 2838 2839 function No_Caching_Enabled (Id : Entity_Id) return Boolean; 2840 -- Given the entity of a variable, determine whether Id is subject to 2841 -- volatility property No_Caching and if it is, the related expression 2842 -- evaluates to True. 2843 2844 function No_Heap_Finalization (Typ : Entity_Id) return Boolean; 2845 -- Determine whether type Typ is subject to pragma No_Heap_Finalization 2846 2847 procedure Normalize_Actuals 2848 (N : Node_Id; 2849 S : Entity_Id; 2850 Report : Boolean; 2851 Success : out Boolean); 2852 -- Reorders lists of actuals according to names of formals, value returned 2853 -- in Success indicates success of reordering. For more details, see body. 2854 -- Errors are reported only if Report is set to True. 2855 2856 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean); 2857 -- This routine is called if the sub-expression N maybe the target of 2858 -- an assignment (e.g. it is the left side of an assignment, used as 2859 -- an out parameters, or used as prefixes of access attributes). It 2860 -- sets May_Be_Modified in the associated entity if there is one, 2861 -- taking into account the rule that in the case of renamed objects, 2862 -- it is the flag in the renamed object that must be set. 2863 -- 2864 -- The parameter Sure is set True if the modification is sure to occur 2865 -- (e.g. target of assignment, or out parameter), and to False if the 2866 -- modification is only potential (e.g. address of entity taken). 2867 2868 function Null_To_Null_Address_Convert_OK 2869 (N : Node_Id; 2870 Typ : Entity_Id := Empty) return Boolean; 2871 -- Return True if we are compiling in relaxed RM semantics mode and: 2872 -- 1) N is a N_Null node and Typ is a descendant of System.Address, or 2873 -- 2) N is a comparison operator, one of the operands is null, and the 2874 -- type of the other operand is a descendant of System.Address. 2875 2876 function Number_Of_Elements_In_Array (T : Entity_Id) return Int; 2877 -- Returns the number of elements in the array T if the index bounds of T 2878 -- is known at compile time. If the bounds are not known at compile time, 2879 -- the function returns the value zero. 2880 2881 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id; 2882 -- Retrieve the name of aspect or pragma N, taking into account a possible 2883 -- rewrite and whether the pragma is generated from an aspect as the names 2884 -- may be different. The routine also deals with 'Class in which case it 2885 -- returns the following values: 2886 -- 2887 -- Invariant -> Name_uInvariant 2888 -- Post'Class -> Name_uPost 2889 -- Pre'Class -> Name_uPre 2890 -- Type_Invariant -> Name_uType_Invariant 2891 -- Type_Invariant'Class -> Name_uType_Invariant 2892 2893 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id; 2894 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2, 2895 -- or overrides an inherited dispatching primitive S2, the original 2896 -- corresponding operation of S is the original corresponding operation of 2897 -- S2. Otherwise, it is S itself. 2898 2899 function Original_View_In_Visible_Part (Typ : Entity_Id) return Boolean; 2900 -- Returns True if the type Typ has a private view or if the public view 2901 -- appears in the visible part of a package spec. 2902 2903 procedure Output_Entity (Id : Entity_Id); 2904 -- Print entity Id to standard output. The name of the entity appears in 2905 -- fully qualified form. 2906 -- 2907 -- WARNING: this routine should be used in debugging scenarios such as 2908 -- tracking down undefined symbols as it is fairly low level. 2909 2910 procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope); 2911 -- Print name Nam to standard output. The name appears in fully qualified 2912 -- form assuming it appears in scope Scop. Note that this may not reflect 2913 -- the final qualification as the entity which carries the name may be 2914 -- relocated to a different scope. 2915 -- 2916 -- WARNING: this routine should be used in debugging scenarios such as 2917 -- tracking down undefined symbols as it is fairly low level. 2918 2919 function Param_Entity (N : Node_Id) return Entity_Id; 2920 -- Given an expression N, determines if the expression is a reference 2921 -- to a formal (of a subprogram or entry), and if so returns the Id 2922 -- of the corresponding formal entity, otherwise returns Empty. Also 2923 -- handles the case of references to renamings of formals. 2924 2925 function Policy_In_Effect (Policy : Name_Id) return Name_Id; 2926 -- Given a policy, return the policy identifier associated with it. If no 2927 -- such policy is in effect, the value returned is No_Name. 2928 2929 function Predicate_Enabled (Typ : Entity_Id) return Boolean; 2930 -- Return True if a predicate check should be emitted for the given type 2931 -- Typ, taking into account Predicates_Ignored and 2932 -- Predicate_Checks_Suppressed. 2933 2934 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean; 2935 -- Subp is the entity for a subprogram call. This function returns True if 2936 -- predicate tests are required for the arguments in this call (this is the 2937 -- normal case). It returns False for special cases where these predicate 2938 -- tests should be skipped (see body for details). 