1// Copyright 2012 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package jpeg
6
7import (
8	"image"
9)
10
11// makeImg allocates and initializes the destination image.
12func (d *decoder) makeImg(mxx, myy int) {
13	if d.nComp == 1 {
14		m := image.NewGray(image.Rect(0, 0, 8*mxx, 8*myy))
15		d.img1 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.Gray)
16		return
17	}
18
19	h0 := d.comp[0].h
20	v0 := d.comp[0].v
21	hRatio := h0 / d.comp[1].h
22	vRatio := v0 / d.comp[1].v
23	var subsampleRatio image.YCbCrSubsampleRatio
24	switch hRatio<<4 | vRatio {
25	case 0x11:
26		subsampleRatio = image.YCbCrSubsampleRatio444
27	case 0x12:
28		subsampleRatio = image.YCbCrSubsampleRatio440
29	case 0x21:
30		subsampleRatio = image.YCbCrSubsampleRatio422
31	case 0x22:
32		subsampleRatio = image.YCbCrSubsampleRatio420
33	case 0x41:
34		subsampleRatio = image.YCbCrSubsampleRatio411
35	case 0x42:
36		subsampleRatio = image.YCbCrSubsampleRatio410
37	default:
38		panic("unreachable")
39	}
40	m := image.NewYCbCr(image.Rect(0, 0, 8*h0*mxx, 8*v0*myy), subsampleRatio)
41	d.img3 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.YCbCr)
42
43	if d.nComp == 4 {
44		h3, v3 := d.comp[3].h, d.comp[3].v
45		d.blackPix = make([]byte, 8*h3*mxx*8*v3*myy)
46		d.blackStride = 8 * h3 * mxx
47	}
48}
49
50// Specified in section B.2.3.
51func (d *decoder) processSOS(n int) error {
52	if d.nComp == 0 {
53		return FormatError("missing SOF marker")
54	}
55	if n < 6 || 4+2*d.nComp < n || n%2 != 0 {
56		return FormatError("SOS has wrong length")
57	}
58	if err := d.readFull(d.tmp[:n]); err != nil {
59		return err
60	}
61	nComp := int(d.tmp[0])
62	if n != 4+2*nComp {
63		return FormatError("SOS length inconsistent with number of components")
64	}
65	var scan [maxComponents]struct {
66		compIndex uint8
67		td        uint8 // DC table selector.
68		ta        uint8 // AC table selector.
69	}
70	totalHV := 0
71	for i := 0; i < nComp; i++ {
72		cs := d.tmp[1+2*i] // Component selector.
73		compIndex := -1
74		for j, comp := range d.comp[:d.nComp] {
75			if cs == comp.c {
76				compIndex = j
77			}
78		}
79		if compIndex < 0 {
80			return FormatError("unknown component selector")
81		}
82		scan[i].compIndex = uint8(compIndex)
83		// Section B.2.3 states that "the value of Cs_j shall be different from
84		// the values of Cs_1 through Cs_(j-1)". Since we have previously
85		// verified that a frame's component identifiers (C_i values in section
86		// B.2.2) are unique, it suffices to check that the implicit indexes
87		// into d.comp are unique.
88		for j := 0; j < i; j++ {
89			if scan[i].compIndex == scan[j].compIndex {
90				return FormatError("repeated component selector")
91			}
92		}
93		totalHV += d.comp[compIndex].h * d.comp[compIndex].v
94
95		scan[i].td = d.tmp[2+2*i] >> 4
96		if scan[i].td > maxTh {
97			return FormatError("bad Td value")
98		}
99		scan[i].ta = d.tmp[2+2*i] & 0x0f
100		if scan[i].ta > maxTh {
101			return FormatError("bad Ta value")
102		}
103	}
104	// Section B.2.3 states that if there is more than one component then the
105	// total H*V values in a scan must be <= 10.
106	if d.nComp > 1 && totalHV > 10 {
107		return FormatError("total sampling factors too large")
108	}
109
110	// zigStart and zigEnd are the spectral selection bounds.
111	// ah and al are the successive approximation high and low values.
112	// The spec calls these values Ss, Se, Ah and Al.
