1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /*
13   Long double expansions are
14   Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
15   and are incorporated herein by permission of the author.  The author
16   reserves the right to distribute this material elsewhere under different
17   copying permissions.  These modifications are distributed here under
18   the following terms:
19 
20     This library is free software; you can redistribute it and/or
21     modify it under the terms of the GNU Lesser General Public
22     License as published by the Free Software Foundation; either
23     version 2.1 of the License, or (at your option) any later version.
24 
25     This library is distributed in the hope that it will be useful,
26     but WITHOUT ANY WARRANTY; without even the implied warranty of
27     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
28     Lesser General Public License for more details.
29 
30     You should have received a copy of the GNU Lesser General Public
31     License along with this library; if not, write to the Free Software
32     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA */
33 
34 /* __quadmath_kernel_tanq( x, y, k )
35  * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
36  * Input x is assumed to be bounded by ~pi/4 in magnitude.
37  * Input y is the tail of x.
38  * Input k indicates whether tan (if k=1) or
39  * -1/tan (if k= -1) is returned.
40  *
41  * Algorithm
42  *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
43  *	2. if x < 2^-57, return x with inexact if x!=0.
44  *	3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
45  *          on [0,0.67433].
46  *
47  *	   Note: tan(x+y) = tan(x) + tan'(x)*y
48  *		          ~ tan(x) + (1+x*x)*y
49  *	   Therefore, for better accuracy in computing tan(x+y), let
50  *		r = x^3 * R(x^2)
51  *	   then
52  *		tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
53  *
54  *      4. For x in [0.67433,pi/4],  let y = pi/4 - x, then
55  *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
56  *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
57  */
58 
59 #include "quadmath-imp.h"
60 
61 
62 
63 static const __float128
64   one = 1.0Q,
65   pio4hi = 7.8539816339744830961566084581987569936977E-1Q,
66   pio4lo = 2.1679525325309452561992610065108379921906E-35Q,
67 
68   /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
69      0 <= x <= 0.6743316650390625
70      Peak relative error 8.0e-36  */
71  TH =  3.333333333333333333333333333333333333333E-1Q,
72  T0 = -1.813014711743583437742363284336855889393E7Q,
73  T1 =  1.320767960008972224312740075083259247618E6Q,
74  T2 = -2.626775478255838182468651821863299023956E4Q,
75  T3 =  1.764573356488504935415411383687150199315E2Q,
76  T4 = -3.333267763822178690794678978979803526092E-1Q,
77 
78  U0 = -1.359761033807687578306772463253710042010E8Q,
79  U1 =  6.494370630656893175666729313065113194784E7Q,
80  U2 = -4.180787672237927475505536849168729386782E6Q,
81  U3 =  8.031643765106170040139966622980914621521E4Q,
82  U4 = -5.323131271912475695157127875560667378597E2Q;
83   /* 1.000000000000000000000000000000000000000E0 */
84 
85 
86 static __float128
__quadmath_kernel_tanq(__float128 x,__float128 y,int iy)87 __quadmath_kernel_tanq (__float128 x, __float128 y, int iy)
88 {
89   __float128 z, r, v, w, s;
90   int32_t ix, sign = 1;
91   ieee854_float128 u, u1;
92 
93   u.value = x;
94   ix = u.words32.w0 & 0x7fffffff;
95   if (ix < 0x3fc60000)		/* x < 2**-57 */
96     {
97       if ((int) x == 0)
98 	{			/* generate inexact */
99 	  if ((ix | u.words32.w1 | u.words32.w2 | u.words32.w3
100 	       | (iy + 1)) == 0)
101 	    return one / fabsq (x);
102 	  else