2939 2940 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean; 2941 -- Returns True if the names of both entities correspond with matching 2942 -- primitives. This routine includes support for the case in which one 2943 -- or both entities correspond with entities built by Derive_Subprogram 2944 -- with a special name to avoid being overridden (i.e. return true in case 2945 -- of entities with names "nameP" and "name" or vice versa). 2946 2947 function Private_Component (Type_Id : Entity_Id) return Entity_Id; 2948 -- Returns some private component (if any) of the given Type_Id. 2949 -- Used to enforce the rules on visibility of operations on composite 2950 -- types, that depend on the full view of the component type. For a 2951 -- record type there may be several such components, we just return 2952 -- the first one. 2953 2954 procedure Process_End_Label 2955 (N : Node_Id; 2956 Typ : Character; 2957 Ent : Entity_Id); 2958 -- N is a node whose End_Label is to be processed, generating all 2959 -- appropriate cross-reference entries, and performing style checks 2960 -- for any identifier references in the end label. Typ is either 2961 -- 'e' or 't indicating the type of the cross-reference entity 2962 -- (e for spec, t for body, see Lib.Xref spec for details). The 2963 -- parameter Ent gives the entity to which the End_Label refers, 2964 -- and to which cross-references are to be generated. 2965 2966 procedure Propagate_Concurrent_Flags 2967 (Typ : Entity_Id; 2968 Comp_Typ : Entity_Id); 2969 -- Set Has_Task, Has_Protected, and Has_Timing_Event on Typ when the flags 2970 -- are set on Comp_Typ. This follows the definition of these flags, which 2971 -- are set (recursively) on any composite type that has a component marked 2972 -- by one of these flags. This procedure can only set flags for Typ, and 2973 -- never clear them. Comp_Typ is the type of a component or a parent. 2974 2975 procedure Propagate_DIC_Attributes 2976 (Typ : Entity_Id; 2977 From_Typ : Entity_Id); 2978 -- Inherit all Default_Initial_Condition-related attributes from type 2979 -- From_Typ. Typ is the destination type. 2980 2981 procedure Propagate_Invariant_Attributes 2982 (Typ : Entity_Id; 2983 From_Typ : Entity_Id); 2984 -- Inherit all invariant-related attributes from type From_Typ. Typ is the 2985 -- destination type. 2986 2987 procedure Propagate_Predicate_Attributes 2988 (Typ : Entity_Id; 2989 From_Typ : Entity_Id); 2990 -- Inherit predicate functions and Has_Predicates flag from type From_Typ. 2991 -- Typ is the destination type. 2992 2993 procedure Record_Possible_Part_Of_Reference 2994 (Var_Id : Entity_Id; 2995 Ref : Node_Id); 2996 -- Save reference Ref to variable Var_Id when the variable is subject to 2997 -- pragma Part_Of. If the variable is known to be a constituent of a single 2998 -- protected/task type, the legality of the reference is verified and the 2999 -- save does not take place. 3000 3001 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean; 3002 -- Determine whether entity Id is referenced within expression Expr 3003 3004 function References_Generic_Formal_Type (N : Node_Id) return Boolean; 3005 -- Returns True if the expression Expr contains any references to a generic 3006 -- type. This can only happen within a generic template. 3007 3008 procedure Remove_Entity_And_Homonym (Id : Entity_Id); 3009 -- Remove arbitrary entity Id from both the homonym and scope chains. Use 3010 -- Remove_Overloaded_Entity for overloadable entities. Note: the removal 3011 -- performed by this routine does not affect the visibility of existing 3012 -- homonyms. 3013 3014 procedure Remove_Homonym (Id : Entity_Id); 3015 -- Removes entity Id from the homonym chain 3016 3017 procedure Remove_Overloaded_Entity (Id : Entity_Id); 3018 -- Remove arbitrary entity Id from the homonym chain, the scope chain and 3019 -- the primitive operations list of the associated controlling type. Use 3020 -- Remove_Entity for non-overloadable entities. Note: the removal performed 3021 -- by this routine does not affect the visibility of existing homonyms. 3022 3023 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id; 3024 -- Returns the name of E without Suffix 3025 3026 procedure Replace_Null_By_Null_Address (N : Node_Id); 3027 -- N is N_Null or a binary comparison operator, we are compiling in relaxed 3028 -- RM semantics mode, and one of the operands is null. Replace null with 3029 -- System.Null_Address. 3030 3031 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id; 3032 -- This is used to construct the second argument in a call to Rep_To_Pos 3033 -- which is Standard_True if range checks are enabled (E is an entity to 3034 -- which the Range_Checks_Suppressed test is applied), and Standard_False 3035 -- if range checks are suppressed. Loc is the location for the node that 3036 -- is returned (which is a New_Occurrence of the appropriate entity). 