1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT RUN-TIME COMPONENTS                         --
4--                                                                          --
5--       S Y S T E M . G E N E R I C _ A R R A Y _ O P E R A T I O N S      --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--         Copyright (C) 2006-2012, Free Software Foundation, Inc.          --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- GNAT was originally developed  by the GNAT team at  New York University. --
28-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29--                                                                          --
30------------------------------------------------------------------------------
31
32with Ada.Numerics; use Ada.Numerics;
33
34package body System.Generic_Array_Operations is
35
36   function Check_Unit_Last
37     (Index : Integer;
38      Order : Positive;
39      First : Integer) return Integer;
40   pragma Inline_Always (Check_Unit_Last);
41   --  Compute index of last element returned by Unit_Vector or Unit_Matrix.
42   --  A separate function is needed to allow raising Constraint_Error before
43   --  declaring the function result variable. The result variable needs to be
44   --  declared first, to allow front-end inlining.
45
46   --------------
47   -- Diagonal --
48   --------------
49
50   function Diagonal (A : Matrix) return Vector is
51      N : constant Natural := Natural'Min (A'Length (1), A'Length (2));
52   begin
53      return R : Vector (A'First (1) .. A'First (1) + N - 1) do
54         for J in 0 .. N - 1 loop
55            R (R'First + J) := A (A'First (1) + J, A'First (2) + J);
56         end loop;
57      end return;
58   end Diagonal;
59
60   --------------------------
61   -- Square_Matrix_Length --
62   --------------------------
63
64   function Square_Matrix_Length (A : Matrix) return Natural is
65   begin
66      if A'Length (1) /= A'Length (2) then
67         raise Constraint_Error with "matrix is not square";
68      else
69         return A'Length (1);
70      end if;
71   end Square_Matrix_Length;
72
73   ---------------------
74   -- Check_Unit_Last --
75   ---------------------
76
77   function Check_Unit_Last
78      (Index : Integer;
79       Order : Positive;
80       First : Integer) return Integer
81   is
82   begin
83      --  Order the tests carefully to avoid overflow
84
85      if Index < First
86        or else First > Integer'Last - Order + 1
87        or else Index > First + (Order - 1)
88      then
89         raise Constraint_Error;
90      end if;
91
92      return First + (Order - 1);
93   end Check_Unit_Last;
94
95   ---------------------
96   -- Back_Substitute --
97   ---------------------
98
99   procedure Back_Substitute (M, N : in out Matrix) is
100      pragma Assert (M'First (1) = N'First (1)
101                       and then
102                     M'Last  (1) = N'Last (1));
103
104      procedure Sub_Row
105        (M      : in out Matrix;
106         Target : Integer;
107         Source : Integer;
108         Factor : Scalar);
109      --  Elementary row operation that subtracts Factor * M (Source, <>) from
110      --  M (Target, <>)
111
112      -------------
113      -- Sub_Row --
114      -------------
115
116      procedure Sub_Row
117        (M      : in out Matrix;
118         Target : Integer;
119         Source : Integer;
120         Factor : Scalar)
121      is
122      begin
123         for J in M'Range (2) loop
124            M (Target, J) := M (Target, J) - Factor * M (Source, J);
125         end loop;
126      end Sub_Row;
127
128      --  Local declarations
129
130      Max_Col : Integer := M'Last (2);
131
132   --  Start of processing for Back_Substitute
133
134   begin
135      Do_Rows : for Row in reverse M'Range (1) loop
136         Find_Non_Zero : for Col in reverse M'First (2) .. Max_Col loop
137            if Is_Non_Zero (M (Row, Col)) then
138
139               --  Found first non-zero element, so subtract a multiple of this
140               --  element  from all higher rows, to reduce all other elements
141               --  in this column to zero.
142
143               declare
144                  --  We can't use a for loop, as we'd need to iterate to
145                  --  Row - 1, but that expression will overflow if M'First
146                  --  equals Integer'First, which is true for aggregates
147                  --  without explicit bounds..