113	//
114	// For progressive JPEGs, these are the two more-or-less independent
115	// aspects of progression. Spectral selection progression is when not
116	// all of a block's 64 DCT coefficients are transmitted in one pass.
117	// For example, three passes could transmit coefficient 0 (the DC
118	// component), coefficients 1-5, and coefficients 6-63, in zig-zag
119	// order. Successive approximation is when not all of the bits of a
120	// band of coefficients are transmitted in one pass. For example,
121	// three passes could transmit the 6 most significant bits, followed
122	// by the second-least significant bit, followed by the least
123	// significant bit.
124	//
125	// For baseline JPEGs, these parameters are hard-coded to 0/63/0/0.
126	zigStart, zigEnd, ah, al := int32(0), int32(blockSize-1), uint32(0), uint32(0)
127	if d.progressive {
128		zigStart = int32(d.tmp[1+2*nComp])
129		zigEnd = int32(d.tmp[2+2*nComp])
130		ah = uint32(d.tmp[3+2*nComp] >> 4)
131		al = uint32(d.tmp[3+2*nComp] & 0x0f)
132		if (zigStart == 0 && zigEnd != 0) || zigStart > zigEnd || blockSize <= zigEnd {
133			return FormatError("bad spectral selection bounds")
134		}
135		if zigStart != 0 && nComp != 1 {
136			return FormatError("progressive AC coefficients for more than one component")
137		}
138		if ah != 0 && ah != al+1 {
139			return FormatError("bad successive approximation values")
140		}
141	}
142
143	// mxx and myy are the number of MCUs (Minimum Coded Units) in the image.
144	h0, v0 := d.comp[0].h, d.comp[0].v // The h and v values from the Y components.
145	mxx := (d.width + 8*h0 - 1) / (8 * h0)
146	myy := (d.height + 8*v0 - 1) / (8 * v0)
147	if d.img1 == nil && d.img3 == nil {
148		d.makeImg(mxx, myy)
149	}
150	if d.progressive {
151		for i := 0; i < nComp; i++ {
152			compIndex := scan[i].compIndex
153			if d.progCoeffs[compIndex] == nil {
154				d.progCoeffs[compIndex] = make([]block, mxx*myy*d.comp[compIndex].h*d.comp[compIndex].v)
155			}
156		}
157	}
158
159	d.bits = bits{}
160	mcu, expectedRST := 0, uint8(rst0Marker)
161	var (
162		// b is the decoded coefficients, in natural (not zig-zag) order.
163		b  block
164		dc [maxComponents]int32
165		// bx and by are the location of the current block, in units of 8x8
166		// blocks: the third block in the first row has (bx, by) = (2, 0).
167		bx, by     int
168		blockCount int
169	)
170	for my := 0; my < myy; my++ {
171		for mx := 0; mx < mxx; mx++ {
172			for i := 0; i < nComp; i++ {
173				compIndex := scan[i].compIndex
174				hi := d.comp[compIndex].h
175				vi := d.comp[compIndex].v
176				qt := &d.quant[d.comp[compIndex].tq]
177				for j := 0; j < hi*vi; j++ {
178					// The blocks are traversed one MCU at a time. For 4:2:0 chroma
179					// subsampling, there are four Y 8x8 blocks in every 16x16 MCU.
180					//
181					// For a baseline 32x16 pixel image, the Y blocks visiting order is:
182					//	0 1 4 5
183					//	2 3 6 7
184					//
185					// For progressive images, the interleaved scans (those with nComp > 1)
186					// are traversed as above, but non-interleaved scans are traversed left
187					// to right, top to bottom:
188					//	0 1 2 3
189					//	4 5 6 7
190					// Only DC scans (zigStart == 0) can be interleaved. AC scans must have
191					// only one component.
