1 /* Code for RTL register eliminations.
2    Copyright (C) 2010-2021 Free Software Foundation, Inc.
3    Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.	If not see
19 <http://www.gnu.org/licenses/>.	 */
20 
21 /* Eliminable registers (like a soft argument or frame pointer) are
22    widely used in RTL.  These eliminable registers should be replaced
23    by real hard registers (like the stack pointer or hard frame
24    pointer) plus some offset.  The offsets usually change whenever the
25    stack is expanded.  We know the final offsets only at the very end
26    of LRA.
27 
28    Within LRA, we usually keep the RTL in such a state that the
29    eliminable registers can be replaced by just the corresponding hard
30    register (without any offset).  To achieve this we should add the
31    initial elimination offset at the beginning of LRA and update the
32    offsets whenever the stack is expanded.  We need to do this before
33    every constraint pass because the choice of offset often affects
34    whether a particular address or memory constraint is satisfied.
35 
36    We keep RTL code at most time in such state that the virtual
37    registers can be changed by just the corresponding hard registers
38    (with zero offsets) and we have the right RTL code.	To achieve this
39    we should add initial offset at the beginning of LRA work and update
40    offsets after each stack expanding.	But actually we update virtual
41    registers to the same virtual registers + corresponding offsets
42    before every constraint pass because it affects constraint
43    satisfaction (e.g. an address displacement became too big for some
44    target).
45 
46    The final change of eliminable registers to the corresponding hard
47    registers are done at the very end of LRA when there were no change
48    in offsets anymore:
49 
50 		     fp + 42	 =>	sp + 42
51 
52 */
53 
54 #include "config.h"
55 #include "system.h"
56 #include "coretypes.h"
57 #include "backend.h"
58 #include "target.h"
59 #include "rtl.h"
60 #include "tree.h"
61 #include "df.h"
62 #include "memmodel.h"
63 #include "tm_p.h"
64 #include "optabs.h"
65 #include "regs.h"
66 #include "ira.h"
67 #include "recog.h"
68 #include "output.h"
69 #include "rtl-error.h"
70 #include "lra-int.h"
71 
72 /* This structure is used to record information about hard register
73    eliminations.  */
74 class lra_elim_table
75 {
76 public:
77   /* Hard register number to be eliminated.  */
78   int from;
79   /* Hard register number used as replacement.	*/
80   int to;
81   /* Difference between values of the two hard registers above on
82      previous iteration.  */
83   poly_int64 previous_offset;
84   /* Difference between the values on the current iteration.  */
85   poly_int64 offset;
86   /* Nonzero if this elimination can be done.  */
87   bool can_eliminate;
88   /* CAN_ELIMINATE since the last check.  */
89   bool prev_can_eliminate;
90   /* REG rtx for the register to be eliminated.	 We cannot simply
91      compare the number since we might then spuriously replace a hard
92      register corresponding to a pseudo assigned to the reg to be
93      eliminated.  */
94   rtx from_rtx;
95   /* REG rtx for the replacement.  */
96   rtx to_rtx;
97 };
98 
99 /* The elimination table.  Each array entry describes one possible way
100    of eliminating a register in favor of another.  If there is more
101    than one way of eliminating a particular register, the most
102    preferred should be specified first.	 */
103 static class lra_elim_table *reg_eliminate = 0;
104 
105 /* This is an intermediate structure to initialize the table.  It has
106    exactly the members provided by ELIMINABLE_REGS.  */
107 static const struct elim_table_1
108 {
109   const int from;
110   const int to;
111 } reg_eliminate_1[] =
112 
113   ELIMINABLE_REGS;
114 
115 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
116 
117 /* Print info about elimination table to file F.  */
118 static void
print_elim_table(FILE * f)119 print_elim_table (FILE *f)
120 {
121   class lra_elim_table *ep;
122 
123   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
124     {
125       fprintf (f, "%s eliminate %d to %d (offset=",
126 	       ep->can_eliminate ? "Can" : "Can't", ep->from, ep->to);
127       print_dec (ep->offset, f);
128       fprintf (f, ", prev_offset=");
129       print_dec (ep->previous_offset, f);
130       fprintf (f, ")\n");
131     }
132 }
133 
134 /* Print info about elimination table to stderr.  */
135 void
lra_debug_elim_table(void)136 lra_debug_elim_table (void)
137 {
138   print_elim_table (stderr);
139 }
140 
141 /* Setup possibility of elimination in elimination table element EP to
142    VALUE.  Setup FRAME_POINTER_NEEDED if elimination from frame
143    pointer to stack pointer is not possible anymore.  */
144 static void
setup_can_eliminate(class lra_elim_table * ep,bool value)145 setup_can_eliminate (class lra_elim_table *ep, bool value)
146 {
147   ep->can_eliminate = ep->prev_can_eliminate = value;
148   if (! value
149       && ep->from == FRAME_POINTER_REGNUM && ep->to == STACK_POINTER_REGNUM)
150     frame_pointer_needed = 1;
151   if (!frame_pointer_needed)
152     REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = 0;
153 }
154 
155 /* Map: eliminable "from" register -> its current elimination,
156    or NULL if none.  The elimination table may contain more than
157    one elimination for the same hard register, but this map specifies
158    the one that we are currently using.  */
159 static class lra_elim_table *elimination_map[FIRST_PSEUDO_REGISTER];
160 
161 /* When an eliminable hard register becomes not eliminable, we use the
162    following special structure to restore original offsets for the
163    register.  */
164 static class lra_elim_table self_elim_table;
165 
166 /* Offsets should be used to restore original offsets for eliminable
167    hard register which just became not eliminable.  Zero,
168    otherwise.  */
169 static poly_int64_pod self_elim_offsets[FIRST_PSEUDO_REGISTER];
170 
171 /* Map: hard regno -> RTL presentation.	 RTL presentations of all
172    potentially eliminable hard registers are stored in the map.	 */
173 static rtx eliminable_reg_rtx[FIRST_PSEUDO_REGISTER];
174 
175 /* Set up ELIMINATION_MAP of the currently used eliminations.  */
176 static void
setup_elimination_map(void)177 setup_elimination_map (void)
178 {
179   int i;
180   class lra_elim_table *ep;
181 
182   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
183     elimination_map[i] = NULL;
184   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
185     if (ep->can_eliminate && elimination_map[ep->from] == NULL)
186       elimination_map[ep->from] = ep;
187 }
188 
189 
190 
191 /* Compute the sum of X and Y, making canonicalizations assumed in an
192    address, namely: sum constant integers, surround the sum of two
193    constants with a CONST, put the constant as the second operand, and
194    group the constant on the outermost sum.
