1------------------------------------------------------------------------------ 2-- -- 3-- GNAT COMPILER COMPONENTS -- 4-- -- 5-- S E M _ C H 3 -- 6-- -- 7-- B o d y -- 8-- -- 9-- Copyright (C) 1992-2018, Free Software Foundation, Inc. -- 10-- -- 11-- GNAT is free software; you can redistribute it and/or modify it under -- 12-- terms of the GNU General Public License as published by the Free Soft- -- 13-- ware Foundation; either version 3, or (at your option) any later ver- -- 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- 15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- 16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- 17-- for more details. You should have received a copy of the GNU General -- 18-- Public License distributed with GNAT; see file COPYING3. If not, go to -- 19-- http://www.gnu.org/licenses for a complete copy of the license. -- 20-- -- 21-- GNAT was originally developed by the GNAT team at New York University. -- 22-- Extensive contributions were provided by Ada Core Technologies Inc. -- 23-- -- 24------------------------------------------------------------------------------ 25 26with Aspects; use Aspects; 27with Atree; use Atree; 28with Checks; use Checks; 29with Contracts; use Contracts; 30with Debug; use Debug; 31with Elists; use Elists; 32with Einfo; use Einfo; 33with Errout; use Errout; 34with Eval_Fat; use Eval_Fat; 35with Exp_Ch3; use Exp_Ch3; 36with Exp_Ch9; use Exp_Ch9; 37with Exp_Disp; use Exp_Disp; 38with Exp_Dist; use Exp_Dist; 39with Exp_Tss; use Exp_Tss; 40with Exp_Util; use Exp_Util; 41with Freeze; use Freeze; 42with Ghost; use Ghost; 43with Itypes; use Itypes; 44with Layout; use Layout; 45with Lib; use Lib; 46with Lib.Xref; use Lib.Xref; 47with Namet; use Namet; 48with Nmake; use Nmake; 49with Opt; use Opt; 50with Restrict; use Restrict; 51with Rident; use Rident; 52with Rtsfind; use Rtsfind; 53with Sem; use Sem; 54with Sem_Aux; use Sem_Aux; 55with Sem_Case; use Sem_Case; 56with Sem_Cat; use Sem_Cat; 57with Sem_Ch6; use Sem_Ch6; 58with Sem_Ch7; use Sem_Ch7; 59with Sem_Ch8; use Sem_Ch8; 60with Sem_Ch13; use Sem_Ch13; 61with Sem_Dim; use Sem_Dim; 62with Sem_Disp; use Sem_Disp; 63with Sem_Dist; use Sem_Dist; 64with Sem_Elab; use Sem_Elab; 65with Sem_Elim; use Sem_Elim; 66with Sem_Eval; use Sem_Eval; 67with Sem_Mech; use Sem_Mech; 68with Sem_Res; use Sem_Res; 69with Sem_Smem; use Sem_Smem; 70with Sem_Type; use Sem_Type; 71with Sem_Util; use Sem_Util; 72with Sem_Warn; use Sem_Warn; 73with Stand; use Stand; 74with Sinfo; use Sinfo; 75with Sinput; use Sinput; 76with Snames; use Snames; 77with Targparm; use Targparm; 78with Tbuild; use Tbuild; 79with Ttypes; use Ttypes; 80with Uintp; use Uintp; 81with Urealp; use Urealp; 82 83package body Sem_Ch3 is 84 85 ----------------------- 86 -- Local Subprograms -- 87 ----------------------- 88 89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id); 90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the 91 -- abstract interface types implemented by a record type or a derived 92 -- record type. 93 94 procedure Build_Derived_Type 95 (N : Node_Id; 96 Parent_Type : Entity_Id; 97 Derived_Type : Entity_Id; 98 Is_Completion : Boolean; 99 Derive_Subps : Boolean := True); 100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is 101 -- the N_Full_Type_Declaration node containing the derived type definition. 102 -- Parent_Type is the entity for the parent type in the derived type 103 -- definition and Derived_Type the actual derived type. Is_Completion must 104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N 105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the 106 -- completion of a private type declaration. If Is_Completion is set to 107 -- True, N is the completion of a private type declaration and Derived_Type 108 -- is different from the defining identifier inside N (i.e. Derived_Type /= 109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent 110 -- subprograms should be derived. The only case where this parameter is 111 -- False is when Build_Derived_Type is recursively called to process an 112 -- implicit derived full type for a type derived from a private type (in 113 -- that case the subprograms must only be derived for the private view of 114 -- the type). 115 -- 116 -- ??? These flags need a bit of re-examination and re-documentation: 117 -- ??? are they both necessary (both seem related to the recursion)? 118 119 procedure Build_Derived_Access_Type 120 (N : Node_Id; 121 Parent_Type : Entity_Id; 122 Derived_Type : Entity_Id); 123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type, 124 -- create an implicit base if the parent type is constrained or if the 125 -- subtype indication has a constraint. 126 127 procedure Build_Derived_Array_Type 128 (N : Node_Id; 129 Parent_Type : Entity_Id; 130 Derived_Type : Entity_Id); 131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type, 132 -- create an implicit base if the parent type is constrained or if the 133 -- subtype indication has a constraint. 134 135 procedure Build_Derived_Concurrent_Type 136 (N : Node_Id; 137 Parent_Type : Entity_Id; 138 Derived_Type : Entity_Id); 139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or 140 -- protected type, inherit entries and protected subprograms, check 141 -- legality of discriminant constraints if any. 142 143 procedure Build_Derived_Enumeration_Type 144 (N : Node_Id; 145 Parent_Type : Entity_Id; 146 Derived_Type : Entity_Id); 147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration 148 -- type, we must create a new list of literals. Types derived from 149 -- Character and [Wide_]Wide_Character are special-cased. 150 151 procedure Build_Derived_Numeric_Type 152 (N : Node_Id; 153 Parent_Type : Entity_Id; 154 Derived_Type : Entity_Id); 155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create 156 -- an anonymous base type, and propagate constraint to subtype if needed. 157 158 procedure Build_Derived_Private_Type 159 (N : Node_Id; 160 Parent_Type : Entity_Id; 161 Derived_Type : Entity_Id; 162 Is_Completion : Boolean; 163 Derive_Subps : Boolean := True); 164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex 165 -- because the parent may or may not have a completion, and the derivation 166 -- may itself be a completion. 167 168 procedure Build_Derived_Record_Type 169 (N : Node_Id; 170 Parent_Type : Entity_Id; 171 Derived_Type : Entity_Id; 172 Derive_Subps : Boolean := True); 173 -- Subsidiary procedure used for tagged and untagged record types 174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration. 175 -- All parameters are as in Build_Derived_Type except that N, in 176 -- addition to being an N_Full_Type_Declaration node, can also be an 177 -- N_Private_Extension_Declaration node. See the definition of this routine 178 -- for much more info. Derive_Subps indicates whether subprograms should be 179 -- derived from the parent type. The only case where Derive_Subps is False 180 -- is for an implicit derived full type for a type derived from a private 181 -- type (see Build_Derived_Type). 182 183 procedure Build_Discriminal (Discrim : Entity_Id); 184 -- Create the discriminal corresponding to discriminant Discrim, that is 185 -- the parameter corresponding to Discrim to be used in initialization 186 -- procedures for the type where Discrim is a discriminant. Discriminals 187 -- are not used during semantic analysis, and are not fully defined 188 -- entities until expansion. Thus they are not given a scope until 189 -- initialization procedures are built. 190 191 function Build_Discriminant_Constraints 192 (T : Entity_Id; 193 Def : Node_Id; 194 Derived_Def : Boolean := False) return Elist_Id; 195 -- Validate discriminant constraints and return the list of the constraints 196 -- in order of discriminant declarations, where T is the discriminated 197 -- unconstrained type. Def is the N_Subtype_Indication node where the 198 -- discriminants constraints for T are specified. Derived_Def is True 199 -- when building the discriminant constraints in a derived type definition 200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent 201 -- type and Def is the constraint "(xxx)" on T and this routine sets the 202 -- Corresponding_Discriminant field of the discriminants in the derived 203 -- type D to point to the corresponding discriminants in the parent type T. 204 205 procedure Build_Discriminated_Subtype 206 (T : Entity_Id; 207 Def_Id : Entity_Id; 208 Elist : Elist_Id; 209 Related_Nod : Node_Id; 210 For_Access : Boolean := False); 211 -- Subsidiary procedure to Constrain_Discriminated_Type and to 212 -- Process_Incomplete_Dependents. Given 213 -- 214 -- T (a possibly discriminated base type) 215 -- Def_Id (a very partially built subtype for T), 216 -- 217 -- the call completes Def_Id to be the appropriate E_*_Subtype. 218 -- 219 -- The Elist is the list of discriminant constraints if any (it is set 220 -- to No_Elist if T is not a discriminated type, and to an empty list if 221 -- T has discriminants but there are no discriminant constraints). The 222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components. 223 -- The For_Access says whether or not this subtype is really constraining 224 -- an access type. That is its sole purpose is the designated type of an 225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype 226 -- is built to avoid freezing T when the access subtype is frozen. 227 228 function Build_Scalar_Bound 229 (Bound : Node_Id; 230 Par_T : Entity_Id; 231 Der_T : Entity_Id) return Node_Id; 232 -- The bounds of a derived scalar type are conversions of the bounds of 233 -- the parent type. Optimize the representation if the bounds are literals. 234 -- Needs a more complete spec--what are the parameters exactly, and what 235 -- exactly is the returned value, and how is Bound affected??? 236 237 procedure Build_Underlying_Full_View 238 (N : Node_Id; 239 Typ : Entity_Id; 240 Par : Entity_Id); 241 -- If the completion of a private type is itself derived from a private 242 -- type, or if the full view of a private subtype is itself private, the 243 -- back-end has no way to compute the actual size of this type. We build 244 -- an internal subtype declaration of the proper parent type to convey 245 -- this information. This extra mechanism is needed because a full 246 -- view cannot itself have a full view (it would get clobbered during 247 -- view exchanges). 248 249 procedure Check_Access_Discriminant_Requires_Limited 250 (D : Node_Id; 251 Loc : Node_Id); 252 -- Check the restriction that the type to which an access discriminant 253 -- belongs must be a concurrent type or a descendant of a type with 254 -- the reserved word 'limited' in its declaration. 255 256 procedure Check_Anonymous_Access_Components 257 (Typ_Decl : Node_Id; 258 Typ : Entity_Id; 259 Prev : Entity_Id; 260 Comp_List : Node_Id); 261 -- Ada 2005 AI-382: an access component in a record definition can refer to 262 -- the enclosing record, in which case it denotes the type itself, and not 263 -- the current instance of the type. We create an anonymous access type for 264 -- the component, and flag it as an access to a component, so accessibility 265 -- checks are properly performed on it. The declaration of the access type 266 -- is placed ahead of that of the record to prevent order-of-elaboration 267 -- circularity issues in Gigi. We create an incomplete type for the record 268 -- declaration, which is the designated type of the anonymous access. 269 270 procedure Check_Delta_Expression (E : Node_Id); 271 -- Check that the expression represented by E is suitable for use as a 272 -- delta expression, i.e. it is of real type and is static. 273 274 procedure Check_Digits_Expression (E : Node_Id); 275 -- Check that the expression represented by E is suitable for use as a 276 -- digits expression, i.e. it is of integer type, positive and static. 277 278 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id); 279 -- Validate the initialization of an object declaration. T is the required 280 -- type, and Exp is the initialization expression. 281 282 procedure Check_Interfaces (N : Node_Id; Def : Node_Id); 283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2) 284 285 procedure Check_Or_Process_Discriminants 286 (N : Node_Id; 287 T : Entity_Id; 288 Prev : Entity_Id := Empty); 289 -- If N is the full declaration of the completion T of an incomplete or 290 -- private type, check its discriminants (which are already known to be 291 -- conformant with those of the partial view, see Find_Type_Name), 292 -- otherwise process them. Prev is the entity of the partial declaration, 293 -- if any. 294 295 procedure Check_Real_Bound (Bound : Node_Id); 296 -- Check given bound for being of real type and static. If not, post an 297 -- appropriate message, and rewrite the bound with the real literal zero. 298 299 procedure Constant_Redeclaration 300 (Id : Entity_Id; 301 N : Node_Id; 302 T : out Entity_Id); 303 -- Various checks on legality of full declaration of deferred constant. 304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration, 305 -- node. The caller has not yet set any attributes of this entity. 306 307 function Contain_Interface 308 (Iface : Entity_Id; 309 Ifaces : Elist_Id) return Boolean; 310 -- Ada 2005: Determine whether Iface is present in the list Ifaces 311 312 procedure Convert_Scalar_Bounds 313 (N : Node_Id; 314 Parent_Type : Entity_Id; 315 Derived_Type : Entity_Id; 316 Loc : Source_Ptr); 317 -- For derived scalar types, convert the bounds in the type definition to 318 -- the derived type, and complete their analysis. Given a constraint of the 319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with 320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous 321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived 322 -- subtype are conversions of those bounds to the derived_type, so that 323 -- their typing is consistent. 324 325 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id); 326 -- Copies attributes from array base type T2 to array base type T1. Copies 327 -- only attributes that apply to base types, but not subtypes. 328 329 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id); 330 -- Copies attributes from array subtype T2 to array subtype T1. Copies 331 -- attributes that apply to both subtypes and base types. 332 333 procedure Create_Constrained_Components 334 (Subt : Entity_Id; 335 Decl_Node : Node_Id; 336 Typ : Entity_Id; 337 Constraints : Elist_Id); 338 -- Build the list of entities for a constrained discriminated record 339 -- subtype. If a component depends on a discriminant, replace its subtype 340 -- using the discriminant values in the discriminant constraint. Subt 341 -- is the defining identifier for the subtype whose list of constrained 342 -- entities we will create. Decl_Node is the type declaration node where 343 -- we will attach all the itypes created. Typ is the base discriminated 344 -- type for the subtype Subt. Constraints is the list of discriminant 345 -- constraints for Typ. 346 347 function Constrain_Component_Type 348 (Comp : Entity_Id; 349 Constrained_Typ : Entity_Id; 350 Related_Node : Node_Id; 351 Typ : Entity_Id; 352 Constraints : Elist_Id) return Entity_Id; 353 -- Given a discriminated base type Typ, a list of discriminant constraints, 354 -- Constraints, for Typ and a component Comp of Typ, create and return the 355 -- type corresponding to Etype (Comp) where all discriminant references 356 -- are replaced with the corresponding constraint. If Etype (Comp) contains 357 -- no discriminant references then it is returned as-is. Constrained_Typ 358 -- is the final constrained subtype to which the constrained component 359 -- belongs. Related_Node is the node where we attach all created itypes. 360 361 procedure Constrain_Access 362 (Def_Id : in out Entity_Id; 363 S : Node_Id; 364 Related_Nod : Node_Id); 365 -- Apply a list of constraints to an access type. If Def_Id is empty, it is 366 -- an anonymous type created for a subtype indication. In that case it is 367 -- created in the procedure and attached to Related_Nod. 368 369 procedure Constrain_Array 370 (Def_Id : in out Entity_Id; 371 SI : Node_Id; 372 Related_Nod : Node_Id; 373 Related_Id : Entity_Id; 374 Suffix : Character); 375 -- Apply a list of index constraints to an unconstrained array type. The 376 -- first parameter is the entity for the resulting subtype. A value of 377 -- Empty for Def_Id indicates that an implicit type must be created, but 378 -- creation is delayed (and must be done by this procedure) because other 379 -- subsidiary implicit types must be created first (which is why Def_Id 380 -- is an in/out parameter). The second parameter is a subtype indication 381 -- node for the constrained array to be created (e.g. something of the 382 -- form string (1 .. 10)). Related_Nod gives the place where this type 383 -- has to be inserted in the tree. The Related_Id and Suffix parameters 384 -- are used to build the associated Implicit type name. 385 386 procedure Constrain_Concurrent 387 (Def_Id : in out Entity_Id; 388 SI : Node_Id; 389 Related_Nod : Node_Id; 390 Related_Id : Entity_Id; 391 Suffix : Character); 392 -- Apply list of discriminant constraints to an unconstrained concurrent 393 -- type. 394 -- 395 -- SI is the N_Subtype_Indication node containing the constraint and 396 -- the unconstrained type to constrain. 397 -- 398 -- Def_Id is the entity for the resulting constrained subtype. A value 399 -- of Empty for Def_Id indicates that an implicit type must be created, 400 -- but creation is delayed (and must be done by this procedure) because 401 -- other subsidiary implicit types must be created first (which is why 402 -- Def_Id is an in/out parameter). 403 -- 404 -- Related_Nod gives the place where this type has to be inserted 405 -- in the tree. 406 -- 407 -- The last two arguments are used to create its external name if needed. 408 409 function Constrain_Corresponding_Record 410 (Prot_Subt : Entity_Id; 411 Corr_Rec : Entity_Id; 412 Related_Nod : Node_Id) return Entity_Id; 413 -- When constraining a protected type or task type with discriminants, 414 -- constrain the corresponding record with the same discriminant values. 415 416 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id); 417 -- Constrain a decimal fixed point type with a digits constraint and/or a 418 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity. 419 420 procedure Constrain_Discriminated_Type 421 (Def_Id : Entity_Id; 422 S : Node_Id; 423 Related_Nod : Node_Id; 424 For_Access : Boolean := False); 425 -- Process discriminant constraints of composite type. Verify that values 426 -- have been provided for all discriminants, that the original type is 427 -- unconstrained, and that the types of the supplied expressions match 428 -- the discriminant types. The first three parameters are like in routine 429 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation 430 -- of For_Access. 431 432 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id); 433 -- Constrain an enumeration type with a range constraint. This is identical 434 -- to Constrain_Integer, but for the Ekind of the resulting subtype. 435 436 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id); 437 -- Constrain a floating point type with either a digits constraint 438 -- and/or a range constraint, building a E_Floating_Point_Subtype. 439 440 procedure Constrain_Index 441 (Index : Node_Id; 442 S : Node_Id; 443 Related_Nod : Node_Id; 444 Related_Id : Entity_Id; 445 Suffix : Character; 446 Suffix_Index : Nat); 447 -- Process an index constraint S in a constrained array declaration. The 448 -- constraint can be a subtype name, or a range with or without an explicit 449 -- subtype mark. The index is the corresponding index of the unconstrained 450 -- array. The Related_Id and Suffix parameters are used to build the 451 -- associated Implicit type name. 452 453 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id); 454 -- Build subtype of a signed or modular integer type 455 456 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id); 457 -- Constrain an ordinary fixed point type with a range constraint, and 458 -- build an E_Ordinary_Fixed_Point_Subtype entity. 459 460 procedure Copy_And_Swap (Priv, Full : Entity_Id); 461 -- Copy the Priv entity into the entity of its full declaration then swap 462 -- the two entities in such a manner that the former private type is now 463 -- seen as a full type. 464 465 procedure Decimal_Fixed_Point_Type_Declaration 466 (T : Entity_Id; 467 Def : Node_Id); 468 -- Create a new decimal fixed point type, and apply the constraint to 469 -- obtain a subtype of this new type. 470 471 procedure Complete_Private_Subtype 472 (Priv : Entity_Id; 473 Full : Entity_Id; 474 Full_Base : Entity_Id; 475 Related_Nod : Node_Id); 476 -- Complete the implicit full view of a private subtype by setting the 477 -- appropriate semantic fields. If the full view of the parent is a record 478 -- type, build constrained components of subtype. 479 480 procedure Derive_Progenitor_Subprograms 481 (Parent_Type : Entity_Id; 482 Tagged_Type : Entity_Id); 483 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive 484 -- operations of progenitors of Tagged_Type, and replace the subsidiary 485 -- subtypes with Tagged_Type, to build the specs of the inherited interface 486 -- primitives. The derived primitives are aliased to those of the 487 -- interface. This routine takes care also of transferring to the full view 488 -- subprograms associated with the partial view of Tagged_Type that cover 489 -- interface primitives. 