1// Copyright 2013 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package rsa
6
7// This file implements the RSASSA-PSS signature scheme according to RFC 8017.
8
9import (
10	"bytes"
11	"crypto"
12	"errors"
13	"hash"
14	"io"
15	"math/big"
16)
17
18// Per RFC 8017, Section 9.1
19//
20//     EM = MGF1 xor DB || H( 8*0x00 || mHash || salt ) || 0xbc
21//
22// where
23//
24//     DB = PS || 0x01 || salt
25//
26// and PS can be empty so
27//
28//     emLen = dbLen + hLen + 1 = psLen + sLen + hLen + 2
29//
30
31func emsaPSSEncode(mHash []byte, emBits int, salt []byte, hash hash.Hash) ([]byte, error) {
32	// See RFC 8017, Section 9.1.1.
33
34	hLen := hash.Size()
35	sLen := len(salt)
36	emLen := (emBits + 7) / 8
37
38	// 1.  If the length of M is greater than the input limitation for the
39	//     hash function (2^61 - 1 octets for SHA-1), output "message too
40	//     long" and stop.
41	//
42	// 2.  Let mHash = Hash(M), an octet string of length hLen.
43
44	if len(mHash) != hLen {
45		return nil, errors.New("crypto/rsa: input must be hashed with given hash")
46	}
47
48	// 3.  If emLen < hLen + sLen + 2, output "encoding error" and stop.
49
50	if emLen < hLen+sLen+2 {
51		return nil, errors.New("crypto/rsa: key size too small for PSS signature")
52	}
53
54	em := make([]byte, emLen)
55	psLen := emLen - sLen - hLen - 2
56	db := em[:psLen+1+sLen]
57	h := em[psLen+1+sLen : emLen-1]
58
59	// 4.  Generate a random octet string salt of length sLen; if sLen = 0,
60	//     then salt is the empty string.
61	//
62	// 5.  Let
63	//       M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt;
64	//
65	//     M' is an octet string of length 8 + hLen + sLen with eight
66	//     initial zero octets.
67	//
68	// 6.  Let H = Hash(M'), an octet string of length hLen.
69
70	var prefix [8]byte
71
72	hash.Write(prefix[:])
73	hash.Write(mHash)
74	hash.Write(salt)
75
76	h = hash.Sum(h[:0])
77	hash.Reset()
78
79	// 7.  Generate an octet string PS consisting of emLen - sLen - hLen - 2
80	//     zero octets. The length of PS may be 0.
81	//
82	// 8.  Let DB = PS || 0x01 || salt; DB is an octet string of length
83	//     emLen - hLen - 1.
84
85	db[psLen] = 0x01
86	copy(db[psLen+1:], salt)
87
88	// 9.  Let dbMask = MGF(H, emLen - hLen - 1).
89	//
90	// 10. Let maskedDB = DB \xor dbMask.
91
92	mgf1XOR(db, hash, h)
93
94	// 11. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in
95	//     maskedDB to zero.
96
97	db[0] &= 0xff >> (8*emLen - emBits)
98
99	// 12. Let EM = maskedDB || H || 0xbc.
100	em[emLen-1] = 0xbc
101
102	// 13. Output EM.
103	return em, nil
104}
105
106func emsaPSSVerify(mHash, em []byte, emBits, sLen int, hash hash.Hash) error {
107	// See RFC 8017, Section 9.1.2.
108
109	hLen := hash.Size()
110	if sLen == PSSSaltLengthEqualsHash {
111		sLen = hLen
112	}
113	emLen := (emBits + 7) / 8
114	if emLen != len(em) {
115		return errors.New("rsa: internal error: inconsistent length")
116	}
117
118	// 1.  If the length of M is greater than the input limitation for the
119	//     hash function (2^61 - 1 octets for SHA-1), output "inconsistent"
120	//     and stop.
121	//
122	// 2.  Let mHash = Hash(M), an octet string of length hLen.
123	if hLen != len(mHash) {
124		return ErrVerification
125	}
126
127	// 3.  If emLen < hLen + sLen + 2, output "inconsistent" and stop.
128	if emLen < hLen+sLen+2 {
129		return ErrVerification
130	}
131
132	// 4.  If the rightmost octet of EM does not have hexadecimal value
133	//     0xbc, output "inconsistent" and stop.
134	if em[emLen-1] != 0xbc {
135		return ErrVerification
136	}
137
138	// 5.  Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and
139	//     let H be the next hLen octets.
140	db := em[:emLen-hLen-1]
141	h := em[emLen-hLen-1 : emLen-1]
142
143	// 6.  If the leftmost 8 * emLen - emBits bits of the leftmost octet in
144	//     maskedDB are not all equal to zero, output "inconsistent" and
145	//     stop.
146	var bitMask byte = 0xff >> (8*emLen - emBits)
147	if em[0] & ^bitMask != 0 {
148		return ErrVerification
149	}
150
151	// 7.  Let dbMask = MGF(H, emLen - hLen - 1).
152	//
153	// 8.  Let DB = maskedDB \xor dbMask.
154	mgf1XOR(db, hash, h)
155
156	// 9.  Set the leftmost 8 * emLen - emBits bits of the leftmost octet in DB
157	//     to zero.
158	db[0] &= bitMask
159
160	// If we don't know the salt length, look for the 0x01 delimiter.