3037 -- 3038 -- Note: one might think that it would be fine to always use True and 3039 -- to ignore the suppress in this case, but it is generally better to 3040 -- believe a request to suppress exceptions if possible, and further 3041 -- more there is at least one case in the generated code (the code for 3042 -- array assignment in a loop) that depends on this suppression. 3043 3044 procedure Require_Entity (N : Node_Id); 3045 -- N is a node which should have an entity value if it is an entity name. 3046 -- If not, then check if there were previous errors. If so, just fill 3047 -- in with Any_Id and ignore. Otherwise signal a program error exception. 3048 -- This is used as a defense mechanism against ill-formed trees caused by 3049 -- previous errors (particularly in -gnatq mode). 3050 3051 function Requires_Transient_Scope (Id : Entity_Id) return Boolean; 3052 -- Id is a type entity. The result is True when temporaries of this type 3053 -- need to be wrapped in a transient scope to be reclaimed properly when a 3054 -- secondary stack is in use. Examples of types requiring such wrapping are 3055 -- controlled types and variable-sized types including unconstrained 3056 -- arrays. 3057 3058 -- WARNING: There is a matching C declaration of this subprogram in fe.h 3059 3060 procedure Reset_Analyzed_Flags (N : Node_Id); 3061 -- Reset the Analyzed flags in all nodes of the tree whose root is N 3062 3063 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id); 3064 -- Set the current SPARK_Mode to Mode and SPARK_Mode_Pragma to Prag. This 3065 -- routine must be used in tandem with Set_SPARK_Mode. 3066 3067 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean; 3068 -- Return true if Subp is a function that returns an unconstrained type 3069 3070 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id; 3071 -- Similar to attribute Root_Type, but this version always follows the 3072 -- Full_View of a private type (if available) while searching for the 3073 -- ultimate derivation ancestor. 3074 3075 function Safe_To_Capture_Value 3076 (N : Node_Id; 3077 Ent : Entity_Id; 3078 Cond : Boolean := False) return Boolean; 3079 -- The caller is interested in capturing a value (either the current 3080 -- value, an indication that the value is [non-]null or an indication that 3081 -- the value is valid) for the given entity Ent. This value can only be 3082 -- captured if sequential execution semantics can be properly guaranteed so 3083 -- that a subsequent reference will indeed be sure that this current value 3084 -- indication is correct. The node N is the construct that resulted in the 3085 -- possible capture of the value (this is used to check if we are in a 3086 -- conditional). 3087 -- 3088 -- Cond is used to skip the test for being inside a conditional. It is used 3089 -- in the case of capturing values from if/while tests, which already do a 3090 -- proper job of handling scoping issues without this help. 3091 -- 3092 -- The only entities whose values can be captured are OUT and IN OUT formal 3093 -- parameters, and variables unless Cond is True, in which case we also 3094 -- allow IN formals, loop parameters and constants, where we cannot ever 3095 -- capture actual value information, but we can capture conditional tests. 3096 3097 function Same_Name (N1, N2 : Node_Id) return Boolean; 3098 -- Determine if two (possibly expanded) names are the same name. This is 3099 -- a purely syntactic test, and N1 and N2 need not be analyzed. 3100 3101 function Same_Object (Node1, Node2 : Node_Id) return Boolean; 3102 -- Determine if Node1 and Node2 are known to designate the same object. 3103 -- This is a semantic test and both nodes must be fully analyzed. A result 3104 -- of True is decisively correct. A result of False does not necessarily 3105 -- mean that different objects are designated, just that this could not 3106 -- be reliably determined at compile time. 3107 3108 function Same_Or_Aliased_Subprograms 3109 (S : Entity_Id; 3110 E : Entity_Id) return Boolean; 3111 -- Returns True if the subprogram entity S is the same as E or else S is an 3112 -- alias of E. 3113 3114 function Same_Type (T1, T2 : Entity_Id) return Boolean; 3115 -- Determines if T1 and T2 represent exactly the same type. Two types 3116 -- are the same if they are identical, or if one is an unconstrained 3117 -- subtype of the other, or they are both common subtypes of the same 3118 -- type with identical constraints. The result returned is conservative. 3119 -- It is True if the types are known to be the same, but a result of 3120 -- False is indecisive (e.g. the compiler may not be able to tell that 3121 -- two constraints are identical). 3122 3123 function Same_Value (Node1, Node2 : Node_Id) return Boolean; 3124 -- Determines if Node1 and Node2 are known to be the same value, which is 3125 -- true if they are both compile time known values and have the same value, 3126 -- or if they are the same object (in the sense of function Same_Object). 3127 -- A result of False does not necessarily mean they have different values, 3128 -- just that it is not possible to determine they have the same value. 3129 3130 function Scalar_Part_Present (Typ : Entity_Id) return Boolean; 3131 -- Determine whether arbitrary type Typ is a scalar type, or contains at 3132 -- least one scalar subcomponent. 