1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package bytes
6
7// Simple byte buffer for marshaling data.
8
9import (
10	"errors"
11	"io"
12	"unicode/utf8"
13)
14
15// smallBufferSize is an initial allocation minimal capacity.
16const smallBufferSize = 64
17
18// A Buffer is a variable-sized buffer of bytes with Read and Write methods.
19// The zero value for Buffer is an empty buffer ready to use.
20type Buffer struct {
21	buf      []byte // contents are the bytes buf[off : len(buf)]
22	off      int    // read at &buf[off], write at &buf[len(buf)]
23	lastRead readOp // last read operation, so that Unread* can work correctly.
24}
25
26// The readOp constants describe the last action performed on
27// the buffer, so that UnreadRune and UnreadByte can check for
28// invalid usage. opReadRuneX constants are chosen such that
29// converted to int they correspond to the rune size that was read.
30type readOp int8
31
32// Don't use iota for these, as the values need to correspond with the
33// names and comments, which is easier to see when being explicit.
34const (
35	opRead      readOp = -1 // Any other read operation.
36	opInvalid   readOp = 0  // Non-read operation.
37	opReadRune1 readOp = 1  // Read rune of size 1.
38	opReadRune2 readOp = 2  // Read rune of size 2.
39	opReadRune3 readOp = 3  // Read rune of size 3.
40	opReadRune4 readOp = 4  // Read rune of size 4.
41)
42
43// ErrTooLarge is passed to panic if memory cannot be allocated to store data in a buffer.
44var ErrTooLarge = errors.New("bytes.Buffer: too large")
45var errNegativeRead = errors.New("bytes.Buffer: reader returned negative count from Read")
46
47const maxInt = int(^uint(0) >> 1)
48
49// Bytes returns a slice of length b.Len() holding the unread portion of the buffer.
50// The slice is valid for use only until the next buffer modification (that is,
51// only until the next call to a method like Read, Write, Reset, or Truncate).
52// The slice aliases the buffer content at least until the next buffer modification,
53// so immediate changes to the slice will affect the result of future reads.
54func (b *Buffer) Bytes() []byte { return b.buf[b.off:] }
55
56// String returns the contents of the unread portion of the buffer
57// as a string. If the Buffer is a nil pointer, it returns "<nil>".
58//
59// To build strings more efficiently, see the strings.Builder type.
60func (b *Buffer) String() string {
61	if b == nil {
62		// Special case, useful in debugging.
63		return "<nil>"
64	}
65	return string(b.buf[b.off:])
66}
67
68// empty reports whether the unread portion of the buffer is empty.
69func (b *Buffer) empty() bool { return len(b.buf) <= b.off }
70
71// Len returns the number of bytes of the unread portion of the buffer;
72// b.Len() == len(b.Bytes()).
73func (b *Buffer) Len() int { return len(b.buf) - b.off }
74
75// Cap returns the capacity of the buffer's underlying byte slice, that is, the
76// total space allocated for the buffer's data.
77func (b *Buffer) Cap() int { return cap(b.buf) }
78
79// Truncate discards all but the first n unread bytes from the buffer
80// but continues to use the same allocated storage.
81// It panics if n is negative or greater than the length of the buffer.
82func (b *Buffer) Truncate(n int) {
83	if n == 0 {
84		b.Reset()
85		return
86	}
87	b.lastRead = opInvalid
88	if n < 0 || n > b.Len() {
89		panic("bytes.Buffer: truncation out of range")
90	}
91	b.buf = b.buf[:b.off+n]
92}
93
94// Reset resets the buffer to be empty,
95// but it retains the underlying storage for use by future writes.
96// Reset is the same as Truncate(0).
97func (b *Buffer) Reset() {
98	b.buf = b.buf[:0]
99	b.off = 0
100	b.lastRead = opInvalid
101}
102
103// tryGrowByReslice is a inlineable version of grow for the fast-case where the
104// internal buffer only needs to be resliced.
105// It returns the index where bytes should be written and whether it succeeded.
106func (b *Buffer) tryGrowByReslice(n int) (int, bool) {
107	if l := len(b.buf); n <= cap(b.buf)-l {
108		b.buf = b.buf[:l+n]
109		return l, true
110	}
111	return 0, false
112}
113
114// grow grows the buffer to guarantee space for n more bytes.
