1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package jpeg implements a JPEG image decoder and encoder.
6//
7// JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf.
8package jpeg
9
10import (
11	"image"
12	"image/color"
13	"image/internal/imageutil"
14	"io"
15)
16
17// TODO(nigeltao): fix up the doc comment style so that sentences start with
18// the name of the type or function that they annotate.
19
20// A FormatError reports that the input is not a valid JPEG.
21type FormatError string
22
23func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) }
24
25// An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature.
26type UnsupportedError string
27
28func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) }
29
30var errUnsupportedSubsamplingRatio = UnsupportedError("luma/chroma subsampling ratio")
31
32// Component specification, specified in section B.2.2.
33type component struct {
34	h  int   // Horizontal sampling factor.
35	v  int   // Vertical sampling factor.
36	c  uint8 // Component identifier.
37	tq uint8 // Quantization table destination selector.
38}
39
40const (
41	dcTable = 0
42	acTable = 1
43	maxTc   = 1
44	maxTh   = 3
45	maxTq   = 3
46
47	maxComponents = 4
48)
49
50const (
51	sof0Marker = 0xc0 // Start Of Frame (Baseline).
52	sof1Marker = 0xc1 // Start Of Frame (Extended Sequential).
53	sof2Marker = 0xc2 // Start Of Frame (Progressive).
54	dhtMarker  = 0xc4 // Define Huffman Table.
55	rst0Marker = 0xd0 // ReSTart (0).
56	rst7Marker = 0xd7 // ReSTart (7).
57	soiMarker  = 0xd8 // Start Of Image.
58	eoiMarker  = 0xd9 // End Of Image.
59	sosMarker  = 0xda // Start Of Scan.
60	dqtMarker  = 0xdb // Define Quantization Table.
61	driMarker  = 0xdd // Define Restart Interval.
62	comMarker  = 0xfe // COMment.
63	// "APPlication specific" markers aren't part of the JPEG spec per se,
64	// but in practice, their use is described at
65	// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html
66	app0Marker  = 0xe0
67	app14Marker = 0xee
68	app15Marker = 0xef
69)
70
71// See http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
72const (
73	adobeTransformUnknown = 0
74	adobeTransformYCbCr   = 1
75	adobeTransformYCbCrK  = 2
76)
77
78// unzig maps from the zig-zag ordering to the natural ordering. For example,
79// unzig[3] is the column and row of the fourth element in zig-zag order. The
80// value is 16, which means first column (16%8 == 0) and third row (16/8 == 2).
81var unzig = [blockSize]int{
82	0, 1, 8, 16, 9, 2, 3, 10,
83	17, 24, 32, 25, 18, 11, 4, 5,
84	12, 19, 26, 33, 40, 48, 41, 34,
85	27, 20, 13, 6, 7, 14, 21, 28,
86	35, 42, 49, 56, 57, 50, 43, 36,
87	29, 22, 15, 23, 30, 37, 44, 51,
88	58, 59, 52, 45, 38, 31, 39, 46,
89	53, 60, 61, 54, 47, 55, 62, 63,
90}
91
92// Deprecated: Reader is deprecated.
93type Reader interface {
94	io.ByteReader
95	io.Reader
96}
97
98// bits holds the unprocessed bits that have been taken from the byte-stream.
99// The n least significant bits of a form the unread bits, to be read in MSB to
100// LSB order.
101type bits struct {
102	a uint32 // accumulator.
103	m uint32 // mask. m==1<<(n-1) when n>0, with m==0 when n==0.
104	n int32  // the number of unread bits in a.
105}
106
107type decoder struct {
108	r    io.Reader
109	bits bits
110	// bytes is a byte buffer, similar to a bufio.Reader, except that it
111	// has to be able to unread more than 1 byte, due to byte stuffing.
112	// Byte stuffing is specified in section F.1.2.3.
113	bytes struct {
114		// buf[i:j] are the buffered bytes read from the underlying
115		// io.Reader that haven't yet been passed further on.