3133 3134 function Scope_Within 3135 (Inner : Entity_Id; 3136 Outer : Entity_Id) return Boolean; 3137 -- Determine whether scope Inner appears within scope Outer. Note that 3138 -- scopes are partially ordered, so Scope_Within (A, B) and Scope_Within 3139 -- (B, A) may both return False. 3140 3141 function Scope_Within_Or_Same 3142 (Inner : Entity_Id; 3143 Outer : Entity_Id) return Boolean; 3144 -- Determine whether scope Inner appears within scope Outer or both denote 3145 -- the same scope. Note that scopes are partially ordered, so Scope_Within 3146 -- (A, B) and Scope_Within (B, A) may both return False. 3147 3148 procedure Set_Current_Entity (E : Entity_Id); 3149 pragma Inline (Set_Current_Entity); 3150 -- Establish the entity E as the currently visible definition of its 3151 -- associated name (i.e. the Node_Id associated with its name). 3152 3153 procedure Set_Debug_Info_Defining_Id (N : Node_Id); 3154 -- Call Set_Debug_Info_Needed on Defining_Identifier (N) if it comes 3155 -- from source. 3156 3157 procedure Set_Debug_Info_Needed (T : Entity_Id); 3158 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities 3159 -- that are needed by T (for an object, the type of the object is needed, 3160 -- and for a type, various subsidiary types are needed -- see body for 3161 -- details). Never has any effect on T if the Debug_Info_Off flag is set. 3162 -- This routine should always be used instead of Set_Needs_Debug_Info to 3163 -- ensure that subsidiary entities are properly handled. 3164 3165 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id); 3166 -- This procedure has the same calling sequence as Set_Entity, but it 3167 -- performs additional checks as follows: 3168 -- 3169 -- If Style_Check is set, then it calls a style checking routine which 3170 -- can check identifier spelling style. This procedure also takes care 3171 -- of checking the restriction No_Implementation_Identifiers. 3172 -- 3173 -- If restriction No_Abort_Statements is set, then it checks that the 3174 -- entity is not Ada.Task_Identification.Abort_Task. 3175 -- 3176 -- If restriction No_Dynamic_Attachment is set, then it checks that the 3177 -- entity is not one of the restricted names for this restriction. 3178 -- 3179 -- If restriction No_Long_Long_Integers is set, then it checks that the 3180 -- entity is not Standard.Long_Long_Integer. 3181 -- 3182 -- If restriction No_Implementation_Identifiers is set, then it checks 3183 -- that the entity is not implementation defined. 3184 3185 procedure Set_Invalid_Scalar_Value 3186 (Scal_Typ : Float_Scalar_Id; 3187 Value : Ureal); 3188 -- Associate invalid value Value with scalar type Scal_Typ as specified by 3189 -- pragma Initialize_Scalars. 3190 3191 procedure Set_Invalid_Scalar_Value 3192 (Scal_Typ : Integer_Scalar_Id; 3193 Value : Uint); 3194 -- Associate invalid value Value with scalar type Scal_Typ as specified by 3195 -- pragma Initialize_Scalars. 3196 3197 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id); 3198 pragma Inline (Set_Name_Entity_Id); 3199 -- Sets the Entity_Id value associated with the given name, which is the 3200 -- Id of the innermost visible entity with the given name. See the body 3201 -- of package Sem_Ch8 for further details on the handling of visibility. 3202 3203 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id); 3204 -- The arguments may be parameter associations, whose descendants 3205 -- are the optional formal name and the actual parameter. Positional 3206 -- parameters are already members of a list, and do not need to be 3207 -- chained separately. See also First_Actual and Next_Actual. 3208 3209 procedure Set_Optimize_Alignment_Flags (E : Entity_Id); 3210 pragma Inline (Set_Optimize_Alignment_Flags); 3211 -- Sets Optimize_Alignment_Space/Time flags in E from current settings 3212 3213 procedure Set_Public_Status (Id : Entity_Id); 3214 -- If an entity (visible or otherwise) is defined in a library 3215 -- package, or a package that is itself public, then this subprogram 3216 -- labels the entity public as well. 3217 3218 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean); 3219 -- N is the node for either a left hand side (Out_Param set to False), 3220 -- or an Out or In_Out parameter (Out_Param set to True). If there is 3221 -- an assignable entity being referenced, then the appropriate flag 3222 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter 3223 -- if Out_Param is True) is set True, and the other flag set False. 