148
149                  J : Integer := M'First (1);
150
151               begin
152                  while J < Row loop
153                     Sub_Row (N, J, Row, (M (J, Col) / M (Row, Col)));
154                     Sub_Row (M, J, Row, (M (J, Col) / M (Row, Col)));
155                     J := J + 1;
156                  end loop;
157               end;
158
159               --  Avoid potential overflow in the subtraction below
160
161               exit Do_Rows when Col = M'First (2);
162
163               Max_Col := Col - 1;
164
165               exit Find_Non_Zero;
166            end if;
167         end loop Find_Non_Zero;
168      end loop Do_Rows;
169   end Back_Substitute;
170
171   -----------------------
172   -- Forward_Eliminate --
173   -----------------------
174
175   procedure Forward_Eliminate
176     (M   : in out Matrix;
177      N   : in out Matrix;
178      Det : out Scalar)
179   is
180      pragma Assert (M'First (1) = N'First (1)
181                       and then
182                     M'Last  (1) = N'Last (1));
183
184      --  The following are variations of the elementary matrix row operations:
185      --  row switching, row multiplication and row addition. Because in this
186      --  algorithm the addition factor is always a negated value, we chose to
187      --  use  row subtraction instead. Similarly, instead of multiplying by
188      --  a reciprocal, we divide.
189
190      procedure Sub_Row
191        (M      : in out Matrix;
192         Target : Integer;
193         Source : Integer;
194         Factor : Scalar);
195      --  Subtrace Factor * M (Source, <>) from M (Target, <>)
196
197      procedure Divide_Row
198        (M, N  : in out Matrix;
199         Row   : Integer;
200         Scale : Scalar);
201      --  Divide M (Row) and N (Row) by Scale, and update Det
202
203      procedure Switch_Row
204        (M, N  : in out Matrix;
205         Row_1 : Integer;
206         Row_2 : Integer);
207      --  Exchange M (Row_1) and N (Row_1) with M (Row_2) and N (Row_2),
208      --  negating Det in the process.
209
210      -------------
211      -- Sub_Row --
212      -------------
213
214      procedure Sub_Row
215        (M      : in out Matrix;
216         Target : Integer;
217         Source : Integer;
218         Factor : Scalar)
219      is
220      begin
221         for J in M'Range (2) loop
222            M (Target, J) := M (Target, J) - Factor * M (Source, J);
223         end loop;
224      end Sub_Row;
225
226      ----------------
227      -- Divide_Row --
228      ----------------
229
230      procedure Divide_Row
231        (M, N  : in out Matrix;
232         Row   : Integer;
233         Scale : Scalar)
234      is
235      begin
236         Det := Det * Scale;
237
238         for J in M'Range (2) loop
239            M (Row, J) := M (Row, J) / Scale;
240         end loop;
241
242         for J in N'Range (2) loop
243            N (Row - M'First (1) + N'First (1), J) :=
244              N (Row - M'First (1) + N'First (1), J) / Scale;
245         end loop;
246      end Divide_Row;
247
248      ----------------
249      -- Switch_Row --
250      ----------------
251
252      procedure Switch_Row
253        (M, N  : in out Matrix;
254         Row_1 : Integer;
255         Row_2 : Integer)
256      is
257         procedure Swap (X, Y : in out Scalar);
258         --  Exchange the values of X and Y
259
260         ----------
261         -- Swap --
262         ----------
263
264         procedure Swap (X, Y : in out Scalar) is
265            T : constant Scalar := X;
266         begin
267            X := Y;
268            Y := T;
269         end Swap;
270
271      --  Start of processing for Switch_Row
272
273      begin
274         if Row_1 /= Row_2 then
275            Det := Zero - Det;
276
277            for J in M'Range (2) loop
278               Swap (M (Row_1, J), M (Row_2, J));
279            end loop;
280
281            for J in N'Range (2) loop
282               Swap (N (Row_1 - M'First (1) + N'First (1), J),
283                     N (Row_2 - M'First (1) + N'First (1), J));
284            end loop;
285         end if;
286      end Switch_Row;
287
288      --  Local declarations
289
290      Row : Integer := M'First (1);
291
292   --  Start of processing for Forward_Eliminate
293
294   begin
295      Det := One;
296
297      for J in M'Range (2) loop
298         declare
299            Max_Row : Integer := Row;
300            Max_Abs : Real'Base := 0.0;
301
302         begin
303            --  Find best pivot in column J, starting in row Row
304
305            for K in Row .. M'Last (1) loop
306               declare
307                  New_Abs : constant Real'Base := abs M (K, J);
308               begin
309                  if Max_Abs < New_Abs then
310                     Max_Abs := New_Abs;
311                     Max_Row := K;
312                  end if;
313               end;
314            end loop;
315
316            if Max_Abs > 0.0 then
317               Switch_Row (M, N, Row, Max_Row);
318
319               --  The temporaries below are necessary to force a copy of the
320               --  value and avoid improper aliasing.