195 
196    This routine assumes both inputs are already in canonical form.  */
197 static rtx
form_sum(rtx x,rtx y)198 form_sum (rtx x, rtx y)
199 {
200   machine_mode mode = GET_MODE (x);
201   poly_int64 offset;
202 
203   if (mode == VOIDmode)
204     mode = GET_MODE (y);
205 
206   if (mode == VOIDmode)
207     mode = Pmode;
208 
209   if (poly_int_rtx_p (x, &offset))
210     return plus_constant (mode, y, offset);
211   else if (poly_int_rtx_p (y, &offset))
212     return plus_constant (mode, x, offset);
213   else if (CONSTANT_P (x))
214     std::swap (x, y);
215 
216   if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
217     return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
218 
219   /* Note that if the operands of Y are specified in the opposite
220      order in the recursive calls below, infinite recursion will
221      occur.  */
222   if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
223     return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
224 
225   /* If both constant, encapsulate sum.	 Otherwise, just form sum.  A
226      constant will have been placed second.  */
227   if (CONSTANT_P (x) && CONSTANT_P (y))
228     {
229       if (GET_CODE (x) == CONST)
230 	x = XEXP (x, 0);
231       if (GET_CODE (y) == CONST)
232 	y = XEXP (y, 0);
233 
234       return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
235     }
236 
237   return gen_rtx_PLUS (mode, x, y);
238 }
239 
240 /* Return the current substitution hard register of the elimination of
241    HARD_REGNO.	If HARD_REGNO is not eliminable, return itself.	 */
242 int
lra_get_elimination_hard_regno(int hard_regno)243 lra_get_elimination_hard_regno (int hard_regno)
244 {
245   class lra_elim_table *ep;
246 
247   if (hard_regno < 0 || hard_regno >= FIRST_PSEUDO_REGISTER)
248     return hard_regno;
249   if ((ep = elimination_map[hard_regno]) == NULL)
250     return hard_regno;
251   return ep->to;
252 }
253 
254 /* Return elimination which will be used for hard reg REG, NULL
255    otherwise.  */
256 static class lra_elim_table *
get_elimination(rtx reg)257 get_elimination (rtx reg)
258 {
259   int hard_regno;
260   class lra_elim_table *ep;
261 
262   lra_assert (REG_P (reg));
263   if ((hard_regno = REGNO (reg)) < 0 || hard_regno >= FIRST_PSEUDO_REGISTER)
264     return NULL;
265   if ((ep = elimination_map[hard_regno]) != NULL)
266     return ep->from_rtx != reg ? NULL : ep;
267   poly_int64 offset = self_elim_offsets[hard_regno];
268   if (known_eq (offset, 0))
269     return NULL;
270   /* This is an iteration to restore offsets just after HARD_REGNO
271      stopped to be eliminable.	*/
272   self_elim_table.from = self_elim_table.to = hard_regno;
273   self_elim_table.from_rtx
274     = self_elim_table.to_rtx
275     = eliminable_reg_rtx[hard_regno];
276   lra_assert (self_elim_table.from_rtx != NULL);
277   self_elim_table.offset = offset;
278   return &self_elim_table;
279 }
280 
281 /* Transform (subreg (plus reg const)) to (plus (subreg reg) const)
282    when it is possible.  Return X or the transformation result if the
283    transformation is done.  */
284 static rtx
move_plus_up(rtx x)285 move_plus_up (rtx x)
286 {
287   rtx subreg_reg;
288   machine_mode x_mode, subreg_reg_mode;
289 
290   if (GET_CODE (x) != SUBREG || !subreg_lowpart_p (x))
291     return x;
292   subreg_reg = SUBREG_REG (x);
293   x_mode = GET_MODE (x);
294   subreg_reg_mode = GET_MODE (subreg_reg);
295   if (!paradoxical_subreg_p (x)
296       && GET_CODE (subreg_reg) == PLUS
297       && CONSTANT_P (XEXP (subreg_reg, 1))
298       && GET_MODE_CLASS (x_mode) == MODE_INT
299       && GET_MODE_CLASS (subreg_reg_mode) == MODE_INT)
300     {
301       rtx cst = simplify_subreg (x_mode, XEXP (subreg_reg, 1), subreg_reg_mode,
302 				 subreg_lowpart_offset (x_mode,
303 							subreg_reg_mode));
304       if (cst && CONSTANT_P (cst))
305 	return gen_rtx_PLUS (x_mode, lowpart_subreg (x_mode,
306 						     XEXP (subreg_reg, 0),
307 						     subreg_reg_mode), cst);
308     }
309   return x;
310 }
311 
312 /* Scan X and replace any eliminable registers (such as fp) with a
313    replacement (such as sp) if SUBST_P, plus an offset.  The offset is
314    a change in the offset between the eliminable register and its
315    substitution if UPDATE_P, or the full offset if FULL_P, or
316    otherwise zero.  If FULL_P, we also use the SP offsets for
317    elimination to SP.  If UPDATE_P, use UPDATE_SP_OFFSET for updating
318    offsets of register elimnable to SP.  If UPDATE_SP_OFFSET is
319    non-zero, don't use difference of the offset and the previous
320    offset.
321 
322    MEM_MODE is the mode of an enclosing MEM.  We need this to know how
323    much to adjust a register for, e.g., PRE_DEC.  Also, if we are
324    inside a MEM, we are allowed to replace a sum of a hard register
325    and the constant zero with the hard register, which we cannot do
326    outside a MEM.  In addition, we need to record the fact that a
327    hard register is referenced outside a MEM.