116		buf  [4096]byte
117		i, j int
118		// nUnreadable is the number of bytes to back up i after
119		// overshooting. It can be 0, 1 or 2.
120		nUnreadable int
121	}
122	width, height int
123
124	img1        *image.Gray
125	img3        *image.YCbCr
126	blackPix    []byte
127	blackStride int
128
129	ri                  int // Restart Interval.
130	nComp               int
131	progressive         bool
132	jfif                bool
133	adobeTransformValid bool
134	adobeTransform      uint8
135	eobRun              uint16 // End-of-Band run, specified in section G.1.2.2.
136
137	comp       [maxComponents]component
138	progCoeffs [maxComponents][]block // Saved state between progressive-mode scans.
139	huff       [maxTc + 1][maxTh + 1]huffman
140	quant      [maxTq + 1]block // Quantization tables, in zig-zag order.
141	tmp        [2 * blockSize]byte
142}
143
144// fill fills up the d.bytes.buf buffer from the underlying io.Reader. It
145// should only be called when there are no unread bytes in d.bytes.
146func (d *decoder) fill() error {
147	if d.bytes.i != d.bytes.j {
148		panic("jpeg: fill called when unread bytes exist")
149	}
150	// Move the last 2 bytes to the start of the buffer, in case we need
151	// to call unreadByteStuffedByte.
152	if d.bytes.j > 2 {
153		d.bytes.buf[0] = d.bytes.buf[d.bytes.j-2]
154		d.bytes.buf[1] = d.bytes.buf[d.bytes.j-1]
155		d.bytes.i, d.bytes.j = 2, 2
156	}
157	// Fill in the rest of the buffer.
158	n, err := d.r.Read(d.bytes.buf[d.bytes.j:])
159	d.bytes.j += n
160	if n > 0 {
161		err = nil
162	}
163	return err
164}
165
166// unreadByteStuffedByte undoes the most recent readByteStuffedByte call,
167// giving a byte of data back from d.bits to d.bytes. The Huffman look-up table
168// requires at least 8 bits for look-up, which means that Huffman decoding can
169// sometimes overshoot and read one or two too many bytes. Two-byte overshoot
170// can happen when expecting to read a 0xff 0x00 byte-stuffed byte.
171func (d *decoder) unreadByteStuffedByte() {
172	d.bytes.i -= d.bytes.nUnreadable
173	d.bytes.nUnreadable = 0
174	if d.bits.n >= 8 {
175		d.bits.a >>= 8
176		d.bits.n -= 8
177		d.bits.m >>= 8
178	}
179}
180
181// readByte returns the next byte, whether buffered or not buffered. It does
182// not care about byte stuffing.
183func (d *decoder) readByte() (x byte, err error) {
184	for d.bytes.i == d.bytes.j {
185		if err = d.fill(); err != nil {
186			return 0, err
187		}
188	}
189	x = d.bytes.buf[d.bytes.i]
190	d.bytes.i++
191	d.bytes.nUnreadable = 0
192	return x, nil
193}
194
195// errMissingFF00 means that readByteStuffedByte encountered an 0xff byte (a
196// marker byte) that wasn't the expected byte-stuffed sequence 0xff, 0x00.
197var errMissingFF00 = FormatError("missing 0xff00 sequence")
198
199// readByteStuffedByte is like readByte but is for byte-stuffed Huffman data.
200func (d *decoder) readByteStuffedByte() (x byte, err error) {
201	// Take the fast path if d.bytes.buf contains at least two bytes.
202	if d.bytes.i+2 <= d.bytes.j {
203		x = d.bytes.buf[d.bytes.i]
204		d.bytes.i++
205		d.bytes.nUnreadable = 1
206		if x != 0xff {
207			return x, err
208		}
209		if d.bytes.buf[d.bytes.i] != 0x00 {
210			return 0, errMissingFF00
211		}
212		d.bytes.i++
213		d.bytes.nUnreadable = 2
214		return 0xff, nil
215	}
216
217	d.bytes.nUnreadable = 0
218
219	x, err = d.readByte()
220	if err != nil {
221		return 0, err
222	}
223	d.bytes.nUnreadable = 1
224	if x != 0xff {
225		return x, nil
226	}
227
228	x, err = d.readByte()
229	if err != nil {
230		return 0, err
231	}
232	d.bytes.nUnreadable = 2
233	if x != 0x00 {
234		return 0, errMissingFF00
235	}
236	return 0xff, nil
237}
238
239// readFull reads exactly len(p) bytes into p. It does not care about byte
240// stuffing.