321
322               declare
323                  Scale : constant Scalar := M (Row, J);
324               begin
325                  Divide_Row (M, N, Row, Scale);
326               end;
327
328               for U in Row + 1 .. M'Last (1) loop
329                  declare
330                     Factor : constant Scalar := M (U, J);
331                  begin
332                     Sub_Row (N, U, Row, Factor);
333                     Sub_Row (M, U, Row, Factor);
334                  end;
335               end loop;
336
337               exit when Row >= M'Last (1);
338
339               Row := Row + 1;
340
341            else
342               --  Set zero (note that we do not have literals)
343
344               Det := Zero;
345            end if;
346         end;
347      end loop;
348   end Forward_Eliminate;
349
350   -------------------
351   -- Inner_Product --
352   -------------------
353
354   function Inner_Product
355     (Left  : Left_Vector;
356      Right : Right_Vector) return  Result_Scalar
357   is
358      R : Result_Scalar := Zero;
359
360   begin
361      if Left'Length /= Right'Length then
362         raise Constraint_Error with
363            "vectors are of different length in inner product";
364      end if;
365
366      for J in Left'Range loop
367         R := R + Left (J) * Right (J - Left'First + Right'First);
368      end loop;
369
370      return R;
371   end Inner_Product;
372
373   -------------
374   -- L2_Norm --
375   -------------
376
377   function L2_Norm (X : X_Vector) return Result_Real'Base is
378      Sum : Result_Real'Base := 0.0;
379
380   begin
381      for J in X'Range loop
382         Sum := Sum + Result_Real'Base (abs X (J))**2;
383      end loop;
384
385      return Sqrt (Sum);
386   end L2_Norm;
387
388   ----------------------------------
389   -- Matrix_Elementwise_Operation --
390   ----------------------------------
391
392   function Matrix_Elementwise_Operation (X : X_Matrix) return Result_Matrix is
393   begin
394      return R : Result_Matrix (X'Range (1), X'Range (2)) do
395         for J in R'Range (1) loop
396            for K in R'Range (2) loop
397               R (J, K) := Operation (X (J, K));
398            end loop;
399         end loop;
400      end return;
401   end Matrix_Elementwise_Operation;
402
403   ----------------------------------
404   -- Vector_Elementwise_Operation --
405   ----------------------------------
406
407   function Vector_Elementwise_Operation (X : X_Vector) return Result_Vector is
408   begin
409      return R : Result_Vector (X'Range) do
410         for J in R'Range loop
411            R (J) := Operation (X (J));
412         end loop;
413      end return;
414   end Vector_Elementwise_Operation;
415
416   -----------------------------------------
417   -- Matrix_Matrix_Elementwise_Operation --
418   -----------------------------------------
419
420   function Matrix_Matrix_Elementwise_Operation
421     (Left  : Left_Matrix;
422      Right : Right_Matrix) return Result_Matrix
423   is
424   begin
425      return R : Result_Matrix (Left'Range (1), Left'Range (2)) do
426         if Left'Length (1) /= Right'Length (1)
427              or else
428            Left'Length (2) /= Right'Length (2)
429         then
430            raise Constraint_Error with
431              "matrices are of different dimension in elementwise operation";
432         end if;
433