328 
329    If we make full substitution to SP for non-null INSN, add the insn
330    sp offset.  */
331 rtx
lra_eliminate_regs_1(rtx_insn * insn,rtx x,machine_mode mem_mode,bool subst_p,bool update_p,poly_int64 update_sp_offset,bool full_p)332 lra_eliminate_regs_1 (rtx_insn *insn, rtx x, machine_mode mem_mode,
333 		      bool subst_p, bool update_p,
334 		      poly_int64 update_sp_offset, bool full_p)
335 {
336   enum rtx_code code = GET_CODE (x);
337   class lra_elim_table *ep;
338   rtx new_rtx;
339   int i, j;
340   const char *fmt;
341   int copied = 0;
342 
343   lra_assert (!update_p || !full_p);
344   lra_assert (known_eq (update_sp_offset, 0)
345 	      || (!subst_p && update_p && !full_p));
346   if (! current_function_decl)
347     return x;
348 
349   switch (code)
350     {
351     CASE_CONST_ANY:
352     case CONST:
353     case SYMBOL_REF:
354     case CODE_LABEL:
355     case PC:
356     case ASM_INPUT:
357     case ADDR_VEC:
358     case ADDR_DIFF_VEC:
359     case RETURN:
360       return x;
361 
362     case REG:
363       /* First handle the case where we encounter a bare hard register
364 	 that is eliminable.  Replace it with a PLUS.  */
365       if ((ep = get_elimination (x)) != NULL)
366 	{
367 	  rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
368 
369 	  if (maybe_ne (update_sp_offset, 0))
370 	    {
371 	      if (ep->to_rtx == stack_pointer_rtx)
372 		return plus_constant (Pmode, to, update_sp_offset);
373 	      return to;
374 	    }
375 	  else if (update_p)
376 	    return plus_constant (Pmode, to, ep->offset - ep->previous_offset);
377 	  else if (full_p)
378 	    return plus_constant (Pmode, to,
379 				  ep->offset
380 				  - (insn != NULL_RTX
381 				     && ep->to_rtx == stack_pointer_rtx
382 				     ? lra_get_insn_recog_data (insn)->sp_offset
383 				     : 0));
384 	  else
385 	    return to;
386 	}
387       return x;
388 
389     case PLUS:
390       /* If this is the sum of an eliminable register and a constant, rework
391 	 the sum.  */
392       if (REG_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
393 	{
394 	  if ((ep = get_elimination (XEXP (x, 0))) != NULL)
395 	    {
396 	      poly_int64 offset, curr_offset;
397 	      rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
398 
399 	      if (! update_p && ! full_p)
400 		return gen_rtx_PLUS (Pmode, to, XEXP (x, 1));
401 
402 	      if (maybe_ne (update_sp_offset, 0))
403 		offset = ep->to_rtx == stack_pointer_rtx ? update_sp_offset : 0;
404 	      else
405 		offset = (update_p
406 			  ? ep->offset - ep->previous_offset : ep->offset);
407 	      if (full_p && insn != NULL_RTX && ep->to_rtx == stack_pointer_rtx)
408 		offset -= lra_get_insn_recog_data (insn)->sp_offset;
409 	      if (poly_int_rtx_p (XEXP (x, 1), &curr_offset)
410 		  && known_eq (curr_offset, -offset))
411 		return to;
412 	      else
413 		return gen_rtx_PLUS (Pmode, to,
414 				     plus_constant (Pmode,
415 						    XEXP (x, 1), offset));
416 	    }
417 
418 	  /* If the hard register is not eliminable, we are done since
419 	     the other operand is a constant.  */
420 	  return x;
421 	}
422 
423       /* If this is part of an address, we want to bring any constant
424 	 to the outermost PLUS.  We will do this by doing hard
425 	 register replacement in our operands and seeing if a constant
426 	 shows up in one of them.
427 
428 	 Note that there is no risk of modifying the structure of the
429 	 insn, since we only get called for its operands, thus we are
430 	 either modifying the address inside a MEM, or something like
431 	 an address operand of a load-address insn.  */
432 
433       {
434 	rtx new0 = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
435 					 subst_p, update_p,
436 					 update_sp_offset, full_p);
437 	rtx new1 = lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
438 					 subst_p, update_p,
439 					 update_sp_offset, full_p);
440 
441 	new0 = move_plus_up (new0);
442 	new1 = move_plus_up (new1);
443 	if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
444 	  return form_sum (new0, new1);
445       }
446       return x;
447 
448     case MULT:
449       /* If this is the product of an eliminable hard register and a
450 	 constant, apply the distribute law and move the constant out
451 	 so that we have (plus (mult ..) ..).  This is needed in order
452 	 to keep load-address insns valid.  This case is pathological.
453 	 We ignore the possibility of overflow here.  */
454       if (REG_P (XEXP (x, 0)) && CONST_INT_P (XEXP (x, 1))
455 	  && (ep = get_elimination (XEXP (x, 0))) != NULL)
456 	{
457 	  rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
458 
459 	  if (maybe_ne (update_sp_offset, 0))
460 	    {
461 	      if (ep->to_rtx == stack_pointer_rtx)
462 		return plus_constant (Pmode,
463 				      gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
464 				      update_sp_offset * INTVAL (XEXP (x, 1)));
465 	      return gen_rtx_MULT (Pmode, to, XEXP (x, 1));
466 	    }
467 	  else if (update_p)
468 	    return plus_constant (Pmode,
469 				  gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
470 				  (ep->offset - ep->previous_offset)
471 				  * INTVAL (XEXP (x, 1)));
472 	  else if (full_p)
473 	    {
474 	      poly_int64 offset = ep->offset;
475 
476 	      if (insn != NULL_RTX && ep->to_rtx == stack_pointer_rtx)
477 		offset -= lra_get_insn_recog_data (insn)->sp_offset;
478 	      return
479 		plus_constant (Pmode,
480 			       gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
481 			       offset * INTVAL (XEXP (x, 1)));
482 	    }
483 	  else
484 	    return gen_rtx_MULT (Pmode, to, XEXP (x, 1));
485 	}
486 
487       /* fall through */
488 
489     case CALL:
490     case COMPARE:
491     /* See comments before PLUS about handling MINUS.  */
492     case MINUS:
493     case DIV:	   case UDIV:
494     case MOD:	   case UMOD:
495     case AND:	   case IOR:	  case XOR:
496     case ROTATERT: case ROTATE:
497     case ASHIFTRT: case LSHIFTRT: case ASHIFT:
498     case NE:	   case EQ:
499     case GE:	   case GT:	  case GEU:    case GTU:
500     case LE:	   case LT:	  case LEU:    case LTU:
501       {
502 	rtx new0 = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
503 					 subst_p, update_p,
504 					 update_sp_offset, full_p);
505 	rtx new1 = XEXP (x, 1)
506 		   ? lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
507 					   subst_p, update_p,
508 					   update_sp_offset, full_p) : 0;
509 
510 	if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
511 	  return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
512       }
513       return x;
514 
515     case EXPR_LIST:
516       /* If we have something in XEXP (x, 0), the usual case,
517 	 eliminate it.	*/
518       if (XEXP (x, 0))
519 	{
520 	  new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
521 					  subst_p, update_p,
522 					  update_sp_offset, full_p);
523 	  if (new_rtx != XEXP (x, 0))
524 	    {
525 	      /* If this is a REG_DEAD note, it is not valid anymore.
526 		 Using the eliminated version could result in creating a
527 		 REG_DEAD note for the stack or frame pointer.	*/
528 	      if (REG_NOTE_KIND (x) == REG_DEAD)
529 		return (XEXP (x, 1)
530 			? lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
531 						subst_p, update_p,
532 						update_sp_offset, full_p)
533 			: NULL_RTX);
534 
535 	      x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
536 	    }
537 	}
538 
539       /* fall through */
540 
541     case INSN_LIST:
542     case INT_LIST:
543       /* Now do eliminations in the rest of the chain.	If this was
544 	 an EXPR_LIST, this might result in allocating more memory than is
545 	 strictly needed, but it simplifies the code.  */
546       if (XEXP (x, 1))
547 	{
548 	  new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
549 					  subst_p, update_p,
550 					  update_sp_offset, full_p);
551 	  if (new_rtx != XEXP (x, 1))
552 	    return
553 	      gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x),
554 			      XEXP (x, 0), new_rtx);
555 	}
556       return x;
557 
558     case PRE_INC:
559     case POST_INC:
560     case PRE_DEC:
561     case POST_DEC:
562       /* We do not support elimination of a register that is modified.