241func (d *decoder) readFull(p []byte) error {
242	// Unread the overshot bytes, if any.
243	if d.bytes.nUnreadable != 0 {
244		if d.bits.n >= 8 {
245			d.unreadByteStuffedByte()
246		}
247		d.bytes.nUnreadable = 0
248	}
249
250	for {
251		n := copy(p, d.bytes.buf[d.bytes.i:d.bytes.j])
252		p = p[n:]
253		d.bytes.i += n
254		if len(p) == 0 {
255			break
256		}
257		if err := d.fill(); err != nil {
258			if err == io.EOF {
259				err = io.ErrUnexpectedEOF
260			}
261			return err
262		}
263	}
264	return nil
265}
266
267// ignore ignores the next n bytes.
268func (d *decoder) ignore(n int) error {
269	// Unread the overshot bytes, if any.
270	if d.bytes.nUnreadable != 0 {
271		if d.bits.n >= 8 {
272			d.unreadByteStuffedByte()
273		}
274		d.bytes.nUnreadable = 0
275	}
276
277	for {
278		m := d.bytes.j - d.bytes.i
279		if m > n {
280			m = n
281		}
282		d.bytes.i += m
283		n -= m
284		if n == 0 {
285			break
286		}
287		if err := d.fill(); err != nil {
288			if err == io.EOF {
289				err = io.ErrUnexpectedEOF
290			}
291			return err
292		}
293	}
294	return nil
295}
296
297// Specified in section B.2.2.
298func (d *decoder) processSOF(n int) error {
299	if d.nComp != 0 {
300		return FormatError("multiple SOF markers")
301	}
302	switch n {
303	case 6 + 3*1: // Grayscale image.
304		d.nComp = 1
305	case 6 + 3*3: // YCbCr or RGB image.
306		d.nComp = 3
307	case 6 + 3*4: // YCbCrK or CMYK image.
308		d.nComp = 4
309	default:
310		return UnsupportedError("number of components")
311	}
312	if err := d.readFull(d.tmp[:n]); err != nil {
313		return err
314	}
315	// We only support 8-bit precision.
316	if d.tmp[0] != 8 {
317		return UnsupportedError("precision")
318	}
319	d.height = int(d.tmp[1])<<8 + int(d.tmp[2])
320	d.width = int(d.tmp[3])<<8 + int(d.tmp[4])
321	if int(d.tmp[5]) != d.nComp {
322		return FormatError("SOF has wrong length")
323	}
324
325	for i := 0; i < d.nComp; i++ {
326		d.comp[i].c = d.tmp[6+3*i]
327		// Section B.2.2 states that "the value of C_i shall be different from
328		// the values of C_1 through C_(i-1)".
329		for j := 0; j < i; j++ {
330			if d.comp[i].c == d.comp[j].c {
331				return FormatError("repeated component identifier")
332			}
333		}
334
335		d.comp[i].tq = d.tmp[8+3*i]
336		if d.comp[i].tq > maxTq {
337			return FormatError("bad Tq value")
338		}
339
340		hv := d.tmp[7+3*i]
341		h, v := int(hv>>4), int(hv&0x0f)
342		if h < 1 || 4 < h || v < 1 || 4 < v {
343			return FormatError("luma/chroma subsampling ratio")
344		}
345		if h == 3 || v == 3 {
346			return errUnsupportedSubsamplingRatio
347		}
348		switch d.nComp {
349		case 1:
350			// If a JPEG image has only one component, section A.2 says "this data
351			// is non-interleaved by definition" and section A.2.2 says "[in this
352			// case...] the order of data units within a scan shall be left-to-right
353			// and top-to-bottom... regardless of the values of H_1 and V_1". Section
354			// 4.8.2 also says "[for non-interleaved data], the MCU is defined to be
355			// one data unit". Similarly, section A.1.1 explains that it is the ratio
356			// of H_i to max_j(H_j) that matters, and similarly for V. For grayscale
357			// images, H_1 is the maximum H_j for all components j, so that ratio is
358			// always 1. The component's (h, v) is effectively always (1, 1): even if
359			// the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8
360			// MCUs, not two 16x8 MCUs.