115// It returns the index where bytes should be written.
116// If the buffer can't grow it will panic with ErrTooLarge.
117func (b *Buffer) grow(n int) int {
118	m := b.Len()
119	// If buffer is empty, reset to recover space.
120	if m == 0 && b.off != 0 {
121		b.Reset()
122	}
123	// Try to grow by means of a reslice.
124	if i, ok := b.tryGrowByReslice(n); ok {
125		return i
126	}
127	if b.buf == nil && n <= smallBufferSize {
128		b.buf = make([]byte, n, smallBufferSize)
129		return 0
130	}
131	c := cap(b.buf)
132	if n <= c/2-m {
133		// We can slide things down instead of allocating a new
134		// slice. We only need m+n <= c to slide, but
135		// we instead let capacity get twice as large so we
136		// don't spend all our time copying.
137		copy(b.buf, b.buf[b.off:])
138	} else if c > maxInt-c-n {
139		panic(ErrTooLarge)
140	} else {
141		// Not enough space anywhere, we need to allocate.
142		buf := makeSlice(2*c + n)
143		copy(buf, b.buf[b.off:])
144		b.buf = buf
145	}
146	// Restore b.off and len(b.buf).
147	b.off = 0
148	b.buf = b.buf[:m+n]
149	return m
150}
151
152// Grow grows the buffer's capacity, if necessary, to guarantee space for
153// another n bytes. After Grow(n), at least n bytes can be written to the
154// buffer without another allocation.
155// If n is negative, Grow will panic.
156// If the buffer can't grow it will panic with ErrTooLarge.
157func (b *Buffer) Grow(n int) {
158	if n < 0 {
159		panic("bytes.Buffer.Grow: negative count")
160	}
161	m := b.grow(n)
162	b.buf = b.buf[:m]
163}
164
165// Write appends the contents of p to the buffer, growing the buffer as
166// needed. The return value n is the length of p; err is always nil. If the
167// buffer becomes too large, Write will panic with ErrTooLarge.
168func (b *Buffer) Write(p []byte) (n int, err error) {
169	b.lastRead = opInvalid
170	m, ok := b.tryGrowByReslice(len(p))
171	if !ok {
172		m = b.grow(len(p))
173	}
174	return copy(b.buf[m:], p), nil
175}
176
177// WriteString appends the contents of s to the buffer, growing the buffer as
178// needed. The return value n is the length of s; err is always nil. If the
179// buffer becomes too large, WriteString will panic with ErrTooLarge.
180func (b *Buffer) WriteString(s string) (n int, err error) {
181	b.lastRead = opInvalid
182	m, ok := b.tryGrowByReslice(len(s))
183	if !ok {
184		m = b.grow(len(s))
185	}
186	return copy(b.buf[m:], s), nil
187}
188
189// MinRead is the minimum slice size passed to a Read call by
190// Buffer.ReadFrom. As long as the Buffer has at least MinRead bytes beyond
191// what is required to hold the contents of r, ReadFrom will not grow the
192// underlying buffer.
193const MinRead = 512
194
195// ReadFrom reads data from r until EOF and appends it to the buffer, growing
196// the buffer as needed. The return value n is the number of bytes read. Any
197// error except io.EOF encountered during the read is also returned. If the
198// buffer becomes too large, ReadFrom will panic with ErrTooLarge.
199func (b *Buffer) ReadFrom(r io.Reader) (n int64, err error) {
200	b.lastRead = opInvalid
201	for {
202		i := b.grow(MinRead)
203		b.buf = b.buf[:i]
204		m, e := r.Read(b.buf[i:cap(b.buf)])
205		if m < 0 {
206			panic(errNegativeRead)
207		}
208
209		b.buf = b.buf[:i+m]
210		n += int64(m)
211		if e == io.EOF {
212			return n, nil // e is EOF, so return nil explicitly
213		}
214		if e != nil {
215			return n, e
216		}
217	}
218}
219
220// makeSlice allocates a slice of size n. If the allocation fails, it panics
221// with ErrTooLarge.
222func makeSlice(n int) []byte {
223	// If the make fails, give a known error.
224	defer func() {
225		if recover() != nil {
226			panic(ErrTooLarge)
227		}
228	}()
229	return make([]byte, n)
230}
231
232// WriteTo writes data to w until the buffer is drained or an error occurs.