192					//
193					// To further complicate matters, for non-interleaved scans, there is no
194					// data for any blocks that are inside the image at the MCU level but
195					// outside the image at the pixel level. For example, a 24x16 pixel 4:2:0
196					// progressive image consists of two 16x16 MCUs. The interleaved scans
197					// will process 8 Y blocks:
198					//	0 1 4 5
199					//	2 3 6 7
200					// The non-interleaved scans will process only 6 Y blocks:
201					//	0 1 2
202					//	3 4 5
203					if nComp != 1 {
204						bx = hi*mx + j%hi
205						by = vi*my + j/hi
206					} else {
207						q := mxx * hi
208						bx = blockCount % q
209						by = blockCount / q
210						blockCount++
211						if bx*8 >= d.width || by*8 >= d.height {
212							continue
213						}
214					}
215
216					// Load the previous partially decoded coefficients, if applicable.
217					if d.progressive {
218						b = d.progCoeffs[compIndex][by*mxx*hi+bx]
219					} else {
220						b = block{}
221					}
222
223					if ah != 0 {
224						if err := d.refine(&b, &d.huff[acTable][scan[i].ta], zigStart, zigEnd, 1<<al); err != nil {
225							return err
226						}
227					} else {
228						zig := zigStart
229						if zig == 0 {
230							zig++
231							// Decode the DC coefficient, as specified in section F.2.2.1.
232							value, err := d.decodeHuffman(&d.huff[dcTable][scan[i].td])
233							if err != nil {
234								return err
235							}
236							if value > 16 {
237								return UnsupportedError("excessive DC component")
238							}
239							dcDelta, err := d.receiveExtend(value)
240							if err != nil {
241								return err
242							}
243							dc[compIndex] += dcDelta
244							b[0] = dc[compIndex] << al
245						}
246
247						if zig <= zigEnd && d.eobRun > 0 {
248							d.eobRun--
249						} else {
250							// Decode the AC coefficients, as specified in section F.2.2.2.
251							huff := &d.huff[acTable][scan[i].ta]
252							for ; zig <= zigEnd; zig++ {
253								value, err := d.decodeHuffman(huff)
254								if err != nil {
255									return err
256								}
257								val0 := value >> 4
258								val1 := value & 0x0f
259								if val1 != 0 {
260									zig += int32(val0)
261									if zig > zigEnd {
262										break
263									}
264									ac, err := d.receiveExtend(val1)
265									if err != nil {
266										return err
267									}
268									b[unzig[zig]] = ac << al
269								} else {
270									if val0 != 0x0f {
271										d.eobRun = uint16(1 << val0)
272										if val0 != 0 {
273											bits, err := d.decodeBits(int32(val0))
274											if err != nil {
275												return err
276											}
277											d.eobRun |= uint16(bits)
278										}
279										d.eobRun--
280										break
281									}
282									zig += 0x0f
283								}
284							}
285						}
286					}
287
288					if d.progressive {
289						if zigEnd != blockSize-1 || al != 0 {
290							// We haven't completely decoded this 8x8 block. Save the coefficients.
291							d.progCoeffs[compIndex][by*mxx*hi+bx] = b
292							// At this point, we could execute the rest of the loop body to dequantize and
293							// perform the inverse DCT, to save early stages of a progressive image to the
294							// *image.YCbCr buffers (the whole point of progressive encoding), but in Go,
295							// the jpeg.Decode function does not return until the entire image is decoded,
296							// so we "continue" here to avoid wasted computation.
297							continue
298						}
299					}
300
301					// Dequantize, perform the inverse DCT and store the block to the image.
302					for zig := 0; zig < blockSize; zig++ {
303						b[unzig[zig]] *= qt[zig]
304					}
305					idct(&b)
306					dst, stride := []byte(nil), 0
307					if d.nComp == 1 {
308						dst, stride = d.img1.Pix[8*(by*d.img1.Stride+bx):], d.img1.Stride
309					} else {
310						switch compIndex {
311						case 0:
312							dst, stride = d.img3.Y[8*(by*d.img3.YStride+bx):], d.img3.YStride
313						case 1:
314							dst, stride = d.img3.Cb[8*(by*d.img3.CStride+bx):], d.img3.CStride
315						case 2:
316							dst, stride = d.img3.Cr[8*(by*d.img3.CStride+bx):], d.img3.CStride
317						case 3:
318							dst, stride = d.blackPix[8*(by*d.blackStride+bx):], d.blackStride
319						default:
320							return UnsupportedError("too many components")
321						}
322					}
323					// Level shift by +128, clip to [0, 255], and write to dst.