361			h, v = 1, 1
362
363		case 3:
364			// For YCbCr images, we only support 4:4:4, 4:4:0, 4:2:2, 4:2:0,
365			// 4:1:1 or 4:1:0 chroma subsampling ratios. This implies that the
366			// (h, v) values for the Y component are either (1, 1), (1, 2),
367			// (2, 1), (2, 2), (4, 1) or (4, 2), and the Y component's values
368			// must be a multiple of the Cb and Cr component's values. We also
369			// assume that the two chroma components have the same subsampling
370			// ratio.
371			switch i {
372			case 0: // Y.
373				// We have already verified, above, that h and v are both
374				// either 1, 2 or 4, so invalid (h, v) combinations are those
375				// with v == 4.
376				if v == 4 {
377					return errUnsupportedSubsamplingRatio
378				}
379			case 1: // Cb.
380				if d.comp[0].h%h != 0 || d.comp[0].v%v != 0 {
381					return errUnsupportedSubsamplingRatio
382				}
383			case 2: // Cr.
384				if d.comp[1].h != h || d.comp[1].v != v {
385					return errUnsupportedSubsamplingRatio
386				}
387			}
388
389		case 4:
390			// For 4-component images (either CMYK or YCbCrK), we only support two
391			// hv vectors: [0x11 0x11 0x11 0x11] and [0x22 0x11 0x11 0x22].
392			// Theoretically, 4-component JPEG images could mix and match hv values
393			// but in practice, those two combinations are the only ones in use,
394			// and it simplifies the applyBlack code below if we can assume that:
395			//	- for CMYK, the C and K channels have full samples, and if the M
396			//	  and Y channels subsample, they subsample both horizontally and
397			//	  vertically.
398			//	- for YCbCrK, the Y and K channels have full samples.
399			switch i {
400			case 0:
401				if hv != 0x11 && hv != 0x22 {
402					return errUnsupportedSubsamplingRatio
403				}
404			case 1, 2:
405				if hv != 0x11 {
406					return errUnsupportedSubsamplingRatio
407				}
408			case 3:
409				if d.comp[0].h != h || d.comp[0].v != v {
410					return errUnsupportedSubsamplingRatio
411				}
412			}
413		}
414
415		d.comp[i].h = h
416		d.comp[i].v = v
417	}
418	return nil
419}
420
421// Specified in section B.2.4.1.
422func (d *decoder) processDQT(n int) error {
423loop:
424	for n > 0 {
425		n--
426		x, err := d.readByte()
427		if err != nil {
428			return err
429		}
430		tq := x & 0x0f
431		if tq > maxTq {
432			return FormatError("bad Tq value")
433		}
434		switch x >> 4 {
435		default:
436			return FormatError("bad Pq value")
437		case 0:
438			if n < blockSize {
439				break loop
440			}
441			n -= blockSize
442			if err := d.readFull(d.tmp[:blockSize]); err != nil {
443				return err
444			}
445			for i := range d.quant[tq] {
446				d.quant[tq][i] = int32(d.tmp[i])
447			}
448		case 1:
449			if n < 2*blockSize {
450				break loop
451			}
452			n -= 2 * blockSize
453			if err := d.readFull(d.tmp[:2*blockSize]); err != nil {
454				return err
455			}
456			for i := range d.quant[tq] {
457				d.quant[tq][i] = int32(d.tmp[2*i])<<8 | int32(d.tmp[2*i+1])
458			}
459		}
460	}
461	if n != 0 {
462		return FormatError("DQT has wrong length")
463	}
464	return nil
465}
466
467// Specified in section B.2.4.4.