490 491 procedure Derived_Standard_Character 492 (N : Node_Id; 493 Parent_Type : Entity_Id; 494 Derived_Type : Entity_Id); 495 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles 496 -- derivations from types Standard.Character and Standard.Wide_Character. 497 498 procedure Derived_Type_Declaration 499 (T : Entity_Id; 500 N : Node_Id; 501 Is_Completion : Boolean); 502 -- Process a derived type declaration. Build_Derived_Type is invoked 503 -- to process the actual derived type definition. Parameters N and 504 -- Is_Completion have the same meaning as in Build_Derived_Type. 505 -- T is the N_Defining_Identifier for the entity defined in the 506 -- N_Full_Type_Declaration node N, that is T is the derived type. 507 508 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id); 509 -- Insert each literal in symbol table, as an overloadable identifier. Each 510 -- enumeration type is mapped into a sequence of integers, and each literal 511 -- is defined as a constant with integer value. If any of the literals are 512 -- character literals, the type is a character type, which means that 513 -- strings are legal aggregates for arrays of components of the type. 514 515 function Expand_To_Stored_Constraint 516 (Typ : Entity_Id; 517 Constraint : Elist_Id) return Elist_Id; 518 -- Given a constraint (i.e. a list of expressions) on the discriminants of 519 -- Typ, expand it into a constraint on the stored discriminants and return 520 -- the new list of expressions constraining the stored discriminants. 521 522 function Find_Type_Of_Object 523 (Obj_Def : Node_Id; 524 Related_Nod : Node_Id) return Entity_Id; 525 -- Get type entity for object referenced by Obj_Def, attaching the implicit 526 -- types generated to Related_Nod. 527 528 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id); 529 -- Create a new float and apply the constraint to obtain subtype of it 530 531 function Has_Range_Constraint (N : Node_Id) return Boolean; 532 -- Given an N_Subtype_Indication node N, return True if a range constraint 533 -- is present, either directly, or as part of a digits or delta constraint. 534 -- In addition, a digits constraint in the decimal case returns True, since 535 -- it establishes a default range if no explicit range is present. 536 537 function Inherit_Components 538 (N : Node_Id; 539 Parent_Base : Entity_Id; 540 Derived_Base : Entity_Id; 541 Is_Tagged : Boolean; 542 Inherit_Discr : Boolean; 543 Discs : Elist_Id) return Elist_Id; 544 -- Called from Build_Derived_Record_Type to inherit the components of 545 -- Parent_Base (a base type) into the Derived_Base (the derived base type). 546 -- For more information on derived types and component inheritance please 547 -- consult the comment above the body of Build_Derived_Record_Type. 548 -- 549 -- N is the original derived type declaration 550 -- 551 -- Is_Tagged is set if we are dealing with tagged types 552 -- 553 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from 554 -- Parent_Base, otherwise no discriminants are inherited. 555 -- 556 -- Discs gives the list of constraints that apply to Parent_Base in the 557 -- derived type declaration. If Discs is set to No_Elist, then we have 558 -- the following situation: 559 -- 560 -- type Parent (D1..Dn : ..) is [tagged] record ...; 561 -- type Derived is new Parent [with ...]; 562 -- 563 -- which gets treated as 564 -- 565 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...]; 566 -- 567 -- For untagged types the returned value is an association list. The list 568 -- starts from the association (Parent_Base => Derived_Base), and then it 569 -- contains a sequence of the associations of the form 570 -- 571 -- (Old_Component => New_Component), 572 -- 573 -- where Old_Component is the Entity_Id of a component in Parent_Base and 574 -- New_Component is the Entity_Id of the corresponding component in 575 -- Derived_Base. For untagged records, this association list is needed when 576 -- copying the record declaration for the derived base. In the tagged case 577 -- the value returned is irrelevant. 578 579 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id); 580 -- Propagate static and dynamic predicate flags from a parent to the 581 -- subtype in a subtype declaration with and without constraints. 582 583 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean; 584 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram. 585 -- Determine whether subprogram Subp is a procedure subject to pragma 586 -- Extensions_Visible with value False and has at least one controlling 587 -- parameter of mode OUT. 588 589 function Is_Valid_Constraint_Kind 590 (T_Kind : Type_Kind; 591 Constraint_Kind : Node_Kind) return Boolean; 592 -- Returns True if it is legal to apply the given kind of constraint to the 593 -- given kind of type (index constraint to an array type, for example). 594 595 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id); 596 -- Create new modular type. Verify that modulus is in bounds 597 598 procedure New_Concatenation_Op (Typ : Entity_Id); 599 -- Create an abbreviated declaration for an operator in order to 600 -- materialize concatenation on array types. 601 602 procedure Ordinary_Fixed_Point_Type_Declaration 603 (T : Entity_Id; 604 Def : Node_Id); 605 -- Create a new ordinary fixed point type, and apply the constraint to 606 -- obtain subtype of it. 607 608 procedure Prepare_Private_Subtype_Completion 609 (Id : Entity_Id; 610 Related_Nod : Node_Id); 611 -- Id is a subtype of some private type. Creates the full declaration 612 -- associated with Id whenever possible, i.e. when the full declaration 613 -- of the base type is already known. Records each subtype into 614 -- Private_Dependents of the base type. 615 616 procedure Process_Incomplete_Dependents 617 (N : Node_Id; 618 Full_T : Entity_Id; 619 Inc_T : Entity_Id); 620 -- Process all entities that depend on an incomplete type. There include 621 -- subtypes, subprogram types that mention the incomplete type in their 622 -- profiles, and subprogram with access parameters that designate the 623 -- incomplete type. 624 625 -- Inc_T is the defining identifier of an incomplete type declaration, its 626 -- Ekind is E_Incomplete_Type. 627 -- 628 -- N is the corresponding N_Full_Type_Declaration for Inc_T. 629 -- 630 -- Full_T is N's defining identifier. 631 -- 632 -- Subtypes of incomplete types with discriminants are completed when the 633 -- parent type is. This is simpler than private subtypes, because they can 634 -- only appear in the same scope, and there is no need to exchange views. 635 -- Similarly, access_to_subprogram types may have a parameter or a return 636 -- type that is an incomplete type, and that must be replaced with the 637 -- full type. 638 -- 639 -- If the full type is tagged, subprogram with access parameters that 640 -- designated the incomplete may be primitive operations of the full type, 641 -- and have to be processed accordingly. 642 643 procedure Process_Real_Range_Specification (Def : Node_Id); 644 -- Given the type definition for a real type, this procedure processes and 645 -- checks the real range specification of this type definition if one is 646 -- present. If errors are found, error messages are posted, and the 647 -- Real_Range_Specification of Def is reset to Empty. 648 649 procedure Record_Type_Declaration 650 (T : Entity_Id; 651 N : Node_Id; 652 Prev : Entity_Id); 653 -- Process a record type declaration (for both untagged and tagged 654 -- records). Parameters T and N are exactly like in procedure 655 -- Derived_Type_Declaration, except that no flag Is_Completion is needed 656 -- for this routine. If this is the completion of an incomplete type 657 -- declaration, Prev is the entity of the incomplete declaration, used for 658 -- cross-referencing. Otherwise Prev = T. 659 660 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id); 661 -- This routine is used to process the actual record type definition (both 662 -- for untagged and tagged records). Def is a record type definition node. 663 -- This procedure analyzes the components in this record type definition. 664 -- Prev_T is the entity for the enclosing record type. It is provided so 665 -- that its Has_Task flag can be set if any of the component have Has_Task 666 -- set. If the declaration is the completion of an incomplete type 667 -- declaration, Prev_T is the original incomplete type, whose full view is 668 -- the record type. 669 670 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id); 671 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we 672 -- build a copy of the declaration tree of the parent, and we create 673 -- independently the list of components for the derived type. Semantic 674 -- information uses the component entities, but record representation 675 -- clauses are validated on the declaration tree. This procedure replaces 676 -- discriminants and components in the declaration with those that have 677 -- been created by Inherit_Components. 678 679 procedure Set_Fixed_Range 680 (E : Entity_Id; 681 Loc : Source_Ptr; 682 Lo : Ureal; 683 Hi : Ureal); 684 -- Build a range node with the given bounds and set it as the Scalar_Range 685 -- of the given fixed-point type entity. Loc is the source location used 686 -- for the constructed range. See body for further details. 687 688 procedure Set_Scalar_Range_For_Subtype 689 (Def_Id : Entity_Id; 690 R : Node_Id; 691 Subt : Entity_Id); 692 -- This routine is used to set the scalar range field for a subtype given 693 -- Def_Id, the entity for the subtype, and R, the range expression for the 694 -- scalar range. Subt provides the parent subtype to be used to analyze, 695 -- resolve, and check the given range. 696 697 procedure Set_Default_SSO (T : Entity_Id); 698 -- T is the entity for an array or record being declared. This procedure 699 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according 700 -- to the setting of Opt.Default_SSO. 701 702 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id); 703 -- Create a new signed integer entity, and apply the constraint to obtain 704 -- the required first named subtype of this type. 705 706 procedure Set_Stored_Constraint_From_Discriminant_Constraint 707 (E : Entity_Id); 708 -- E is some record type. This routine computes E's Stored_Constraint 709 -- from its Discriminant_Constraint. 710 711 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id); 712 -- Check that an entity in a list of progenitors is an interface, 713 -- emit error otherwise. 714 715 ----------------------- 716 -- Access_Definition -- 717 ----------------------- 718 719 function Access_Definition 720 (Related_Nod : Node_Id; 721 N : Node_Id) return Entity_Id 722 is 723 Anon_Type : Entity_Id; 724 Anon_Scope : Entity_Id; 725 Desig_Type : Entity_Id; 726 Enclosing_Prot_Type : Entity_Id := Empty; 727 728 begin 729 Check_SPARK_05_Restriction ("access type is not allowed", N); 730 731 if Is_Entry (Current_Scope) 732 and then Is_Task_Type (Etype (Scope (Current_Scope))) 733 then 734 Error_Msg_N ("task entries cannot have access parameters", N); 735 return Empty; 736 end if; 737 738 -- Ada 2005: For an object declaration the corresponding anonymous 739 -- type is declared in the current scope. 740 741 -- If the access definition is the return type of another access to 742 -- function, scope is the current one, because it is the one of the 743 -- current type declaration, except for the pathological case below. 744 745 if Nkind_In (Related_Nod, N_Object_Declaration, 746 N_Access_Function_Definition) 747 then 748 Anon_Scope := Current_Scope; 749 750 -- A pathological case: function returning access functions that 751 -- return access functions, etc. Each anonymous access type created 752 -- is in the enclosing scope of the outermost function. 753 754 declare 755 Par : Node_Id; 756 757 begin 758 Par := Related_Nod; 759 while Nkind_In (Par, N_Access_Function_Definition, 760 N_Access_Definition) 761 loop 762 Par := Parent (Par); 763 end loop; 764 765 if Nkind (Par) = N_Function_Specification then 766 Anon_Scope := Scope (Defining_Entity (Par)); 767 end if; 768 end; 769 770 -- For the anonymous function result case, retrieve the scope of the 771 -- function specification's associated entity rather than using the 772 -- current scope. The current scope will be the function itself if the 773 -- formal part is currently being analyzed, but will be the parent scope 774 -- in the case of a parameterless function, and we always want to use 775 -- the function's parent scope. Finally, if the function is a child 776 -- unit, we must traverse the tree to retrieve the proper entity. 777 778 elsif Nkind (Related_Nod) = N_Function_Specification 779 and then Nkind (Parent (N)) /= N_Parameter_Specification 780 then 781 -- If the current scope is a protected type, the anonymous access 782 -- is associated with one of the protected operations, and must 783 -- be available in the scope that encloses the protected declaration. 784 -- Otherwise the type is in the scope enclosing the subprogram. 785 786 -- If the function has formals, The return type of a subprogram 787 -- declaration is analyzed in the scope of the subprogram (see 788 -- Process_Formals) and thus the protected type, if present, is 789 -- the scope of the current function scope. 790 791 if Ekind (Current_Scope) = E_Protected_Type then 792 Enclosing_Prot_Type := Current_Scope; 793 794 elsif Ekind (Current_Scope) = E_Function 795 and then Ekind (Scope (Current_Scope)) = E_Protected_Type 796 then 797 Enclosing_Prot_Type := Scope (Current_Scope); 798 end if; 799 800 if Present (Enclosing_Prot_Type) then 801 Anon_Scope := Scope (Enclosing_Prot_Type); 802 803 else 804 Anon_Scope := Scope (Defining_Entity (Related_Nod)); 805 end if; 806 807 -- For an access type definition, if the current scope is a child 808 -- unit it is the scope of the type. 809 810 elsif Is_Compilation_Unit (Current_Scope) then 811 Anon_Scope := Current_Scope; 812 813 -- For access formals, access components, and access discriminants, the 814 -- scope is that of the enclosing declaration, 815 816 else 817 Anon_Scope := Scope (Current_Scope); 818 end if; 819 820 Anon_Type := 821 Create_Itype 822 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope); 823 824 if All_Present (N) 825 and then Ada_Version >= Ada_2005 826 then 827 Error_Msg_N ("ALL is not permitted for anonymous access types", N); 828 end if; 829 830 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call 831 -- the corresponding semantic routine 832 833 if Present (Access_To_Subprogram_Definition (N)) then 834 835 -- Compiler runtime units are compiled in Ada 2005 mode when building 836 -- the runtime library but must also be compilable in Ada 95 mode 837 -- (when bootstrapping the compiler). 838 839 Check_Compiler_Unit ("anonymous access to subprogram", N); 840 841 Access_Subprogram_Declaration 842 (T_Name => Anon_Type, 843 T_Def => Access_To_Subprogram_Definition (N)); 844 845 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then 846 Set_Ekind 847 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type); 848 else 849 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type); 850 end if; 851 852 Set_Can_Use_Internal_Rep 853 (Anon_Type, not Always_Compatible_Rep_On_Target); 854 855 -- If the anonymous access is associated with a protected operation, 856 -- create a reference to it after the enclosing protected definition 857 -- because the itype will be used in the subsequent bodies. 858 859 -- If the anonymous access itself is protected, a full type 860 -- declaratiton will be created for it, so that the equivalent 861 -- record type can be constructed. For further details, see 862 -- Replace_Anonymous_Access_To_Protected-Subprogram. 863 864 if Ekind (Current_Scope) = E_Protected_Type 865 and then not Protected_Present (Access_To_Subprogram_Definition (N)) 866 then 867 Build_Itype_Reference (Anon_Type, Parent (Current_Scope)); 868 end if; 869 870 return Anon_Type; 871 end if; 872 873 Find_Type (Subtype_Mark (N)); 874 Desig_Type := Entity (Subtype_Mark (N)); 875 876 Set_Directly_Designated_Type (Anon_Type, Desig_Type); 877 Set_Etype (Anon_Type, Anon_Type); 878 879 -- Make sure the anonymous access type has size and alignment fields 880 -- set, as required by gigi. This is necessary in the case of the 881 -- Task_Body_Procedure. 882 883 if not Has_Private_Component (Desig_Type) then 884 Layout_Type (Anon_Type); 885 end if; 886 887 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs 888 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if 889 -- the null value is allowed. In Ada 95 the null value is never allowed. 890 891 if Ada_Version >= Ada_2005 then 892 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N)); 893 else 894 Set_Can_Never_Be_Null (Anon_Type, True); 895 end if; 896 897 -- The anonymous access type is as public as the discriminated type or 898 -- subprogram that defines it. It is imported (for back-end purposes) 899 -- if the designated type is. 900 901 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type))); 902 903 -- Ada 2005 (AI-231): Propagate the access-constant attribute 904 905 Set_Is_Access_Constant (Anon_Type, Constant_Present (N)); 906 907 -- The context is either a subprogram declaration, object declaration, 908 -- or an access discriminant, in a private or a full type declaration. 909 -- In the case of a subprogram, if the designated type is incomplete, 910 -- the operation will be a primitive operation of the full type, to be 911 -- updated subsequently. If the type is imported through a limited_with 912 -- clause, the subprogram is not a primitive operation of the type 913 -- (which is declared elsewhere in some other scope). 914 915 if Ekind (Desig_Type) = E_Incomplete_Type 916 and then not From_Limited_With (Desig_Type) 917 and then Is_Overloadable (Current_Scope) 918 then 919 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type)); 920 Set_Has_Delayed_Freeze (Current_Scope); 921 end if; 922 923 -- Ada 2005: If the designated type is an interface that may contain 924 -- tasks, create a Master entity for the declaration. This must be done 925 -- before expansion of the full declaration, because the declaration may 926 -- include an expression that is an allocator, whose expansion needs the 927 -- proper Master for the created tasks. 928 929 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active 930 then 931 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type) 932 then 933 Build_Class_Wide_Master (Anon_Type); 934 935 -- Similarly, if the type is an anonymous access that designates 936 -- tasks, create a master entity for it in the current context. 937 938 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod) 939 then 940 Build_Master_Entity (Defining_Identifier (Related_Nod)); 941 Build_Master_Renaming (Anon_Type); 942 end if; 943 end if; 944 945 -- For a private component of a protected type, it is imperative that 946 -- the back-end elaborate the type immediately after the protected 947 -- declaration, because this type will be used in the declarations 948 -- created for the component within each protected body, so we must 949 -- create an itype reference for it now. 950 951 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then 952 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod))); 953 954 -- Similarly, if the access definition is the return result of a 955 -- function, create an itype reference for it because it will be used 956 -- within the function body. For a regular function that is not a 957 -- compilation unit, insert reference after the declaration. For a 958 -- protected operation, insert it after the enclosing protected type 959 -- declaration. In either case, do not create a reference for a type 960 -- obtained through a limited_with clause, because this would introduce 961 -- semantic dependencies. 962 963 -- Similarly, do not create a reference if the designated type is a 964 -- generic formal, because no use of it will reach the backend. 965 966 elsif Nkind (Related_Nod) = N_Function_Specification 967 and then not From_Limited_With (Desig_Type) 968 and then not Is_Generic_Type (Desig_Type) 969 then 970 if Present (Enclosing_Prot_Type) then 971 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type)); 972 973 elsif Is_List_Member (Parent (Related_Nod)) 974 and then Nkind (Parent (N)) /= N_Parameter_Specification 975 then 976 Build_Itype_Reference (Anon_Type, Parent (Related_Nod)); 977 end if; 978 979 -- Finally, create an itype reference for an object declaration of an 980 -- anonymous access type. This is strictly necessary only for deferred 981 -- constants, but in any case will avoid out-of-scope problems in the 982 -- back-end. 983 984 elsif Nkind (Related_Nod) = N_Object_Declaration then 985 Build_Itype_Reference (Anon_Type, Related_Nod); 986 end if; 987 988 return Anon_Type; 989 end Access_Definition; 990 991 ----------------------------------- 992 -- Access_Subprogram_Declaration -- 993 ----------------------------------- 994 995 procedure Access_Subprogram_Declaration 996 (T_Name : Entity_Id; 997 T_Def : Node_Id) 998 is 999 procedure Check_For_Premature_Usage (Def : Node_Id); 1000 -- Check that type T_Name is not used, directly or recursively, as a 1001 -- parameter or a return type in Def. Def is either a subtype, an 1002 -- access_definition, or an access_to_subprogram_definition. 