1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// IP address manipulations
6//
7// IPv4 addresses are 4 bytes; IPv6 addresses are 16 bytes.
8// An IPv4 address can be converted to an IPv6 address by
9// adding a canonical prefix (10 zeros, 2 0xFFs).
10// This library accepts either size of byte slice but always
11// returns 16-byte addresses.
12
13package net
14
15// IP address lengths (bytes).
16const (
17	IPv4len = 4
18	IPv6len = 16
19)
20
21// An IP is a single IP address, a slice of bytes.
22// Functions in this package accept either 4-byte (IPv4)
23// or 16-byte (IPv6) slices as input.
24//
25// Note that in this documentation, referring to an
26// IP address as an IPv4 address or an IPv6 address
27// is a semantic property of the address, not just the
28// length of the byte slice: a 16-byte slice can still
29// be an IPv4 address.
30type IP []byte
31
32// An IP mask is an IP address.
33type IPMask []byte
34
35// An IPNet represents an IP network.
36type IPNet struct {
37	IP   IP     // network number
38	Mask IPMask // network mask
39}
40
41// IPv4 returns the IP address (in 16-byte form) of the
42// IPv4 address a.b.c.d.
43func IPv4(a, b, c, d byte) IP {
44	p := make(IP, IPv6len)
45	copy(p, v4InV6Prefix)
46	p[12] = a
47	p[13] = b
48	p[14] = c
49	p[15] = d
50	return p
51}
52
53var v4InV6Prefix = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff}
54
55// IPv4Mask returns the IP mask (in 4-byte form) of the
56// IPv4 mask a.b.c.d.
57func IPv4Mask(a, b, c, d byte) IPMask {
58	p := make(IPMask, IPv4len)
59	p[0] = a
60	p[1] = b
61	p[2] = c
62	p[3] = d
63	return p
64}
65
66// CIDRMask returns an IPMask consisting of `ones' 1 bits
67// followed by 0s up to a total length of `bits' bits.
68// For a mask of this form, CIDRMask is the inverse of IPMask.Size.
69func CIDRMask(ones, bits int) IPMask {
70	if bits != 8*IPv4len && bits != 8*IPv6len {
71		return nil
72	}
73	if ones < 0 || ones > bits {
74		return nil
75	}
76	l := bits / 8
77	m := make(IPMask, l)
78	n := uint(ones)
79	for i := 0; i < l; i++ {
80		if n >= 8 {
81			m[i] = 0xff
82			n -= 8
83			continue
84		}
85		m[i] = ^byte(0xff >> n)
86		n = 0
87	}
88	return m
89}
90
91// Well-known IPv4 addresses
92var (
93	IPv4bcast     = IPv4(255, 255, 255, 255) // broadcast
94	IPv4allsys    = IPv4(224, 0, 0, 1)       // all systems
95	IPv4allrouter = IPv4(224, 0, 0, 2)       // all routers
96	IPv4zero      = IPv4(0, 0, 0, 0)         // all zeros
97)
98
99// Well-known IPv6 addresses
100var (
101	IPv6zero                   = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
102	IPv6unspecified            = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
103	IPv6loopback               = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
104	IPv6interfacelocalallnodes = IP{0xff, 0x01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01}
105	IPv6linklocalallnodes      = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01}
106	IPv6linklocalallrouters    = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x02}
107)
108
109// IsUnspecified reports whether ip is an unspecified address.
110func (ip IP) IsUnspecified() bool {
111	return ip.Equal(IPv4zero) || ip.Equal(IPv6unspecified)
112}
113
114// IsLoopback reports whether ip is a loopback address.
115func (ip IP) IsLoopback() bool {
116	if ip4 := ip.To4(); ip4 != nil {
117		return ip4[0] == 127
118	}
119	return ip.Equal(IPv6loopback)
120}
121
122// IsMulticast reports whether ip is a multicast address.
123func (ip IP) IsMulticast() bool {
124	if ip4 := ip.To4(); ip4 != nil {
125		return ip4[0]&0xf0 == 0xe0
126	}
127	return len(ip) == IPv6len && ip[0] == 0xff
128}
129
130// IsInterfaceLocalMulticast reports whether ip is
131// an interface-local multicast address.