468func (d *decoder) processDRI(n int) error {
469	if n != 2 {
470		return FormatError("DRI has wrong length")
471	}
472	if err := d.readFull(d.tmp[:2]); err != nil {
473		return err
474	}
475	d.ri = int(d.tmp[0])<<8 + int(d.tmp[1])
476	return nil
477}
478
479func (d *decoder) processApp0Marker(n int) error {
480	if n < 5 {
481		return d.ignore(n)
482	}
483	if err := d.readFull(d.tmp[:5]); err != nil {
484		return err
485	}
486	n -= 5
487
488	d.jfif = d.tmp[0] == 'J' && d.tmp[1] == 'F' && d.tmp[2] == 'I' && d.tmp[3] == 'F' && d.tmp[4] == '\x00'
489
490	if n > 0 {
491		return d.ignore(n)
492	}
493	return nil
494}
495
496func (d *decoder) processApp14Marker(n int) error {
497	if n < 12 {
498		return d.ignore(n)
499	}
500	if err := d.readFull(d.tmp[:12]); err != nil {
501		return err
502	}
503	n -= 12
504
505	if d.tmp[0] == 'A' && d.tmp[1] == 'd' && d.tmp[2] == 'o' && d.tmp[3] == 'b' && d.tmp[4] == 'e' {
506		d.adobeTransformValid = true
507		d.adobeTransform = d.tmp[11]
508	}
509
510	if n > 0 {
511		return d.ignore(n)
512	}
513	return nil
514}
515
516// decode reads a JPEG image from r and returns it as an image.Image.
517func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) {
518	d.r = r
519
520	// Check for the Start Of Image marker.
521	if err := d.readFull(d.tmp[:2]); err != nil {
522		return nil, err
523	}
524	if d.tmp[0] != 0xff || d.tmp[1] != soiMarker {
525		return nil, FormatError("missing SOI marker")
526	}
527
528	// Process the remaining segments until the End Of Image marker.
529	for {
530		err := d.readFull(d.tmp[:2])
531		if err != nil {
532			return nil, err
533		}
534		for d.tmp[0] != 0xff {
535			// Strictly speaking, this is a format error. However, libjpeg is
536			// liberal in what it accepts. As of version 9, next_marker in
537			// jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and
538			// continues to decode the stream. Even before next_marker sees
539			// extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many
540			// bytes as it can, possibly past the end of a scan's data. It
541			// effectively puts back any markers that it overscanned (e.g. an
542			// "\xff\xd9" EOI marker), but it does not put back non-marker data,
543			// and thus it can silently ignore a small number of extraneous
544			// non-marker bytes before next_marker has a chance to see them (and
545			// print a warning).
546			//
547			// We are therefore also liberal in what we accept. Extraneous data
548			// is silently ignored.
549			//
550			// This is similar to, but not exactly the same as, the restart
551			// mechanism within a scan (the RST[0-7] markers).
552			//
553			// Note that extraneous 0xff bytes in e.g. SOS data are escaped as
554			// "\xff\x00", and so are detected a little further down below.
555			d.tmp[0] = d.tmp[1]
556			d.tmp[1], err = d.readByte()
557			if err != nil {
558				return nil, err
559			}
560		}
561		marker := d.tmp[1]
562		if marker == 0 {
563			// Treat "\xff\x00" as extraneous data.
564			continue
565		}
566		for marker == 0xff {
567			// Section B.1.1.2 says, "Any marker may optionally be preceded by any
568			// number of fill bytes, which are bytes assigned code X'FF'".
569			marker, err = d.readByte()
570			if err != nil {
571				return nil, err
572			}
573		}
574		if marker == eoiMarker { // End Of Image.