563 	 elimination_effects has already make sure that this does not
564 	 happen.  */
565       return x;
566 
567     case PRE_MODIFY:
568     case POST_MODIFY:
569       /* We do not support elimination of a hard register that is
570 	 modified.  LRA has already make sure that this does not
571 	 happen. The only remaining case we need to consider here is
572 	 that the increment value may be an eliminable register.  */
573       if (GET_CODE (XEXP (x, 1)) == PLUS
574 	  && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
575 	{
576 	  rtx new_rtx = lra_eliminate_regs_1 (insn, XEXP (XEXP (x, 1), 1),
577 					      mem_mode, subst_p, update_p,
578 					      update_sp_offset, full_p);
579 
580 	  if (new_rtx != XEXP (XEXP (x, 1), 1))
581 	    return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
582 				   gen_rtx_PLUS (GET_MODE (x),
583 						 XEXP (x, 0), new_rtx));
584 	}
585       return x;
586 
587     case STRICT_LOW_PART:
588     case NEG:	       case NOT:
589     case SIGN_EXTEND:  case ZERO_EXTEND:
590     case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
591     case FLOAT:	       case FIX:
592     case UNSIGNED_FIX: case UNSIGNED_FLOAT:
593     case ABS:
594     case SQRT:
595     case FFS:
596     case CLZ:
597     case CTZ:
598     case POPCOUNT:
599     case PARITY:
600     case BSWAP:
601       new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
602 				      subst_p, update_p,
603 				      update_sp_offset, full_p);
604       if (new_rtx != XEXP (x, 0))
605 	return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
606       return x;
607 
608     case SUBREG:
609       new_rtx = lra_eliminate_regs_1 (insn, SUBREG_REG (x), mem_mode,
610 				      subst_p, update_p,
611 				      update_sp_offset, full_p);
612 
613       if (new_rtx != SUBREG_REG (x))
614 	{
615 	  if (MEM_P (new_rtx) && !paradoxical_subreg_p (x))
616 	    {
617 	      SUBREG_REG (x) = new_rtx;
618 	      alter_subreg (&x, false);
619 	      return x;
620 	    }
621 	  else if (! subst_p)
622 	    {
623 	      /* LRA can transform subregs itself.  So don't call
624 		 simplify_gen_subreg until LRA transformations are
625 		 finished.  Function simplify_gen_subreg can do
626 		 non-trivial transformations (like truncation) which
627 		 might make LRA work to fail.  */
628 	      SUBREG_REG (x) = new_rtx;
629 	      return x;
630 	    }
631 	  else
632 	    return simplify_gen_subreg (GET_MODE (x), new_rtx,
633 					GET_MODE (new_rtx), SUBREG_BYTE (x));
634 	}
635 
636       return x;
637 
638     case MEM:
639       /* Our only special processing is to pass the mode of the MEM to our
640 	 recursive call and copy the flags.  While we are here, handle this
641 	 case more efficiently.	 */
642       return
643 	replace_equiv_address_nv
644 	(x,
645 	 lra_eliminate_regs_1 (insn, XEXP (x, 0), GET_MODE (x),
646 			       subst_p, update_p, update_sp_offset, full_p));
647 
648     case USE:
649       /* Handle insn_list USE that a call to a pure function may generate.  */
650       new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), VOIDmode,
651 				      subst_p, update_p, update_sp_offset, full_p);
652       if (new_rtx != XEXP (x, 0))
653 	return gen_rtx_USE (GET_MODE (x), new_rtx);
654       return x;
655 
656     case CLOBBER:
657     case SET:
658       gcc_unreachable ();
659 
660     default:
661       break;
662     }
663 
664   /* Process each of our operands recursively.	If any have changed, make a
665      copy of the rtx.  */
666   fmt = GET_RTX_FORMAT (code);
667   for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
668     {
669       if (*fmt == 'e')
670 	{
671 	  new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, i), mem_mode,
672 					  subst_p, update_p,
673 					  update_sp_offset, full_p);
674 	  if (new_rtx != XEXP (x, i) && ! copied)
675 	    {
676 	      x = shallow_copy_rtx (x);
677 	      copied = 1;
678 	    }
679 	  XEXP (x, i) = new_rtx;
680 	}
681       else if (*fmt == 'E')
682 	{
683 	  int copied_vec = 0;
684 	  for (j = 0; j < XVECLEN (x, i); j++)
685 	    {
686 	      new_rtx = lra_eliminate_regs_1 (insn, XVECEXP (x, i, j), mem_mode,
687 					      subst_p, update_p,
688 					      update_sp_offset, full_p);
689 	      if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
690 		{
691 		  rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
692 					     XVEC (x, i)->elem);
693 		  if (! copied)
694 		    {
695 		      x = shallow_copy_rtx (x);
696 		      copied = 1;
697 		    }
698 		  XVEC (x, i) = new_v;
699 		  copied_vec = 1;
700 		}
701 	      XVECEXP (x, i, j) = new_rtx;
702 	    }
703 	}
704     }
705 
706   return x;
707 }
708 
709 /* This function is used externally in subsequent passes of GCC.  It
710    always does a full elimination of X.	 */
711 rtx
lra_eliminate_regs(rtx x,machine_mode mem_mode,rtx insn ATTRIBUTE_UNUSED)712 lra_eliminate_regs (rtx x, machine_mode mem_mode,
713 		    rtx insn ATTRIBUTE_UNUSED)
714 {
715   return lra_eliminate_regs_1 (NULL, x, mem_mode, true, false, 0, true);
716 }
717 
718 /* Stack pointer offset before the current insn relative to one at the
719    func start.  RTL insns can change SP explicitly.  We keep the
720    changes from one insn to another through this variable.  */
721 static poly_int64 curr_sp_change;
722 
723 /* Scan rtx X for references to elimination source or target registers
724    in contexts that would prevent the elimination from happening.