1003 1004 ------------------------------- 1005 -- Check_For_Premature_Usage -- 1006 ------------------------------- 1007 1008 procedure Check_For_Premature_Usage (Def : Node_Id) is 1009 Param : Node_Id; 1010 1011 begin 1012 -- Check for a subtype mark 1013 1014 if Nkind (Def) in N_Has_Etype then 1015 if Etype (Def) = T_Name then 1016 Error_Msg_N 1017 ("type& cannot be used before end of its declaration", Def); 1018 end if; 1019 1020 -- If this is not a subtype, then this is an access_definition 1021 1022 elsif Nkind (Def) = N_Access_Definition then 1023 if Present (Access_To_Subprogram_Definition (Def)) then 1024 Check_For_Premature_Usage 1025 (Access_To_Subprogram_Definition (Def)); 1026 else 1027 Check_For_Premature_Usage (Subtype_Mark (Def)); 1028 end if; 1029 1030 -- The only cases left are N_Access_Function_Definition and 1031 -- N_Access_Procedure_Definition. 1032 1033 else 1034 if Present (Parameter_Specifications (Def)) then 1035 Param := First (Parameter_Specifications (Def)); 1036 while Present (Param) loop 1037 Check_For_Premature_Usage (Parameter_Type (Param)); 1038 Param := Next (Param); 1039 end loop; 1040 end if; 1041 1042 if Nkind (Def) = N_Access_Function_Definition then 1043 Check_For_Premature_Usage (Result_Definition (Def)); 1044 end if; 1045 end if; 1046 end Check_For_Premature_Usage; 1047 1048 -- Local variables 1049 1050 Formals : constant List_Id := Parameter_Specifications (T_Def); 1051 Formal : Entity_Id; 1052 D_Ityp : Node_Id; 1053 Desig_Type : constant Entity_Id := 1054 Create_Itype (E_Subprogram_Type, Parent (T_Def)); 1055 1056 -- Start of processing for Access_Subprogram_Declaration 1057 1058 begin 1059 Check_SPARK_05_Restriction ("access type is not allowed", T_Def); 1060 1061 -- Associate the Itype node with the inner full-type declaration or 1062 -- subprogram spec or entry body. This is required to handle nested 1063 -- anonymous declarations. For example: 1064 1065 -- procedure P 1066 -- (X : access procedure 1067 -- (Y : access procedure 1068 -- (Z : access T))) 1069 1070 D_Ityp := Associated_Node_For_Itype (Desig_Type); 1071 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration, 1072 N_Private_Type_Declaration, 1073 N_Private_Extension_Declaration, 1074 N_Procedure_Specification, 1075 N_Function_Specification, 1076 N_Entry_Body) 1077 1078 or else 1079 Nkind_In (D_Ityp, N_Object_Declaration, 1080 N_Object_Renaming_Declaration, 1081 N_Formal_Object_Declaration, 1082 N_Formal_Type_Declaration, 1083 N_Task_Type_Declaration, 1084 N_Protected_Type_Declaration)) 1085 loop 1086 D_Ityp := Parent (D_Ityp); 1087 pragma Assert (D_Ityp /= Empty); 1088 end loop; 1089 1090 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp); 1091 1092 if Nkind_In (D_Ityp, N_Procedure_Specification, 1093 N_Function_Specification) 1094 then 1095 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp))); 1096 1097 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration, 1098 N_Object_Declaration, 1099 N_Object_Renaming_Declaration, 1100 N_Formal_Type_Declaration) 1101 then 1102 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp))); 1103 end if; 1104 1105 if Nkind (T_Def) = N_Access_Function_Definition then 1106 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then 1107 declare 1108 Acc : constant Node_Id := Result_Definition (T_Def); 1109 1110 begin 1111 if Present (Access_To_Subprogram_Definition (Acc)) 1112 and then 1113 Protected_Present (Access_To_Subprogram_Definition (Acc)) 1114 then 1115 Set_Etype 1116 (Desig_Type, 1117 Replace_Anonymous_Access_To_Protected_Subprogram 1118 (T_Def)); 1119 1120 else 1121 Set_Etype 1122 (Desig_Type, 1123 Access_Definition (T_Def, Result_Definition (T_Def))); 1124 end if; 1125 end; 1126 1127 else 1128 Analyze (Result_Definition (T_Def)); 1129 1130 declare 1131 Typ : constant Entity_Id := Entity (Result_Definition (T_Def)); 1132 1133 begin 1134 -- If a null exclusion is imposed on the result type, then 1135 -- create a null-excluding itype (an access subtype) and use 1136 -- it as the function's Etype. 1137 1138 if Is_Access_Type (Typ) 1139 and then Null_Exclusion_In_Return_Present (T_Def) 1140 then 1141 Set_Etype (Desig_Type, 1142 Create_Null_Excluding_Itype 1143 (T => Typ, 1144 Related_Nod => T_Def, 1145 Scope_Id => Current_Scope)); 1146 1147 else 1148 if From_Limited_With (Typ) then 1149 1150 -- AI05-151: Incomplete types are allowed in all basic 1151 -- declarations, including access to subprograms. 1152 1153 if Ada_Version >= Ada_2012 then 1154 null; 1155 1156 else 1157 Error_Msg_NE 1158 ("illegal use of incomplete type&", 1159 Result_Definition (T_Def), Typ); 1160 end if; 1161 1162 elsif Ekind (Current_Scope) = E_Package 1163 and then In_Private_Part (Current_Scope) 1164 then 1165 if Ekind (Typ) = E_Incomplete_Type then 1166 Append_Elmt (Desig_Type, Private_Dependents (Typ)); 1167 1168 elsif Is_Class_Wide_Type (Typ) 1169 and then Ekind (Etype (Typ)) = E_Incomplete_Type 1170 then 1171 Append_Elmt 1172 (Desig_Type, Private_Dependents (Etype (Typ))); 1173 end if; 1174 end if; 1175 1176 Set_Etype (Desig_Type, Typ); 1177 end if; 1178 end; 1179 end if; 1180 1181 if not (Is_Type (Etype (Desig_Type))) then 1182 Error_Msg_N 1183 ("expect type in function specification", 1184 Result_Definition (T_Def)); 1185 end if; 1186 1187 else 1188 Set_Etype (Desig_Type, Standard_Void_Type); 1189 end if; 1190 1191 if Present (Formals) then 1192 Push_Scope (Desig_Type); 1193 1194 -- Some special tests here. These special tests can be removed 1195 -- if and when Itypes always have proper parent pointers to their 1196 -- declarations??? 1197 1198 -- Special test 1) Link defining_identifier of formals. Required by 1199 -- First_Formal to provide its functionality. 1200 1201 declare 1202 F : Node_Id; 1203 1204 begin 1205 F := First (Formals); 1206 1207 -- In ASIS mode, the access_to_subprogram may be analyzed twice, 1208 -- when it is part of an unconstrained type and subtype expansion 1209 -- is disabled. To avoid back-end problems with shared profiles, 1210 -- use previous subprogram type as the designated type, and then 1211 -- remove scope added above. 1212 1213 if ASIS_Mode and then Present (Scope (Defining_Identifier (F))) 1214 then 1215 Set_Etype (T_Name, T_Name); 1216 Init_Size_Align (T_Name); 1217 Set_Directly_Designated_Type (T_Name, 1218 Scope (Defining_Identifier (F))); 1219 End_Scope; 1220 return; 1221 end if; 1222 1223 while Present (F) loop 1224 if No (Parent (Defining_Identifier (F))) then 1225 Set_Parent (Defining_Identifier (F), F); 1226 end if; 1227 1228 Next (F); 1229 end loop; 1230 end; 1231 1232 Process_Formals (Formals, Parent (T_Def)); 1233 1234 -- Special test 2) End_Scope requires that the parent pointer be set 1235 -- to something reasonable, but Itypes don't have parent pointers. So 1236 -- we set it and then unset it ??? 1237 1238 Set_Parent (Desig_Type, T_Name); 1239 End_Scope; 1240 Set_Parent (Desig_Type, Empty); 1241 end if; 1242 1243 -- Check for premature usage of the type being defined 1244 1245 Check_For_Premature_Usage (T_Def); 1246 1247 -- The return type and/or any parameter type may be incomplete. Mark the 1248 -- subprogram_type as depending on the incomplete type, so that it can 1249 -- be updated when the full type declaration is seen. This only applies 1250 -- to incomplete types declared in some enclosing scope, not to limited 1251 -- views from other packages. 1252 1253 -- Prior to Ada 2012, access to functions can only have in_parameters. 1254 1255 if Present (Formals) then 1256 Formal := First_Formal (Desig_Type); 1257 while Present (Formal) loop 1258 if Ekind (Formal) /= E_In_Parameter 1259 and then Nkind (T_Def) = N_Access_Function_Definition 1260 and then Ada_Version < Ada_2012 1261 then 1262 Error_Msg_N ("functions can only have IN parameters", Formal); 1263 end if; 1264 1265 if Ekind (Etype (Formal)) = E_Incomplete_Type 1266 and then In_Open_Scopes (Scope (Etype (Formal))) 1267 then 1268 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal))); 1269 Set_Has_Delayed_Freeze (Desig_Type); 1270 end if; 1271 1272 Next_Formal (Formal); 1273 end loop; 1274 end if; 1275 1276 -- Check whether an indirect call without actuals may be possible. This 1277 -- is used when resolving calls whose result is then indexed. 1278 1279 May_Need_Actuals (Desig_Type); 1280 1281 -- If the return type is incomplete, this is legal as long as the type 1282 -- is declared in the current scope and will be completed in it (rather 1283 -- than being part of limited view). 1284 1285 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type 1286 and then not Has_Delayed_Freeze (Desig_Type) 1287 and then In_Open_Scopes (Scope (Etype (Desig_Type))) 1288 then 1289 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type))); 1290 Set_Has_Delayed_Freeze (Desig_Type); 1291 end if; 1292 1293 Check_Delayed_Subprogram (Desig_Type); 1294 1295 if Protected_Present (T_Def) then 1296 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type); 1297 Set_Convention (Desig_Type, Convention_Protected); 1298 else 1299 Set_Ekind (T_Name, E_Access_Subprogram_Type); 1300 end if; 1301 1302 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target); 1303 1304 Set_Etype (T_Name, T_Name); 1305 Init_Size_Align (T_Name); 1306 Set_Directly_Designated_Type (T_Name, Desig_Type); 1307 1308 Generate_Reference_To_Formals (T_Name); 1309 1310 -- Ada 2005 (AI-231): Propagate the null-excluding attribute 1311 1312 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def)); 1313 1314 Check_Restriction (No_Access_Subprograms, T_Def); 1315 end Access_Subprogram_Declaration; 1316 1317 ---------------------------- 1318 -- Access_Type_Declaration -- 1319 ---------------------------- 1320 1321 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is 1322 P : constant Node_Id := Parent (Def); 1323 S : constant Node_Id := Subtype_Indication (Def); 1324 1325 Full_Desig : Entity_Id; 1326 1327 begin 1328 Check_SPARK_05_Restriction ("access type is not allowed", Def); 1329 1330 -- Check for permissible use of incomplete type 1331 1332 if Nkind (S) /= N_Subtype_Indication then 1333 Analyze (S); 1334 1335 if Present (Entity (S)) 1336 and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type 1337 then 1338 Set_Directly_Designated_Type (T, Entity (S)); 1339 1340 -- If the designated type is a limited view, we cannot tell if 1341 -- the full view contains tasks, and there is no way to handle 1342 -- that full view in a client. We create a master entity for the 1343 -- scope, which will be used when a client determines that one 1344 -- is needed. 1345 1346 if From_Limited_With (Entity (S)) 1347 and then not Is_Class_Wide_Type (Entity (S)) 1348 then 1349 Set_Ekind (T, E_Access_Type); 1350 Build_Master_Entity (T); 1351 Build_Master_Renaming (T); 1352 end if; 1353 1354 else 1355 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P')); 1356 end if; 1357 1358 -- If the access definition is of the form: ACCESS NOT NULL .. 1359 -- the subtype indication must be of an access type. Create 1360 -- a null-excluding subtype of it. 1361 1362 if Null_Excluding_Subtype (Def) then 1363 if not Is_Access_Type (Entity (S)) then 1364 Error_Msg_N ("null exclusion must apply to access type", Def); 1365 1366 else 1367 declare 1368 Loc : constant Source_Ptr := Sloc (S); 1369 Decl : Node_Id; 1370 Nam : constant Entity_Id := Make_Temporary (Loc, 'S'); 1371 1372 begin 1373 Decl := 1374 Make_Subtype_Declaration (Loc, 1375 Defining_Identifier => Nam, 1376 Subtype_Indication => 1377 New_Occurrence_Of (Entity (S), Loc)); 1378 Set_Null_Exclusion_Present (Decl); 1379 Insert_Before (Parent (Def), Decl); 1380 Analyze (Decl); 1381 Set_Entity (S, Nam); 1382 end; 1383 end if; 1384 end if; 1385 1386 else 1387 Set_Directly_Designated_Type (T, 1388 Process_Subtype (S, P, T, 'P')); 1389 end if; 1390 1391 if All_Present (Def) or Constant_Present (Def) then 1392 Set_Ekind (T, E_General_Access_Type); 1393 else 1394 Set_Ekind (T, E_Access_Type); 1395 end if; 1396 1397 Full_Desig := Designated_Type (T); 1398 1399 if Base_Type (Full_Desig) = T then 1400 Error_Msg_N ("access type cannot designate itself", S); 1401 1402 -- In Ada 2005, the type may have a limited view through some unit in 1403 -- its own context, allowing the following circularity that cannot be 1404 -- detected earlier. 1405 1406 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T 1407 then 1408 Error_Msg_N 1409 ("access type cannot designate its own class-wide type", S); 1410 1411 -- Clean up indication of tagged status to prevent cascaded errors 1412 1413 Set_Is_Tagged_Type (T, False); 1414 end if; 1415 1416 Set_Etype (T, T); 1417 1418 -- If the type has appeared already in a with_type clause, it is frozen 1419 -- and the pointer size is already set. Else, initialize. 1420 1421 if not From_Limited_With (T) then 1422 Init_Size_Align (T); 1423 end if; 1424 1425 -- Note that Has_Task is always false, since the access type itself 1426 -- is not a task type. See Einfo for more description on this point. 1427 -- Exactly the same consideration applies to Has_Controlled_Component 1428 -- and to Has_Protected. 1429 1430 Set_Has_Task (T, False); 1431 Set_Has_Protected (T, False); 1432 Set_Has_Timing_Event (T, False); 1433 Set_Has_Controlled_Component (T, False); 1434 1435 -- Initialize field Finalization_Master explicitly to Empty, to avoid 1436 -- problems where an incomplete view of this entity has been previously 1437 -- established by a limited with and an overlaid version of this field 1438 -- (Stored_Constraint) was initialized for the incomplete view. 1439 1440 -- This reset is performed in most cases except where the access type 1441 -- has been created for the purposes of allocating or deallocating a 1442 -- build-in-place object. Such access types have explicitly set pools 1443 -- and finalization masters. 1444 1445 if No (Associated_Storage_Pool (T)) then 1446 Set_Finalization_Master (T, Empty); 1447 end if; 1448 1449 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant 1450 -- attributes 1451 1452 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def)); 1453 Set_Is_Access_Constant (T, Constant_Present (Def)); 1454 end Access_Type_Declaration; 1455 1456 ---------------------------------- 1457 -- Add_Interface_Tag_Components -- 1458 ---------------------------------- 1459 1460 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is 1461 Loc : constant Source_Ptr := Sloc (N); 1462 L : List_Id; 1463 Last_Tag : Node_Id; 1464 1465 procedure Add_Tag (Iface : Entity_Id); 1466 -- Add tag for one of the progenitor interfaces 1467 1468 ------------- 1469 -- Add_Tag -- 1470 ------------- 1471 1472 procedure Add_Tag (Iface : Entity_Id) is 1473 Decl : Node_Id; 1474 Def : Node_Id; 1475 Tag : Entity_Id; 1476 Offset : Entity_Id; 1477 1478 begin 1479 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface)); 1480 1481 -- This is a reasonable place to propagate predicates 1482 1483 if Has_Predicates (Iface) then 1484 Set_Has_Predicates (Typ); 1485 end if; 1486 1487 Def := 1488 Make_Component_Definition (Loc, 1489 Aliased_Present => True, 1490 Subtype_Indication => 1491 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc)); 1492 1493 Tag := Make_Temporary (Loc, 'V'); 1494 1495 Decl := 1496 Make_Component_Declaration (Loc, 1497 Defining_Identifier => Tag, 1498 Component_Definition => Def); 1499 1500 Analyze_Component_Declaration (Decl); 1501 1502 Set_Analyzed (Decl); 1503 Set_Ekind (Tag, E_Component); 1504 Set_Is_Tag (Tag); 1505 Set_Is_Aliased (Tag); 1506 Set_Related_Type (Tag, Iface); 1507 Init_Component_Location (Tag); 1508 1509 pragma Assert (Is_Frozen (Iface)); 1510 1511 Set_DT_Entry_Count (Tag, 1512 DT_Entry_Count (First_Entity (Iface))); 1513 1514 if No (Last_Tag) then 1515 Prepend (Decl, L); 1516 else 1517 Insert_After (Last_Tag, Decl); 1518 end if; 1519 1520 Last_Tag := Decl; 1521 1522 -- If the ancestor has discriminants we need to give special support 1523 -- to store the offset_to_top value of the secondary dispatch tables. 1524 -- For this purpose we add a supplementary component just after the 1525 -- field that contains the tag associated with each secondary DT. 1526 1527 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then 1528 Def := 1529 Make_Component_Definition (Loc, 1530 Subtype_Indication => 1531 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc)); 1532 1533 Offset := Make_Temporary (Loc, 'V'); 1534 1535 Decl := 1536 Make_Component_Declaration (Loc, 1537 Defining_Identifier => Offset, 1538 Component_Definition => Def); 1539 1540 Analyze_Component_Declaration (Decl); 1541 1542 Set_Analyzed (Decl); 1543 Set_Ekind (Offset, E_Component); 1544 Set_Is_Aliased (Offset); 1545 Set_Related_Type (Offset, Iface); 1546 Init_Component_Location (Offset); 1547 Insert_After (Last_Tag, Decl); 1548 Last_Tag := Decl; 1549 end if; 1550 end Add_Tag; 1551 1552 -- Local variables 1553 1554 Elmt : Elmt_Id; 1555 Ext : Node_Id; 1556 Comp : Node_Id; 1557 1558 -- Start of processing for Add_Interface_Tag_Components 1559 1560 begin 1561 if not RTE_Available (RE_Interface_Tag) then 1562 Error_Msg 1563 ("(Ada 2005) interface types not supported by this run-time!", 1564 Sloc (N)); 1565 return; 1566 end if; 1567 1568 if Ekind (Typ) /= E_Record_Type 1569 or else (Is_Concurrent_Record_Type (Typ) 1570 and then Is_Empty_List (Abstract_Interface_List (Typ))) 1571 or else (not Is_Concurrent_Record_Type (Typ) 1572 and then No (Interfaces (Typ)) 1573 and then Is_Empty_Elmt_List (Interfaces (Typ))) 1574 then 1575 return; 1576 end if; 1577 1578 -- Find the current last tag 1579 1580 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then 1581 Ext := Record_Extension_Part (Type_Definition (N)); 1582 else 1583 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition); 1584 Ext := Type_Definition (N); 1585 end if; 1586 1587 Last_Tag := Empty; 1588 1589 if not (Present (Component_List (Ext))) then 1590 Set_Null_Present (Ext, False); 1591 L := New_List; 1592 Set_Component_List (Ext, 1593 Make_Component_List (Loc, 1594 Component_Items => L, 1595 Null_Present => False)); 1596 else 1597 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then 1598 L := Component_Items 1599 (Component_List 1600 (Record_Extension_Part 1601 (Type_Definition (N)))); 1602 else 1603 L := Component_Items 1604 (Component_List 1605 (Type_Definition (N))); 1606 end if; 1607 1608 -- Find the last tag component 1609 1610 Comp := First (L); 1611 while Present (Comp) loop 1612 if Nkind (Comp) = N_Component_Declaration 1613 and then Is_Tag (Defining_Identifier (Comp)) 1614 then 1615 Last_Tag := Comp; 1616 end if; 1617 1618 Next (Comp); 1619 end loop; 1620 end if; 1621 1622 -- At this point L references the list of components and Last_Tag 1623 -- references the current last tag (if any). Now we add the tag 1624 -- corresponding with all the interfaces that are not implemented 1625 -- by the parent. 1626 1627 if Present (Interfaces (Typ)) then 1628 Elmt := First_Elmt (Interfaces (Typ)); 1629 while Present (Elmt) loop 1630 Add_Tag (Node (Elmt)); 1631 Next_Elmt (Elmt); 1632 end loop; 1633 end if; 1634 end Add_Interface_Tag_Components; 1635 1636 ------------------------------------- 1637 -- Add_Internal_Interface_Entities -- 1638 ------------------------------------- 1639 1640 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is 1641 Elmt : Elmt_Id; 1642 Iface : Entity_Id; 1643 Iface_Elmt : Elmt_Id; 1644 Iface_Prim : Entity_Id; 1645 Ifaces_List : Elist_Id; 1646 New_Subp : Entity_Id := Empty; 1647 Prim : Entity_Id; 1648 Restore_Scope : Boolean := False; 1649 1650 begin 1651 pragma Assert (Ada_Version >= Ada_2005 1652 and then Is_Record_Type (Tagged_Type) 1653 and then Is_Tagged_Type (Tagged_Type) 1654 and then Has_Interfaces (Tagged_Type) 1655 and then not Is_Interface (Tagged_Type)); 1656 1657 -- Ensure that the internal entities are added to the scope of the type 1658 1659 if Scope (Tagged_Type) /= Current_Scope then 1660 Push_Scope (Scope (Tagged_Type)); 1661 Restore_Scope := True; 1662 end if; 1663 1664 Collect_Interfaces (Tagged_Type, Ifaces_List); 1665 1666 Iface_Elmt := First_Elmt (Ifaces_List); 1667 while Present (Iface_Elmt) loop 1668 Iface := Node (Iface_Elmt); 1669 1670 -- Originally we excluded here from this processing interfaces that 1671 -- are parents of Tagged_Type because their primitives are located 1672 -- in the primary dispatch table (and hence no auxiliary internal 1673 -- entities are required to handle secondary dispatch tables in such 1674 -- case). However, these auxiliary entities are also required to 1675 -- handle derivations of interfaces in formals of generics (see 1676 -- Derive_Subprograms). 