575			break
576		}
577		if rst0Marker <= marker && marker <= rst7Marker {
578			// Figures B.2 and B.16 of the specification suggest that restart markers should
579			// only occur between Entropy Coded Segments and not after the final ECS.
580			// However, some encoders may generate incorrect JPEGs with a final restart
581			// marker. That restart marker will be seen here instead of inside the processSOS
582			// method, and is ignored as a harmless error. Restart markers have no extra data,
583			// so we check for this before we read the 16-bit length of the segment.
584			continue
585		}
586
587		// Read the 16-bit length of the segment. The value includes the 2 bytes for the
588		// length itself, so we subtract 2 to get the number of remaining bytes.
589		if err = d.readFull(d.tmp[:2]); err != nil {
590			return nil, err
591		}
592		n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2
593		if n < 0 {
594			return nil, FormatError("short segment length")
595		}
596
597		switch marker {
598		case sof0Marker, sof1Marker, sof2Marker:
599			d.progressive = marker == sof2Marker
600			err = d.processSOF(n)
601			if configOnly && d.jfif {
602				return nil, err
603			}
604		case dhtMarker:
605			if configOnly {
606				err = d.ignore(n)
607			} else {
608				err = d.processDHT(n)
609			}
610		case dqtMarker:
611			if configOnly {
612				err = d.ignore(n)
613			} else {
614				err = d.processDQT(n)
615			}
616		case sosMarker:
617			if configOnly {
618				return nil, nil
619			}
620			err = d.processSOS(n)
621		case driMarker:
622			if configOnly {
623				err = d.ignore(n)
624			} else {
625				err = d.processDRI(n)
626			}
627		case app0Marker:
628			err = d.processApp0Marker(n)
629		case app14Marker:
630			err = d.processApp14Marker(n)
631		default:
632			if app0Marker <= marker && marker <= app15Marker || marker == comMarker {
633				err = d.ignore(n)
634			} else if marker < 0xc0 { // See Table B.1 "Marker code assignments".
635				err = FormatError("unknown marker")
636			} else {
637				err = UnsupportedError("unknown marker")
638			}
639		}
640		if err != nil {
641			return nil, err
642		}
643	}
644	if d.img1 != nil {
645		return d.img1, nil
646	}
647	if d.img3 != nil {
648		if d.blackPix != nil {
649			return d.applyBlack()
650		} else if d.isRGB() {
651			return d.convertToRGB()
652		}
653		return d.img3, nil
654	}
655	return nil, FormatError("missing SOS marker")
656}
657
658// applyBlack combines d.img3 and d.blackPix into a CMYK image. The formula
659// used depends on whether the JPEG image is stored as CMYK or YCbCrK,
660// indicated by the APP14 (Adobe) metadata.
661//
662// Adobe CMYK JPEG images are inverted, where 255 means no ink instead of full
663// ink, so we apply "v = 255 - v" at various points. Note that a double
664// inversion is a no-op, so inversions might be implicit in the code below.
665func (d *decoder) applyBlack() (image.Image, error) {
666	if !d.adobeTransformValid {
667		return nil, UnsupportedError("unknown color model: 4-component JPEG doesn't have Adobe APP14 metadata")
668	}
669
670	// If the 4-component JPEG image isn't explicitly marked as "Unknown (RGB
671	// or CMYK)" as per
672	// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
673	// we assume that it is YCbCrK. This matches libjpeg's jdapimin.c.
674	if d.adobeTransform != adobeTransformUnknown {
675		// Convert the YCbCr part of the YCbCrK to RGB, invert the RGB to get
676		// CMY, and patch in the original K. The RGB to CMY inversion cancels
677		// out the 'Adobe inversion' described in the applyBlack doc comment
678		// above, so in practice, only the fourth channel (black) is inverted.