725    Update the table of eliminables to reflect the changed state.
726    MEM_MODE is the mode of an enclosing MEM rtx, or VOIDmode if not
727    within a MEM.  */
728 static void
mark_not_eliminable(rtx x,machine_mode mem_mode)729 mark_not_eliminable (rtx x, machine_mode mem_mode)
730 {
731   enum rtx_code code = GET_CODE (x);
732   class lra_elim_table *ep;
733   int i, j;
734   const char *fmt;
735   poly_int64 offset = 0;
736 
737   switch (code)
738     {
739     case PRE_INC:
740     case POST_INC:
741     case PRE_DEC:
742     case POST_DEC:
743     case POST_MODIFY:
744     case PRE_MODIFY:
745       if (XEXP (x, 0) == stack_pointer_rtx
746 	  && ((code != PRE_MODIFY && code != POST_MODIFY)
747 	      || (GET_CODE (XEXP (x, 1)) == PLUS
748 		  && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
749 		  && poly_int_rtx_p (XEXP (XEXP (x, 1), 1), &offset))))
750 	{
751 	  poly_int64 size = GET_MODE_SIZE (mem_mode);
752 
753 #ifdef PUSH_ROUNDING
754 	  /* If more bytes than MEM_MODE are pushed, account for
755 	     them.  */
756 	  size = PUSH_ROUNDING (size);
757 #endif
758 	  if (code == PRE_DEC || code == POST_DEC)
759 	    curr_sp_change -= size;
760 	  else if (code == PRE_INC || code == POST_INC)
761 	    curr_sp_change += size;
762 	  else if (code == PRE_MODIFY || code == POST_MODIFY)
763 	    curr_sp_change += offset;
764 	}
765       else if (REG_P (XEXP (x, 0))
766 	       && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
767 	{
768 	  /* If we modify the source of an elimination rule, disable
769 	     it.  Do the same if it is the destination and not the
770 	     hard frame register.  */
771 	  for (ep = reg_eliminate;
772 	       ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
773 	       ep++)
774 	    if (ep->from_rtx == XEXP (x, 0)
775 		|| (ep->to_rtx == XEXP (x, 0)
776 		    && ep->to_rtx != hard_frame_pointer_rtx))
777 	      setup_can_eliminate (ep, false);
778 	}
779       return;
780 
781     case USE:
782       if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
783 	/* If using a hard register that is the source of an eliminate
784 	   we still think can be performed, note it cannot be
785 	   performed since we don't know how this hard register is
786 	   used.  */
787 	for (ep = reg_eliminate;
788 	     ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
789 	     ep++)
790 	  if (ep->from_rtx == XEXP (x, 0)
791 	      && ep->to_rtx != hard_frame_pointer_rtx)
792 	    setup_can_eliminate (ep, false);
793       return;
794 
795     case CLOBBER:
796       if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
797 	/* If clobbering a hard register that is the replacement
798 	   register for an elimination we still think can be
799 	   performed, note that it cannot be performed.	 Otherwise, we
800 	   need not be concerned about it.  */
801 	for (ep = reg_eliminate;
802 	     ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
803 	     ep++)
804 	  if (ep->to_rtx == XEXP (x, 0)
805 	      && ep->to_rtx != hard_frame_pointer_rtx)
806 	    setup_can_eliminate (ep, false);
807       return;
808 
809     case SET:
810       if (SET_DEST (x) == stack_pointer_rtx
811 	  && GET_CODE (SET_SRC (x)) == PLUS
812 	  && XEXP (SET_SRC (x), 0) == SET_DEST (x)
813 	  && poly_int_rtx_p (XEXP (SET_SRC (x), 1), &offset))
814 	{
815 	  curr_sp_change += offset;
816 	  return;
817 	}
818       if (! REG_P (SET_DEST (x))
819 	  || REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
820 	mark_not_eliminable (SET_DEST (x), mem_mode);
821       else
822 	{
823 	  /* See if this is setting the replacement hard register for
824 	     an elimination.
825 
826 	     If DEST is the hard frame pointer, we do nothing because
827 	     we assume that all assignments to the frame pointer are
828 	     for non-local gotos and are being done at a time when
829 	     they are valid and do not disturb anything else.  Some
830 	     machines want to eliminate a fake argument pointer (or
831 	     even a fake frame pointer) with either the real frame
832 	     pointer or the stack pointer.  Assignments to the hard
833 	     frame pointer must not prevent this elimination.  */
834 	  for (ep = reg_eliminate;
835 	       ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
836 	       ep++)
837 	    if (ep->to_rtx == SET_DEST (x)
838 		&& SET_DEST (x) != hard_frame_pointer_rtx)
839 	      setup_can_eliminate (ep, false);
840 	}
841 
842       mark_not_eliminable (SET_SRC (x), mem_mode);
843       return;
844 
845     case MEM:
846       /* Our only special processing is to pass the mode of the MEM to
847 	 our recursive call.  */
848       mark_not_eliminable (XEXP (x, 0), GET_MODE (x));
849       return;
850 
851     default:
852       break;
853     }
854 
855   fmt = GET_RTX_FORMAT (code);
856   for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
857     {
858       if (*fmt == 'e')
859 	mark_not_eliminable (XEXP (x, i), mem_mode);
860       else if (*fmt == 'E')
861 	for (j = 0; j < XVECLEN (x, i); j++)
862 	  mark_not_eliminable (XVECEXP (x, i, j), mem_mode);
863     }
864 }
865 
866 
867 
868 /* Scan INSN and eliminate all eliminable hard registers in it.
869 
870    If REPLACE_P is true, do the replacement destructively.  Also
871    delete the insn as dead it if it is setting an eliminable register.
872 
873    If REPLACE_P is false, just update the offsets while keeping the
874    base register the same.  If FIRST_P, use the sp offset for
875    elimination to sp.  Otherwise, use UPDATE_SP_OFFSET for this.  If
876    UPDATE_SP_OFFSET is non-zero, don't use difference of the offset
877    and the previous offset.  Attach the note about used elimination
878    for insns setting frame pointer to update elimination easy (without
879    parsing already generated elimination insns to find offset
880    previously used) in future.  */
881 
882 void
eliminate_regs_in_insn(rtx_insn * insn,bool replace_p,bool first_p,poly_int64 update_sp_offset)883 eliminate_regs_in_insn (rtx_insn *insn, bool replace_p, bool first_p,
884 			poly_int64 update_sp_offset)
885 {
886   int icode = recog_memoized (insn);
887   rtx set, old_set = single_set (insn);
888   bool validate_p;
889   int i;
890   rtx substed_operand[MAX_RECOG_OPERANDS];
891   rtx orig_operand[MAX_RECOG_OPERANDS];
892   class lra_elim_table *ep;
893   rtx plus_src, plus_cst_src;
894   lra_insn_recog_data_t id;
895   struct lra_static_insn_data *static_id;
896 
897   if (icode < 0 && asm_noperands (PATTERN (insn)) < 0 && ! DEBUG_INSN_P (insn))
898     {
899       lra_assert (GET_CODE (PATTERN (insn)) == USE