1677 1678 Elmt := First_Elmt (Primitive_Operations (Iface)); 1679 while Present (Elmt) loop 1680 Iface_Prim := Node (Elmt); 1681 1682 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then 1683 Prim := 1684 Find_Primitive_Covering_Interface 1685 (Tagged_Type => Tagged_Type, 1686 Iface_Prim => Iface_Prim); 1687 1688 if No (Prim) and then Serious_Errors_Detected > 0 then 1689 goto Continue; 1690 end if; 1691 1692 pragma Assert (Present (Prim)); 1693 1694 -- Ada 2012 (AI05-0197): If the name of the covering primitive 1695 -- differs from the name of the interface primitive then it is 1696 -- a private primitive inherited from a parent type. In such 1697 -- case, given that Tagged_Type covers the interface, the 1698 -- inherited private primitive becomes visible. For such 1699 -- purpose we add a new entity that renames the inherited 1700 -- private primitive. 1701 1702 if Chars (Prim) /= Chars (Iface_Prim) then 1703 pragma Assert (Has_Suffix (Prim, 'P')); 1704 Derive_Subprogram 1705 (New_Subp => New_Subp, 1706 Parent_Subp => Iface_Prim, 1707 Derived_Type => Tagged_Type, 1708 Parent_Type => Iface); 1709 Set_Alias (New_Subp, Prim); 1710 Set_Is_Abstract_Subprogram 1711 (New_Subp, Is_Abstract_Subprogram (Prim)); 1712 end if; 1713 1714 Derive_Subprogram 1715 (New_Subp => New_Subp, 1716 Parent_Subp => Iface_Prim, 1717 Derived_Type => Tagged_Type, 1718 Parent_Type => Iface); 1719 1720 declare 1721 Anc : Entity_Id; 1722 begin 1723 if Is_Inherited_Operation (Prim) 1724 and then Present (Alias (Prim)) 1725 then 1726 Anc := Alias (Prim); 1727 else 1728 Anc := Overridden_Operation (Prim); 1729 end if; 1730 1731 -- Apply legality checks in RM 6.1.1 (10-13) concerning 1732 -- nonconforming preconditions in both an ancestor and 1733 -- a progenitor operation. 1734 1735 -- If the operation is a primitive wrapper it is an explicit 1736 -- (overriding) operqtion and all is fine. 1737 1738 if Present (Anc) 1739 and then Has_Non_Trivial_Precondition (Anc) 1740 and then Has_Non_Trivial_Precondition (Iface_Prim) 1741 then 1742 if Is_Abstract_Subprogram (Prim) 1743 or else 1744 (Ekind (Prim) = E_Procedure 1745 and then Nkind (Parent (Prim)) = 1746 N_Procedure_Specification 1747 and then Null_Present (Parent (Prim))) 1748 or else Is_Primitive_Wrapper (Prim) 1749 then 1750 null; 1751 1752 -- The operation is inherited and must be overridden 1753 1754 elsif not Comes_From_Source (Prim) then 1755 Error_Msg_NE 1756 ("&inherits non-conforming preconditions and must " 1757 & "be overridden (RM 6.1.1 (10-16)", 1758 Parent (Tagged_Type), Prim); 1759 end if; 1760 end if; 1761 end; 1762 1763 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp 1764 -- associated with interface types. These entities are 1765 -- only registered in the list of primitives of its 1766 -- corresponding tagged type because they are only used 1767 -- to fill the contents of the secondary dispatch tables. 1768 -- Therefore they are removed from the homonym chains. 1769 1770 Set_Is_Hidden (New_Subp); 1771 Set_Is_Internal (New_Subp); 1772 Set_Alias (New_Subp, Prim); 1773 Set_Is_Abstract_Subprogram 1774 (New_Subp, Is_Abstract_Subprogram (Prim)); 1775 Set_Interface_Alias (New_Subp, Iface_Prim); 1776 1777 -- If the returned type is an interface then propagate it to 1778 -- the returned type. Needed by the thunk to generate the code 1779 -- which displaces "this" to reference the corresponding 1780 -- secondary dispatch table in the returned object. 1781 1782 if Is_Interface (Etype (Iface_Prim)) then 1783 Set_Etype (New_Subp, Etype (Iface_Prim)); 1784 end if; 1785 1786 -- Internal entities associated with interface types are only 1787 -- registered in the list of primitives of the tagged type. 1788 -- They are only used to fill the contents of the secondary 1789 -- dispatch tables. Therefore they are not needed in the 1790 -- homonym chains. 1791 1792 Remove_Homonym (New_Subp); 1793 1794 -- Hidden entities associated with interfaces must have set 1795 -- the Has_Delay_Freeze attribute to ensure that, in case 1796 -- of locally defined tagged types (or compiling with static 1797 -- dispatch tables generation disabled) the corresponding 1798 -- entry of the secondary dispatch table is filled when such 1799 -- an entity is frozen. This is an expansion activity that must 1800 -- be suppressed for ASIS because it leads to gigi elaboration 1801 -- issues in annotate mode. 1802 1803 if not ASIS_Mode then 1804 Set_Has_Delayed_Freeze (New_Subp); 1805 end if; 1806 end if; 1807 1808 <<Continue>> 1809 Next_Elmt (Elmt); 1810 end loop; 1811 1812 Next_Elmt (Iface_Elmt); 1813 end loop; 1814 1815 if Restore_Scope then 1816 Pop_Scope; 1817 end if; 1818 end Add_Internal_Interface_Entities; 1819 1820 ----------------------------------- 1821 -- Analyze_Component_Declaration -- 1822 ----------------------------------- 1823 1824 procedure Analyze_Component_Declaration (N : Node_Id) is 1825 Loc : constant Source_Ptr := Sloc (Component_Definition (N)); 1826 Id : constant Entity_Id := Defining_Identifier (N); 1827 E : constant Node_Id := Expression (N); 1828 Typ : constant Node_Id := 1829 Subtype_Indication (Component_Definition (N)); 1830 T : Entity_Id; 1831 P : Entity_Id; 1832 1833 function Contains_POC (Constr : Node_Id) return Boolean; 1834 -- Determines whether a constraint uses the discriminant of a record 1835 -- type thus becoming a per-object constraint (POC). 1836 1837 function Is_Known_Limited (Typ : Entity_Id) return Boolean; 1838 -- Typ is the type of the current component, check whether this type is 1839 -- a limited type. Used to validate declaration against that of 1840 -- enclosing record. 1841 1842 ------------------ 1843 -- Contains_POC -- 1844 ------------------ 1845 1846 function Contains_POC (Constr : Node_Id) return Boolean is 1847 begin 1848 -- Prevent cascaded errors 1849 1850 if Error_Posted (Constr) then 1851 return False; 1852 end if; 1853 1854 case Nkind (Constr) is 1855 when N_Attribute_Reference => 1856 return Attribute_Name (Constr) = Name_Access 1857 and then Prefix (Constr) = Scope (Entity (Prefix (Constr))); 1858 1859 when N_Discriminant_Association => 1860 return Denotes_Discriminant (Expression (Constr)); 1861 1862 when N_Identifier => 1863 return Denotes_Discriminant (Constr); 1864 1865 when N_Index_Or_Discriminant_Constraint => 1866 declare 1867 IDC : Node_Id; 1868 1869 begin 1870 IDC := First (Constraints (Constr)); 1871 while Present (IDC) loop 1872 1873 -- One per-object constraint is sufficient 1874 1875 if Contains_POC (IDC) then 1876 return True; 1877 end if; 1878 1879 Next (IDC); 1880 end loop; 1881 1882 return False; 1883 end; 1884 1885 when N_Range => 1886 return Denotes_Discriminant (Low_Bound (Constr)) 1887 or else 1888 Denotes_Discriminant (High_Bound (Constr)); 1889 1890 when N_Range_Constraint => 1891 return Denotes_Discriminant (Range_Expression (Constr)); 1892 1893 when others => 1894 return False; 1895 end case; 1896 end Contains_POC; 1897 1898 ---------------------- 1899 -- Is_Known_Limited -- 1900 ---------------------- 1901 1902 function Is_Known_Limited (Typ : Entity_Id) return Boolean is 1903 P : constant Entity_Id := Etype (Typ); 1904 R : constant Entity_Id := Root_Type (Typ); 1905 1906 begin 1907 if Is_Limited_Record (Typ) then 1908 return True; 1909 1910 -- If the root type is limited (and not a limited interface) 1911 -- so is the current type 1912 1913 elsif Is_Limited_Record (R) 1914 and then (not Is_Interface (R) or else not Is_Limited_Interface (R)) 1915 then 1916 return True; 1917 1918 -- Else the type may have a limited interface progenitor, but a 1919 -- limited record parent. 1920 1921 elsif R /= P and then Is_Limited_Record (P) then 1922 return True; 1923 1924 else 1925 return False; 1926 end if; 1927 end Is_Known_Limited; 1928 1929 -- Start of processing for Analyze_Component_Declaration 1930 1931 begin 1932 Generate_Definition (Id); 1933 Enter_Name (Id); 1934 1935 if Present (Typ) then 1936 T := Find_Type_Of_Object 1937 (Subtype_Indication (Component_Definition (N)), N); 1938 1939 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then 1940 Check_SPARK_05_Restriction ("subtype mark required", Typ); 1941 end if; 1942 1943 -- Ada 2005 (AI-230): Access Definition case 1944 1945 else 1946 pragma Assert (Present 1947 (Access_Definition (Component_Definition (N)))); 1948 1949 T := Access_Definition 1950 (Related_Nod => N, 1951 N => Access_Definition (Component_Definition (N))); 1952 Set_Is_Local_Anonymous_Access (T); 1953 1954 -- Ada 2005 (AI-254) 1955 1956 if Present (Access_To_Subprogram_Definition 1957 (Access_Definition (Component_Definition (N)))) 1958 and then Protected_Present (Access_To_Subprogram_Definition 1959 (Access_Definition 1960 (Component_Definition (N)))) 1961 then 1962 T := Replace_Anonymous_Access_To_Protected_Subprogram (N); 1963 end if; 1964 end if; 1965 1966 -- If the subtype is a constrained subtype of the enclosing record, 1967 -- (which must have a partial view) the back-end does not properly 1968 -- handle the recursion. Rewrite the component declaration with an 1969 -- explicit subtype indication, which is acceptable to Gigi. We can copy 1970 -- the tree directly because side effects have already been removed from 1971 -- discriminant constraints. 1972 1973 if Ekind (T) = E_Access_Subtype 1974 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N))) 1975 and then Comes_From_Source (T) 1976 and then Nkind (Parent (T)) = N_Subtype_Declaration 1977 and then Etype (Directly_Designated_Type (T)) = Current_Scope 1978 then 1979 Rewrite 1980 (Subtype_Indication (Component_Definition (N)), 1981 New_Copy_Tree (Subtype_Indication (Parent (T)))); 1982 T := Find_Type_Of_Object 1983 (Subtype_Indication (Component_Definition (N)), N); 1984 end if; 1985 1986 -- If the component declaration includes a default expression, then we 1987 -- check that the component is not of a limited type (RM 3.7(5)), 1988 -- and do the special preanalysis of the expression (see section on 1989 -- "Handling of Default and Per-Object Expressions" in the spec of 1990 -- package Sem). 1991 1992 if Present (E) then 1993 Check_SPARK_05_Restriction ("default expression is not allowed", E); 1994 Preanalyze_Default_Expression (E, T); 1995 Check_Initialization (T, E); 1996 1997 if Ada_Version >= Ada_2005 1998 and then Ekind (T) = E_Anonymous_Access_Type 1999 and then Etype (E) /= Any_Type 2000 then 2001 -- Check RM 3.9.2(9): "if the expected type for an expression is 2002 -- an anonymous access-to-specific tagged type, then the object 2003 -- designated by the expression shall not be dynamically tagged 2004 -- unless it is a controlling operand in a call on a dispatching 2005 -- operation" 2006 2007 if Is_Tagged_Type (Directly_Designated_Type (T)) 2008 and then 2009 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type 2010 and then 2011 Ekind (Directly_Designated_Type (Etype (E))) = 2012 E_Class_Wide_Type 2013 then 2014 Error_Msg_N 2015 ("access to specific tagged type required (RM 3.9.2(9))", E); 2016 end if; 2017 2018 -- (Ada 2005: AI-230): Accessibility check for anonymous 2019 -- components 2020 2021 if Type_Access_Level (Etype (E)) > 2022 Deepest_Type_Access_Level (T) 2023 then 2024 Error_Msg_N 2025 ("expression has deeper access level than component " & 2026 "(RM 3.10.2 (12.2))", E); 2027 end if; 2028 2029 -- The initialization expression is a reference to an access 2030 -- discriminant. The type of the discriminant is always deeper 2031 -- than any access type. 2032 2033 if Ekind (Etype (E)) = E_Anonymous_Access_Type 2034 and then Is_Entity_Name (E) 2035 and then Ekind (Entity (E)) = E_In_Parameter 2036 and then Present (Discriminal_Link (Entity (E))) 2037 then 2038 Error_Msg_N 2039 ("discriminant has deeper accessibility level than target", 2040 E); 2041 end if; 2042 end if; 2043 end if; 2044 2045 -- The parent type may be a private view with unknown discriminants, 2046 -- and thus unconstrained. Regular components must be constrained. 2047 2048 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then 2049 if Is_Class_Wide_Type (T) then 2050 Error_Msg_N 2051 ("class-wide subtype with unknown discriminants" & 2052 " in component declaration", 2053 Subtype_Indication (Component_Definition (N))); 2054 else 2055 Error_Msg_N 2056 ("unconstrained subtype in component declaration", 2057 Subtype_Indication (Component_Definition (N))); 2058 end if; 2059 2060 -- Components cannot be abstract, except for the special case of 2061 -- the _Parent field (case of extending an abstract tagged type) 2062 2063 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then 2064 Error_Msg_N ("type of a component cannot be abstract", N); 2065 end if; 2066 2067 Set_Etype (Id, T); 2068 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N))); 2069 2070 -- The component declaration may have a per-object constraint, set 2071 -- the appropriate flag in the defining identifier of the subtype. 2072 2073 if Present (Subtype_Indication (Component_Definition (N))) then 2074 declare 2075 Sindic : constant Node_Id := 2076 Subtype_Indication (Component_Definition (N)); 2077 begin 2078 if Nkind (Sindic) = N_Subtype_Indication 2079 and then Present (Constraint (Sindic)) 2080 and then Contains_POC (Constraint (Sindic)) 2081 then 2082 Set_Has_Per_Object_Constraint (Id); 2083 end if; 2084 end; 2085 end if; 2086 2087 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry 2088 -- out some static checks. 2089 2090 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then 2091 Null_Exclusion_Static_Checks (N); 2092 end if; 2093 2094 -- If this component is private (or depends on a private type), flag the 2095 -- record type to indicate that some operations are not available. 2096 2097 P := Private_Component (T); 2098 2099 if Present (P) then 2100 2101 -- Check for circular definitions 2102 2103 if P = Any_Type then 2104 Set_Etype (Id, Any_Type); 2105 2106 -- There is a gap in the visibility of operations only if the 2107 -- component type is not defined in the scope of the record type. 2108 2109 elsif Scope (P) = Scope (Current_Scope) then 2110 null; 2111 2112 elsif Is_Limited_Type (P) then 2113 Set_Is_Limited_Composite (Current_Scope); 2114 2115 else 2116 Set_Is_Private_Composite (Current_Scope); 2117 end if; 2118 end if; 2119 2120 if P /= Any_Type 2121 and then Is_Limited_Type (T) 2122 and then Chars (Id) /= Name_uParent 2123 and then Is_Tagged_Type (Current_Scope) 2124 then 2125 if Is_Derived_Type (Current_Scope) 2126 and then not Is_Known_Limited (Current_Scope) 2127 then 2128 Error_Msg_N 2129 ("extension of nonlimited type cannot have limited components", 2130 N); 2131 2132 if Is_Interface (Root_Type (Current_Scope)) then 2133 Error_Msg_N 2134 ("\limitedness is not inherited from limited interface", N); 2135 Error_Msg_N ("\add LIMITED to type indication", N); 2136 end if; 2137 2138 Explain_Limited_Type (T, N); 2139 Set_Etype (Id, Any_Type); 2140 Set_Is_Limited_Composite (Current_Scope, False); 2141 2142 elsif not Is_Derived_Type (Current_Scope) 2143 and then not Is_Limited_Record (Current_Scope) 2144 and then not Is_Concurrent_Type (Current_Scope) 2145 then 2146 Error_Msg_N 2147 ("nonlimited tagged type cannot have limited components", N); 2148 Explain_Limited_Type (T, N); 2149 Set_Etype (Id, Any_Type); 2150 Set_Is_Limited_Composite (Current_Scope, False); 2151 end if; 2152 end if; 2153 2154 -- If the component is an unconstrained task or protected type with 2155 -- discriminants, the component and the enclosing record are limited 2156 -- and the component is constrained by its default values. Compute 2157 -- its actual subtype, else it may be allocated the maximum size by 2158 -- the backend, and possibly overflow. 2159 2160 if Is_Concurrent_Type (T) 2161 and then not Is_Constrained (T) 2162 and then Has_Discriminants (T) 2163 and then not Has_Discriminants (Current_Scope) 2164 then 2165 declare 2166 Act_T : constant Entity_Id := Build_Default_Subtype (T, N); 2167 2168 begin 2169 Set_Etype (Id, Act_T); 2170 2171 -- Rewrite component definition to use the constrained subtype 2172 2173 Rewrite (Component_Definition (N), 2174 Make_Component_Definition (Loc, 2175 Subtype_Indication => New_Occurrence_Of (Act_T, Loc))); 2176 end; 2177 end if; 2178 2179 Set_Original_Record_Component (Id, Id); 2180 2181 if Has_Aspects (N) then 2182 Analyze_Aspect_Specifications (N, Id); 2183 end if; 2184 2185 Analyze_Dimension (N); 2186 end Analyze_Component_Declaration; 2187 2188 -------------------------- 2189 -- Analyze_Declarations -- 2190 -------------------------- 2191 2192 procedure Analyze_Declarations (L : List_Id) is 2193 Decl : Node_Id; 2194 2195 procedure Adjust_Decl; 2196 -- Adjust Decl not to include implicit label declarations, since these 2197 -- have strange Sloc values that result in elaboration check problems. 2198 -- (They have the sloc of the label as found in the source, and that 2199 -- is ahead of the current declarative part). 2200 2201 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id); 2202 -- Create the subprogram bodies which verify the run-time semantics of 2203 -- the pragmas listed below for each elibigle type found in declarative 2204 -- list Decls. The pragmas are: 2205 -- 2206 -- Default_Initial_Condition 2207 -- Invariant 2208 -- Type_Invariant 2209 -- 2210 -- Context denotes the owner of the declarative list. 2211 2212 procedure Check_Entry_Contracts; 2213 -- Perform a pre-analysis of the pre- and postconditions of an entry 2214 -- declaration. This must be done before full resolution and creation 2215 -- of the parameter block, etc. to catch illegal uses within the 2216 -- contract expression. Full analysis of the expression is done when 2217 -- the contract is processed. 2218 2219 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean; 2220 -- Check if a nested package has entities within it that rely on library 2221 -- level private types where the full view has not been completed for 2222 -- the purposes of checking if it is acceptable to freeze an expression 2223 -- function at the point of declaration. 2224 2225 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id); 2226 -- Determine whether Body_Decl denotes the body of a late controlled 2227 -- primitive (either Initialize, Adjust or Finalize). If this is the 2228 -- case, add a proper spec if the body lacks one. The spec is inserted 2229 -- before Body_Decl and immediately analyzed. 2230 2231 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id); 2232 -- Spec_Id is the entity of a package that may define abstract states, 2233 -- and in the case of a child unit, whose ancestors may define abstract 2234 -- states. If the states have partial visible refinement, remove the 2235 -- partial visibility of each constituent at the end of the package 2236 -- spec and body declarations. 2237 2238 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id); 2239 -- Spec_Id is the entity of a package that may define abstract states. 2240 -- If the states have visible refinement, remove the visibility of each 2241 -- constituent at the end of the package body declaration. 2242 2243 procedure Resolve_Aspects; 2244 -- Utility to resolve the expressions of aspects at the end of a list of 2245 -- declarations, or before a declaration that freezes previous entities, 2246 -- such as in a subprogram body. 2247 2248 ----------------- 2249 -- Adjust_Decl -- 2250 ----------------- 2251 2252 procedure Adjust_Decl is 2253 begin 2254 while Present (Prev (Decl)) 2255 and then Nkind (Decl) = N_Implicit_Label_Declaration 2256 loop 2257 Prev (Decl); 2258 end loop; 2259 end Adjust_Decl; 2260 2261 ---------------------------- 2262 -- Build_Assertion_Bodies -- 2263 ---------------------------- 2264 2265 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is 2266 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id); 2267 -- Create the subprogram bodies which verify the run-time semantics 2268 -- of the pragmas listed below for type Typ. The pragmas are: 2269 -- 2270 -- Default_Initial_Condition 2271 -- Invariant 2272 -- Type_Invariant 2273 2274 ------------------------------------- 2275 -- Build_Assertion_Bodies_For_Type -- 2276 ------------------------------------- 2277 2278 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is 2279 begin 2280 -- Preanalyze and resolve the Default_Initial_Condition assertion 2281 -- expression at the end of the declarations to catch any errors. 2282 2283 if Has_DIC (Typ) then 2284 Build_DIC_Procedure_Body (Typ); 2285 end if; 2286 2287 if Nkind (Context) = N_Package_Specification then 2288 2289 -- Preanalyze and resolve the class-wide invariants of an 2290 -- interface at the end of whichever declarative part has the 2291 -- interface type. Note that an interface may be declared in 2292 -- any non-package declarative part, but reaching the end of 2293 -- such a declarative part will always freeze the type and 2294 -- generate the invariant procedure (see Freeze_Type). 2295 2296 if Is_Interface (Typ) then 2297 2298 -- Interfaces are treated as the partial view of a private 2299 -- type, in order to achieve uniformity with the general 2300 -- case. As a result, an interface receives only a "partial" 2301 -- invariant procedure, which is never called. 2302 2303 if Has_Own_Invariants (Typ) then 2304 Build_Invariant_Procedure_Body 2305 (Typ => Typ, 2306 Partial_Invariant => True); 2307 end if; 2308 2309 -- Preanalyze and resolve the invariants of a private type 2310 -- at the end of the visible declarations to catch potential 2311 -- errors. Inherited class-wide invariants are not included 2312 -- because they have already been resolved. 