132func (ip IP) IsInterfaceLocalMulticast() bool {
133	return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x01
134}
135
136// IsLinkLocalMulticast reports whether ip is a link-local
137// multicast address.
138func (ip IP) IsLinkLocalMulticast() bool {
139	if ip4 := ip.To4(); ip4 != nil {
140		return ip4[0] == 224 && ip4[1] == 0 && ip4[2] == 0
141	}
142	return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x02
143}
144
145// IsLinkLocalUnicast reports whether ip is a link-local
146// unicast address.
147func (ip IP) IsLinkLocalUnicast() bool {
148	if ip4 := ip.To4(); ip4 != nil {
149		return ip4[0] == 169 && ip4[1] == 254
150	}
151	return len(ip) == IPv6len && ip[0] == 0xfe && ip[1]&0xc0 == 0x80
152}
153
154// IsGlobalUnicast reports whether ip is a global unicast
155// address.
156func (ip IP) IsGlobalUnicast() bool {
157	return (len(ip) == IPv4len || len(ip) == IPv6len) &&
158		!ip.Equal(IPv4bcast) &&
159		!ip.IsUnspecified() &&
160		!ip.IsLoopback() &&
161		!ip.IsMulticast() &&
162		!ip.IsLinkLocalUnicast()
163}
164
165// Is p all zeros?
166func isZeros(p IP) bool {
167	for i := 0; i < len(p); i++ {
168		if p[i] != 0 {
169			return false
170		}
171	}
172	return true
173}
174
175// To4 converts the IPv4 address ip to a 4-byte representation.
176// If ip is not an IPv4 address, To4 returns nil.
177func (ip IP) To4() IP {
178	if len(ip) == IPv4len {
179		return ip
180	}
181	if len(ip) == IPv6len &&
182		isZeros(ip[0:10]) &&
183		ip[10] == 0xff &&
184		ip[11] == 0xff {
185		return ip[12:16]
186	}
187	return nil
188}
189
190// To16 converts the IP address ip to a 16-byte representation.
191// If ip is not an IP address (it is the wrong length), To16 returns nil.
192func (ip IP) To16() IP {
193	if len(ip) == IPv4len {
194		return IPv4(ip[0], ip[1], ip[2], ip[3])
195	}
196	if len(ip) == IPv6len {
197		return ip
198	}
199	return nil
200}
201
202// Default route masks for IPv4.
203var (
204	classAMask = IPv4Mask(0xff, 0, 0, 0)
205	classBMask = IPv4Mask(0xff, 0xff, 0, 0)
206	classCMask = IPv4Mask(0xff, 0xff, 0xff, 0)
207)
208
209// DefaultMask returns the default IP mask for the IP address ip.
210// Only IPv4 addresses have default masks; DefaultMask returns
211// nil if ip is not a valid IPv4 address.
212func (ip IP) DefaultMask() IPMask {
213	if ip = ip.To4(); ip == nil {
214		return nil
215	}
216	switch true {
217	case ip[0] < 0x80:
218		return classAMask
219	case ip[0] < 0xC0:
220		return classBMask
221	default:
222		return classCMask
223	}
224}
225
226func allFF(b []byte) bool {
227	for _, c := range b {
228		if c != 0xff {
229			return false
230		}
231	}
232	return true
233}
234
235// Mask returns the result of masking the IP address ip with mask.
236func (ip IP) Mask(mask IPMask) IP {
237	if len(mask) == IPv6len && len(ip) == IPv4len && allFF(mask[:12]) {
238		mask = mask[12:]
239	}
240	if len(mask) == IPv4len && len(ip) == IPv6len && bytesEqual(ip[:12], v4InV6Prefix) {
241		ip = ip[12:]
242	}
243	n := len(ip)
244	if n != len(mask) {
245		return nil
246	}
247	out := make(IP, n)
248	for i := 0; i < n; i++ {
249		out[i] = ip[i] & mask[i]
250	}
251	return out
252}
253
254// String returns the string form of the IP address ip.
255// If the address is an IPv4 address, the string representation
256// is dotted decimal ("74.125.19.99").  Otherwise the representation
257// is IPv6 ("2001:4860:0:2001::68").
