1 /* fmodq.c -- __float128 version of e_fmod.c.
2  * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
3  */
4 /*
5  * ====================================================
6  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7  *
8  * Developed at SunPro, a Sun Microsystems, Inc. business.
9  * Permission to use, copy, modify, and distribute this
10  * software is freely granted, provided that this notice
11  * is preserved.
12  * ====================================================
13  */
14 
15 /*
16  * fmodq(x,y)
17  * Return x mod y in exact arithmetic
18  * Method: shift and subtract
19  */
20 
21 #include "quadmath-imp.h"
22 
23 static const __float128 one = 1.0, Zero[] = {0.0, -0.0,};
24 
25 __float128
fmodq(__float128 x,__float128 y)26 fmodq (__float128 x, __float128 y)
27 {
28   int64_t n,hx,hy,hz,ix,iy,sx,i;
29   uint64_t lx,ly,lz;
30 
31   GET_FLT128_WORDS64(hx,lx,x);
32   GET_FLT128_WORDS64(hy,ly,y);
33   sx = hx&0x8000000000000000ULL;	/* sign of x */
34   hx ^=sx;				/* |x| */
35   hy &= 0x7fffffffffffffffLL;		/* |y| */
36 
37   /* purge off exception values */
38   if((hy|ly)==0||(hx>=0x7fff000000000000LL)|| /* y=0,or x not finite */
39     ((hy|((ly|-ly)>>63))>0x7fff000000000000LL))	/* or y is NaN */
40       return (x*y)/(x*y);
41   if(hx<=hy) {
42       if((hx<hy)||(lx<ly)) return x;	/* |x|<|y| return x */
43       if(lx==ly)
44 	  return Zero[(uint64_t)sx>>63];	/* |x|=|y| return x*0*/
45   }
46 
47   /* determine ix = ilogb(x) */
48   if(hx<0x0001000000000000LL) {	/* subnormal x */
49       if(hx==0) {
50 	  for (ix = -16431, i=lx; i>0; i<<=1) ix -=1;
51       } else {
52 	  for (ix = -16382, i=hx<<15; i>0; i<<=1) ix -=1;
53       }
54   } else ix = (hx>>48)-0x3fff;
55 
56   /* determine iy = ilogb(y) */
57       if(hy<0x0001000000000000LL) {	/* subnormal y */
58 	  if(hy==0) {
59 	      for (iy = -16431, i=ly; i>0; i<<=1) iy -=1;
60 	  } else {
61 	      for (iy = -16382, i=hy<<15; i>0; i<<=1) iy -=1;
62 	  }
63       } else iy = (hy>>48)-0x3fff;
64 
65   /* set up {hx,lx}, {hy,ly} and align y to x */
66       if(ix >= -16382)
67 	  hx = 0x0001000000000000LL|(0x0000ffffffffffffLL&hx);
68       else {		/* subnormal x, shift x to normal */
69 	  n = -16382-ix;
70 	  if(n<=63) {
71 	      hx = (hx<<n)|(lx>>(64-n));
72 	      lx <<= n;
73 	  } else {
74 	      hx = lx<<(n-64);
75 	      lx = 0;
76 	  }
77       }
78       if(iy >= -16382)
79 	  hy = 0x0001000000000000LL|(0x0000ffffffffffffLL&hy);
80       else {		/* subnormal y, shift y to normal */
81 	  n = -16382-iy;
82 	  if(n<=63) {
83 	      hy = (hy<<n)|(ly>>(64-n));
84 	      ly <<= n;
85 	  } else {
86 	      hy = ly<<(n-64);
87 	      ly = 0;
88 	  }
89       }
90 
91   /* fix point fmod */
92       n = ix - iy;
93       while(n--) {
94 	  hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
95 	  if(hz<0){hx = hx+hx+(lx>>63); lx = lx+lx;}
96 	  else {
97 	      if((hz|lz)==0) 		/* return sign(x)*0 */
98 		  return Zero[(uint64_t)sx>>63];
99 	      hx = hz+hz+(lz>>63); lx = lz+lz;
100 	  }
101       }
102       hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
103       if(hz>=0) {hx=hz;lx=lz;}
104 
105   /* convert back to floating value and restore the sign */
106       if((hx|lx)==0) 			/* return sign(x)*0 */
107 	  return Zero[(uint64_t)sx>>63];
108       while(hx<0x0001000000000000LL) {	/* normalize x */
109 	  hx = hx+hx+(lx>>63); lx = lx+lx;
110 	  iy -= 1;
111       }
112       if(iy>= -16382) {	/* normalize output */
113 	  hx = ((hx-0x0001000000000000LL)|((iy+16383)<<48));
114 	  SET_FLT128_WORDS64(x,hx|sx,lx);
115       } else {		/* subnormal output */
116 	  n = -16382 - iy;
117 	  if(n<=48) {
118 	      lx = (lx>>n)|((uint64_t)hx<<(64-n));
119 	      hx >>= n;
120 	  } else if (n<=63) {
121 	      lx = (hx<<(64-n))|(lx>>n); hx = sx;
122 	  } else {
123 	      lx = hx>>(n-64); hx = sx;
124 	  }
125 	  SET_FLT128_WORDS64(x,hx|sx,lx);
126 	  x *= one;		/* create necessary signal */
127       }
128       return x;		/* exact output */
129 }
130