161	if sLen == PSSSaltLengthAuto {
162		psLen := bytes.IndexByte(db, 0x01)
163		if psLen < 0 {
164			return ErrVerification
165		}
166		sLen = len(db) - psLen - 1
167	}
168
169	// 10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not zero
170	//     or if the octet at position emLen - hLen - sLen - 1 (the leftmost
171	//     position is "position 1") does not have hexadecimal value 0x01,
172	//     output "inconsistent" and stop.
173	psLen := emLen - hLen - sLen - 2
174	for _, e := range db[:psLen] {
175		if e != 0x00 {
176			return ErrVerification
177		}
178	}
179	if db[psLen] != 0x01 {
180		return ErrVerification
181	}
182
183	// 11.  Let salt be the last sLen octets of DB.
184	salt := db[len(db)-sLen:]
185
186	// 12.  Let
187	//          M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt ;
188	//     M' is an octet string of length 8 + hLen + sLen with eight
189	//     initial zero octets.
190	//
191	// 13. Let H' = Hash(M'), an octet string of length hLen.
192	var prefix [8]byte
193	hash.Write(prefix[:])
194	hash.Write(mHash)
195	hash.Write(salt)
196
197	h0 := hash.Sum(nil)
198
199	// 14. If H = H', output "consistent." Otherwise, output "inconsistent."
200	if !bytes.Equal(h0, h) { // TODO: constant time?
201		return ErrVerification
202	}
203	return nil
204}
205
206// signPSSWithSalt calculates the signature of hashed using PSS with specified salt.
207// Note that hashed must be the result of hashing the input message using the
208// given hash function. salt is a random sequence of bytes whose length will be
209// later used to verify the signature.
210func signPSSWithSalt(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed, salt []byte) ([]byte, error) {
211	emBits := priv.N.BitLen() - 1
212	em, err := emsaPSSEncode(hashed, emBits, salt, hash.New())
213	if err != nil {
214		return nil, err
215	}
216	m := new(big.Int).SetBytes(em)
217	c, err := decryptAndCheck(rand, priv, m)
218	if err != nil {
219		return nil, err
220	}
221	s := make([]byte, priv.Size())
222	return c.FillBytes(s), nil
223}
224
225const (
226	// PSSSaltLengthAuto causes the salt in a PSS signature to be as large
227	// as possible when signing, and to be auto-detected when verifying.
228	PSSSaltLengthAuto = 0
229	// PSSSaltLengthEqualsHash causes the salt length to equal the length
230	// of the hash used in the signature.
231	PSSSaltLengthEqualsHash = -1
232)
233
234// PSSOptions contains options for creating and verifying PSS signatures.
235type PSSOptions struct {
236	// SaltLength controls the length of the salt used in the PSS
237	// signature. It can either be a number of bytes, or one of the special
238	// PSSSaltLength constants.
239	SaltLength int
240
241	// Hash is the hash function used to generate the message digest. If not
242	// zero, it overrides the hash function passed to SignPSS. It's required
243	// when using PrivateKey.Sign.
244	Hash crypto.Hash
245}
246
247// HashFunc returns opts.Hash so that PSSOptions implements crypto.SignerOpts.
248func (opts *PSSOptions) HashFunc() crypto.Hash {
249	return opts.Hash
250}
251
252func (opts *PSSOptions) saltLength() int {
253	if opts == nil {
254		return PSSSaltLengthAuto
255	}
256	return opts.SaltLength
257}
258
259// SignPSS calculates the signature of digest using PSS.
260//
261// digest must be the result of hashing the input message using the given hash
262// function. The opts argument may be nil, in which case sensible defaults are
263// used. If opts.Hash is set, it overrides hash.
264func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, digest []byte, opts *PSSOptions) ([]byte, error) {
265	if opts != nil && opts.Hash != 0 {
266		hash = opts.Hash
267	}
268
269	saltLength := opts.saltLength()
270	switch saltLength {
271	case PSSSaltLengthAuto:
272		saltLength = (priv.N.BitLen()-1+7)/8 - 2 - hash.Size()
273	case PSSSaltLengthEqualsHash:
274		saltLength = hash.Size()
275	}
276
277	salt := make([]byte, saltLength)
278	if _, err := io.ReadFull(rand, salt); err != nil {
279		return nil, err
280	}
281	return signPSSWithSalt(rand, priv, hash, digest, salt)
282}
283
284// VerifyPSS verifies a PSS signature.
285//
286// A valid signature is indicated by returning a nil error. digest must be the
287// result of hashing the input message using the given hash function. The opts
288// argument may be nil, in which case sensible defaults are used. opts.Hash is
289// ignored.
290func VerifyPSS(pub *PublicKey, hash crypto.Hash, digest []byte, sig []byte, opts *PSSOptions) error {
291	if len(sig) != pub.Size() {
292		return ErrVerification
293	}
294	s := new(big.Int).SetBytes(sig)
295	m := encrypt(new(big.Int), pub, s)
296	emBits := pub.N.BitLen() - 1
297	emLen := (emBits + 7) / 8
298	if m.BitLen() > emLen*8 {
299		return ErrVerification
300	}
301	em := m.FillBytes(make([]byte, emLen))
302	return emsaPSSVerify(digest, em, emBits, opts.saltLength(), hash.New())
303}
304