434         for J in R'Range (1) loop
435            for K in R'Range (2) loop
436               R (J, K) :=
437                 Operation
438                   (Left (J, K),
439                    Right
440                      (J - R'First (1) + Right'First (1),
441                       K - R'First (2) + Right'First (2)));
442            end loop;
443         end loop;
444      end return;
445   end Matrix_Matrix_Elementwise_Operation;
446
447   ------------------------------------------------
448   -- Matrix_Matrix_Scalar_Elementwise_Operation --
449   ------------------------------------------------
450
451   function Matrix_Matrix_Scalar_Elementwise_Operation
452     (X : X_Matrix;
453      Y : Y_Matrix;
454      Z : Z_Scalar) return Result_Matrix
455   is
456   begin
457      return R : Result_Matrix (X'Range (1), X'Range (2)) do
458         if X'Length (1) /= Y'Length (1)
459              or else
460            X'Length (2) /= Y'Length (2)
461         then
462            raise Constraint_Error with
463              "matrices are of different dimension in elementwise operation";
464         end if;
465
466         for J in R'Range (1) loop
467            for K in R'Range (2) loop
468               R (J, K) :=
469                 Operation
470                   (X (J, K),
471                    Y (J - R'First (1) + Y'First (1),
472                       K - R'First (2) + Y'First (2)),
473                    Z);
474            end loop;
475         end loop;
476      end return;
477   end Matrix_Matrix_Scalar_Elementwise_Operation;
478
479   -----------------------------------------
480   -- Vector_Vector_Elementwise_Operation --
481   -----------------------------------------
482
483   function Vector_Vector_Elementwise_Operation
484     (Left  : Left_Vector;
485      Right : Right_Vector) return Result_Vector
486   is
487   begin
488      return R : Result_Vector (Left'Range) do
489         if Left'Length /= Right'Length then
490            raise Constraint_Error with
491              "vectors are of different length in elementwise operation";
492         end if;
493
494         for J in R'Range loop
495            R (J) := Operation (Left (J), Right (J - R'First + Right'First));
496         end loop;
497      end return;
498   end Vector_Vector_Elementwise_Operation;
499
500   ------------------------------------------------
501   -- Vector_Vector_Scalar_Elementwise_Operation --
502   ------------------------------------------------
503
504   function Vector_Vector_Scalar_Elementwise_Operation
505     (X : X_Vector;
506      Y : Y_Vector;
507      Z : Z_Scalar) return Result_Vector is
508   begin
509      return R : Result_Vector (X'Range) do
510         if X'Length /= Y'Length then
511            raise Constraint_Error with
512              "vectors are of different length in elementwise operation";
513         end if;
514
515         for J in R'Range loop
516            R (J) := Operation (X (J), Y (J - X'First + Y'First), Z);
517         end loop;
518      end return;
519   end Vector_Vector_Scalar_Elementwise_Operation;
520
521   -----------------------------------------
522   -- Matrix_Scalar_Elementwise_Operation --
523   -----------------------------------------
524
525   function Matrix_Scalar_Elementwise_Operation
526     (Left  : Left_Matrix;
527      Right : Right_Scalar) return Result_Matrix
528   is
529   begin