679		bounds := d.img3.Bounds()
680		img := image.NewRGBA(bounds)
681		imageutil.DrawYCbCr(img, bounds, d.img3, bounds.Min)
682		for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
683			for i, x := iBase+3, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
684				img.Pix[i] = 255 - d.blackPix[(y-bounds.Min.Y)*d.blackStride+(x-bounds.Min.X)]
685			}
686		}
687		return &image.CMYK{
688			Pix:    img.Pix,
689			Stride: img.Stride,
690			Rect:   img.Rect,
691		}, nil
692	}
693
694	// The first three channels (cyan, magenta, yellow) of the CMYK
695	// were decoded into d.img3, but each channel was decoded into a separate
696	// []byte slice, and some channels may be subsampled. We interleave the
697	// separate channels into an image.CMYK's single []byte slice containing 4
698	// contiguous bytes per pixel.
699	bounds := d.img3.Bounds()
700	img := image.NewCMYK(bounds)
701
702	translations := [4]struct {
703		src    []byte
704		stride int
705	}{
706		{d.img3.Y, d.img3.YStride},
707		{d.img3.Cb, d.img3.CStride},
708		{d.img3.Cr, d.img3.CStride},
709		{d.blackPix, d.blackStride},
710	}
711	for t, translation := range translations {
712		subsample := d.comp[t].h != d.comp[0].h || d.comp[t].v != d.comp[0].v
713		for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
714			sy := y - bounds.Min.Y
715			if subsample {
716				sy /= 2
717			}
718			for i, x := iBase+t, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
719				sx := x - bounds.Min.X
720				if subsample {
721					sx /= 2
722				}
723				img.Pix[i] = 255 - translation.src[sy*translation.stride+sx]
724			}
725		}
726	}
727	return img, nil
728}
729
730func (d *decoder) isRGB() bool {
731	if d.jfif {
732		return false
733	}
734	if d.adobeTransformValid && d.adobeTransform == adobeTransformUnknown {
735		// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
736		// says that 0 means Unknown (and in practice RGB) and 1 means YCbCr.
737		return true
738	}
739	return d.comp[0].c == 'R' && d.comp[1].c == 'G' && d.comp[2].c == 'B'
740}
741
742func (d *decoder) convertToRGB() (image.Image, error) {
743	cScale := d.comp[0].h / d.comp[1].h
744	bounds := d.img3.Bounds()
745	img := image.NewRGBA(bounds)
746	for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
747		po := img.PixOffset(bounds.Min.X, y)
748		yo := d.img3.YOffset(bounds.Min.X, y)
749		co := d.img3.COffset(bounds.Min.X, y)
750		for i, iMax := 0, bounds.Max.X-bounds.Min.X; i < iMax; i++ {
751			img.Pix[po+4*i+0] = d.img3.Y[yo+i]
752			img.Pix[po+4*i+1] = d.img3.Cb[co+i/cScale]
753			img.Pix[po+4*i+2] = d.img3.Cr[co+i/cScale]
754			img.Pix[po+4*i+3] = 255
755		}
756	}
757	return img, nil
758}
759
760// Decode reads a JPEG image from r and returns it as an image.Image.
761func Decode(r io.Reader) (image.Image, error) {
762	var d decoder
763	return d.decode(r, false)
764}
765
766// DecodeConfig returns the color model and dimensions of a JPEG image without
767// decoding the entire image.
768func DecodeConfig(r io.Reader) (image.Config, error) {
769	var d decoder
770	if _, err := d.decode(r, true); err != nil {
771		return image.Config{}, err
772	}
773	switch d.nComp {
774	case 1:
775		return image.Config{
776			ColorModel: color.GrayModel,
777			Width:      d.width,
778			Height:     d.height,
779		}, nil
780	case 3:
781		cm := color.YCbCrModel
782		if d.isRGB() {
783			cm = color.RGBAModel
784		}
785		return image.Config{
786			ColorModel: cm,
787			Width:      d.width,
788			Height:     d.height,
789		}, nil
790	case 4:
791		return image.Config{
792			ColorModel: color.CMYKModel,
793			Width:      d.width,
794			Height:     d.height,
795		}, nil
796	}
797	return image.Config{}, FormatError("missing SOF marker")
798}
799
800func init() {
801	image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig)
802}
803