900 		  || GET_CODE (PATTERN (insn)) == CLOBBER
901 		  || GET_CODE (PATTERN (insn)) == ASM_INPUT);
902       return;
903     }
904 
905   /* We allow one special case which happens to work on all machines we
906      currently support: a single set with the source or a REG_EQUAL
907      note being a PLUS of an eliminable register and a constant.  */
908   plus_src = plus_cst_src = 0;
909   poly_int64 offset = 0;
910   if (old_set && REG_P (SET_DEST (old_set)))
911     {
912       if (GET_CODE (SET_SRC (old_set)) == PLUS)
913 	plus_src = SET_SRC (old_set);
914       /* First see if the source is of the form (plus (...) CST).  */
915       if (plus_src && poly_int_rtx_p (XEXP (plus_src, 1), &offset))
916 	plus_cst_src = plus_src;
917       /* Check that the first operand of the PLUS is a hard reg or
918 	 the lowpart subreg of one.  */
919       if (plus_cst_src)
920 	{
921 	  rtx reg = XEXP (plus_cst_src, 0);
922 
923 	  if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
924 	    reg = SUBREG_REG (reg);
925 
926 	  if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
927 	    plus_cst_src = 0;
928 	}
929     }
930   if (plus_cst_src)
931     {
932       rtx reg = XEXP (plus_cst_src, 0);
933 
934       if (GET_CODE (reg) == SUBREG)
935 	reg = SUBREG_REG (reg);
936 
937       if (REG_P (reg) && (ep = get_elimination (reg)) != NULL)
938 	{
939 	  rtx to_rtx = replace_p ? ep->to_rtx : ep->from_rtx;
940 
941 	  if (! replace_p)
942 	    {
943 	      if (known_eq (update_sp_offset, 0))
944 		offset += (ep->offset - ep->previous_offset);
945 	      if (ep->to_rtx == stack_pointer_rtx)
946 		{
947 		  if (first_p)
948 		    offset -= lra_get_insn_recog_data (insn)->sp_offset;
949 		  else
950 		    offset += update_sp_offset;
951 		}
952 	      offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
953 	    }
954 
955 	  if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
956 	    to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)), to_rtx);
957 	  /* If we have a nonzero offset, and the source is already a
958 	     simple REG, the following transformation would increase
959 	     the cost of the insn by replacing a simple REG with (plus
960 	     (reg sp) CST).  So try only when we already had a PLUS
961 	     before.  */
962 	  if (known_eq (offset, 0) || plus_src)
963 	    {
964 	      rtx new_src = plus_constant (GET_MODE (to_rtx), to_rtx, offset);
965 
966 	      old_set = single_set (insn);
967 
968 	      /* First see if this insn remains valid when we make the
969 		 change.  If not, try to replace the whole pattern
970 		 with a simple set (this may help if the original insn
971 		 was a PARALLEL that was only recognized as single_set
972 		 due to REG_UNUSED notes).  If this isn't valid
973 		 either, keep the INSN_CODE the same and let the
974 		 constraint pass fix it up.  */
975 	      if (! validate_change (insn, &SET_SRC (old_set), new_src, 0))
976 		{
977 		  rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
978 
979 		  if (! validate_change (insn, &PATTERN (insn), new_pat, 0))
980 		    SET_SRC (old_set) = new_src;
981 		}
982 	      lra_update_insn_recog_data (insn);
983 	      /* This can't have an effect on elimination offsets, so skip
984 		 right to the end.  */
985 	      return;
986 	    }
987 	}
988     }
989 
990   /* Eliminate all eliminable registers occurring in operands that
991      can be handled by the constraint pass.  */
992   id = lra_get_insn_recog_data (insn);
993   static_id = id->insn_static_data;
994   validate_p = false;
995   for (i = 0; i < static_id->n_operands; i++)
996     {
997       orig_operand[i] = *id->operand_loc[i];
998       substed_operand[i] = *id->operand_loc[i];
999 
1000       /* For an asm statement, every operand is eliminable.  */
1001       if (icode < 0 || insn_data[icode].operand[i].eliminable)
1002 	{
1003 	  /* Check for setting a hard register that we know about.  */
1004 	  if (static_id->operand[i].type != OP_IN
1005 	      && REG_P (orig_operand[i]))
1006 	    {
1007 	      /* If we are assigning to a hard register that can be
1008 		 eliminated, it must be as part of a PARALLEL, since
1009 		 the code above handles single SETs.  This reg cannot
1010 		 be longer eliminated -- it is forced by
1011 		 mark_not_eliminable.  */
1012 	      for (ep = reg_eliminate;
1013 		   ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
1014 		   ep++)
1015 		lra_assert (ep->from_rtx != orig_operand[i]
1016 			    || ! ep->can_eliminate);
1017 	    }
1018 
1019 	  /* Companion to the above plus substitution, we can allow
1020 	     invariants as the source of a plain move.	*/
1021 	  substed_operand[i]
1022 	    = lra_eliminate_regs_1 (insn, *id->operand_loc[i], VOIDmode,
1023 				    replace_p, ! replace_p && ! first_p,
1024 				    update_sp_offset, first_p);
1025 	  if (substed_operand[i] != orig_operand[i])
1026 	    validate_p = true;
1027 	}
1028     }
1029 
1030   if (! validate_p)
1031     return;
1032 
1033   /* Substitute the operands; the new values are in the substed_operand
1034      array.  */
1035   for (i = 0; i < static_id->n_operands; i++)
1036     *id->operand_loc[i] = substed_operand[i];
1037   for (i = 0; i < static_id->n_dups; i++)
1038     *id->dup_loc[i] = substed_operand[(int) static_id->dup_num[i]];
1039 
1040   /* Transform plus (plus (hard reg, const), pseudo) to plus (plus (pseudo,
1041      const), hard reg) in order to keep insn containing eliminated register
1042      after all reloads calculating its offset.  This permits to keep register
1043      pressure under control and helps to avoid LRA cycling in patalogical
1044      cases.  */
1045   if (! replace_p && (set = single_set (insn)) != NULL
1046       && GET_CODE (SET_SRC (set)) == PLUS
1047       && GET_CODE (XEXP (SET_SRC (set), 0)) == PLUS)
1048     {
1049       rtx reg1, reg2, op1, op2;
1050 
1051       reg1 = op1 = XEXP (XEXP (SET_SRC (set), 0), 0);
1052       reg2 = op2 = XEXP (SET_SRC (set), 1);
1053       if (GET_CODE (reg1) == SUBREG)
1054 	reg1 = SUBREG_REG (reg1);
1055       if (GET_CODE (reg2) == SUBREG)
1056 	reg2 = SUBREG_REG (reg2);
1057       if (REG_P (reg1) && REG_P (reg2)
1058 	  && REGNO (reg1) < FIRST_PSEUDO_REGISTER
1059 	  && REGNO (reg2) >= FIRST_PSEUDO_REGISTER
1060 	  && GET_MODE (reg1) == Pmode
1061 	  && !have_addptr3_insn (lra_pmode_pseudo, reg1,
1062 				 XEXP (XEXP (SET_SRC (set), 0), 1)))
1063 	{
1064 	  XEXP (XEXP (SET_SRC (set), 0), 0) = op2;
1065 	  XEXP (SET_SRC (set), 1) = op1;
1066 	}
1067     }
1068 
1069   /* If we had a move insn but now we don't, re-recognize it.