3224 3225 procedure Set_Rep_Info (T1 : Entity_Id; T2 : Entity_Id); 3226 pragma Inline (Set_Rep_Info); 3227 -- Copies the Is_Atomic, Is_Independent and Is_Volatile_Full_Access flags 3228 -- from sub(type) entity T2 to (sub)type entity T1, as well as Is_Volatile 3229 -- if T1 is a base type. 3230 3231 procedure Set_Scope_Is_Transient (V : Boolean := True); 3232 -- Set the flag Is_Transient of the current scope 3233 3234 procedure Set_Size_Info (T1, T2 : Entity_Id); 3235 pragma Inline (Set_Size_Info); 3236 -- Copies the Esize field and Has_Biased_Representation flag from sub(type) 3237 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag 3238 -- in the fixed-point and discrete cases, and also copies the alignment 3239 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be 3240 -- separately set if this is required to be copied also. 3241 3242 procedure Set_SPARK_Mode (Context : Entity_Id); 3243 -- Establish the SPARK_Mode and SPARK_Mode_Pragma (if any) of a package or 3244 -- a subprogram denoted by Context. This routine must be used in tandem 3245 -- with Restore_SPARK_Mode. 3246 3247 function Scope_Is_Transient return Boolean; 3248 -- True if the current scope is transient 3249 3250 function Should_Ignore_Pragma_Par (Prag_Name : Name_Id) return Boolean; 3251 function Should_Ignore_Pragma_Sem (N : Node_Id) return Boolean; 3252 -- True if we should ignore pragmas with the specified name. In particular, 3253 -- this returns True if pragma Ignore_Pragma applies, and we are not in a 3254 -- predefined unit. The _Par version should be called only from the parser; 3255 -- the _Sem version should be called only during semantic analysis. 3256 3257 function Static_Boolean (N : Node_Id) return Opt_Ubool; 3258 -- This function analyzes the given expression node and then resolves it 3259 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is 3260 -- returned corresponding to the value, otherwise an error message is 3261 -- output and No_Uint is returned. 3262 3263 function Static_Integer (N : Node_Id) return Uint; 3264 -- This function analyzes the given expression node and then resolves it 3265 -- as any integer type. If the result is static, then the value of the 3266 -- universal expression is returned, otherwise an error message is output 3267 -- and a value of No_Uint is returned. 3268 3269 function Statically_Denotes_Entity (N : Node_Id) return Boolean; 3270 -- Return True iff N is a name that "statically denotes" an entity. 3271 3272 function Statically_Denotes_Object (N : Node_Id) return Boolean; 3273 -- Return True iff N is a name that "statically denotes" an object. 3274 3275 function Statically_Different (E1, E2 : Node_Id) return Boolean; 3276 -- Return True if it can be statically determined that the Expressions 3277 -- E1 and E2 refer to different objects 3278 3279 function Statically_Names_Object (N : Node_Id) return Boolean; 3280 -- Return True iff N is a name that "statically names" an object. 3281 3282 function String_From_Numeric_Literal (N : Node_Id) return String_Id; 3283 -- Return the string that corresponds to the numeric literal N as it 3284 -- appears in the source. 3285 3286 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean; 3287 -- Determine whether node N is a loop statement subject to at least one 3288 -- 'Loop_Entry attribute. 3289 3290 function Subprogram_Access_Level (Subp : Entity_Id) return Uint; 3291 -- Return the accessibility level of the view denoted by Subp 3292 3293 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean; 3294 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if 3295 -- Typ is properly sized and aligned). 3296 3297 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String); 3298 -- Print debugging information on entry to each unit being analyzed 3299 3300 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id); 3301 -- Move a list of entities from one scope to another, and recompute 3302 -- Is_Public based upon the new scope. 3303 3304 generic 3305 with function Process (N : Node_Id) return Traverse_Result is <>; 3306 Process_Itypes : Boolean := False; 3307 function Traverse_More_Func (Node : Node_Id) return Traverse_Final_Result; 3308 -- This is a version of Atree.Traverse_Func that not only traverses 3309 -- syntactic children of nodes, but also semantic children which are 3310 -- logically children of the node. This concerns currently lists of 3311 -- action nodes and ranges under Itypes, both inserted by the compiler. 3312 -- Itypes are only traversed when Process_Itypes is True. 3313 3314 generic 3315 with function Process (N : Node_Id) return Traverse_Result is <>; 3316 Process_Itypes : Boolean := False; 3317 procedure Traverse_More_Proc (Node : Node_Id); 3318 pragma Inline (Traverse_More_Proc); 3319 -- This is the same as Traverse_More_Func except that no result is 3320 -- returned, i.e. Traverse_More_Func is called and the result is simply 3321 -- discarded. 3322 3323 function Type_Access_Level 3324 (Typ : Entity_Id; 3325 Allow_Alt_Model : Boolean := True; 3326 Assoc_Ent : Entity_Id := Empty) return Uint; 3327 -- Return the accessibility level of Typ 3328 3329 -- The Allow_Alt_Model parameter allows the alternative level calculation 3330 -- under the restriction No_Dynamic_Accessibility_Checks to be performed. 3331 3332 -- Assoc_Ent allows for the optional specification of the entity associated 3333 -- with Typ. This gets utilized mostly for anonymous access type 3334 -- processing, where context matters in interpreting Typ's level. 3335 3336 function Type_Without_Stream_Operation 3337 (T : Entity_Id; 3338 Op : TSS_Name_Type := TSS_Null) return Entity_Id; 3339 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes 3340 -- is active then we cannot generate stream subprograms for composite types 3341 -- with elementary subcomponents that lack user-defined stream subprograms. 