324					for y := 0; y < 8; y++ {
325						y8 := y * 8
326						yStride := y * stride
327						for x := 0; x < 8; x++ {
328							c := b[y8+x]
329							if c < -128 {
330								c = 0
331							} else if c > 127 {
332								c = 255
333							} else {
334								c += 128
335							}
336							dst[yStride+x] = uint8(c)
337						}
338					}
339				} // for j
340			} // for i
341			mcu++
342			if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy {
343				// A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input,
344				// but this one assumes well-formed input, and hence the restart marker follows immediately.
345				if err := d.readFull(d.tmp[:2]); err != nil {
346					return err
347				}
348				if d.tmp[0] != 0xff || d.tmp[1] != expectedRST {
349					return FormatError("bad RST marker")
350				}
351				expectedRST++
352				if expectedRST == rst7Marker+1 {
353					expectedRST = rst0Marker
354				}
355				// Reset the Huffman decoder.
356				d.bits = bits{}
357				// Reset the DC components, as per section F.2.1.3.1.
358				dc = [maxComponents]int32{}
359				// Reset the progressive decoder state, as per section G.1.2.2.
360				d.eobRun = 0
361			}
362		} // for mx
363	} // for my
364
365	return nil
366}
367
368// refine decodes a successive approximation refinement block, as specified in
369// section G.1.2.
370func (d *decoder) refine(b *block, h *huffman, zigStart, zigEnd, delta int32) error {
371	// Refining a DC component is trivial.
372	if zigStart == 0 {
373		if zigEnd != 0 {
374			panic("unreachable")
375		}
376		bit, err := d.decodeBit()
377		if err != nil {
378			return err
379		}
380		if bit {
381			b[0] |= delta
382		}
383		return nil
384	}
385
386	// Refining AC components is more complicated; see sections G.1.2.2 and G.1.2.3.
387	zig := zigStart
388	if d.eobRun == 0 {
389	loop:
390		for ; zig <= zigEnd; zig++ {
391			z := int32(0)
392			value, err := d.decodeHuffman(h)
393			if err != nil {
394				return err
395			}
396			val0 := value >> 4
397			val1 := value & 0x0f
398
399			switch val1 {
400			case 0:
401				if val0 != 0x0f {
402					d.eobRun = uint16(1 << val0)
403					if val0 != 0 {
404						bits, err := d.decodeBits(int32(val0))
405						if err != nil {
406							return err
407						}
408						d.eobRun |= uint16(bits)
409					}
410					break loop
411				}
412			case 1:
413				z = delta
414				bit, err := d.decodeBit()
415				if err != nil {
416					return err
417				}
418				if !bit {
419					z = -z
420				}
421			default:
422				return FormatError("unexpected Huffman code")
423			}
424
425			zig, err = d.refineNonZeroes(b, zig, zigEnd, int32(val0), delta)
426			if err != nil {
427				return err
428			}
429			if zig > zigEnd {
430				return FormatError("too many coefficients")
431			}
432			if z != 0 {
433				b[unzig[zig]] = z
434			}
435		}
436	}
437	if d.eobRun > 0 {
438		d.eobRun--
439		if _, err := d.refineNonZeroes(b, zig, zigEnd, -1, delta); err != nil {
440			return err
441		}
442	}
443	return nil
444}
445
446// refineNonZeroes refines non-zero entries of b in zig-zag order. If nz >= 0,
447// the first nz zero entries are skipped over.
448func (d *decoder) refineNonZeroes(b *block, zig, zigEnd, nz, delta int32) (int32, error) {
449	for ; zig <= zigEnd; zig++ {
450		u := unzig[zig]
451		if b[u] == 0 {
452			if nz == 0 {
453				break
454			}
455			nz--
456			continue
457		}
458		bit, err := d.decodeBit()
459		if err != nil {
460			return 0, err
461		}
462		if !bit {
463			continue
464		}
465		if b[u] >= 0 {
466			b[u] += delta
467		} else {
468			b[u] -= delta
469		}
470	}
471	return zig, nil
472}
473