1070      This will cause spurious re-recognition if the old move had a
1071      PARALLEL since the new one still will, but we can't call
1072      single_set without having put new body into the insn and the
1073      re-recognition won't hurt in this rare case.  */
1074   lra_update_insn_recog_data (insn);
1075 }
1076 
1077 /* Spill pseudos which are assigned to hard registers in SET.  Add
1078    affected insns for processing in the subsequent constraint
1079    pass.  */
1080 static void
spill_pseudos(HARD_REG_SET set)1081 spill_pseudos (HARD_REG_SET set)
1082 {
1083   int i;
1084   bitmap_head to_process;
1085   rtx_insn *insn;
1086 
1087   if (hard_reg_set_empty_p (set))
1088     return;
1089   if (lra_dump_file != NULL)
1090     {
1091       fprintf (lra_dump_file, "	   Spilling non-eliminable hard regs:");
1092       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1093 	if (TEST_HARD_REG_BIT (set, i))
1094 	  fprintf (lra_dump_file, " %d", i);
1095       fprintf (lra_dump_file, "\n");
1096     }
1097   bitmap_initialize (&to_process, &reg_obstack);
1098   for (i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
1099     if (lra_reg_info[i].nrefs != 0 && reg_renumber[i] >= 0
1100 	&& overlaps_hard_reg_set_p (set,
1101 				    PSEUDO_REGNO_MODE (i), reg_renumber[i]))
1102       {
1103 	if (lra_dump_file != NULL)
1104 	  fprintf (lra_dump_file, "	 Spilling r%d(%d)\n",
1105 		   i, reg_renumber[i]);
1106 	reg_renumber[i] = -1;
1107 	bitmap_ior_into (&to_process, &lra_reg_info[i].insn_bitmap);
1108       }
1109   lra_no_alloc_regs |= set;
1110   for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
1111     if (bitmap_bit_p (&to_process, INSN_UID (insn)))
1112       {
1113 	lra_push_insn (insn);
1114 	lra_set_used_insn_alternative (insn, LRA_UNKNOWN_ALT);
1115       }
1116   bitmap_clear (&to_process);
1117 }
1118 
1119 /* Update all offsets and possibility for elimination on eliminable
1120    registers.  Spill pseudos assigned to registers which are
1121    uneliminable, update LRA_NO_ALLOC_REGS and ELIMINABLE_REG_SET.  Add
1122    insns to INSNS_WITH_CHANGED_OFFSETS containing eliminable hard
1123    registers whose offsets should be changed.  Return true if any
1124    elimination offset changed.  */
1125 static bool
update_reg_eliminate(bitmap insns_with_changed_offsets)1126 update_reg_eliminate (bitmap insns_with_changed_offsets)
1127 {
1128   bool prev, result;
1129   class lra_elim_table *ep, *ep1;
1130   HARD_REG_SET temp_hard_reg_set;
1131 
1132   targetm.compute_frame_layout ();
1133 
1134   /* Clear self elimination offsets.  */
1135   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1136     self_elim_offsets[ep->from] = 0;
1137   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1138     {
1139       /* If it is a currently used elimination: update the previous
1140 	 offset.  */
1141       if (elimination_map[ep->from] == ep)
1142 	ep->previous_offset = ep->offset;
1143 
1144       prev = ep->prev_can_eliminate;
1145       setup_can_eliminate (ep, targetm.can_eliminate (ep->from, ep->to));
1146       if (ep->can_eliminate && ! prev)
1147 	{
1148 	  /* It is possible that not eliminable register becomes
1149 	     eliminable because we took other reasons into account to
1150 	     set up eliminable regs in the initial set up.  Just
1151 	     ignore new eliminable registers.  */
1152 	  setup_can_eliminate (ep, false);
1153 	  continue;
1154 	}
1155       if (ep->can_eliminate != prev && elimination_map[ep->from] == ep)
1156 	{
1157 	  /* We cannot use this elimination anymore -- find another
1158 	     one.  */
1159 	  if (lra_dump_file != NULL)
1160 	    fprintf (lra_dump_file,
1161 		     "	Elimination %d to %d is not possible anymore\n",
1162 		     ep->from, ep->to);
1163 	  /* If after processing RTL we decides that SP can be used as
1164 	     a result of elimination, it cannot be changed.  */
1165 	  gcc_assert ((ep->to_rtx != stack_pointer_rtx)
1166 		      || (ep->from < FIRST_PSEUDO_REGISTER
1167 			  && fixed_regs [ep->from]));
1168 	  /* Mark that is not eliminable anymore.  */
1169 	  elimination_map[ep->from] = NULL;
1170 	  for (ep1 = ep + 1; ep1 < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep1++)
1171 	    if (ep1->can_eliminate && ep1->from == ep->from)
1172 	      break;
1173 	  if (ep1 < &reg_eliminate[NUM_ELIMINABLE_REGS])
1174 	    {
1175 	      if (lra_dump_file != NULL)
1176 		fprintf (lra_dump_file, "    Using elimination %d to %d now\n",
1177 			 ep1->from, ep1->to);
1178 	      lra_assert (known_eq (ep1->previous_offset, 0));
1179 	      ep1->previous_offset = ep->offset;
1180 	    }
1181 	  else
1182 	    {
1183 	      /* There is no elimination anymore just use the hard
1184 		 register `from' itself.  Setup self elimination
1185 		 offset to restore the original offset values.	*/
1186 	      if (lra_dump_file != NULL)
1187 		fprintf (lra_dump_file, "    %d is not eliminable at all\n",
1188 			 ep->from);
1189 	      self_elim_offsets[ep->from] = -ep->offset;
1190 	      if (maybe_ne (ep->offset, 0))
1191 		bitmap_ior_into (insns_with_changed_offsets,
1192 				 &lra_reg_info[ep->from].insn_bitmap);
1193 	    }
1194 	}
1195 
1196       INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->offset);
1197     }
1198   setup_elimination_map ();
1199   result = false;
1200   CLEAR_HARD_REG_SET (temp_hard_reg_set);
1201   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1202     if (elimination_map[ep->from] == NULL)
1203       add_to_hard_reg_set (&temp_hard_reg_set, Pmode, ep->from);
1204     else if (elimination_map[ep->from] == ep)
1205       {
1206 	/* Prevent the hard register into which we eliminate from
1207 	   the usage for pseudos.  */
1208         if (ep->from != ep->to)
1209 	  add_to_hard_reg_set (&temp_hard_reg_set, Pmode, ep->to);
1210 	if (maybe_ne (ep->previous_offset, ep->offset))
1211 	  {
1212 	    bitmap_ior_into (insns_with_changed_offsets,
1213 			     &lra_reg_info[ep->from].insn_bitmap);
1214 
1215 	    /* Update offset when the eliminate offset have been
1216 	       changed.  */
1217 	    lra_update_reg_val_offset (lra_reg_info[ep->from].val,
1218 				       ep->offset - ep->previous_offset);
1219 	    result = true;
1220 	  }
1221       }
1222   lra_no_alloc_regs |= temp_hard_reg_set;
1223   eliminable_regset &= ~temp_hard_reg_set;
1224   spill_pseudos (temp_hard_reg_set);
1225   return result;
1226 }
1227 
1228 /* Initialize the table of hard registers to eliminate.