3342 -- This predicate determines whether a type has such an elementary 3343 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write 3344 -- prevents the construction of a composite stream operation. If Op is 3345 -- specified we check only for the given stream operation. 3346 3347 function Ultimate_Overlaid_Entity (E : Entity_Id) return Entity_Id; 3348 -- If entity E is overlaying some other entity via an Address clause (which 3349 -- possibly overlays yet another entity via its own Address clause), then 3350 -- return the ultimate overlaid entity. If entity E is not overlaying any 3351 -- other entity (or the overlaid entity cannot be determined statically), 3352 -- then return Empty. 3353 -- 3354 -- Subsidiary to the analysis of object overlays in SPARK. 3355 3356 function Ultimate_Prefix (N : Node_Id) return Node_Id; 3357 -- Obtain the "outermost" prefix of arbitrary node N. Return N if no such 3358 -- prefix exists. 3359 3360 function Unique_Defining_Entity (N : Node_Id) return Entity_Id; 3361 -- Return the entity that represents declaration N, so that different 3362 -- views of the same entity have the same unique defining entity: 3363 -- * private view and full view of a deferred constant 3364 -- --> full view 3365 -- * entry spec and entry body 3366 -- --> entry spec 3367 -- * formal parameter on spec and body 3368 -- --> formal parameter on spec 3369 -- * package spec, body, and body stub 3370 -- --> package spec 3371 -- * protected type, protected body, and protected body stub 3372 -- --> protected type (full view if private) 3373 -- * subprogram spec, body, and body stub 3374 -- --> subprogram spec 3375 -- * task type, task body, and task body stub 3376 -- --> task type (full view if private) 3377 -- * private or incomplete view and full view of a type 3378 -- --> full view 3379 -- In other cases, return the defining entity for N. 3380 3381 function Unique_Entity (E : Entity_Id) return Entity_Id; 3382 -- Return the unique entity for entity E, which would be returned by 3383 -- Unique_Defining_Entity if applied to the enclosing declaration of E. 3384 3385 function Unique_Name (E : Entity_Id) return String; 3386 -- Return a unique name for entity E, which could be used to identify E 3387 -- across compilation units. 3388 3389 Child_Prefix : constant String := "ada___"; 3390 -- Prefix for child packages when building a unique name for an entity. It 3391 -- is included here to share between Unique_Name and gnatprove. 3392 3393 function Unit_Is_Visible (U : Entity_Id) return Boolean; 3394 -- Determine whether a compilation unit is visible in the current context, 3395 -- because there is a with_clause that makes the unit available. Used to 3396 -- provide better messages on common visiblity errors on operators. 3397 3398 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id; 3399 -- Yields Universal_Integer or Universal_Real if this is a candidate 3400 3401 function Unqualify (Expr : Node_Id) return Node_Id; 3402 pragma Inline (Unqualify); 3403 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this 3404 -- returns X. If Expr is not a qualified expression, returns Expr. 3405 3406 function Unqual_Conv (Expr : Node_Id) return Node_Id; 3407 pragma Inline (Unqual_Conv); 3408 -- Similar to Unqualify, but removes qualified expressions, type 3409 -- conversions, and unchecked conversions. 3410 3411 function Validated_View (Typ : Entity_Id) return Entity_Id; 3412 -- Obtain the "validated view" of arbitrary type Typ which is suitable for 3413 -- verification by attribute 'Valid_Scalars. This view is the type itself 3414 -- or its full view while stripping away concurrency, derivations, and 3415 -- privacy. 3416 3417 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id; 3418 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors 3419 -- of a type extension or private extension declaration. If the full-view 3420 -- of private parents and progenitors is available then it is used to 3421 -- generate the list of visible ancestors; otherwise their partial 3422 -- view is added to the resulting list. 3423 3424 function Within_Init_Proc return Boolean; 3425 -- Determines if Current_Scope is within an init proc 3426 3427 function Within_Protected_Type (E : Entity_Id) return Boolean; 3428 -- Returns True if entity E is declared within a protected type 3429 3430 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean; 3431 -- Returns True if entity E is declared within scope S 3432 3433 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id); 3434 -- Output error message for incorrectly typed expression. Expr is the node 3435 -- for the incorrectly typed construct (Etype (Expr) is the type found), 3436 -- and Expected_Type is the entity for the expected type. Note that Expr 3437 -- does not have to be a subexpression, anything with an Etype field may 3438 -- be used. 3439 3440 function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean; 3441 -- Determine whether type Typ "yields synchronized object" as specified by 3442 -- SPARK RM 9.1. To qualify as such, a type must be 3443 -- * An array type whose element type yields a synchronized object 3444 -- * A descendant of type Ada.Synchronous_Task_Control.Suspension_Object 3445 -- * A protected type 3446 -- * A record type or type extension without defaulted discriminants 3447 -- whose components are of a type that yields a synchronized object. 