1! { dg-options "-O3 -fgraphite-identity -floop-interchange " }
2
3module mqc_m
4
5
6implicit none
7
8private
9public :: mutual_ind_quad_cir_coil
10
11integer, parameter, private :: longreal = selected_real_kind(15,90)
12real (kind = longreal), parameter, private :: pi = 3.141592653589793_longreal
13real (kind = longreal), parameter, private :: small = 1.0e-10_longreal
14
15contains
16
17      subroutine mutual_ind_quad_cir_coil (r_coil, x_coil, y_coil, z_coil, h_coil, n_coil,  &
18                                                      rotate_coil, m, mu, l12)
19      real (kind = longreal), intent(in) :: r_coil, x_coil, y_coil, z_coil, h_coil, n_coil, &
20                                            mu
21      real (kind = longreal), dimension(:,:), intent(in) :: rotate_coil
22      integer, intent(in) :: m
23      real (kind = longreal), intent(out) :: l12
24      real (kind = longreal), dimension(3,3) :: rotate_quad
25      real (kind = longreal), dimension(9), save :: x2gauss, y2gauss, w2gauss, z1gauss,     &
26                                                    w1gauss
27      real (kind = longreal) :: xxvec, xyvec, xzvec, yxvec, yyvec, yzvec, zxvec, zyvec,     &
28                                zzvec, magnitude, l12_lower, l12_upper, dx, dy, dz, theta,  &
29                                a, b1, b2, numerator, denominator, coefficient, angle
30      real (kind = longreal), dimension(3) :: c_vector, q_vector, rot_c_vector,             &
31                                              rot_q_vector, current_vector,                 &
32                                              coil_current_vec, coil_tmp_vector
33      integer :: i, j, k
34      logical, save :: first = .true.
35
36      do i = 1, 2*m
37          theta = pi*real(i,longreal)/real(m,longreal)
38          c_vector(1) = r_coil * cos(theta)
39          c_vector(2) = r_coil * sin(theta)
40          coil_tmp_vector(1) = -sin(theta)
41          coil_tmp_vector(2) = cos(theta)
42          coil_tmp_vector(3) = 0.0_longreal
43          coil_current_vec(1) = dot_product(rotate_coil(1,:),coil_tmp_vector(:))
44          coil_current_vec(2) = dot_product(rotate_coil(2,:),coil_tmp_vector(:))
45          coil_current_vec(3) = dot_product(rotate_coil(3,:),coil_tmp_vector(:))
46          do j = 1, 9
47              c_vector(3) = 0.5 * h_coil * z1gauss(j)
48              rot_c_vector(1) = dot_product(rotate_coil(1,:),c_vector(:)) + dx
49              rot_c_vector(2) = dot_product(rotate_coil(2,:),c_vector(:)) + dy
50              rot_c_vector(3) = dot_product(rotate_coil(3,:),c_vector(:)) + dz
51              do k = 1, 9
52                  q_vector(1) = 0.5_longreal * a * (x2gauss(k) + 1.0_longreal)
53                  q_vector(2) = 0.5_longreal * b1 * (y2gauss(k) - 1.0_longreal)
54                  q_vector(3) = 0.0_longreal
55                  rot_q_vector(1) = dot_product(rotate_quad(1,:),q_vector(:))
56                  rot_q_vector(2) = dot_product(rotate_quad(2,:),q_vector(:))
57                  rot_q_vector(3) = dot_product(rotate_quad(3,:),q_vector(:))
58                  numerator = w1gauss(j) * w2gauss(k) *                                     &
59                                                 dot_product(coil_current_vec,current_vector)
60                  denominator = sqrt(dot_product(rot_c_vector-rot_q_vector,                 &
61                                                                  rot_c_vector-rot_q_vector))
62                  l12_lower = l12_lower + numerator/denominator
63              end do
64          end do
65      end do
66      l12 = coefficient * (b1 * l12_lower + b2 * l12_upper)
67      end subroutine mutual_ind_quad_cir_coil
68
69end module mqc_m
70