258func (ip IP) String() string {
259	p := ip
260
261	if len(ip) == 0 {
262		return "<nil>"
263	}
264
265	// If IPv4, use dotted notation.
266	if p4 := p.To4(); len(p4) == IPv4len {
267		return uitoa(uint(p4[0])) + "." +
268			uitoa(uint(p4[1])) + "." +
269			uitoa(uint(p4[2])) + "." +
270			uitoa(uint(p4[3]))
271	}
272	if len(p) != IPv6len {
273		return "?"
274	}
275
276	// Find longest run of zeros.
277	e0 := -1
278	e1 := -1
279	for i := 0; i < IPv6len; i += 2 {
280		j := i
281		for j < IPv6len && p[j] == 0 && p[j+1] == 0 {
282			j += 2
283		}
284		if j > i && j-i > e1-e0 {
285			e0 = i
286			e1 = j
287			i = j
288		}
289	}
290	// The symbol "::" MUST NOT be used to shorten just one 16 bit 0 field.
291	if e1-e0 <= 2 {
292		e0 = -1
293		e1 = -1
294	}
295
296	const maxLen = len("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff")
297	b := make([]byte, 0, maxLen)
298
299	// Print with possible :: in place of run of zeros
300	for i := 0; i < IPv6len; i += 2 {
301		if i == e0 {
302			b = append(b, ':', ':')
303			i = e1
304			if i >= IPv6len {
305				break
306			}
307		} else if i > 0 {
308			b = append(b, ':')
309		}
310		b = appendHex(b, (uint32(p[i])<<8)|uint32(p[i+1]))
311	}
312	return string(b)
313}
314
315// ipEmptyString is like ip.String except that it returns
316// an empty string when ip is unset.
317func ipEmptyString(ip IP) string {
318	if len(ip) == 0 {
319		return ""
320	}
321	return ip.String()
322}
323
324// MarshalText implements the encoding.TextMarshaler interface.
325// The encoding is the same as returned by String.
326func (ip IP) MarshalText() ([]byte, error) {
327	if len(ip) == 0 {
328		return []byte(""), nil
329	}
330	if len(ip) != IPv4len && len(ip) != IPv6len {
331		return nil, &AddrError{Err: "invalid IP address", Addr: ip.String()}
332	}
333	return []byte(ip.String()), nil
334}
335
336// UnmarshalText implements the encoding.TextUnmarshaler interface.
337// The IP address is expected in a form accepted by ParseIP.
338func (ip *IP) UnmarshalText(text []byte) error {
339	if len(text) == 0 {
340		*ip = nil
341		return nil
342	}
343	s := string(text)
344	x := ParseIP(s)
345	if x == nil {
346		return &ParseError{Type: "IP address", Text: s}
347	}
348	*ip = x
349	return nil
350}
351
352// Equal reports whether ip and x are the same IP address.
353// An IPv4 address and that same address in IPv6 form are
354// considered to be equal.
355func (ip IP) Equal(x IP) bool {
356	if len(ip) == len(x) {
357		return bytesEqual(ip, x)
358	}
359	if len(ip) == IPv4len && len(x) == IPv6len {
360		return bytesEqual(x[0:12], v4InV6Prefix) && bytesEqual(ip, x[12:])
361	}
362	if len(ip) == IPv6len && len(x) == IPv4len {
363		return bytesEqual(ip[0:12], v4InV6Prefix) && bytesEqual(ip[12:], x)
364	}
365	return false
366}
367
368func bytesEqual(x, y []byte) bool {
369	if len(x) != len(y) {
370		return false
371	}
372	for i, b := range x {
373		if y[i] != b {
374			return false
375		}
376	}
377	return true
378}
379
380// If mask is a sequence of 1 bits followed by 0 bits,
381// return the number of 1 bits.
382func simpleMaskLength(mask IPMask) int {
383	var n int
384	for i, v := range mask {
385		if v == 0xff {
386			n += 8
387			continue
388		}
389		// found non-ff byte
390		// count 1 bits
391		for v&0x80 != 0 {
392			n++
393			v <<= 1
394		}
395		// rest must be 0 bits
396		if v != 0 {
397			return -1
398		}
399		for i++; i < len(mask); i++ {
400			if mask[i] != 0 {
401				return -1
402			}
403		}
404		break
405	}
406	return n
407}
408
409// Size returns the number of leading ones and total bits in the mask.