3448 -- * A synchronized interface type 3449 -- * A task type 3450 3451 function Yields_Universal_Type (N : Node_Id) return Boolean; 3452 -- Determine whether unanalyzed node N yields a universal type 3453 3454 procedure Preanalyze_Without_Errors (N : Node_Id); 3455 -- Preanalyze N without reporting errors 3456 3457 package Interval_Lists is 3458 type Discrete_Interval is 3459 record 3460 Low, High : Uint; 3461 end record; 3462 3463 type Discrete_Interval_List is 3464 array (Pos range <>) of Discrete_Interval; 3465 -- A sorted (in ascending order) list of non-empty pairwise-disjoint 3466 -- intervals, always with a gap of at least one value between 3467 -- successive intervals (i.e., mergeable intervals are merged). 3468 -- Low bound is one; high bound is nonnegative. 3469 3470 function Aggregate_Intervals (N : Node_Id) return Discrete_Interval_List; 3471 -- Given an array aggregate N, returns the (unique) interval list 3472 -- representing the values of the aggregate choices; if all the array 3473 -- components are covered by the others choice then the length of the 3474 -- result is zero. 3475 3476 function Choice_List_Intervals 3477 (Discrete_Choices : List_Id) return Discrete_Interval_List; 3478 -- Given a discrete choice list, returns the (unique) interval 3479 -- list representing the chosen values. 3480 3481 function Type_Intervals (Typ : Entity_Id) return Discrete_Interval_List; 3482 -- Given a static discrete type or subtype, returns the (unique) 3483 -- interval list representing the values of the type/subtype. 3484 -- If no static predicates are involved, the length of the result 3485 -- will be at most one. 3486 3487 function Is_Subset (Subset, Of_Set : Discrete_Interval_List) 3488 return Boolean; 3489 -- Returns True iff every value belonging to some interval of 3490 -- Subset also belongs to some interval of Of_Set. 3491 3492 -- When we get around to implementing "is statically compatible" 3493 -- correctly for real types with static predicates, we may need 3494 -- an analogous Real_Interval_List type. Most of the language 3495 -- rules that reference "is statically compatible" pertain to 3496 -- discriminants and therefore do not require support for real types; 3497 -- the exception is 12.5.1(8). 3498 3499 Intervals_Error : exception; 3500 -- Raised when the list of non-empty pair-wise disjoint intervals cannot 3501 -- be built. 3502 end Interval_Lists; 3503 3504 package Old_Attr_Util is 3505 -- Operations related to 'Old attribute evaluation. This 3506 -- includes cases where a level of indirection is needed due to 3507 -- conditional evaluation as well as support for the 3508 -- "known on entry" rules. 3509 3510 package Conditional_Evaluation is 3511 function Eligible_For_Conditional_Evaluation 3512 (Expr : Node_Id) return Boolean; 3513 -- Given a subexpression of a Postcondition expression 3514 -- (typically a 'Old attribute reference), returns True if 3515 -- - the expression is conditionally evaluated; and 3516 -- - its determining expressions are all known on entry; and 3517 -- - Ada_Version >= Ada_2022. 3518 -- See RM 6.1.1 for definitions of these terms. 3519 -- 3520 -- Also returns True if Expr is of an anonymous access type; 3521 -- this is just because we want the code that knows how to build 3522 -- 'Old temps in that case to reside in only one place. 3523 3524 function Conditional_Evaluation_Condition 3525 (Expr : Node_Id) return Node_Id; 3526 -- Given an expression which is eligible for conditional evaluation, 3527 -- build a Boolean expression whose value indicates whether the 3528 -- expression should be evaluated. 3529 end Conditional_Evaluation; 3530 3531 package Indirect_Temps is 3532 generic 3533 with procedure Append_Item (N : Node_Id; Is_Eval_Stmt : Boolean); 3534 -- If Is_Eval_Stmt is True, then N is a statement that should 3535 -- only be executed in the case where the 'Old prefix is to be 3536 -- evaluated. If Is_Eval_Stmt is False, then N is a declaration 3537 -- which should be elaborated unconditionally. 3538 -- Client is responsible for ensuring that any appended 3539 -- Eval_Stmt nodes are eventually analyzed. 3540 3541 Append_Decls_In_Reverse_Order : Boolean := False; 3542 -- This parameter is for the convenience of exp_prag.adb, where we 3543 -- want to Prepend rather than Append so it is better to get the 3544 -- Append calls in reverse order. 3545 3546 procedure Declare_Indirect_Temp 3547 (Attr_Prefix : Node_Id; -- prefix of 'Old attribute (or similar?) 3548 Indirect_Temp : out Entity_Id); 3549 -- Indirect_Temp is of an access type; it is unconditionally 3550 -- declared but only conditionally initialized to reference the 3551 -- saved value of Attr_Prefix. 