530      return R : Result_Matrix (Left'Range (1), Left'Range (2)) do
531         for J in R'Range (1) loop
532            for K in R'Range (2) loop
533               R (J, K) := Operation (Left (J, K), Right);
534            end loop;
535         end loop;
536      end return;
537   end Matrix_Scalar_Elementwise_Operation;
538
539   -----------------------------------------
540   -- Vector_Scalar_Elementwise_Operation --
541   -----------------------------------------
542
543   function Vector_Scalar_Elementwise_Operation
544     (Left  : Left_Vector;
545      Right : Right_Scalar) return Result_Vector
546   is
547   begin
548      return R : Result_Vector (Left'Range) do
549         for J in R'Range loop
550            R (J) := Operation (Left (J), Right);
551         end loop;
552      end return;
553   end Vector_Scalar_Elementwise_Operation;
554
555   -----------------------------------------
556   -- Scalar_Matrix_Elementwise_Operation --
557   -----------------------------------------
558
559   function Scalar_Matrix_Elementwise_Operation
560     (Left  : Left_Scalar;
561      Right : Right_Matrix) return Result_Matrix
562   is
563   begin
564      return R : Result_Matrix (Right'Range (1), Right'Range (2)) do
565         for J in R'Range (1) loop
566            for K in R'Range (2) loop
567               R (J, K) := Operation (Left, Right (J, K));
568            end loop;
569         end loop;
570      end return;
571   end Scalar_Matrix_Elementwise_Operation;
572
573   -----------------------------------------
574   -- Scalar_Vector_Elementwise_Operation --
575   -----------------------------------------
576
577   function Scalar_Vector_Elementwise_Operation
578     (Left  : Left_Scalar;
579      Right : Right_Vector) return Result_Vector
580   is
581   begin
582      return R : Result_Vector (Right'Range) do
583         for J in R'Range loop
584            R (J) := Operation (Left, Right (J));
585         end loop;
586      end return;
587   end Scalar_Vector_Elementwise_Operation;
588
589   ----------
590   -- Sqrt --
591   ----------
592
593   function Sqrt (X : Real'Base) return Real'Base is
594      Root, Next : Real'Base;
595
596   begin
597      --  Be defensive: any comparisons with NaN values will yield False.
598
599      if not (X > 0.0) then
600         if X = 0.0 then
601            return X;
602         else
603            raise Argument_Error;
604         end if;
605
606      elsif X > Real'Base'Last then
607
608         --  X is infinity, which is its own square root
609
610         return X;
611      end if;
612
613      --  Compute an initial estimate based on:
614
615      --     X = M * R**E and Sqrt (X) = Sqrt (M) * R**(E / 2.0),
616
617      --  where M is the mantissa, R is the radix and E the exponent.
618
619      --  By ignoring the mantissa and ignoring the case of an odd
620      --  exponent, we get a final error that is at most R. In other words,
621      --  the result has about a single bit precision.
622
623      Root := Real'Base (Real'Machine_Radix) ** (Real'Exponent (X) / 2);
624
625      --  Because of the poor initial estimate, use the Babylonian method of
626      --  computing the square root, as it is stable for all inputs. Every step
627      --  will roughly double the precision of the result. Just a few steps
628      --  suffice in most cases. Eight iterations should give about 2**8 bits
629      --  of precision.