410// If the mask is not in the canonical form--ones followed by zeros--then
411// Size returns 0, 0.
412func (m IPMask) Size() (ones, bits int) {
413	ones, bits = simpleMaskLength(m), len(m)*8
414	if ones == -1 {
415		return 0, 0
416	}
417	return
418}
419
420// String returns the hexadecimal form of m, with no punctuation.
421func (m IPMask) String() string {
422	if len(m) == 0 {
423		return "<nil>"
424	}
425	buf := make([]byte, len(m)*2)
426	for i, b := range m {
427		buf[i*2], buf[i*2+1] = hexDigit[b>>4], hexDigit[b&0xf]
428	}
429	return string(buf)
430}
431
432func networkNumberAndMask(n *IPNet) (ip IP, m IPMask) {
433	if ip = n.IP.To4(); ip == nil {
434		ip = n.IP
435		if len(ip) != IPv6len {
436			return nil, nil
437		}
438	}
439	m = n.Mask
440	switch len(m) {
441	case IPv4len:
442		if len(ip) != IPv4len {
443			return nil, nil
444		}
445	case IPv6len:
446		if len(ip) == IPv4len {
447			m = m[12:]
448		}
449	default:
450		return nil, nil
451	}
452	return
453}
454
455// Contains reports whether the network includes ip.
456func (n *IPNet) Contains(ip IP) bool {
457	nn, m := networkNumberAndMask(n)
458	if x := ip.To4(); x != nil {
459		ip = x
460	}
461	l := len(ip)
462	if l != len(nn) {
463		return false
464	}
465	for i := 0; i < l; i++ {
466		if nn[i]&m[i] != ip[i]&m[i] {
467			return false
468		}
469	}
470	return true
471}
472
473// Network returns the address's network name, "ip+net".
474func (n *IPNet) Network() string { return "ip+net" }
475
476// String returns the CIDR notation of n like "192.168.100.1/24"
477// or "2001:DB8::/48" as defined in RFC 4632 and RFC 4291.
478// If the mask is not in the canonical form, it returns the
479// string which consists of an IP address, followed by a slash
480// character and a mask expressed as hexadecimal form with no
481// punctuation like "192.168.100.1/c000ff00".
482func (n *IPNet) String() string {
483	nn, m := networkNumberAndMask(n)
484	if nn == nil || m == nil {
485		return "<nil>"
486	}
487	l := simpleMaskLength(m)
488	if l == -1 {
489		return nn.String() + "/" + m.String()
490	}
491	return nn.String() + "/" + uitoa(uint(l))
492}
493
494// Parse IPv4 address (d.d.d.d).
495func parseIPv4(s string) IP {
496	var p [IPv4len]byte
497	i := 0
498	for j := 0; j < IPv4len; j++ {
499		if i >= len(s) {
500			// Missing octets.
501			return nil
502		}
503		if j > 0 {
504			if s[i] != '.' {
505				return nil
506			}
507			i++
508		}
509		var (
510			n  int
511			ok bool
512		)
513		n, i, ok = dtoi(s, i)
514		if !ok || n > 0xFF {
515			return nil
516		}
517		p[j] = byte(n)
518	}
519	if i != len(s) {
520		return nil
521	}
522	return IPv4(p[0], p[1], p[2], p[3])
523}
524
525// parseIPv6 parses s as a literal IPv6 address described in RFC 4291
526// and RFC 5952.  It can also parse a literal scoped IPv6 address with
527// zone identifier which is described in RFC 4007 when zoneAllowed is
528// true.
529func parseIPv6(s string, zoneAllowed bool) (ip IP, zone string) {
530	ip = make(IP, IPv6len)
531	ellipsis := -1 // position of ellipsis in p
532	i := 0         // index in string s
533
534	if zoneAllowed {
535		s, zone = splitHostZone(s)
536	}
537
538	// Might have leading ellipsis
539	if len(s) >= 2 && s[0] == ':' && s[1] == ':' {
540		ellipsis = 0
541		i = 2
542		// Might be only ellipsis
543		if i == len(s) {
544			return ip, zone
545		}
546	}
547
548	// Loop, parsing hex numbers followed by colon.