3552 3553 function Indirect_Temp_Needed (Typ : Entity_Id) return Boolean; 3554 -- Returns True for a specific tagged type because the temp must 3555 -- be of the class-wide type in order to preserve the underlying tag. 3556 -- 3557 -- Also returns True in the case of an anonymous access type 3558 -- because we want the code that knows how to deal with 3559 -- this case to reside in only one place. 3560 -- 3561 -- For an unconstrained-but-definite discriminated subtype, returns 3562 -- True if the potential difference in size between an 3563 -- unconstrained object and a constrained object is large. 3564 -- [This part is not implemented yet.] 3565 -- 3566 -- Otherwise, returns False if a declaration of the form 3567 -- Temp : Typ; 3568 -- is legal and side-effect-free (assuming that default 3569 -- initialization is suppressed). For example, returns True if Typ is 3570 -- indefinite, or if Typ has a controlled part. 3571 -- 3572 3573 function Indirect_Temp_Value 3574 (Temp : Entity_Id; 3575 Typ : Entity_Id; 3576 Loc : Source_Ptr) return Node_Id; 3577 -- Evaluate a temp declared by Declare_Indirect_Temp. 3578 3579 function Is_Access_Type_For_Indirect_Temp 3580 (T : Entity_Id) return Boolean; 3581 -- True for an access type that was declared via a call 3582 -- to Declare_Indirect_Temp. 3583 -- Indicates that the given access type should be treated 3584 -- the same with respect to finalization as a 3585 -- user-defined "comes from source" access type. 3586 3587 end Indirect_Temps; 3588 end Old_Attr_Util; 3589 3590 package Storage_Model_Support is 3591 3592 -- This package provides a set of utility functions related to support 3593 -- for the Storage_Model feature. These functions provide an interface 3594 -- that the compiler (in particular back-end phases such as gigi and 3595 -- GNAT-LLVM) can use to easily obtain entities and operations that 3596 -- are specified for types in the aspects Storage_Model_Type and 3597 -- Designated_Storage_Model. 3598 3599 function Get_Storage_Model_Type_Entity 3600 (Typ : Entity_Id; 3601 Nam : Name_Id) return Entity_Id; 3602 -- Given type Typ with aspect Storage_Model_Type, returns the Entity_Id 3603 -- corresponding to the entity associated with Nam in the aspect. If the 3604 -- type does not specify the aspect, or such an entity is not present, 3605 -- then returns Empty. (Note: This function is modeled on function 3606 -- Get_Iterable_Type_Primitive.) 3607 3608 function Has_Designated_Storage_Model_Aspect 3609 (Typ : Entity_Id) return Boolean; 3610 -- Returns True iff Typ specifies aspect Designated_Storage_Model 3611 3612 function Has_Storage_Model_Type_Aspect (Typ : Entity_Id) return Boolean; 3613 -- Returns True iff Typ specifies aspect Storage_Model_Type 3614 3615 function Storage_Model_Object (Typ : Entity_Id) return Entity_Id; 3616 -- Given an access type with aspect Designated_Storage_Model, returns 3617 -- the storage-model object associated with that type; returns Empty 3618 -- if there is no associated object. 3619 3620 function Storage_Model_Type (Obj : Entity_Id) return Entity_Id; 3621 -- Given an object Obj of a type specifying aspect Storage_Model_Type, 3622 -- returns that type; otherwise returns Empty. 3623 3624 function Storage_Model_Address_Type (Typ : Entity_Id) return Entity_Id; 3625 -- Given a type Typ that specifies aspect Storage_Model_Type, returns 3626 -- the type specified for the Address_Type choice in that aspect; 3627 -- returns Empty if the aspect or the type isn't specified. 3628 3629 function Storage_Model_Null_Address (Typ : Entity_Id) return Entity_Id; 3630 -- Given a type Typ that specifies aspect Storage_Model_Type, returns 3631 -- constant specified for Null_Address choice in that aspect; returns 3632 -- Empty if the aspect or the constant object isn't specified. 3633 3634 function Storage_Model_Allocate (Typ : Entity_Id) return Entity_Id; 3635 -- Given a type Typ that specifies aspect Storage_Model_Type, returns 3636 -- procedure specified for the Allocate choice in that aspect; returns 3637 -- Empty if the aspect or the procedure isn't specified. 3638 3639 function Storage_Model_Deallocate (Typ : Entity_Id) return Entity_Id; 3640 -- Given a type Typ that specifies aspect Storage_Model_Type, returns 3641 -- procedure specified for the Deallocate choice in that aspect; returns 3642 -- Empty if the aspect or the procedure isn't specified. 3643 3644 function Storage_Model_Copy_From (Typ : Entity_Id) return Entity_Id; 3645 -- Given a type Typ that specifies aspect Storage_Model_Type, returns 3646 -- procedure specified for the Copy_From choice in that aspect; returns 3647 -- Empty if the aspect or the procedure isn't specified. 3648 3649 function Storage_Model_Copy_To (Typ : Entity_Id) return Entity_Id; 3650 -- Given a type Typ that specifies aspect Storage_Model_Type, returns 3651 -- procedure specified for the Copy_To choice in that aspect; returns 3652 -- Empty if the aspect or the procedure isn't specified. 3653 3654 function Storage_Model_Storage_Size (Typ : Entity_Id) return Entity_Id; 3655 -- Given a type Typ that specifies aspect Storage_Model_Type, returns 3656 -- function specified for Storage_Size choice in that aspect; returns 3657 -- Empty if the aspect or the procedure isn't specified. 3658 3659 end Storage_Model_Support; 3660 3661end Sem_Util; 3662