2313 2314 elsif Decls = Visible_Declarations (Context) 2315 and then Ekind_In (Typ, E_Limited_Private_Type, 2316 E_Private_Type, 2317 E_Record_Type_With_Private) 2318 and then Has_Own_Invariants (Typ) 2319 then 2320 Build_Invariant_Procedure_Body 2321 (Typ => Typ, 2322 Partial_Invariant => True); 2323 2324 -- Preanalyze and resolve the invariants of a private type's 2325 -- full view at the end of the private declarations to catch 2326 -- potential errors. 2327 2328 elsif Decls = Private_Declarations (Context) 2329 and then not Is_Private_Type (Typ) 2330 and then Has_Private_Declaration (Typ) 2331 and then Has_Invariants (Typ) 2332 then 2333 Build_Invariant_Procedure_Body (Typ); 2334 end if; 2335 end if; 2336 end Build_Assertion_Bodies_For_Type; 2337 2338 -- Local variables 2339 2340 Decl : Node_Id; 2341 Decl_Id : Entity_Id; 2342 2343 -- Start of processing for Build_Assertion_Bodies 2344 2345 begin 2346 Decl := First (Decls); 2347 while Present (Decl) loop 2348 if Is_Declaration (Decl) then 2349 Decl_Id := Defining_Entity (Decl); 2350 2351 if Is_Type (Decl_Id) then 2352 Build_Assertion_Bodies_For_Type (Decl_Id); 2353 end if; 2354 end if; 2355 2356 Next (Decl); 2357 end loop; 2358 end Build_Assertion_Bodies; 2359 2360 --------------------------- 2361 -- Check_Entry_Contracts -- 2362 --------------------------- 2363 2364 procedure Check_Entry_Contracts is 2365 ASN : Node_Id; 2366 Ent : Entity_Id; 2367 Exp : Node_Id; 2368 2369 begin 2370 Ent := First_Entity (Current_Scope); 2371 while Present (Ent) loop 2372 2373 -- This only concerns entries with pre/postconditions 2374 2375 if Ekind (Ent) = E_Entry 2376 and then Present (Contract (Ent)) 2377 and then Present (Pre_Post_Conditions (Contract (Ent))) 2378 then 2379 ASN := Pre_Post_Conditions (Contract (Ent)); 2380 Push_Scope (Ent); 2381 Install_Formals (Ent); 2382 2383 -- Pre/postconditions are rewritten as Check pragmas. Analysis 2384 -- is performed on a copy of the pragma expression, to prevent 2385 -- modifying the original expression. 2386 2387 while Present (ASN) loop 2388 if Nkind (ASN) = N_Pragma then 2389 Exp := 2390 New_Copy_Tree 2391 (Expression 2392 (First (Pragma_Argument_Associations (ASN)))); 2393 Set_Parent (Exp, ASN); 2394 2395 Preanalyze_Assert_Expression (Exp, Standard_Boolean); 2396 end if; 2397 2398 ASN := Next_Pragma (ASN); 2399 end loop; 2400 2401 End_Scope; 2402 end if; 2403 2404 Next_Entity (Ent); 2405 end loop; 2406 end Check_Entry_Contracts; 2407 2408 ---------------------------------- 2409 -- Contains_Lib_Incomplete_Type -- 2410 ---------------------------------- 2411 2412 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean is 2413 Curr : Entity_Id; 2414 2415 begin 2416 -- Avoid looking through scopes that do not meet the precondition of 2417 -- Pkg not being within a library unit spec. 2418 2419 if not Is_Compilation_Unit (Pkg) 2420 and then not Is_Generic_Instance (Pkg) 2421 and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg)) 2422 then 2423 -- Loop through all entities in the current scope to identify 2424 -- an entity that depends on a private type. 2425 2426 Curr := First_Entity (Pkg); 2427 loop 2428 if Nkind (Curr) in N_Entity 2429 and then Depends_On_Private (Curr) 2430 then 2431 return True; 2432 end if; 2433 2434 exit when Last_Entity (Current_Scope) = Curr; 2435 Curr := Next_Entity (Curr); 2436 end loop; 2437 end if; 2438 2439 return False; 2440 end Contains_Lib_Incomplete_Type; 2441 2442 -------------------------------------- 2443 -- Handle_Late_Controlled_Primitive -- 2444 -------------------------------------- 2445 2446 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is 2447 Body_Spec : constant Node_Id := Specification (Body_Decl); 2448 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec); 2449 Loc : constant Source_Ptr := Sloc (Body_Id); 2450 Params : constant List_Id := 2451 Parameter_Specifications (Body_Spec); 2452 Spec : Node_Id; 2453 Spec_Id : Entity_Id; 2454 Typ : Node_Id; 2455 2456 begin 2457 -- Consider only procedure bodies whose name matches one of the three 2458 -- controlled primitives. 2459 2460 if Nkind (Body_Spec) /= N_Procedure_Specification 2461 or else not Nam_In (Chars (Body_Id), Name_Adjust, 2462 Name_Finalize, 2463 Name_Initialize) 2464 then 2465 return; 2466 2467 -- A controlled primitive must have exactly one formal which is not 2468 -- an anonymous access type. 2469 2470 elsif List_Length (Params) /= 1 then 2471 return; 2472 end if; 2473 2474 Typ := Parameter_Type (First (Params)); 2475 2476 if Nkind (Typ) = N_Access_Definition then 2477 return; 2478 end if; 2479 2480 Find_Type (Typ); 2481 2482 -- The type of the formal must be derived from [Limited_]Controlled 2483 2484 if not Is_Controlled (Entity (Typ)) then 2485 return; 2486 end if; 2487 2488 -- Check whether a specification exists for this body. We do not 2489 -- analyze the spec of the body in full, because it will be analyzed 2490 -- again when the body is properly analyzed, and we cannot create 2491 -- duplicate entries in the formals chain. We look for an explicit 2492 -- specification because the body may be an overriding operation and 2493 -- an inherited spec may be present. 2494 2495 Spec_Id := Current_Entity (Body_Id); 2496 2497 while Present (Spec_Id) loop 2498 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) 2499 and then Scope (Spec_Id) = Current_Scope 2500 and then Present (First_Formal (Spec_Id)) 2501 and then No (Next_Formal (First_Formal (Spec_Id))) 2502 and then Etype (First_Formal (Spec_Id)) = Entity (Typ) 2503 and then Comes_From_Source (Spec_Id) 2504 then 2505 return; 2506 end if; 2507 2508 Spec_Id := Homonym (Spec_Id); 2509 end loop; 2510 2511 -- At this point the body is known to be a late controlled primitive. 2512 -- Generate a matching spec and insert it before the body. Note the 2513 -- use of Copy_Separate_Tree - we want an entirely separate semantic 2514 -- tree in this case. 2515 2516 Spec := Copy_Separate_Tree (Body_Spec); 2517 2518 -- Ensure that the subprogram declaration does not inherit the null 2519 -- indicator from the body as we now have a proper spec/body pair. 2520 2521 Set_Null_Present (Spec, False); 2522 2523 -- Ensure that the freeze node is inserted after the declaration of 2524 -- the primitive since its expansion will freeze the primitive. 2525 2526 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec); 2527 2528 Insert_Before_And_Analyze (Body_Decl, Decl); 2529 end Handle_Late_Controlled_Primitive; 2530 2531 ---------------------------------------- 2532 -- Remove_Partial_Visible_Refinements -- 2533 ---------------------------------------- 2534 2535 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is 2536 State_Elmt : Elmt_Id; 2537 begin 2538 if Present (Abstract_States (Spec_Id)) then 2539 State_Elmt := First_Elmt (Abstract_States (Spec_Id)); 2540 while Present (State_Elmt) loop 2541 Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False); 2542 Next_Elmt (State_Elmt); 2543 end loop; 2544 end if; 2545 2546 -- For a child unit, also hide the partial state refinement from 2547 -- ancestor packages. 2548 2549 if Is_Child_Unit (Spec_Id) then 2550 Remove_Partial_Visible_Refinements (Scope (Spec_Id)); 2551 end if; 2552 end Remove_Partial_Visible_Refinements; 2553 2554 -------------------------------- 2555 -- Remove_Visible_Refinements -- 2556 -------------------------------- 2557 2558 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is 2559 State_Elmt : Elmt_Id; 2560 begin 2561 if Present (Abstract_States (Spec_Id)) then 2562 State_Elmt := First_Elmt (Abstract_States (Spec_Id)); 2563 while Present (State_Elmt) loop 2564 Set_Has_Visible_Refinement (Node (State_Elmt), False); 2565 Next_Elmt (State_Elmt); 2566 end loop; 2567 end if; 2568 end Remove_Visible_Refinements; 2569 2570 --------------------- 2571 -- Resolve_Aspects -- 2572 --------------------- 2573 2574 procedure Resolve_Aspects is 2575 E : Entity_Id; 2576 2577 begin 2578 E := First_Entity (Current_Scope); 2579 while Present (E) loop 2580 Resolve_Aspect_Expressions (E); 2581 Next_Entity (E); 2582 end loop; 2583 end Resolve_Aspects; 2584 2585 -- Local variables 2586 2587 Context : Node_Id := Empty; 2588 Freeze_From : Entity_Id := Empty; 2589 Next_Decl : Node_Id; 2590 2591 Body_Seen : Boolean := False; 2592 -- Flag set when the first body [stub] is encountered 2593 2594 -- Start of processing for Analyze_Declarations 2595 2596 begin 2597 if Restriction_Check_Required (SPARK_05) then 2598 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False); 2599 end if; 2600 2601 Decl := First (L); 2602 while Present (Decl) loop 2603 2604 -- Package spec cannot contain a package declaration in SPARK 2605 2606 if Nkind (Decl) = N_Package_Declaration 2607 and then Nkind (Parent (L)) = N_Package_Specification 2608 then 2609 Check_SPARK_05_Restriction 2610 ("package specification cannot contain a package declaration", 2611 Decl); 2612 end if; 2613 2614 -- Complete analysis of declaration 2615 2616 Analyze (Decl); 2617 Next_Decl := Next (Decl); 2618 2619 if No (Freeze_From) then 2620 Freeze_From := First_Entity (Current_Scope); 2621 end if; 2622 2623 -- At the end of a declarative part, freeze remaining entities 2624 -- declared in it. The end of the visible declarations of package 2625 -- specification is not the end of a declarative part if private 2626 -- declarations are present. The end of a package declaration is a 2627 -- freezing point only if it a library package. A task definition or 2628 -- protected type definition is not a freeze point either. Finally, 2629 -- we do not freeze entities in generic scopes, because there is no 2630 -- code generated for them and freeze nodes will be generated for 2631 -- the instance. 2632 2633 -- The end of a package instantiation is not a freeze point, but 2634 -- for now we make it one, because the generic body is inserted 2635 -- (currently) immediately after. Generic instantiations will not 2636 -- be a freeze point once delayed freezing of bodies is implemented. 2637 -- (This is needed in any case for early instantiations ???). 2638 2639 if No (Next_Decl) then 2640 if Nkind (Parent (L)) = N_Component_List then 2641 null; 2642 2643 elsif Nkind_In (Parent (L), N_Protected_Definition, 2644 N_Task_Definition) 2645 then 2646 Check_Entry_Contracts; 2647 2648 elsif Nkind (Parent (L)) /= N_Package_Specification then 2649 if Nkind (Parent (L)) = N_Package_Body then 2650 Freeze_From := First_Entity (Current_Scope); 2651 end if; 2652 2653 -- There may have been several freezing points previously, 2654 -- for example object declarations or subprogram bodies, but 2655 -- at the end of a declarative part we check freezing from 2656 -- the beginning, even though entities may already be frozen, 2657 -- in order to perform visibility checks on delayed aspects. 2658 2659 Adjust_Decl; 2660 2661 -- If the current scope is a generic subprogram body. Skip the 2662 -- generic formal parameters that are not frozen here. 2663 2664 if Is_Subprogram (Current_Scope) 2665 and then Nkind (Unit_Declaration_Node (Current_Scope)) = 2666 N_Generic_Subprogram_Declaration 2667 and then Present (First_Entity (Current_Scope)) 2668 then 2669 while Is_Generic_Formal (Freeze_From) loop 2670 Freeze_From := Next_Entity (Freeze_From); 2671 end loop; 2672 2673 Freeze_All (Freeze_From, Decl); 2674 Freeze_From := Last_Entity (Current_Scope); 2675 2676 else 2677 -- For declarations in a subprogram body there is no issue 2678 -- with name resolution in aspect specifications, but in 2679 -- ASIS mode we need to preanalyze aspect specifications 2680 -- that may otherwise only be analyzed during expansion 2681 -- (e.g. during generation of a related subprogram). 2682 2683 if ASIS_Mode then 2684 Resolve_Aspects; 2685 end if; 2686 2687 Freeze_All (First_Entity (Current_Scope), Decl); 2688 Freeze_From := Last_Entity (Current_Scope); 2689 end if; 2690 2691 -- Current scope is a package specification 2692 2693 elsif Scope (Current_Scope) /= Standard_Standard 2694 and then not Is_Child_Unit (Current_Scope) 2695 and then No (Generic_Parent (Parent (L))) 2696 then 2697 -- ARM rule 13.1.1(11/3): usage names in aspect definitions are 2698 -- resolved at the end of the immediately enclosing declaration 2699 -- list (AI05-0183-1). 2700 2701 Resolve_Aspects; 2702 2703 elsif L /= Visible_Declarations (Parent (L)) 2704 or else No (Private_Declarations (Parent (L))) 2705 or else Is_Empty_List (Private_Declarations (Parent (L))) 2706 then 2707 Adjust_Decl; 2708 2709 -- End of a package declaration 2710 2711 -- In compilation mode the expansion of freeze node takes care 2712 -- of resolving expressions of all aspects in the list. In ASIS 2713 -- mode this must be done explicitly. 2714 2715 if ASIS_Mode 2716 and then Scope (Current_Scope) = Standard_Standard 2717 then 2718 Resolve_Aspects; 2719 end if; 2720 2721 -- This is a freeze point because it is the end of a 2722 -- compilation unit. 2723 2724 Freeze_All (First_Entity (Current_Scope), Decl); 2725 Freeze_From := Last_Entity (Current_Scope); 2726 2727 -- At the end of the visible declarations the expressions in 2728 -- aspects of all entities declared so far must be resolved. 2729 -- The entities themselves might be frozen later, and the 2730 -- generated pragmas and attribute definition clauses analyzed 2731 -- in full at that point, but name resolution must take place 2732 -- now. 2733 -- In addition to being the proper semantics, this is mandatory 2734 -- within generic units, because global name capture requires 2735 -- those expressions to be analyzed, given that the generated 2736 -- pragmas do not appear in the original generic tree. 2737 2738 elsif Serious_Errors_Detected = 0 then 2739 Resolve_Aspects; 2740 end if; 2741 2742 -- If next node is a body then freeze all types before the body. 2743 -- An exception occurs for some expander-generated bodies. If these 2744 -- are generated at places where in general language rules would not 2745 -- allow a freeze point, then we assume that the expander has 2746 -- explicitly checked that all required types are properly frozen, 2747 -- and we do not cause general freezing here. This special circuit 2748 -- is used when the encountered body is marked as having already 2749 -- been analyzed. 2750 2751 -- In all other cases (bodies that come from source, and expander 2752 -- generated bodies that have not been analyzed yet), freeze all 2753 -- types now. Note that in the latter case, the expander must take 2754 -- care to attach the bodies at a proper place in the tree so as to 2755 -- not cause unwanted freezing at that point. 2756 2757 -- It is also necessary to check for a case where both an expression 2758 -- function is used and the current scope depends on an incomplete 2759 -- private type from a library unit, otherwise premature freezing of 2760 -- the private type will occur. 2761 2762 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) 2763 and then ((Nkind (Next_Decl) /= N_Subprogram_Body 2764 or else not Was_Expression_Function (Next_Decl)) 2765 or else (not Is_Ignored_Ghost_Entity (Current_Scope) 2766 and then not Contains_Lib_Incomplete_Type 2767 (Current_Scope))) 2768 then 2769 -- When a controlled type is frozen, the expander generates stream 2770 -- and controlled-type support routines. If the freeze is caused 2771 -- by the stand-alone body of Initialize, Adjust, or Finalize, the 2772 -- expander will end up using the wrong version of these routines, 2773 -- as the body has not been processed yet. To remedy this, detect 2774 -- a late controlled primitive and create a proper spec for it. 2775 -- This ensures that the primitive will override its inherited 2776 -- counterpart before the freeze takes place. 2777 2778 -- If the declaration we just processed is a body, do not attempt 2779 -- to examine Next_Decl as the late primitive idiom can only apply 2780 -- to the first encountered body. 2781 2782 -- The spec of the late primitive is not generated in ASIS mode to 2783 -- ensure a consistent list of primitives that indicates the true 2784 -- semantic structure of the program (which is not relevant when 2785 -- generating executable code). 2786 2787 -- ??? A cleaner approach may be possible and/or this solution 2788 -- could be extended to general-purpose late primitives, TBD. 2789 2790 if not ASIS_Mode 2791 and then not Body_Seen 2792 and then not Is_Body (Decl) 2793 then 2794 Body_Seen := True; 2795 2796 if Nkind (Next_Decl) = N_Subprogram_Body then 2797 Handle_Late_Controlled_Primitive (Next_Decl); 2798 end if; 2799 2800 else 2801 -- In ASIS mode, if the next declaration is a body, complete 2802 -- the analysis of declarations so far. 2803 2804 Resolve_Aspects; 2805 end if; 2806 2807 Adjust_Decl; 2808 2809 -- The generated body of an expression function does not freeze, 2810 -- unless it is a completion, in which case only the expression 2811 -- itself freezes. This is handled when the body itself is 2812 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb). 2813 2814 Freeze_All (Freeze_From, Decl); 2815 Freeze_From := Last_Entity (Current_Scope); 2816 end if; 2817 2818 Decl := Next_Decl; 2819 end loop; 2820 2821 -- Post-freezing actions 2822 2823 if Present (L) then 2824 Context := Parent (L); 2825 2826 -- Certain contract annocations have forward visibility semantics and 2827 -- must be analyzed after all declarative items have been processed. 2828 -- This timing ensures that entities referenced by such contracts are 2829 -- visible. 2830 2831 -- Analyze the contract of an immediately enclosing package spec or 2832 -- body first because other contracts may depend on its information. 2833 2834 if Nkind (Context) = N_Package_Body then 2835 Analyze_Package_Body_Contract (Defining_Entity (Context)); 2836 2837 elsif Nkind (Context) = N_Package_Specification then 2838 Analyze_Package_Contract (Defining_Entity (Context)); 2839 end if; 2840 2841 -- Analyze the contracts of various constructs in the declarative 2842 -- list. 2843 2844 Analyze_Contracts (L); 2845 2846 if Nkind (Context) = N_Package_Body then 2847 2848 -- Ensure that all abstract states and objects declared in the 2849 -- state space of a package body are utilized as constituents. 2850 2851 Check_Unused_Body_States (Defining_Entity (Context)); 2852 2853 -- State refinements are visible up to the end of the package body 2854 -- declarations. Hide the state refinements from visibility to 2855 -- restore the original state conditions. 2856 2857 Remove_Visible_Refinements (Corresponding_Spec (Context)); 2858 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context)); 2859 2860 elsif Nkind (Context) = N_Package_Specification then 2861 2862 -- Partial state refinements are visible up to the end of the 2863 -- package spec declarations. Hide the partial state refinements 2864 -- from visibility to restore the original state conditions. 2865 2866 Remove_Partial_Visible_Refinements (Defining_Entity (Context)); 2867 end if; 2868 2869 -- Verify that all abstract states found in any package declared in 2870 -- the input declarative list have proper refinements. The check is 2871 -- performed only when the context denotes a block, entry, package, 2872 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)). 2873 2874 Check_State_Refinements (Context); 2875 2876 -- Create the subprogram bodies which verify the run-time semantics 2877 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all 2878 -- types within the current declarative list. This ensures that all 2879 -- assertion expressions are preanalyzed and resolved at the end of 2880 -- the declarative part. Note that the resolution happens even when 2881 -- freezing does not take place. 2882 2883 Build_Assertion_Bodies (L, Context); 2884 end if; 2885 end Analyze_Declarations; 2886 2887 ----------------------------------- 2888 -- Analyze_Full_Type_Declaration -- 2889 ----------------------------------- 2890 2891 procedure Analyze_Full_Type_Declaration (N : Node_Id) is 2892 Def : constant Node_Id := Type_Definition (N); 2893 Def_Id : constant Entity_Id := Defining_Identifier (N); 2894 T : Entity_Id; 2895 Prev : Entity_Id; 2896 2897 Is_Remote : constant Boolean := 2898 (Is_Remote_Types (Current_Scope) 2899 or else Is_Remote_Call_Interface (Current_Scope)) 2900 and then not (In_Private_Part (Current_Scope) 2901 or else In_Package_Body (Current_Scope)); 2902 2903 procedure Check_Nonoverridable_Aspects; 2904 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot 2905 -- be overridden, and can only be confirmed on derivation. 2906 2907 procedure Check_Ops_From_Incomplete_Type; 2908 -- If there is a tagged incomplete partial view of the type, traverse 2909 -- the primitives of the incomplete view and change the type of any 2910 -- controlling formals and result to indicate the full view. The 2911 -- primitives will be added to the full type's primitive operations 2912 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which 2913 -- is called from Process_Incomplete_Dependents). 