630
631      for J in 1 .. 8 loop
632         Next := (Root + X / Root) / 2.0;
633         exit when Root = Next;
634         Root := Next;
635      end loop;
636
637      return Root;
638   end Sqrt;
639
640   ---------------------------
641   -- Matrix_Matrix_Product --
642   ---------------------------
643
644   function Matrix_Matrix_Product
645     (Left  : Left_Matrix;
646      Right : Right_Matrix) return Result_Matrix
647   is
648   begin
649      return R : Result_Matrix (Left'Range (1), Right'Range (2)) do
650         if Left'Length (2) /= Right'Length (1) then
651            raise Constraint_Error with
652              "incompatible dimensions in matrix multiplication";
653         end if;
654
655         for J in R'Range (1) loop
656            for K in R'Range (2) loop
657               declare
658                  S : Result_Scalar := Zero;
659
660               begin
661                  for M in Left'Range (2) loop
662                     S := S + Left (J, M) *
663                                Right
664                                  (M - Left'First (2) + Right'First (1), K);
665                  end loop;
666
667                  R (J, K) := S;
668               end;
669            end loop;
670         end loop;
671      end return;
672   end  Matrix_Matrix_Product;
673
674   ----------------------------
675   -- Matrix_Vector_Solution --
676   ----------------------------
677
678   function Matrix_Vector_Solution (A : Matrix; X : Vector) return Vector is
679      N   : constant Natural := A'Length (1);
680      MA  : Matrix := A;
681      MX  : Matrix (A'Range (1), 1 .. 1);
682      R   : Vector (A'Range (2));
683      Det : Scalar;
684
685   begin
686      if A'Length (2) /= N then
687         raise Constraint_Error with "matrix is not square";
688      end if;
689
690      if X'Length /= N then
691         raise Constraint_Error with "incompatible vector length";
692      end if;
693
694      for J in 0 .. MX'Length (1) - 1 loop
695         MX (MX'First (1) + J, 1) := X (X'First + J);
696      end loop;
697
698      Forward_Eliminate (MA, MX, Det);
699      Back_Substitute (MA, MX);
700
701      for J in 0 .. R'Length - 1 loop
702         R (R'First + J) := MX (MX'First (1) + J, 1);
703      end loop;
704
705      return R;
706   end Matrix_Vector_Solution;
707
708   ----------------------------
709   -- Matrix_Matrix_Solution --
710   ----------------------------
711
712   function Matrix_Matrix_Solution (A, X : Matrix) return Matrix is
713      N   : constant Natural := A'Length (1);
714      MA  : Matrix (A'Range (2), A'Range (2));
715      MB  : Matrix (A'Range (2), X'Range (2));
716      Det : Scalar;
717
718   begin
719      if A'Length (2) /= N then
720         raise Constraint_Error with "matrix is not square";
721      end if;
722
723      if X'Length (1) /= N then
724         raise Constraint_Error with "matrices have unequal number of rows";
725      end if;
726
727      for J in 0 .. A'Length (1) - 1 loop
728         for K in MA'Range (2) loop
729            MA (MA'First (1) + J, K) := A (A'First (1) + J, K);
730         end loop;
731
732         for K in MB'Range (2) loop
733            MB (MB'First (1) + J, K) := X (X'First (1) + J, K);
734         end loop;
735      end loop;
736
737      Forward_Eliminate (MA, MB, Det);
738      Back_Substitute (MA, MB);
739
740      return MB;
741   end Matrix_Matrix_Solution;
742
743   ---------------------------
744   -- Matrix_Vector_Product --
745   ---------------------------
746
747   function Matrix_Vector_Product
748     (Left  : Matrix;
749      Right : Right_Vector) return Result_Vector
750   is
751   begin
752      return R : Result_Vector (Left'Range (1)) do
753         if Left'Length (2) /= Right'Length then
754            raise Constraint_Error with
755              "incompatible dimensions in matrix-vector multiplication";
756         end if;
757
758         for J in Left'Range (1) loop
759            declare
760               S : Result_Scalar := Zero;
761
762            begin
763               for K in Left'Range (2) loop
764                  S := S + Left (J, K)
765                         * Right (K - Left'First (2) + Right'First);
766               end loop;
767
768               R (J) := S;
769            end;
770         end loop;
771      end return;
772   end Matrix_Vector_Product;
773
774   -------------------
775   -- Outer_Product --
776   -------------------
777
778   function Outer_Product