233// The return value n is the number of bytes written; it always fits into an
234// int, but it is int64 to match the io.WriterTo interface. Any error
235// encountered during the write is also returned.
236func (b *Buffer) WriteTo(w io.Writer) (n int64, err error) {
237	b.lastRead = opInvalid
238	if nBytes := b.Len(); nBytes > 0 {
239		m, e := w.Write(b.buf[b.off:])
240		if m > nBytes {
241			panic("bytes.Buffer.WriteTo: invalid Write count")
242		}
243		b.off += m
244		n = int64(m)
245		if e != nil {
246			return n, e
247		}
248		// all bytes should have been written, by definition of
249		// Write method in io.Writer
250		if m != nBytes {
251			return n, io.ErrShortWrite
252		}
253	}
254	// Buffer is now empty; reset.
255	b.Reset()
256	return n, nil
257}
258
259// WriteByte appends the byte c to the buffer, growing the buffer as needed.
260// The returned error is always nil, but is included to match bufio.Writer's
261// WriteByte. If the buffer becomes too large, WriteByte will panic with
262// ErrTooLarge.
263func (b *Buffer) WriteByte(c byte) error {
264	b.lastRead = opInvalid
265	m, ok := b.tryGrowByReslice(1)
266	if !ok {
267		m = b.grow(1)
268	}
269	b.buf[m] = c
270	return nil
271}
272
273// WriteRune appends the UTF-8 encoding of Unicode code point r to the
274// buffer, returning its length and an error, which is always nil but is
275// included to match bufio.Writer's WriteRune. The buffer is grown as needed;
276// if it becomes too large, WriteRune will panic with ErrTooLarge.
277func (b *Buffer) WriteRune(r rune) (n int, err error) {
278	// Compare as uint32 to correctly handle negative runes.
279	if uint32(r) < utf8.RuneSelf {
280		b.WriteByte(byte(r))
281		return 1, nil
282	}
283	b.lastRead = opInvalid
284	m, ok := b.tryGrowByReslice(utf8.UTFMax)
285	if !ok {
286		m = b.grow(utf8.UTFMax)
287	}
288	n = utf8.EncodeRune(b.buf[m:m+utf8.UTFMax], r)
289	b.buf = b.buf[:m+n]
290	return n, nil
291}
292
293// Read reads the next len(p) bytes from the buffer or until the buffer
294// is drained. The return value n is the number of bytes read. If the
295// buffer has no data to return, err is io.EOF (unless len(p) is zero);
296// otherwise it is nil.
297func (b *Buffer) Read(p []byte) (n int, err error) {
298	b.lastRead = opInvalid
299	if b.empty() {
300		// Buffer is empty, reset to recover space.
301		b.Reset()
302		if len(p) == 0 {
303			return 0, nil
304		}
305		return 0, io.EOF
306	}
307	n = copy(p, b.buf[b.off:])
308	b.off += n
309	if n > 0 {
310		b.lastRead = opRead
311	}
312	return n, nil
313}
314
315// Next returns a slice containing the next n bytes from the buffer,
316// advancing the buffer as if the bytes had been returned by Read.
317// If there are fewer than n bytes in the buffer, Next returns the entire buffer.
318// The slice is only valid until the next call to a read or write method.
319func (b *Buffer) Next(n int) []byte {
320	b.lastRead = opInvalid
321	m := b.Len()
322	if n > m {
323		n = m
324	}
325	data := b.buf[b.off : b.off+n]
326	b.off += n
327	if n > 0 {
328		b.lastRead = opRead
329	}
330	return data
331}
332
333// ReadByte reads and returns the next byte from the buffer.
334// If no byte is available, it returns error io.EOF.
335func (b *Buffer) ReadByte() (byte, error) {
336	if b.empty() {
337		// Buffer is empty, reset to recover space.
338		b.Reset()
339		return 0, io.EOF
340	}
341	c := b.buf[b.off]
342	b.off++
343	b.lastRead = opRead
344	return c, nil
345}
346
347// ReadRune reads and returns the next UTF-8-encoded
348// Unicode code point from the buffer.
349// If no bytes are available, the error returned is io.EOF.
350// If the bytes are an erroneous UTF-8 encoding, it
351// consumes one byte and returns U+FFFD, 1.