2914 2915 ---------------------------------- 2916 -- Check_Nonoverridable_Aspects -- 2917 ---------------------------------- 2918 2919 procedure Check_Nonoverridable_Aspects is 2920 function Get_Aspect_Spec 2921 (Specs : List_Id; 2922 Aspect_Name : Name_Id) return Node_Id; 2923 -- Check whether a list of aspect specifications includes an entry 2924 -- for a specific aspect. The list is either that of a partial or 2925 -- a full view. 2926 2927 --------------------- 2928 -- Get_Aspect_Spec -- 2929 --------------------- 2930 2931 function Get_Aspect_Spec 2932 (Specs : List_Id; 2933 Aspect_Name : Name_Id) return Node_Id 2934 is 2935 Spec : Node_Id; 2936 2937 begin 2938 Spec := First (Specs); 2939 while Present (Spec) loop 2940 if Chars (Identifier (Spec)) = Aspect_Name then 2941 return Spec; 2942 end if; 2943 Next (Spec); 2944 end loop; 2945 2946 return Empty; 2947 end Get_Aspect_Spec; 2948 2949 -- Local variables 2950 2951 Prev_Aspects : constant List_Id := 2952 Aspect_Specifications (Parent (Def_Id)); 2953 Par_Type : Entity_Id; 2954 Prev_Aspect : Node_Id; 2955 2956 -- Start of processing for Check_Nonoverridable_Aspects 2957 2958 begin 2959 -- Get parent type of derived type. Note that Prev is the entity in 2960 -- the partial declaration, but its contents are now those of full 2961 -- view, while Def_Id reflects the partial view. 2962 2963 if Is_Private_Type (Def_Id) then 2964 Par_Type := Etype (Full_View (Def_Id)); 2965 else 2966 Par_Type := Etype (Def_Id); 2967 end if; 2968 2969 -- If there is an inherited Implicit_Dereference, verify that it is 2970 -- made explicit in the partial view. 2971 2972 if Has_Discriminants (Base_Type (Par_Type)) 2973 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration 2974 and then Present (Discriminant_Specifications (Parent (Prev))) 2975 and then Present (Get_Reference_Discriminant (Par_Type)) 2976 then 2977 Prev_Aspect := 2978 Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference); 2979 2980 if No (Prev_Aspect) 2981 and then Present 2982 (Discriminant_Specifications 2983 (Original_Node (Parent (Prev)))) 2984 then 2985 Error_Msg_N 2986 ("type does not inherit implicit dereference", Prev); 2987 2988 else 2989 -- If one of the views has the aspect specified, verify that it 2990 -- is consistent with that of the parent. 2991 2992 declare 2993 Par_Discr : constant Entity_Id := 2994 Get_Reference_Discriminant (Par_Type); 2995 Cur_Discr : constant Entity_Id := 2996 Get_Reference_Discriminant (Prev); 2997 2998 begin 2999 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then 3000 Error_Msg_N ("aspect incosistent with that of parent", N); 3001 end if; 3002 3003 -- Check that specification in partial view matches the 3004 -- inherited aspect. Compare names directly because aspect 3005 -- expression may not be analyzed. 3006 3007 if Present (Prev_Aspect) 3008 and then Nkind (Expression (Prev_Aspect)) = N_Identifier 3009 and then Chars (Expression (Prev_Aspect)) /= 3010 Chars (Cur_Discr) 3011 then 3012 Error_Msg_N 3013 ("aspect incosistent with that of parent", N); 3014 end if; 3015 end; 3016 end if; 3017 end if; 3018 3019 -- TBD : other nonoverridable aspects. 3020 end Check_Nonoverridable_Aspects; 3021 3022 ------------------------------------ 3023 -- Check_Ops_From_Incomplete_Type -- 3024 ------------------------------------ 3025 3026 procedure Check_Ops_From_Incomplete_Type is 3027 Elmt : Elmt_Id; 3028 Formal : Entity_Id; 3029 Op : Entity_Id; 3030 3031 begin 3032 if Prev /= T 3033 and then Ekind (Prev) = E_Incomplete_Type 3034 and then Is_Tagged_Type (Prev) 3035 and then Is_Tagged_Type (T) 3036 then 3037 Elmt := First_Elmt (Primitive_Operations (Prev)); 3038 while Present (Elmt) loop 3039 Op := Node (Elmt); 3040 3041 Formal := First_Formal (Op); 3042 while Present (Formal) loop 3043 if Etype (Formal) = Prev then 3044 Set_Etype (Formal, T); 3045 end if; 3046 3047 Next_Formal (Formal); 3048 end loop; 3049 3050 if Etype (Op) = Prev then 3051 Set_Etype (Op, T); 3052 end if; 3053 3054 Next_Elmt (Elmt); 3055 end loop; 3056 end if; 3057 end Check_Ops_From_Incomplete_Type; 3058 3059 -- Start of processing for Analyze_Full_Type_Declaration 3060 3061 begin 3062 Prev := Find_Type_Name (N); 3063 3064 -- The full view, if present, now points to the current type. If there 3065 -- is an incomplete partial view, set a link to it, to simplify the 3066 -- retrieval of primitive operations of the type. 3067 3068 -- Ada 2005 (AI-50217): If the type was previously decorated when 3069 -- imported through a LIMITED WITH clause, it appears as incomplete 3070 -- but has no full view. 3071 3072 if Ekind (Prev) = E_Incomplete_Type 3073 and then Present (Full_View (Prev)) 3074 then 3075 T := Full_View (Prev); 3076 Set_Incomplete_View (N, Parent (Prev)); 3077 else 3078 T := Prev; 3079 end if; 3080 3081 Set_Is_Pure (T, Is_Pure (Current_Scope)); 3082 3083 -- We set the flag Is_First_Subtype here. It is needed to set the 3084 -- corresponding flag for the Implicit class-wide-type created 3085 -- during tagged types processing. 3086 3087 Set_Is_First_Subtype (T, True); 3088 3089 -- Only composite types other than array types are allowed to have 3090 -- discriminants. 3091 3092 case Nkind (Def) is 3093 3094 -- For derived types, the rule will be checked once we've figured 3095 -- out the parent type. 3096 3097 when N_Derived_Type_Definition => 3098 null; 3099 3100 -- For record types, discriminants are allowed, unless we are in 3101 -- SPARK. 3102 3103 when N_Record_Definition => 3104 if Present (Discriminant_Specifications (N)) then 3105 Check_SPARK_05_Restriction 3106 ("discriminant type is not allowed", 3107 Defining_Identifier 3108 (First (Discriminant_Specifications (N)))); 3109 end if; 3110 3111 when others => 3112 if Present (Discriminant_Specifications (N)) then 3113 Error_Msg_N 3114 ("elementary or array type cannot have discriminants", 3115 Defining_Identifier 3116 (First (Discriminant_Specifications (N)))); 3117 end if; 3118 end case; 3119 3120 -- Elaborate the type definition according to kind, and generate 3121 -- subsidiary (implicit) subtypes where needed. We skip this if it was 3122 -- already done (this happens during the reanalysis that follows a call 3123 -- to the high level optimizer). 3124 3125 if not Analyzed (T) then 3126 Set_Analyzed (T); 3127 3128 -- Set the SPARK mode from the current context 3129 3130 Set_SPARK_Pragma (T, SPARK_Mode_Pragma); 3131 Set_SPARK_Pragma_Inherited (T); 3132 3133 case Nkind (Def) is 3134 when N_Access_To_Subprogram_Definition => 3135 Access_Subprogram_Declaration (T, Def); 3136 3137 -- If this is a remote access to subprogram, we must create the 3138 -- equivalent fat pointer type, and related subprograms. 3139 3140 if Is_Remote then 3141 Process_Remote_AST_Declaration (N); 3142 end if; 3143 3144 -- Validate categorization rule against access type declaration 3145 -- usually a violation in Pure unit, Shared_Passive unit. 3146 3147 Validate_Access_Type_Declaration (T, N); 3148 3149 when N_Access_To_Object_Definition => 3150 Access_Type_Declaration (T, Def); 3151 3152 -- Validate categorization rule against access type declaration 3153 -- usually a violation in Pure unit, Shared_Passive unit. 3154 3155 Validate_Access_Type_Declaration (T, N); 3156 3157 -- If we are in a Remote_Call_Interface package and define a 3158 -- RACW, then calling stubs and specific stream attributes 3159 -- must be added. 3160 3161 if Is_Remote 3162 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id) 3163 then 3164 Add_RACW_Features (Def_Id); 3165 end if; 3166 3167 when N_Array_Type_Definition => 3168 Array_Type_Declaration (T, Def); 3169 3170 when N_Derived_Type_Definition => 3171 Derived_Type_Declaration (T, N, T /= Def_Id); 3172 3173 -- Inherit predicates from parent, and protect against illegal 3174 -- derivations. 3175 3176 if Is_Type (T) and then Has_Predicates (T) then 3177 Set_Has_Predicates (Def_Id); 3178 end if; 3179 3180 -- Save the scenario for examination by the ABE Processing 3181 -- phase. 3182 3183 Record_Elaboration_Scenario (N); 3184 3185 when N_Enumeration_Type_Definition => 3186 Enumeration_Type_Declaration (T, Def); 3187 3188 when N_Floating_Point_Definition => 3189 Floating_Point_Type_Declaration (T, Def); 3190 3191 when N_Decimal_Fixed_Point_Definition => 3192 Decimal_Fixed_Point_Type_Declaration (T, Def); 3193 3194 when N_Ordinary_Fixed_Point_Definition => 3195 Ordinary_Fixed_Point_Type_Declaration (T, Def); 3196 3197 when N_Signed_Integer_Type_Definition => 3198 Signed_Integer_Type_Declaration (T, Def); 3199 3200 when N_Modular_Type_Definition => 3201 Modular_Type_Declaration (T, Def); 3202 3203 when N_Record_Definition => 3204 Record_Type_Declaration (T, N, Prev); 3205 3206 -- If declaration has a parse error, nothing to elaborate. 3207 3208 when N_Error => 3209 null; 3210 3211 when others => 3212 raise Program_Error; 3213 end case; 3214 end if; 3215 3216 if Etype (T) = Any_Type then 3217 return; 3218 end if; 3219 3220 -- Controlled type is not allowed in SPARK 3221 3222 if Is_Visibly_Controlled (T) then 3223 Check_SPARK_05_Restriction ("controlled type is not allowed", N); 3224 end if; 3225 3226 -- Some common processing for all types 3227 3228 Set_Depends_On_Private (T, Has_Private_Component (T)); 3229 Check_Ops_From_Incomplete_Type; 3230 3231 -- Both the declared entity, and its anonymous base type if one was 3232 -- created, need freeze nodes allocated. 3233 3234 declare 3235 B : constant Entity_Id := Base_Type (T); 3236 3237 begin 3238 -- In the case where the base type differs from the first subtype, we 3239 -- pre-allocate a freeze node, and set the proper link to the first 3240 -- subtype. Freeze_Entity will use this preallocated freeze node when 3241 -- it freezes the entity. 3242 3243 -- This does not apply if the base type is a generic type, whose 3244 -- declaration is independent of the current derived definition. 3245 3246 if B /= T and then not Is_Generic_Type (B) then 3247 Ensure_Freeze_Node (B); 3248 Set_First_Subtype_Link (Freeze_Node (B), T); 3249 end if; 3250 3251 -- A type that is imported through a limited_with clause cannot 3252 -- generate any code, and thus need not be frozen. However, an access 3253 -- type with an imported designated type needs a finalization list, 3254 -- which may be referenced in some other package that has non-limited 3255 -- visibility on the designated type. Thus we must create the 3256 -- finalization list at the point the access type is frozen, to 3257 -- prevent unsatisfied references at link time. 3258 3259 if not From_Limited_With (T) or else Is_Access_Type (T) then 3260 Set_Has_Delayed_Freeze (T); 3261 end if; 3262 end; 3263 3264 -- Case where T is the full declaration of some private type which has 3265 -- been swapped in Defining_Identifier (N). 3266 3267 if T /= Def_Id and then Is_Private_Type (Def_Id) then 3268 Process_Full_View (N, T, Def_Id); 3269 3270 -- Record the reference. The form of this is a little strange, since 3271 -- the full declaration has been swapped in. So the first parameter 3272 -- here represents the entity to which a reference is made which is 3273 -- the "real" entity, i.e. the one swapped in, and the second 3274 -- parameter provides the reference location. 3275 3276 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here 3277 -- since we don't want a complaint about the full type being an 3278 -- unwanted reference to the private type 3279 3280 declare 3281 B : constant Boolean := Has_Pragma_Unreferenced (T); 3282 begin 3283 Set_Has_Pragma_Unreferenced (T, False); 3284 Generate_Reference (T, T, 'c'); 3285 Set_Has_Pragma_Unreferenced (T, B); 3286 end; 3287 3288 Set_Completion_Referenced (Def_Id); 3289 3290 -- For completion of incomplete type, process incomplete dependents 3291 -- and always mark the full type as referenced (it is the incomplete 3292 -- type that we get for any real reference). 3293 3294 elsif Ekind (Prev) = E_Incomplete_Type then 3295 Process_Incomplete_Dependents (N, T, Prev); 3296 Generate_Reference (Prev, Def_Id, 'c'); 3297 Set_Completion_Referenced (Def_Id); 3298 3299 -- If not private type or incomplete type completion, this is a real 3300 -- definition of a new entity, so record it. 3301 3302 else 3303 Generate_Definition (Def_Id); 3304 end if; 3305 3306 -- Propagate any pending access types whose finalization masters need to 3307 -- be fully initialized from the partial to the full view. Guard against 3308 -- an illegal full view that remains unanalyzed. 3309 3310 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then 3311 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev)); 3312 end if; 3313 3314 if Chars (Scope (Def_Id)) = Name_System 3315 and then Chars (Def_Id) = Name_Address 3316 and then In_Predefined_Unit (N) 3317 then 3318 Set_Is_Descendant_Of_Address (Def_Id); 3319 Set_Is_Descendant_Of_Address (Base_Type (Def_Id)); 3320 Set_Is_Descendant_Of_Address (Prev); 3321 end if; 3322 3323 Set_Optimize_Alignment_Flags (Def_Id); 3324 Check_Eliminated (Def_Id); 3325 3326 -- If the declaration is a completion and aspects are present, apply 3327 -- them to the entity for the type which is currently the partial 3328 -- view, but which is the one that will be frozen. 3329 3330 if Has_Aspects (N) then 3331 3332 -- In most cases the partial view is a private type, and both views 3333 -- appear in different declarative parts. In the unusual case where 3334 -- the partial view is incomplete, perform the analysis on the 3335 -- full view, to prevent freezing anomalies with the corresponding 3336 -- class-wide type, which otherwise might be frozen before the 3337 -- dispatch table is built. 3338 3339 if Prev /= Def_Id 3340 and then Ekind (Prev) /= E_Incomplete_Type 3341 then 3342 Analyze_Aspect_Specifications (N, Prev); 3343 3344 -- Normal case 3345 3346 else 3347 Analyze_Aspect_Specifications (N, Def_Id); 3348 end if; 3349 end if; 3350 3351 if Is_Derived_Type (Prev) 3352 and then Def_Id /= Prev 3353 then 3354 Check_Nonoverridable_Aspects; 3355 end if; 3356 end Analyze_Full_Type_Declaration; 3357 3358 ---------------------------------- 3359 -- Analyze_Incomplete_Type_Decl -- 3360 ---------------------------------- 3361 3362 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is 3363 F : constant Boolean := Is_Pure (Current_Scope); 3364 T : Entity_Id; 3365 3366 begin 3367 Check_SPARK_05_Restriction ("incomplete type is not allowed", N); 3368 3369 Generate_Definition (Defining_Identifier (N)); 3370 3371 -- Process an incomplete declaration. The identifier must not have been 3372 -- declared already in the scope. However, an incomplete declaration may 3373 -- appear in the private part of a package, for a private type that has 3374 -- already been declared. 3375 3376 -- In this case, the discriminants (if any) must match 3377 3378 T := Find_Type_Name (N); 3379 3380 Set_Ekind (T, E_Incomplete_Type); 3381 Set_Etype (T, T); 3382 Set_Is_First_Subtype (T); 3383 Init_Size_Align (T); 3384 3385 -- Set the SPARK mode from the current context 3386 3387 Set_SPARK_Pragma (T, SPARK_Mode_Pragma); 3388 Set_SPARK_Pragma_Inherited (T); 3389 3390 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged 3391 -- incomplete types. 3392 3393 if Tagged_Present (N) then 3394 Set_Is_Tagged_Type (T, True); 3395 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams); 3396 Make_Class_Wide_Type (T); 3397 Set_Direct_Primitive_Operations (T, New_Elmt_List); 3398 end if; 3399 3400 Set_Stored_Constraint (T, No_Elist); 3401 3402 if Present (Discriminant_Specifications (N)) then 3403 Push_Scope (T); 3404 Process_Discriminants (N); 3405 End_Scope; 3406 end if; 3407 3408 -- If the type has discriminants, nontrivial subtypes may be declared 3409 -- before the full view of the type. The full views of those subtypes 3410 -- will be built after the full view of the type. 3411 3412 Set_Private_Dependents (T, New_Elmt_List); 3413 Set_Is_Pure (T, F); 3414 end Analyze_Incomplete_Type_Decl; 3415 3416 ----------------------------------- 3417 -- Analyze_Interface_Declaration -- 3418 ----------------------------------- 3419 3420 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is 3421 CW : constant Entity_Id := Class_Wide_Type (T); 3422 3423 begin 3424 Set_Is_Tagged_Type (T); 3425 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams); 3426 3427 Set_Is_Limited_Record (T, Limited_Present (Def) 3428 or else Task_Present (Def) 3429 or else Protected_Present (Def) 3430 or else Synchronized_Present (Def)); 3431 3432 -- Type is abstract if full declaration carries keyword, or if previous 3433 -- partial view did. 3434 3435 Set_Is_Abstract_Type (T); 3436 Set_Is_Interface (T); 3437 3438 -- Type is a limited interface if it includes the keyword limited, task, 3439 -- protected, or synchronized. 3440 3441 Set_Is_Limited_Interface 3442 (T, Limited_Present (Def) 3443 or else Protected_Present (Def) 3444 or else Synchronized_Present (Def) 3445 or else Task_Present (Def)); 3446 3447 Set_Interfaces (T, New_Elmt_List); 3448 Set_Direct_Primitive_Operations (T, New_Elmt_List); 3449 3450 -- Complete the decoration of the class-wide entity if it was already 3451 -- built (i.e. during the creation of the limited view) 3452 3453 if Present (CW) then 3454 Set_Is_Interface (CW); 3455 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T)); 3456 end if; 3457 3458 -- Check runtime support for synchronized interfaces 3459 3460 if (Is_Task_Interface (T) 3461 or else Is_Protected_Interface (T) 3462 or else Is_Synchronized_Interface (T)) 3463 and then not RTE_Available (RE_Select_Specific_Data) 3464 then 3465 Error_Msg_CRT ("synchronized interfaces", T); 3466 end if; 3467 end Analyze_Interface_Declaration; 3468 3469 ----------------------------- 3470 -- Analyze_Itype_Reference -- 3471 ----------------------------- 3472 3473 -- Nothing to do. This node is placed in the tree only for the benefit of 3474 -- back end processing, and has no effect on the semantic processing. 3475 3476 procedure Analyze_Itype_Reference (N : Node_Id) is 3477 begin 3478 pragma Assert (Is_Itype (Itype (N))); 3479 null; 3480 end Analyze_Itype_Reference; 3481 3482 -------------------------------- 3483 -- Analyze_Number_Declaration -- 3484 -------------------------------- 3485 3486 procedure Analyze_Number_Declaration (N : Node_Id) is 3487 E : constant Node_Id := Expression (N); 3488 Id : constant Entity_Id := Defining_Identifier (N); 3489 Index : Interp_Index; 3490 It : Interp; 3491 T : Entity_Id; 3492 3493 begin 3494 Generate_Definition (Id); 3495 Enter_Name (Id); 3496 3497 -- This is an optimization of a common case of an integer literal 3498 3499 if Nkind (E) = N_Integer_Literal then 3500 Set_Is_Static_Expression (E, True); 3501 Set_Etype (E, Universal_Integer); 3502 3503 Set_Etype (Id, Universal_Integer); 3504 Set_Ekind (Id, E_Named_Integer); 3505 Set_Is_Frozen (Id, True); 3506 return; 3507 end if; 3508 3509 Set_Is_Pure (Id, Is_Pure (Current_Scope)); 3510 3511 -- Process expression, replacing error by integer zero, to avoid 3512 -- cascaded errors or aborts further along in the processing 3513 3514 -- Replace Error by integer zero, which seems least likely to cause 3515 -- cascaded errors. 3516 3517 if E = Error then 3518 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0)); 3519 Set_Error_Posted (E); 3520 end if; 3521 3522 Analyze (E); 3523 3524 -- Verify that the expression is static and numeric. If 3525 -- the expression is overloaded, we apply the preference 3526 -- rule that favors root numeric types. 3527 3528 if not Is_Overloaded (E) then 3529 T := Etype (E); 3530 if Has_Dynamic_Predicate_Aspect (T) then 3531 Error_Msg_N 3532 ("subtype has dynamic predicate, " 3533 & "not allowed in number declaration", N); 3534 end if; 3535 3536 else 3537 T := Any_Type; 3538 3539 Get_First_Interp (E, Index, It); 3540 while Present (It.Typ) loop 3541 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ)) 3542 and then (Scope (Base_Type (It.Typ))) = Standard_Standard 3543 then 3544 if T = Any_Type then 3545 T := It.Typ; 3546 3547 elsif It.Typ = Universal_Real 3548 or else 3549 It.Typ = Universal_Integer 3550 then 3551 -- Choose universal interpretation over any other 3552 3553 T := It.Typ; 3554 exit; 3555 end if; 3556 end if; 3557 3558 Get_Next_Interp (Index, It); 3559 end loop; 3560 end if; 3561 3562 if Is_Integer_Type (T) then 3563 Resolve (E, T); 3564 Set_Etype (Id, Universal_Integer); 3565 Set_Ekind (Id, E_Named_Integer); 3566 3567 elsif Is_Real_Type (T) then 3568 3569 -- Because the real value is converted to universal_real, this is a 3570 -- legal context for a universal fixed expression. 3571 3572 if T = Universal_Fixed then 3573 declare 3574 Loc : constant Source_Ptr := Sloc (N); 3575 Conv : constant Node_Id := Make_Type_Conversion (Loc, 3576 Subtype_Mark => 3577 New_Occurrence_Of (Universal_Real, Loc), 3578 Expression => Relocate_Node (E)); 3579 3580 begin 3581 Rewrite (E, Conv); 3582 Analyze (E); 3583 end; 3584 3585 elsif T = Any_Fixed then 3586 Error_Msg_N ("illegal context for mixed mode operation", E); 3587 3588 -- Expression is of the form : universal_fixed * integer. Try to 3589 -- resolve as universal_real. 3590 3591 T := Universal_Real; 3592 Set_Etype (E, T); 3593 end if; 3594 3595 Resolve (E, T); 3596 Set_Etype (Id, Universal_Real); 3597 Set_Ekind (Id, E_Named_Real); 3598 3599 else 3600 Wrong_Type (E, Any_Numeric); 3601 Resolve (E, T); 3602 3603 Set_Etype (Id, T); 3604 Set_Ekind (Id, E_Constant); 3605 Set_Never_Set_In_Source (Id, True); 3606 Set_Is_True_Constant (Id, True); 3607 return; 3608 end if; 3609 3610 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then 3611 Set_Etype (E, Etype (Id)); 3612 end if; 3613 3614 if not Is_OK_Static_Expression (E) then 3615 Flag_Non_Static_Expr 3616 ("non-static expression used in number declaration!", E); 3617 Rewrite (E, Make_Integer_Literal (Sloc (N), 1)); 3618 Set_Etype (E, Any_Type); 3619 end if; 3620 3621 Analyze_Dimension (N); 3622 end Analyze_Number_Declaration; 3623 3624 -------------------------------- 3625 -- Analyze_Object_Declaration -- 3626 -------------------------------- 3627 3628 -- WARNING: This routine manages Ghost regions. Return statements must be 3629 -- replaced by gotos which jump to the end of the routine and restore the 3630 -- Ghost mode. 3631 3632 procedure Analyze_Object_Declaration (N : Node_Id) is 3633 Loc : constant Source_Ptr := Sloc (N); 3634 Id : constant Entity_Id := Defining_Identifier (N); 3635 Act_T : Entity_Id; 3636 T : Entity_Id; 3637 3638 E : Node_Id := Expression (N); 3639 -- E is set to Expression (N) throughout this routine. When Expression 3640 -- (N) is modified, E is changed accordingly. 