1229    Pre-condition: global flag frame_pointer_needed has been set before
1230    calling this function.  */
1231 static void
init_elim_table(void)1232 init_elim_table (void)
1233 {
1234   class lra_elim_table *ep;
1235   bool value_p;
1236   const struct elim_table_1 *ep1;
1237 
1238   if (!reg_eliminate)
1239     reg_eliminate = XCNEWVEC (class lra_elim_table, NUM_ELIMINABLE_REGS);
1240 
1241   memset (self_elim_offsets, 0, sizeof (self_elim_offsets));
1242   /* Initiate member values which will be never changed.  */
1243   self_elim_table.can_eliminate = self_elim_table.prev_can_eliminate = true;
1244   self_elim_table.previous_offset = 0;
1245 
1246   for (ep = reg_eliminate, ep1 = reg_eliminate_1;
1247        ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
1248     {
1249       ep->offset = ep->previous_offset = 0;
1250       ep->from = ep1->from;
1251       ep->to = ep1->to;
1252       value_p = (targetm.can_eliminate (ep->from, ep->to)
1253 		 && ! (ep->to == STACK_POINTER_REGNUM
1254 		       && frame_pointer_needed
1255 		       && (! SUPPORTS_STACK_ALIGNMENT
1256 			   || ! stack_realign_fp)));
1257       setup_can_eliminate (ep, value_p);
1258     }
1259 
1260   /* Build the FROM and TO REG rtx's.  Note that code in gen_rtx_REG
1261      will cause, e.g., gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to
1262      equal stack_pointer_rtx.  We depend on this. Threfore we switch
1263      off that we are in LRA temporarily.  */
1264   lra_in_progress = 0;
1265   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1266     {
1267       ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
1268       ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
1269       eliminable_reg_rtx[ep->from] = ep->from_rtx;
1270     }
1271   lra_in_progress = 1;
1272 }
1273 
1274 /* Function for initialization of elimination once per function.  It
1275    sets up sp offset for each insn.  */
1276 static void
init_elimination(void)1277 init_elimination (void)
1278 {
1279   bool stop_to_sp_elimination_p;
1280   basic_block bb;
1281   rtx_insn *insn;
1282   class lra_elim_table *ep;
1283 
1284   init_elim_table ();
1285   FOR_EACH_BB_FN (bb, cfun)
1286     {
1287       curr_sp_change = 0;
1288       stop_to_sp_elimination_p = false;
1289       FOR_BB_INSNS (bb, insn)
1290 	if (INSN_P (insn))
1291 	  {
1292 	    lra_get_insn_recog_data (insn)->sp_offset = curr_sp_change;
1293 	    if (NONDEBUG_INSN_P (insn))
1294 	      {
1295 		mark_not_eliminable (PATTERN (insn), VOIDmode);
1296 		if (maybe_ne (curr_sp_change, 0)
1297 		    && find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX))
1298 		  stop_to_sp_elimination_p = true;
1299 	      }
1300 	  }
1301       if (! frame_pointer_needed
1302 	  && (maybe_ne (curr_sp_change, 0) || stop_to_sp_elimination_p)
1303 	  && bb->succs && bb->succs->length () != 0)
1304 	for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1305 	  if (ep->to == STACK_POINTER_REGNUM)
1306 	    setup_can_eliminate (ep, false);
1307     }
1308   setup_elimination_map ();
1309 }
1310 
1311 /* Eliminate hard reg given by its location LOC.  */
1312 void
lra_eliminate_reg_if_possible(rtx * loc)1313 lra_eliminate_reg_if_possible (rtx *loc)
1314 {
1315   int regno;
1316   class lra_elim_table *ep;
1317 
1318   lra_assert (REG_P (*loc));
1319   if ((regno = REGNO (*loc)) >= FIRST_PSEUDO_REGISTER
1320       || ! TEST_HARD_REG_BIT (lra_no_alloc_regs, regno))
1321     return;
1322   if ((ep = get_elimination (*loc)) != NULL)
1323     *loc = ep->to_rtx;
1324 }
1325 
1326 /* Do (final if FINAL_P or first if FIRST_P) elimination in INSN.  Add
1327    the insn for subsequent processing in the constraint pass, update
1328    the insn info.  */
1329 static void
process_insn_for_elimination(rtx_insn * insn,bool final_p,bool first_p)1330 process_insn_for_elimination (rtx_insn *insn, bool final_p, bool first_p)
1331 {
1332   eliminate_regs_in_insn (insn, final_p, first_p, 0);
1333   if (! final_p)
1334     {
1335       /* Check that insn changed its code.  This is a case when a move
1336 	 insn becomes an add insn and we do not want to process the
1337 	 insn as a move anymore.  */
1338       int icode = recog (PATTERN (insn), insn, 0);
1339 
1340       if (icode >= 0 && icode != INSN_CODE (insn))
1341 	{
1342 	  if (INSN_CODE (insn) >= 0)
1343 	    /* Insn code is changed.  It may change its operand type
1344 	       from IN to INOUT.  Inform the subsequent assignment
1345 	       subpass about this situation.  */
1346 	    check_and_force_assignment_correctness_p = true;
1347 	  INSN_CODE (insn) = icode;
1348 	  lra_update_insn_recog_data (insn);
1349 	}
1350       lra_update_insn_regno_info (insn);
1351       lra_push_insn (insn);
1352       lra_set_used_insn_alternative (insn, LRA_UNKNOWN_ALT);
1353     }
1354 }
1355 
1356 /* Entry function to do final elimination if FINAL_P or to update
1357    elimination register offsets (FIRST_P if we are doing it the first
1358    time).  */
1359 void
lra_eliminate(bool final_p,bool first_p)1360 lra_eliminate (bool final_p, bool first_p)
1361 {
1362   unsigned int uid;
1363   bitmap_head insns_with_changed_offsets;
1364   bitmap_iterator bi;
1365   class lra_elim_table *ep;
1366 
1367   gcc_assert (! final_p || ! first_p);
1368 
1369   timevar_push (TV_LRA_ELIMINATE);
1370 
1371   if (first_p)
1372     init_elimination ();
1373 
1374   bitmap_initialize (&insns_with_changed_offsets, &reg_obstack);
1375   if (final_p)
1376     {
1377       if (flag_checking)
1378 	{
1379 	  update_reg_eliminate (&insns_with_changed_offsets);
1380 	  gcc_assert (bitmap_empty_p (&insns_with_changed_offsets));
1381 	}
1382       /* We change eliminable hard registers in insns so we should do
1383 	 this for all insns containing any eliminable hard
1384 	 register.  */
1385       for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1386 	if (elimination_map[ep->from] != NULL)
1387 	  bitmap_ior_into (&insns_with_changed_offsets,
1388 			   &lra_reg_info[ep->from].insn_bitmap);
1389     }
1390   else if (! update_reg_eliminate (&insns_with_changed_offsets))
1391     goto lra_eliminate_done;
1392   if (lra_dump_file != NULL)
1393     {
1394       fprintf (lra_dump_file, "New elimination table:\n");
1395       print_elim_table (lra_dump_file);
1396     }
1397   EXECUTE_IF_SET_IN_BITMAP (&insns_with_changed_offsets, 0, uid, bi)
1398     /* A dead insn can be deleted in process_insn_for_elimination.  */
1399     if (lra_insn_recog_data[uid] != NULL)
1400       process_insn_for_elimination (lra_insn_recog_data[uid]->insn,
1401 				    final_p, first_p);
1402   bitmap_clear (&insns_with_changed_offsets);
1403 
1404 lra_eliminate_done:
1405   timevar_pop (TV_LRA_ELIMINATE);
1406 }
1407