549	j := 0
550	for j < IPv6len {
551		// Hex number.
552		n, i1, ok := xtoi(s, i)
553		if !ok || n > 0xFFFF {
554			return nil, zone
555		}
556
557		// If followed by dot, might be in trailing IPv4.
558		if i1 < len(s) && s[i1] == '.' {
559			if ellipsis < 0 && j != IPv6len-IPv4len {
560				// Not the right place.
561				return nil, zone
562			}
563			if j+IPv4len > IPv6len {
564				// Not enough room.
565				return nil, zone
566			}
567			ip4 := parseIPv4(s[i:])
568			if ip4 == nil {
569				return nil, zone
570			}
571			ip[j] = ip4[12]
572			ip[j+1] = ip4[13]
573			ip[j+2] = ip4[14]
574			ip[j+3] = ip4[15]
575			i = len(s)
576			j += IPv4len
577			break
578		}
579
580		// Save this 16-bit chunk.
581		ip[j] = byte(n >> 8)
582		ip[j+1] = byte(n)
583		j += 2
584
585		// Stop at end of string.
586		i = i1
587		if i == len(s) {
588			break
589		}
590
591		// Otherwise must be followed by colon and more.
592		if s[i] != ':' || i+1 == len(s) {
593			return nil, zone
594		}
595		i++
596
597		// Look for ellipsis.
598		if s[i] == ':' {
599			if ellipsis >= 0 { // already have one
600				return nil, zone
601			}
602			ellipsis = j
603			if i++; i == len(s) { // can be at end
604				break
605			}
606		}
607	}
608
609	// Must have used entire string.
610	if i != len(s) {
611		return nil, zone
612	}
613
614	// If didn't parse enough, expand ellipsis.
615	if j < IPv6len {
616		if ellipsis < 0 {
617			return nil, zone
618		}
619		n := IPv6len - j
620		for k := j - 1; k >= ellipsis; k-- {
621			ip[k+n] = ip[k]
622		}
623		for k := ellipsis + n - 1; k >= ellipsis; k-- {
624			ip[k] = 0
625		}
626	} else if ellipsis >= 0 {
627		// Ellipsis must represent at least one 0 group.
628		return nil, zone
629	}
630	return ip, zone
631}
632
633// ParseIP parses s as an IP address, returning the result.
634// The string s can be in dotted decimal ("74.125.19.99")
635// or IPv6 ("2001:4860:0:2001::68") form.
636// If s is not a valid textual representation of an IP address,
637// ParseIP returns nil.
638func ParseIP(s string) IP {
639	for i := 0; i < len(s); i++ {
640		switch s[i] {
641		case '.':
642			return parseIPv4(s)
643		case ':':
644			ip, _ := parseIPv6(s, false)
645			return ip
646		}
647	}
648	return nil
649}
650
651// ParseCIDR parses s as a CIDR notation IP address and mask,
652// like "192.168.100.1/24" or "2001:DB8::/48", as defined in
653// RFC 4632 and RFC 4291.
654//
655// It returns the IP address and the network implied by the IP
656// and mask.  For example, ParseCIDR("192.168.100.1/16") returns
657// the IP address 192.168.100.1 and the network 192.168.0.0/16.
658func ParseCIDR(s string) (IP, *IPNet, error) {
659	i := byteIndex(s, '/')
660	if i < 0 {
661		return nil, nil, &ParseError{Type: "CIDR address", Text: s}
662	}
663	addr, mask := s[:i], s[i+1:]
664	iplen := IPv4len
665	ip := parseIPv4(addr)
666	if ip == nil {
667		iplen = IPv6len
668		ip, _ = parseIPv6(addr, false)
669	}
670	n, i, ok := dtoi(mask, 0)
671	if ip == nil || !ok || i != len(mask) || n < 0 || n > 8*iplen {
672		return nil, nil, &ParseError{Type: "CIDR address", Text: s}
673	}
674	m := CIDRMask(n, 8*iplen)
675	return ip, &IPNet{IP: ip.Mask(m), Mask: m}, nil
676}
677