3641 3642 Prev_Entity : Entity_Id := Empty; 3643 3644 procedure Check_Dynamic_Object (Typ : Entity_Id); 3645 -- A library-level object with non-static discriminant constraints may 3646 -- require dynamic allocation. The declaration is illegal if the 3647 -- profile includes the restriction No_Implicit_Heap_Allocations. 3648 3649 procedure Check_For_Null_Excluding_Components 3650 (Obj_Typ : Entity_Id; 3651 Obj_Decl : Node_Id); 3652 -- Verify that each null-excluding component of object declaration 3653 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit 3654 -- a compile-time warning if this is not the case. 3655 3656 function Count_Tasks (T : Entity_Id) return Uint; 3657 -- This function is called when a non-generic library level object of a 3658 -- task type is declared. Its function is to count the static number of 3659 -- tasks declared within the type (it is only called if Has_Task is set 3660 -- for T). As a side effect, if an array of tasks with non-static bounds 3661 -- or a variant record type is encountered, Check_Restriction is called 3662 -- indicating the count is unknown. 3663 3664 function Delayed_Aspect_Present return Boolean; 3665 -- If the declaration has an expression that is an aggregate, and it 3666 -- has aspects that require delayed analysis, the resolution of the 3667 -- aggregate must be deferred to the freeze point of the objet. This 3668 -- special processing was created for address clauses, but it must 3669 -- also apply to Alignment. This must be done before the aspect 3670 -- specifications are analyzed because we must handle the aggregate 3671 -- before the analysis of the object declaration is complete. 3672 3673 -- Any other relevant delayed aspects on object declarations ??? 3674 3675 -------------------------- 3676 -- Check_Dynamic_Object -- 3677 -------------------------- 3678 3679 procedure Check_Dynamic_Object (Typ : Entity_Id) is 3680 Comp : Entity_Id; 3681 Obj_Type : Entity_Id; 3682 3683 begin 3684 Obj_Type := Typ; 3685 3686 if Is_Private_Type (Obj_Type) 3687 and then Present (Full_View (Obj_Type)) 3688 then 3689 Obj_Type := Full_View (Obj_Type); 3690 end if; 3691 3692 if Known_Static_Esize (Obj_Type) then 3693 return; 3694 end if; 3695 3696 if Restriction_Active (No_Implicit_Heap_Allocations) 3697 and then Expander_Active 3698 and then Has_Discriminants (Obj_Type) 3699 then 3700 Comp := First_Component (Obj_Type); 3701 while Present (Comp) loop 3702 if Known_Static_Esize (Etype (Comp)) 3703 or else Size_Known_At_Compile_Time (Etype (Comp)) 3704 then 3705 null; 3706 3707 elsif not Discriminated_Size (Comp) 3708 and then Comes_From_Source (Comp) 3709 then 3710 Error_Msg_NE 3711 ("component& of non-static size will violate restriction " 3712 & "No_Implicit_Heap_Allocation?", N, Comp); 3713 3714 elsif Is_Record_Type (Etype (Comp)) then 3715 Check_Dynamic_Object (Etype (Comp)); 3716 end if; 3717 3718 Next_Component (Comp); 3719 end loop; 3720 end if; 3721 end Check_Dynamic_Object; 3722 3723 ----------------------------------------- 3724 -- Check_For_Null_Excluding_Components -- 3725 ----------------------------------------- 3726 3727 procedure Check_For_Null_Excluding_Components 3728 (Obj_Typ : Entity_Id; 3729 Obj_Decl : Node_Id) 3730 is 3731 procedure Check_Component 3732 (Comp_Typ : Entity_Id; 3733 Comp_Decl : Node_Id := Empty; 3734 Array_Comp : Boolean := False); 3735 -- Apply a compile-time null-exclusion check on a component denoted 3736 -- by its declaration Comp_Decl and type Comp_Typ, and all of its 3737 -- subcomponents (if any). 3738 3739 --------------------- 3740 -- Check_Component -- 3741 --------------------- 3742 3743 procedure Check_Component 3744 (Comp_Typ : Entity_Id; 3745 Comp_Decl : Node_Id := Empty; 3746 Array_Comp : Boolean := False) 3747 is 3748 Comp : Entity_Id; 3749 T : Entity_Id; 3750 3751 begin 3752 -- Do not consider internally-generated components or those that 3753 -- are already initialized. 3754 3755 if Present (Comp_Decl) 3756 and then (not Comes_From_Source (Comp_Decl) 3757 or else Present (Expression (Comp_Decl))) 3758 then 3759 return; 3760 end if; 3761 3762 if Is_Incomplete_Or_Private_Type (Comp_Typ) 3763 and then Present (Full_View (Comp_Typ)) 3764 then 3765 T := Full_View (Comp_Typ); 3766 else 3767 T := Comp_Typ; 3768 end if; 3769 3770 -- Verify a component of a null-excluding access type 3771 3772 if Is_Access_Type (T) 3773 and then Can_Never_Be_Null (T) 3774 then 3775 if Comp_Decl = Obj_Decl then 3776 Null_Exclusion_Static_Checks 3777 (N => Obj_Decl, 3778 Comp => Empty, 3779 Array_Comp => Array_Comp); 3780 3781 else 3782 Null_Exclusion_Static_Checks 3783 (N => Obj_Decl, 3784 Comp => Comp_Decl, 3785 Array_Comp => Array_Comp); 3786 end if; 3787 3788 -- Check array components 3789 3790 elsif Is_Array_Type (T) then 3791 3792 -- There is no suitable component when the object is of an 3793 -- array type. However, a namable component may appear at some 3794 -- point during the recursive inspection, but not at the top 3795 -- level. At the top level just indicate array component case. 3796 3797 if Comp_Decl = Obj_Decl then 3798 Check_Component (Component_Type (T), Array_Comp => True); 3799 else 3800 Check_Component (Component_Type (T), Comp_Decl); 3801 end if; 3802 3803 -- Verify all components of type T 3804 3805 -- Note: No checks are performed on types with discriminants due 3806 -- to complexities involving variants. ??? 3807 3808 elsif (Is_Concurrent_Type (T) 3809 or else Is_Incomplete_Or_Private_Type (T) 3810 or else Is_Record_Type (T)) 3811 and then not Has_Discriminants (T) 3812 then 3813 Comp := First_Component (T); 3814 while Present (Comp) loop 3815 Check_Component (Etype (Comp), Parent (Comp)); 3816 3817 Comp := Next_Component (Comp); 3818 end loop; 3819 end if; 3820 end Check_Component; 3821 3822 -- Start processing for Check_For_Null_Excluding_Components 3823 3824 begin 3825 Check_Component (Obj_Typ, Obj_Decl); 3826 end Check_For_Null_Excluding_Components; 3827 3828 ----------------- 3829 -- Count_Tasks -- 3830 ----------------- 3831 3832 function Count_Tasks (T : Entity_Id) return Uint is 3833 C : Entity_Id; 3834 X : Node_Id; 3835 V : Uint; 3836 3837 begin 3838 if Is_Task_Type (T) then 3839 return Uint_1; 3840 3841 elsif Is_Record_Type (T) then 3842 if Has_Discriminants (T) then 3843 Check_Restriction (Max_Tasks, N); 3844 return Uint_0; 3845 3846 else 3847 V := Uint_0; 3848 C := First_Component (T); 3849 while Present (C) loop 3850 V := V + Count_Tasks (Etype (C)); 3851 Next_Component (C); 3852 end loop; 3853 3854 return V; 3855 end if; 3856 3857 elsif Is_Array_Type (T) then 3858 X := First_Index (T); 3859 V := Count_Tasks (Component_Type (T)); 3860 while Present (X) loop 3861 C := Etype (X); 3862 3863 if not Is_OK_Static_Subtype (C) then 3864 Check_Restriction (Max_Tasks, N); 3865 return Uint_0; 3866 else 3867 V := V * (UI_Max (Uint_0, 3868 Expr_Value (Type_High_Bound (C)) - 3869 Expr_Value (Type_Low_Bound (C)) + Uint_1)); 3870 end if; 3871 3872 Next_Index (X); 3873 end loop; 3874 3875 return V; 3876 3877 else 3878 return Uint_0; 3879 end if; 3880 end Count_Tasks; 3881 3882 ---------------------------- 3883 -- Delayed_Aspect_Present -- 3884 ---------------------------- 3885 3886 function Delayed_Aspect_Present return Boolean is 3887 A : Node_Id; 3888 A_Id : Aspect_Id; 3889 3890 begin 3891 if Present (Aspect_Specifications (N)) then 3892 A := First (Aspect_Specifications (N)); 3893 A_Id := Get_Aspect_Id (Chars (Identifier (A))); 3894 while Present (A) loop 3895 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then 3896 return True; 3897 end if; 3898 3899 Next (A); 3900 end loop; 3901 end if; 3902 3903 return False; 3904 end Delayed_Aspect_Present; 3905 3906 -- Local variables 3907 3908 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode; 3909 -- Save the Ghost mode to restore on exit 3910 3911 Related_Id : Entity_Id; 3912 3913 -- Start of processing for Analyze_Object_Declaration 3914 3915 begin 3916 -- There are three kinds of implicit types generated by an 3917 -- object declaration: 3918 3919 -- 1. Those generated by the original Object Definition 3920 3921 -- 2. Those generated by the Expression 3922 3923 -- 3. Those used to constrain the Object Definition with the 3924 -- expression constraints when the definition is unconstrained. 3925 3926 -- They must be generated in this order to avoid order of elaboration 3927 -- issues. Thus the first step (after entering the name) is to analyze 3928 -- the object definition. 3929 3930 if Constant_Present (N) then 3931 Prev_Entity := Current_Entity_In_Scope (Id); 3932 3933 if Present (Prev_Entity) 3934 and then 3935 -- If the homograph is an implicit subprogram, it is overridden 3936 -- by the current declaration. 3937 3938 ((Is_Overloadable (Prev_Entity) 3939 and then Is_Inherited_Operation (Prev_Entity)) 3940 3941 -- The current object is a discriminal generated for an entry 3942 -- family index. Even though the index is a constant, in this 3943 -- particular context there is no true constant redeclaration. 3944 -- Enter_Name will handle the visibility. 3945 3946 or else 3947 (Is_Discriminal (Id) 3948 and then Ekind (Discriminal_Link (Id)) = 3949 E_Entry_Index_Parameter) 3950 3951 -- The current object is the renaming for a generic declared 3952 -- within the instance. 3953 3954 or else 3955 (Ekind (Prev_Entity) = E_Package 3956 and then Nkind (Parent (Prev_Entity)) = 3957 N_Package_Renaming_Declaration 3958 and then not Comes_From_Source (Prev_Entity) 3959 and then 3960 Is_Generic_Instance (Renamed_Entity (Prev_Entity))) 3961 3962 -- The entity may be a homonym of a private component of the 3963 -- enclosing protected object, for which we create a local 3964 -- renaming declaration. The declaration is legal, even if 3965 -- useless when it just captures that component. 3966 3967 or else 3968 (Ekind (Scope (Current_Scope)) = E_Protected_Type 3969 and then Nkind (Parent (Prev_Entity)) = 3970 N_Object_Renaming_Declaration)) 3971 then 3972 Prev_Entity := Empty; 3973 end if; 3974 end if; 3975 3976 if Present (Prev_Entity) then 3977 3978 -- The object declaration is Ghost when it completes a deferred Ghost 3979 -- constant. 3980 3981 Mark_And_Set_Ghost_Completion (N, Prev_Entity); 3982 3983 Constant_Redeclaration (Id, N, T); 3984 3985 Generate_Reference (Prev_Entity, Id, 'c'); 3986 Set_Completion_Referenced (Id); 3987 3988 if Error_Posted (N) then 3989 3990 -- Type mismatch or illegal redeclaration; do not analyze 3991 -- expression to avoid cascaded errors. 3992 3993 T := Find_Type_Of_Object (Object_Definition (N), N); 3994 Set_Etype (Id, T); 3995 Set_Ekind (Id, E_Variable); 3996 goto Leave; 3997 end if; 3998 3999 -- In the normal case, enter identifier at the start to catch premature 4000 -- usage in the initialization expression. 4001 4002 else 4003 Generate_Definition (Id); 4004 Enter_Name (Id); 4005 4006 Mark_Coextensions (N, Object_Definition (N)); 4007 4008 T := Find_Type_Of_Object (Object_Definition (N), N); 4009 4010 if Nkind (Object_Definition (N)) = N_Access_Definition 4011 and then Present 4012 (Access_To_Subprogram_Definition (Object_Definition (N))) 4013 and then Protected_Present 4014 (Access_To_Subprogram_Definition (Object_Definition (N))) 4015 then 4016 T := Replace_Anonymous_Access_To_Protected_Subprogram (N); 4017 end if; 4018 4019 if Error_Posted (Id) then 4020 Set_Etype (Id, T); 4021 Set_Ekind (Id, E_Variable); 4022 goto Leave; 4023 end if; 4024 end if; 4025 4026 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry 4027 -- out some static checks. 4028 4029 if Ada_Version >= Ada_2005 then 4030 4031 -- In case of aggregates we must also take care of the correct 4032 -- initialization of nested aggregates bug this is done at the 4033 -- point of the analysis of the aggregate (see sem_aggr.adb) ??? 4034 4035 if Can_Never_Be_Null (T) then 4036 if Present (Expression (N)) 4037 and then Nkind (Expression (N)) = N_Aggregate 4038 then 4039 null; 4040 4041 else 4042 declare 4043 Save_Typ : constant Entity_Id := Etype (Id); 4044 begin 4045 Set_Etype (Id, T); -- Temp. decoration for static checks 4046 Null_Exclusion_Static_Checks (N); 4047 Set_Etype (Id, Save_Typ); 4048 end; 4049 end if; 4050 4051 -- We might be dealing with an object of a composite type containing 4052 -- null-excluding components without an aggregate, so we must verify 4053 -- that such components have default initialization. 4054 4055 else 4056 Check_For_Null_Excluding_Components (T, N); 4057 end if; 4058 end if; 4059 4060 -- Object is marked pure if it is in a pure scope 4061 4062 Set_Is_Pure (Id, Is_Pure (Current_Scope)); 4063 4064 -- If deferred constant, make sure context is appropriate. We detect 4065 -- a deferred constant as a constant declaration with no expression. 4066 -- A deferred constant can appear in a package body if its completion 4067 -- is by means of an interface pragma. 4068 4069 if Constant_Present (N) and then No (E) then 4070 4071 -- A deferred constant may appear in the declarative part of the 4072 -- following constructs: 4073 4074 -- blocks 4075 -- entry bodies 4076 -- extended return statements 4077 -- package specs 4078 -- package bodies 4079 -- subprogram bodies 4080 -- task bodies 4081 4082 -- When declared inside a package spec, a deferred constant must be 4083 -- completed by a full constant declaration or pragma Import. In all 4084 -- other cases, the only proper completion is pragma Import. Extended 4085 -- return statements are flagged as invalid contexts because they do 4086 -- not have a declarative part and so cannot accommodate the pragma. 4087 4088 if Ekind (Current_Scope) = E_Return_Statement then 4089 Error_Msg_N 4090 ("invalid context for deferred constant declaration (RM 7.4)", 4091 N); 4092 Error_Msg_N 4093 ("\declaration requires an initialization expression", 4094 N); 4095 Set_Constant_Present (N, False); 4096 4097 -- In Ada 83, deferred constant must be of private type 4098 4099 elsif not Is_Private_Type (T) then 4100 if Ada_Version = Ada_83 and then Comes_From_Source (N) then 4101 Error_Msg_N 4102 ("(Ada 83) deferred constant must be private type", N); 4103 end if; 4104 end if; 4105 4106 -- If not a deferred constant, then the object declaration freezes 4107 -- its type, unless the object is of an anonymous type and has delayed 4108 -- aspects. In that case the type is frozen when the object itself is. 4109 4110 else 4111 Check_Fully_Declared (T, N); 4112 4113 if Has_Delayed_Aspects (Id) 4114 and then Is_Array_Type (T) 4115 and then Is_Itype (T) 4116 then 4117 Set_Has_Delayed_Freeze (T); 4118 else 4119 Freeze_Before (N, T); 4120 end if; 4121 end if; 4122 4123 -- If the object was created by a constrained array definition, then 4124 -- set the link in both the anonymous base type and anonymous subtype 4125 -- that are built to represent the array type to point to the object. 4126 4127 if Nkind (Object_Definition (Declaration_Node (Id))) = 4128 N_Constrained_Array_Definition 4129 then 4130 Set_Related_Array_Object (T, Id); 4131 Set_Related_Array_Object (Base_Type (T), Id); 4132 end if; 4133 4134 -- Special checks for protected objects not at library level 4135 4136 if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then 4137 Check_Restriction (No_Local_Protected_Objects, Id); 4138 4139 -- Protected objects with interrupt handlers must be at library level 4140 4141 -- Ada 2005: This test is not needed (and the corresponding clause 4142 -- in the RM is removed) because accessibility checks are sufficient 4143 -- to make handlers not at the library level illegal. 4144 4145 -- AI05-0303: The AI is in fact a binding interpretation, and thus 4146 -- applies to the '95 version of the language as well. 4147 4148 if Is_Protected_Type (T) 4149 and then Has_Interrupt_Handler (T) 4150 and then Ada_Version < Ada_95 4151 then 4152 Error_Msg_N 4153 ("interrupt object can only be declared at library level", Id); 4154 end if; 4155 end if; 4156 4157 -- Check for violation of No_Local_Timing_Events 4158 4159 if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then 4160 Check_Restriction (No_Local_Timing_Events, Id); 4161 end if; 4162 4163 -- The actual subtype of the object is the nominal subtype, unless 4164 -- the nominal one is unconstrained and obtained from the expression. 4165 4166 Act_T := T; 4167 4168 -- These checks should be performed before the initialization expression 4169 -- is considered, so that the Object_Definition node is still the same 4170 -- as in source code. 4171 4172 -- In SPARK, the nominal subtype is always given by a subtype mark 4173 -- and must not be unconstrained. (The only exception to this is the 4174 -- acceptance of declarations of constants of type String.) 4175 4176 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier) 4177 then 4178 Check_SPARK_05_Restriction 4179 ("subtype mark required", Object_Definition (N)); 4180 4181 elsif Is_Array_Type (T) 4182 and then not Is_Constrained (T) 4183 and then T /= Standard_String 4184 then 4185 Check_SPARK_05_Restriction 4186 ("subtype mark of constrained type expected", 4187 Object_Definition (N)); 4188 end if; 4189 4190 if Is_Library_Level_Entity (Id) then 4191 Check_Dynamic_Object (T); 4192 end if; 4193 4194 -- There are no aliased objects in SPARK 4195 4196 if Aliased_Present (N) then 4197 Check_SPARK_05_Restriction ("aliased object is not allowed", N); 4198 end if; 4199 4200 -- Process initialization expression if present and not in error 4201 4202 if Present (E) and then E /= Error then 4203 4204 -- Generate an error in case of CPP class-wide object initialization. 4205 -- Required because otherwise the expansion of the class-wide 4206 -- assignment would try to use 'size to initialize the object 4207 -- (primitive that is not available in CPP tagged types). 4208 4209 if Is_Class_Wide_Type (Act_T) 4210 and then 4211 (Is_CPP_Class (Root_Type (Etype (Act_T))) 4212 or else 4213 (Present (Full_View (Root_Type (Etype (Act_T)))) 4214 and then 4215 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T)))))) 4216 then 4217 Error_Msg_N 4218 ("predefined assignment not available for 'C'P'P tagged types", 4219 E); 4220 end if; 4221 4222 Mark_Coextensions (N, E); 4223 Analyze (E); 4224 4225 -- In case of errors detected in the analysis of the expression, 4226 -- decorate it with the expected type to avoid cascaded errors 4227 4228 if No (Etype (E)) then 4229 Set_Etype (E, T); 4230 end if; 4231 4232 -- If an initialization expression is present, then we set the 4233 -- Is_True_Constant flag. It will be reset if this is a variable 4234 -- and it is indeed modified. 4235 4236 Set_Is_True_Constant (Id, True); 4237 4238 -- If we are analyzing a constant declaration, set its completion 4239 -- flag after analyzing and resolving the expression. 4240 4241 if Constant_Present (N) then 4242 Set_Has_Completion (Id); 4243 end if; 4244 4245 -- Set type and resolve (type may be overridden later on). Note: 4246 -- Ekind (Id) must still be E_Void at this point so that incorrect 4247 -- early usage within E is properly diagnosed. 4248 4249 Set_Etype (Id, T); 4250 4251 -- If the expression is an aggregate we must look ahead to detect 4252 -- the possible presence of an address clause, and defer resolution 4253 -- and expansion of the aggregate to the freeze point of the entity. 4254 4255 -- This is not always legal because the aggregate may contain other 4256 -- references that need freezing, e.g. references to other entities 4257 -- with address clauses. In any case, when compiling with -gnatI the 4258 -- presence of the address clause must be ignored. 4259 4260 if Comes_From_Source (N) 4261 and then Expander_Active 4262 and then Nkind (E) = N_Aggregate 4263 and then 4264 ((Present (Following_Address_Clause (N)) 4265 and then not Ignore_Rep_Clauses) 4266 or else Delayed_Aspect_Present) 4267 then 4268 Set_Etype (E, T); 4269 4270 else 4271 Resolve (E, T); 4272 end if; 4273 4274 -- No further action needed if E is a call to an inlined function 4275 -- which returns an unconstrained type and it has been expanded into 4276 -- a procedure call. In that case N has been replaced by an object 4277 -- declaration without initializing expression and it has been 4278 -- analyzed (see Expand_Inlined_Call). 4279 4280 if Back_End_Inlining 4281 and then Expander_Active 4282 and then Nkind (E) = N_Function_Call 4283 and then Nkind (Name (E)) in N_Has_Entity 4284 and then Is_Inlined (Entity (Name (E))) 4285 and then not Is_Constrained (Etype (E)) 4286 and then Analyzed (N) 4287 and then No (Expression (N)) 4288 then 4289 goto Leave; 4290 end if; 4291 4292 -- If E is null and has been replaced by an N_Raise_Constraint_Error 4293 -- node (which was marked already-analyzed), we need to set the type 4294 -- to something other than Any_Access in order to keep gigi happy. 