779     (Left  : Left_Vector;
780      Right : Right_Vector) return Matrix
781   is
782   begin
783      return R : Matrix (Left'Range, Right'Range) do
784         for J in R'Range (1) loop
785            for K in R'Range (2) loop
786               R (J, K) := Left (J) * Right (K);
787            end loop;
788         end loop;
789      end return;
790   end Outer_Product;
791
792   -----------------
793   -- Swap_Column --
794   -----------------
795
796   procedure Swap_Column (A : in out Matrix; Left, Right : Integer) is
797      Temp : Scalar;
798   begin
799      for J in A'Range (1) loop
800         Temp := A (J, Left);
801         A (J, Left) := A (J, Right);
802         A (J, Right) := Temp;
803      end loop;
804   end Swap_Column;
805
806   ---------------
807   -- Transpose --
808   ---------------
809
810   procedure Transpose (A : Matrix; R : out Matrix) is
811   begin
812      for J in R'Range (1) loop
813         for K in R'Range (2) loop
814            R (J, K) := A (K - R'First (2) + A'First (1),
815                           J - R'First (1) + A'First (2));
816         end loop;
817      end loop;
818   end Transpose;
819
820   -------------------------------
821   -- Update_Matrix_With_Matrix --
822   -------------------------------
823
824   procedure Update_Matrix_With_Matrix (X : in out X_Matrix; Y : Y_Matrix) is
825   begin
826      if X'Length (1) /= Y'Length (1)
827           or else
828         X'Length (2) /= Y'Length (2)
829      then
830         raise Constraint_Error with
831           "matrices are of different dimension in update operation";
832      end if;
833
834      for J in X'Range (1) loop
835         for K in X'Range (2) loop
836            Update (X (J, K), Y (J - X'First (1) + Y'First (1),
837                                 K - X'First (2) + Y'First (2)));
838         end loop;
839      end loop;
840   end Update_Matrix_With_Matrix;
841
842   -------------------------------
843   -- Update_Vector_With_Vector --
844   -------------------------------
845
846   procedure Update_Vector_With_Vector (X : in out X_Vector; Y : Y_Vector) is
847   begin
848      if X'Length /= Y'Length then
849         raise Constraint_Error with
850           "vectors are of different length in update operation";
851      end if;
852
853      for J in X'Range loop
854         Update (X (J), Y (J - X'First + Y'First));
855      end loop;
856   end Update_Vector_With_Vector;
857
858   -----------------
859   -- Unit_Matrix --
860   -----------------
861
862   function Unit_Matrix
863     (Order   : Positive;
864      First_1 : Integer := 1;
865      First_2 : Integer := 1) return Matrix
866   is
867   begin
868      return R : Matrix (First_1 .. Check_Unit_Last (First_1, Order, First_1),
869                         First_2 .. Check_Unit_Last (First_2, Order, First_2))
870      do
871         R := (others => (others => Zero));
872
873         for J in 0 .. Order - 1 loop
874            R (First_1 + J, First_2 + J) := One;
875         end loop;
876      end return;
877   end Unit_Matrix;
878
879   -----------------
880   -- Unit_Vector --
881   -----------------
882
883   function Unit_Vector
884     (Index : Integer;
885      Order : Positive;
886      First : Integer := 1) return Vector
887   is
888   begin
889      return R : Vector (First .. Check_Unit_Last (Index, Order, First)) do
890         R := (others => Zero);
891         R (Index) := One;
892      end return;
893   end Unit_Vector;
894
895   ---------------------------
896   -- Vector_Matrix_Product --
897   ---------------------------
898
899   function Vector_Matrix_Product
900     (Left  : Left_Vector;
901      Right : Matrix) return Result_Vector
902   is
903   begin
904      return R : Result_Vector (Right'Range (2)) do
905         if Left'Length /= Right'Length (1) then
906            raise Constraint_Error with
907              "incompatible dimensions in vector-matrix multiplication";
908         end if;
909
910         for J in Right'Range (2) loop
911            declare
912               S : Result_Scalar := Zero;
913
914            begin
915               for K in Right'Range (1) loop
916                  S := S + Left (K - Right'First (1)
917                                   + Left'First) * Right (K, J);
918               end loop;
919
920               R (J) := S;
921            end;
922         end loop;
923      end return;
924   end Vector_Matrix_Product;
925
926end System.Generic_Array_Operations;
927