103 	    return (iy == 1) ? x : -one / x;
104 	}
105     }
106   if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */
107     {
108       if ((u.words32.w0 & 0x80000000) != 0)
109 	{
110 	  x = -x;
111 	  y = -y;
112 	  sign = -1;
113 	}
114       else
115 	sign = 1;
116       z = pio4hi - x;
117       w = pio4lo - y;
118       x = z + w;
119       y = 0.0;
120     }
121   z = x * x;
122   r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
123   v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
124   r = r / v;
125 
126   s = z * x;
127   r = y + z * (s * r + y);
128   r += TH * s;
129   w = x + r;
130   if (ix >= 0x3ffe5942)
131     {
132       v = (__float128) iy;
133       w = (v - 2.0Q * (x - (w * w / (w + v) - r)));
134       if (sign < 0)
135 	w = -w;
136       return w;
137     }
138   if (iy == 1)
139     return w;
140   else
141     {				/* if allow error up to 2 ulp,
142 				   simply return -1.0/(x+r) here */
143       /*  compute -1.0/(x+r) accurately */
144       u1.value = w;
145       u1.words32.w2 = 0;
146       u1.words32.w3 = 0;
147       v = r - (u1.value - x);		/* u1+v = r+x */
148       z = -1.0 / w;
149       u.value = z;
150       u.words32.w2 = 0;
151       u.words32.w3 = 0;
152       s = 1.0 + u.value * u1.value;
153       return u.value + z * (s + u.value * v);
154     }
155 }
156 
157 
158 
159 
160 
161 
162 
163 /* tanq.c -- __float128 version of s_tan.c.
164  * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
165  */
166 
167 /* @(#)s_tan.c 5.1 93/09/24 */
168 /*
169  * ====================================================
170  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
171  *
172  * Developed at SunPro, a Sun Microsystems, Inc. business.
173  * Permission to use, copy, modify, and distribute this
174  * software is freely granted, provided that this notice
175  * is preserved.
176  * ====================================================
177  */
178 
179 /* tanl(x)
180  * Return tangent function of x.
181  *
182  * kernel function:
183  *	__quadmath_kernel_tanq	... tangent function on [-pi/4,pi/4]
184  *	__quadmath_rem_pio2q	... argument reduction routine
185  *
186  * Method.
187  *      Let S,C and T denote the sin, cos and tan respectively on
188  *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
189  *	in [-pi/4 , +pi/4], and let n = k mod 4.
190  *	We have
191  *
192  *          n        sin(x)      cos(x)        tan(x)
193  *     ----------------------------------------------------------
194  *	    0	       S	   C		 T
195  *	    1	       C	  -S		-1/T
196  *	    2	      -S	  -C		 T
197  *	    3	      -C	   S		-1/T
198  *     ----------------------------------------------------------
199  *
200  * Special cases:
201  *      Let trig be any of sin, cos, or tan.
202  *      trig(+-INF)  is NaN, with signals;
203  *      trig(NaN)    is that NaN;
204  *
205  * Accuracy:
206  *	TRIG(x) returns trig(x) nearly rounded
207  */
208 
209 
210 __float128
tanq(__float128 x)211 tanq (__float128 x)
212 {
213 	__float128 y[2],z=0.0Q;
214 	int64_t n, ix;
215 
216     /* High word of x. */
217 	GET_FLT128_MSW64(ix,x);
218 
219     /* |x| ~< pi/4 */
220 	ix &= 0x7fffffffffffffffLL;
221 	if(ix <= 0x3ffe921fb54442d1LL) return __quadmath_kernel_tanq(x,z,1);
222 
223     /* tanl(Inf or NaN) is NaN */
224 	else if (ix>=0x7fff000000000000LL) {
225 	    if (ix == 0x7fff000000000000LL) {
226 		GET_FLT128_LSW64(n,x);
227 	    }
228 	    return x-x;		/* NaN */
229 	}
230 
231     /* argument reduction needed */
232 	else {
233 	    n = __quadmath_rem_pio2q(x,y);
234 					/*   1 -- n even, -1 -- n odd */
235 	    return __quadmath_kernel_tanq(y[0],y[1],1-((n&1)<<1));
236 	}
237 }
238