352func (b *Buffer) ReadRune() (r rune, size int, err error) {
353	if b.empty() {
354		// Buffer is empty, reset to recover space.
355		b.Reset()
356		return 0, 0, io.EOF
357	}
358	c := b.buf[b.off]
359	if c < utf8.RuneSelf {
360		b.off++
361		b.lastRead = opReadRune1
362		return rune(c), 1, nil
363	}
364	r, n := utf8.DecodeRune(b.buf[b.off:])
365	b.off += n
366	b.lastRead = readOp(n)
367	return r, n, nil
368}
369
370// UnreadRune unreads the last rune returned by ReadRune.
371// If the most recent read or write operation on the buffer was
372// not a successful ReadRune, UnreadRune returns an error.  (In this regard
373// it is stricter than UnreadByte, which will unread the last byte
374// from any read operation.)
375func (b *Buffer) UnreadRune() error {
376	if b.lastRead <= opInvalid {
377		return errors.New("bytes.Buffer: UnreadRune: previous operation was not a successful ReadRune")
378	}
379	if b.off >= int(b.lastRead) {
380		b.off -= int(b.lastRead)
381	}
382	b.lastRead = opInvalid
383	return nil
384}
385
386var errUnreadByte = errors.New("bytes.Buffer: UnreadByte: previous operation was not a successful read")
387
388// UnreadByte unreads the last byte returned by the most recent successful
389// read operation that read at least one byte. If a write has happened since
390// the last read, if the last read returned an error, or if the read read zero
391// bytes, UnreadByte returns an error.
392func (b *Buffer) UnreadByte() error {
393	if b.lastRead == opInvalid {
394		return errUnreadByte
395	}
396	b.lastRead = opInvalid
397	if b.off > 0 {
398		b.off--
399	}
400	return nil
401}
402
403// ReadBytes reads until the first occurrence of delim in the input,
404// returning a slice containing the data up to and including the delimiter.
405// If ReadBytes encounters an error before finding a delimiter,
406// it returns the data read before the error and the error itself (often io.EOF).
407// ReadBytes returns err != nil if and only if the returned data does not end in
408// delim.
409func (b *Buffer) ReadBytes(delim byte) (line []byte, err error) {
410	slice, err := b.readSlice(delim)
411	// return a copy of slice. The buffer's backing array may
412	// be overwritten by later calls.
413	line = append(line, slice...)
414	return line, err
415}
416
417// readSlice is like ReadBytes but returns a reference to internal buffer data.
418func (b *Buffer) readSlice(delim byte) (line []byte, err error) {
419	i := IndexByte(b.buf[b.off:], delim)
420	end := b.off + i + 1
421	if i < 0 {
422		end = len(b.buf)
423		err = io.EOF
424	}
425	line = b.buf[b.off:end]
426	b.off = end
427	b.lastRead = opRead
428	return line, err
429}
430
431// ReadString reads until the first occurrence of delim in the input,
432// returning a string containing the data up to and including the delimiter.
433// If ReadString encounters an error before finding a delimiter,
434// it returns the data read before the error and the error itself (often io.EOF).
435// ReadString returns err != nil if and only if the returned data does not end
436// in delim.
437func (b *Buffer) ReadString(delim byte) (line string, err error) {
438	slice, err := b.readSlice(delim)
439	return string(slice), err
440}
441
442// NewBuffer creates and initializes a new Buffer using buf as its
443// initial contents. The new Buffer takes ownership of buf, and the
444// caller should not use buf after this call. NewBuffer is intended to
445// prepare a Buffer to read existing data. It can also be used to set
446// the initial size of the internal buffer for writing. To do that,
447// buf should have the desired capacity but a length of zero.
448//
449// In most cases, new(Buffer) (or just declaring a Buffer variable) is
450// sufficient to initialize a Buffer.
451func NewBuffer(buf []byte) *Buffer { return &Buffer{buf: buf} }
452
453// NewBufferString creates and initializes a new Buffer using string s as its
454// initial contents. It is intended to prepare a buffer to read an existing
455// string.
456//
457// In most cases, new(Buffer) (or just declaring a Buffer variable) is
458// sufficient to initialize a Buffer.
459func NewBufferString(s string) *Buffer {
460	return &Buffer{buf: []byte(s)}
461}
462