4295 4296 if Etype (E) = Any_Access then 4297 Set_Etype (E, T); 4298 end if; 4299 4300 -- If the object is an access to variable, the initialization 4301 -- expression cannot be an access to constant. 4302 4303 if Is_Access_Type (T) 4304 and then not Is_Access_Constant (T) 4305 and then Is_Access_Type (Etype (E)) 4306 and then Is_Access_Constant (Etype (E)) 4307 then 4308 Error_Msg_N 4309 ("access to variable cannot be initialized with an " 4310 & "access-to-constant expression", E); 4311 end if; 4312 4313 if not Assignment_OK (N) then 4314 Check_Initialization (T, E); 4315 end if; 4316 4317 Check_Unset_Reference (E); 4318 4319 -- If this is a variable, then set current value. If this is a 4320 -- declared constant of a scalar type with a static expression, 4321 -- indicate that it is always valid. 4322 4323 if not Constant_Present (N) then 4324 if Compile_Time_Known_Value (E) then 4325 Set_Current_Value (Id, E); 4326 end if; 4327 4328 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then 4329 Set_Is_Known_Valid (Id); 4330 end if; 4331 4332 -- Deal with setting of null flags 4333 4334 if Is_Access_Type (T) then 4335 if Known_Non_Null (E) then 4336 Set_Is_Known_Non_Null (Id, True); 4337 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then 4338 Set_Is_Known_Null (Id, True); 4339 end if; 4340 end if; 4341 4342 -- Check incorrect use of dynamically tagged expressions 4343 4344 if Is_Tagged_Type (T) then 4345 Check_Dynamically_Tagged_Expression 4346 (Expr => E, 4347 Typ => T, 4348 Related_Nod => N); 4349 end if; 4350 4351 Apply_Scalar_Range_Check (E, T); 4352 Apply_Static_Length_Check (E, T); 4353 4354 if Nkind (Original_Node (N)) = N_Object_Declaration 4355 and then Comes_From_Source (Original_Node (N)) 4356 4357 -- Only call test if needed 4358 4359 and then Restriction_Check_Required (SPARK_05) 4360 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E)) 4361 then 4362 Check_SPARK_05_Restriction 4363 ("initialization expression is not appropriate", E); 4364 end if; 4365 4366 -- A formal parameter of a specific tagged type whose related 4367 -- subprogram is subject to pragma Extensions_Visible with value 4368 -- "False" cannot be implicitly converted to a class-wide type by 4369 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do 4370 -- not consider internally generated expressions. 4371 4372 if Is_Class_Wide_Type (T) 4373 and then Comes_From_Source (E) 4374 and then Is_EVF_Expression (E) 4375 then 4376 Error_Msg_N 4377 ("formal parameter cannot be implicitly converted to " 4378 & "class-wide type when Extensions_Visible is False", E); 4379 end if; 4380 end if; 4381 4382 -- If the No_Streams restriction is set, check that the type of the 4383 -- object is not, and does not contain, any subtype derived from 4384 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to 4385 -- Has_Stream just for efficiency reasons. There is no point in 4386 -- spending time on a Has_Stream check if the restriction is not set. 4387 4388 if Restriction_Check_Required (No_Streams) then 4389 if Has_Stream (T) then 4390 Check_Restriction (No_Streams, N); 4391 end if; 4392 end if; 4393 4394 -- Deal with predicate check before we start to do major rewriting. It 4395 -- is OK to initialize and then check the initialized value, since the 4396 -- object goes out of scope if we get a predicate failure. Note that we 4397 -- do this in the analyzer and not the expander because the analyzer 4398 -- does some substantial rewriting in some cases. 4399 4400 -- We need a predicate check if the type has predicates that are not 4401 -- ignored, and if either there is an initializing expression, or for 4402 -- default initialization when we have at least one case of an explicit 4403 -- default initial value and then this is not an internal declaration 4404 -- whose initialization comes later (as for an aggregate expansion). 4405 4406 if not Suppress_Assignment_Checks (N) 4407 and then Present (Predicate_Function (T)) 4408 and then not Predicates_Ignored (T) 4409 and then not No_Initialization (N) 4410 and then 4411 (Present (E) 4412 or else 4413 Is_Partially_Initialized_Type (T, Include_Implicit => False)) 4414 then 4415 -- If the type has a static predicate and the expression is known at 4416 -- compile time, see if the expression satisfies the predicate. 4417 4418 if Present (E) then 4419 Check_Expression_Against_Static_Predicate (E, T); 4420 end if; 4421 4422 -- If the type is a null record and there is no explicit initial 4423 -- expression, no predicate check applies. 4424 4425 if No (E) and then Is_Null_Record_Type (T) then 4426 null; 4427 4428 -- Do not generate a predicate check if the initialization expression 4429 -- is a type conversion because the conversion has been subjected to 4430 -- the same check. This is a small optimization which avoid redundant 4431 -- checks. 4432 4433 elsif Present (E) and then Nkind (E) = N_Type_Conversion then 4434 null; 4435 4436 else 4437 Insert_After (N, 4438 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc))); 4439 end if; 4440 end if; 4441 4442 -- Case of unconstrained type 4443 4444 if not Is_Definite_Subtype (T) then 4445 4446 -- In SPARK, a declaration of unconstrained type is allowed 4447 -- only for constants of type string. 4448 4449 if Is_String_Type (T) and then not Constant_Present (N) then 4450 Check_SPARK_05_Restriction 4451 ("declaration of object of unconstrained type not allowed", N); 4452 end if; 4453 4454 -- Nothing to do in deferred constant case 4455 4456 if Constant_Present (N) and then No (E) then 4457 null; 4458 4459 -- Case of no initialization present 4460 4461 elsif No (E) then 4462 if No_Initialization (N) then 4463 null; 4464 4465 elsif Is_Class_Wide_Type (T) then 4466 Error_Msg_N 4467 ("initialization required in class-wide declaration ", N); 4468 4469 else 4470 Error_Msg_N 4471 ("unconstrained subtype not allowed (need initialization)", 4472 Object_Definition (N)); 4473 4474 if Is_Record_Type (T) and then Has_Discriminants (T) then 4475 Error_Msg_N 4476 ("\provide initial value or explicit discriminant values", 4477 Object_Definition (N)); 4478 4479 Error_Msg_NE 4480 ("\or give default discriminant values for type&", 4481 Object_Definition (N), T); 4482 4483 elsif Is_Array_Type (T) then 4484 Error_Msg_N 4485 ("\provide initial value or explicit array bounds", 4486 Object_Definition (N)); 4487 end if; 4488 end if; 4489 4490 -- Case of initialization present but in error. Set initial 4491 -- expression as absent (but do not make above complaints) 4492 4493 elsif E = Error then 4494 Set_Expression (N, Empty); 4495 E := Empty; 4496 4497 -- Case of initialization present 4498 4499 else 4500 -- Check restrictions in Ada 83 4501 4502 if not Constant_Present (N) then 4503 4504 -- Unconstrained variables not allowed in Ada 83 mode 4505 4506 if Ada_Version = Ada_83 4507 and then Comes_From_Source (Object_Definition (N)) 4508 then 4509 Error_Msg_N 4510 ("(Ada 83) unconstrained variable not allowed", 4511 Object_Definition (N)); 4512 end if; 4513 end if; 4514 4515 -- Now we constrain the variable from the initializing expression 4516 4517 -- If the expression is an aggregate, it has been expanded into 4518 -- individual assignments. Retrieve the actual type from the 4519 -- expanded construct. 4520 4521 if Is_Array_Type (T) 4522 and then No_Initialization (N) 4523 and then Nkind (Original_Node (E)) = N_Aggregate 4524 then 4525 Act_T := Etype (E); 4526 4527 -- In case of class-wide interface object declarations we delay 4528 -- the generation of the equivalent record type declarations until 4529 -- its expansion because there are cases in they are not required. 4530 4531 elsif Is_Interface (T) then 4532 null; 4533 4534 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus, 4535 -- we should prevent the generation of another Itype with the 4536 -- same name as the one already generated, or we end up with 4537 -- two identical types in GNATprove. 4538 4539 elsif GNATprove_Mode then 4540 null; 4541 4542 -- If the type is an unchecked union, no subtype can be built from 4543 -- the expression. Rewrite declaration as a renaming, which the 4544 -- back-end can handle properly. This is a rather unusual case, 4545 -- because most unchecked_union declarations have default values 4546 -- for discriminants and are thus not indefinite. 4547 4548 elsif Is_Unchecked_Union (T) then 4549 if Constant_Present (N) or else Nkind (E) = N_Function_Call then 4550 Set_Ekind (Id, E_Constant); 4551 else 4552 Set_Ekind (Id, E_Variable); 4553 end if; 4554 4555 Rewrite (N, 4556 Make_Object_Renaming_Declaration (Loc, 4557 Defining_Identifier => Id, 4558 Subtype_Mark => New_Occurrence_Of (T, Loc), 4559 Name => E)); 4560 4561 Set_Renamed_Object (Id, E); 4562 Freeze_Before (N, T); 4563 Set_Is_Frozen (Id); 4564 goto Leave; 4565 4566 else 4567 -- Ensure that the generated subtype has a unique external name 4568 -- when the related object is public. This guarantees that the 4569 -- subtype and its bounds will not be affected by switches or 4570 -- pragmas that may offset the internal counter due to extra 4571 -- generated code. 4572 4573 if Is_Public (Id) then 4574 Related_Id := Id; 4575 else 4576 Related_Id := Empty; 4577 end if; 4578 4579 Expand_Subtype_From_Expr 4580 (N => N, 4581 Unc_Type => T, 4582 Subtype_Indic => Object_Definition (N), 4583 Exp => E, 4584 Related_Id => Related_Id); 4585 4586 Act_T := Find_Type_Of_Object (Object_Definition (N), N); 4587 end if; 4588 4589 Set_Is_Constr_Subt_For_U_Nominal (Act_T); 4590 4591 if Aliased_Present (N) then 4592 Set_Is_Constr_Subt_For_UN_Aliased (Act_T); 4593 end if; 4594 4595 Freeze_Before (N, Act_T); 4596 Freeze_Before (N, T); 4597 end if; 4598 4599 elsif Is_Array_Type (T) 4600 and then No_Initialization (N) 4601 and then (Nkind (Original_Node (E)) = N_Aggregate 4602 or else (Nkind (Original_Node (E)) = N_Qualified_Expression 4603 and then Nkind (Original_Node (Expression 4604 (Original_Node (E)))) = N_Aggregate)) 4605 then 4606 if not Is_Entity_Name (Object_Definition (N)) then 4607 Act_T := Etype (E); 4608 Check_Compile_Time_Size (Act_T); 4609 4610 if Aliased_Present (N) then 4611 Set_Is_Constr_Subt_For_UN_Aliased (Act_T); 4612 end if; 4613 end if; 4614 4615 -- When the given object definition and the aggregate are specified 4616 -- independently, and their lengths might differ do a length check. 4617 -- This cannot happen if the aggregate is of the form (others =>...) 4618 4619 if not Is_Constrained (T) then 4620 null; 4621 4622 elsif Nkind (E) = N_Raise_Constraint_Error then 4623 4624 -- Aggregate is statically illegal. Place back in declaration 4625 4626 Set_Expression (N, E); 4627 Set_No_Initialization (N, False); 4628 4629 elsif T = Etype (E) then 4630 null; 4631 4632 elsif Nkind (E) = N_Aggregate 4633 and then Present (Component_Associations (E)) 4634 and then Present (Choice_List (First (Component_Associations (E)))) 4635 and then 4636 Nkind (First (Choice_List (First (Component_Associations (E))))) = 4637 N_Others_Choice 4638 then 4639 null; 4640 4641 else 4642 Apply_Length_Check (E, T); 4643 end if; 4644 4645 -- If the type is limited unconstrained with defaulted discriminants and 4646 -- there is no expression, then the object is constrained by the 4647 -- defaults, so it is worthwhile building the corresponding subtype. 4648 4649 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T)) 4650 and then not Is_Constrained (T) 4651 and then Has_Discriminants (T) 4652 then 4653 if No (E) then 4654 Act_T := Build_Default_Subtype (T, N); 4655 else 4656 -- Ada 2005: A limited object may be initialized by means of an 4657 -- aggregate. If the type has default discriminants it has an 4658 -- unconstrained nominal type, Its actual subtype will be obtained 4659 -- from the aggregate, and not from the default discriminants. 4660 4661 Act_T := Etype (E); 4662 end if; 4663 4664 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc)); 4665 4666 elsif Nkind (E) = N_Function_Call 4667 and then Constant_Present (N) 4668 and then Has_Unconstrained_Elements (Etype (E)) 4669 then 4670 -- The back-end has problems with constants of a discriminated type 4671 -- with defaults, if the initial value is a function call. We 4672 -- generate an intermediate temporary that will receive a reference 4673 -- to the result of the call. The initialization expression then 4674 -- becomes a dereference of that temporary. 4675 4676 Remove_Side_Effects (E); 4677 4678 -- If this is a constant declaration of an unconstrained type and 4679 -- the initialization is an aggregate, we can use the subtype of the 4680 -- aggregate for the declared entity because it is immutable. 4681 4682 elsif not Is_Constrained (T) 4683 and then Has_Discriminants (T) 4684 and then Constant_Present (N) 4685 and then not Has_Unchecked_Union (T) 4686 and then Nkind (E) = N_Aggregate 4687 then 4688 Act_T := Etype (E); 4689 end if; 4690 4691 -- Check No_Wide_Characters restriction 4692 4693 Check_Wide_Character_Restriction (T, Object_Definition (N)); 4694 4695 -- Indicate this is not set in source. Certainly true for constants, and 4696 -- true for variables so far (will be reset for a variable if and when 4697 -- we encounter a modification in the source). 4698 4699 Set_Never_Set_In_Source (Id); 4700 4701 -- Now establish the proper kind and type of the object 4702 4703 if Constant_Present (N) then 4704 Set_Ekind (Id, E_Constant); 4705 Set_Is_True_Constant (Id); 4706 4707 else 4708 Set_Ekind (Id, E_Variable); 4709 4710 -- A variable is set as shared passive if it appears in a shared 4711 -- passive package, and is at the outer level. This is not done for 4712 -- entities generated during expansion, because those are always 4713 -- manipulated locally. 4714 4715 if Is_Shared_Passive (Current_Scope) 4716 and then Is_Library_Level_Entity (Id) 4717 and then Comes_From_Source (Id) 4718 then 4719 Set_Is_Shared_Passive (Id); 4720 Check_Shared_Var (Id, T, N); 4721 end if; 4722 4723 -- Set Has_Initial_Value if initializing expression present. Note 4724 -- that if there is no initializing expression, we leave the state 4725 -- of this flag unchanged (usually it will be False, but notably in 4726 -- the case of exception choice variables, it will already be true). 4727 4728 if Present (E) then 4729 Set_Has_Initial_Value (Id); 4730 end if; 4731 end if; 4732 4733 -- Set the SPARK mode from the current context (may be overwritten later 4734 -- with explicit pragma). 4735 4736 Set_SPARK_Pragma (Id, SPARK_Mode_Pragma); 4737 Set_SPARK_Pragma_Inherited (Id); 4738 4739 -- Preserve relevant elaboration-related attributes of the context which 4740 -- are no longer available or very expensive to recompute once analysis, 4741 -- resolution, and expansion are over. 4742 4743 Mark_Elaboration_Attributes 4744 (N_Id => Id, 4745 Checks => True); 4746 4747 -- Initialize alignment and size and capture alignment setting 4748 4749 Init_Alignment (Id); 4750 Init_Esize (Id); 4751 Set_Optimize_Alignment_Flags (Id); 4752 4753 -- Deal with aliased case 4754 4755 if Aliased_Present (N) then 4756 Set_Is_Aliased (Id); 4757 4758 -- If the object is aliased and the type is unconstrained with 4759 -- defaulted discriminants and there is no expression, then the 4760 -- object is constrained by the defaults, so it is worthwhile 4761 -- building the corresponding subtype. 4762 4763 -- Ada 2005 (AI-363): If the aliased object is discriminated and 4764 -- unconstrained, then only establish an actual subtype if the 4765 -- nominal subtype is indefinite. In definite cases the object is 4766 -- unconstrained in Ada 2005. 4767 4768 if No (E) 4769 and then Is_Record_Type (T) 4770 and then not Is_Constrained (T) 4771 and then Has_Discriminants (T) 4772 and then (Ada_Version < Ada_2005 4773 or else not Is_Definite_Subtype (T)) 4774 then 4775 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N)); 4776 end if; 4777 end if; 4778 4779 -- Now we can set the type of the object 4780 4781 Set_Etype (Id, Act_T); 4782 4783 -- Non-constant object is marked to be treated as volatile if type is 4784 -- volatile and we clear the Current_Value setting that may have been 4785 -- set above. Doing so for constants isn't required and might interfere 4786 -- with possible uses of the object as a static expression in contexts 4787 -- incompatible with volatility (e.g. as a case-statement alternative). 4788 4789 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then 4790 Set_Treat_As_Volatile (Id); 4791 Set_Current_Value (Id, Empty); 4792 end if; 4793 4794 -- Deal with controlled types 4795 4796 if Has_Controlled_Component (Etype (Id)) 4797 or else Is_Controlled (Etype (Id)) 4798 then 4799 if not Is_Library_Level_Entity (Id) then 4800 Check_Restriction (No_Nested_Finalization, N); 4801 else 4802 Validate_Controlled_Object (Id); 4803 end if; 4804 end if; 4805 4806 if Has_Task (Etype (Id)) then 4807 Check_Restriction (No_Tasking, N); 4808 4809 -- Deal with counting max tasks 4810 4811 -- Nothing to do if inside a generic 4812 4813 if Inside_A_Generic then 4814 null; 4815 4816 -- If library level entity, then count tasks 4817 4818 elsif Is_Library_Level_Entity (Id) then 4819 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id))); 4820 4821 -- If not library level entity, then indicate we don't know max 4822 -- tasks and also check task hierarchy restriction and blocking 4823 -- operation (since starting a task is definitely blocking). 4824 4825 else 4826 Check_Restriction (Max_Tasks, N); 4827 Check_Restriction (No_Task_Hierarchy, N); 4828 Check_Potentially_Blocking_Operation (N); 4829 end if; 4830 4831 -- A rather specialized test. If we see two tasks being declared 4832 -- of the same type in the same object declaration, and the task 4833 -- has an entry with an address clause, we know that program error 4834 -- will be raised at run time since we can't have two tasks with 4835 -- entries at the same address. 4836 4837 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then 4838 declare 4839 E : Entity_Id; 4840 4841 begin 4842 E := First_Entity (Etype (Id)); 4843 while Present (E) loop 4844 if Ekind (E) = E_Entry 4845 and then Present (Get_Attribute_Definition_Clause 4846 (E, Attribute_Address)) 4847 then 4848 Error_Msg_Warn := SPARK_Mode /= On; 4849 Error_Msg_N 4850 ("more than one task with same entry address<<", N); 4851 Error_Msg_N ("\Program_Error [<<", N); 4852 Insert_Action (N, 4853 Make_Raise_Program_Error (Loc, 4854 Reason => PE_Duplicated_Entry_Address)); 4855 exit; 4856 end if; 4857 4858 Next_Entity (E); 4859 end loop; 4860 end; 4861 end if; 4862 end if; 4863 4864 -- Some simple constant-propagation: if the expression is a constant 4865 -- string initialized with a literal, share the literal. This avoids 4866 -- a run-time copy. 4867 4868 if Present (E) 4869 and then Is_Entity_Name (E) 4870 and then Ekind (Entity (E)) = E_Constant 4871 and then Base_Type (Etype (E)) = Standard_String 4872 then 4873 declare 4874 Val : constant Node_Id := Constant_Value (Entity (E)); 4875 begin 4876 if Present (Val) and then Nkind (Val) = N_String_Literal then 4877 Rewrite (E, New_Copy (Val)); 4878 end if; 4879 end; 4880 end if; 4881 4882 -- Another optimization: if the nominal subtype is unconstrained and 4883 -- the expression is a function call that returns an unconstrained 4884 -- type, rewrite the declaration as a renaming of the result of the 4885 -- call. The exceptions below are cases where the copy is expected, 4886 -- either by the back end (Aliased case) or by the semantics, as for 4887 -- initializing controlled types or copying tags for class-wide types. 4888 4889 if Present (E) 4890 and then Nkind (E) = N_Explicit_Dereference 4891 and then Nkind (Original_Node (E)) = N_Function_Call 4892 and then not Is_Library_Level_Entity (Id) 4893 and then not Is_Constrained (Underlying_Type (T)) 4894 and then not Is_Aliased (Id) 4895 and then not Is_Class_Wide_Type (T) 4896 and then not Is_Controlled (T) 4897 and then not Has_Controlled_Component (Base_Type (T)) 4898 and then Expander_Active 4899 then 4900 Rewrite (N, 4901 Make_Object_Renaming_Declaration (Loc, 4902 Defining_Identifier => Id, 4903 Access_Definition => Empty, 4904 Subtype_Mark => New_Occurrence_Of 4905 (Base_Type (Etype (Id)), Loc), 4906 Name => E)); 4907 4908 Set_Renamed_Object (Id, E); 4909 4910 -- Force generation of debugging information for the constant and for 4911 -- the renamed function call. 4912 4913 Set_Debug_Info_Needed (Id); 4914 Set_Debug_Info_Needed (Entity (Prefix (E))); 4915 end if; 4916 4917 if Present (Prev_Entity) 4918 and then Is_Frozen (Prev_Entity) 4919 and then not Error_Posted (Id) 4920 then 4921 Error_Msg_N ("full constant declaration appears too late", N); 4922 end if; 4923 4924 Check_Eliminated (Id); 4925 4926 -- Deal with setting In_Private_Part flag if in private part 4927 4928 if Ekind (Scope (Id)) = E_Package 4929 and then In_Private_Part (Scope (Id)) 4930 then 4931 Set_In_Private_Part (Id); 4932 end if; 4933 4934 <<Leave>> 4935 -- Initialize the refined state of a variable here because this is a 4936 -- common destination for legal and illegal object declarations. 4937 4938 if Ekind (Id) = E_Variable then 4939 Set_Encapsulating_State (Id, Empty); 4940 end if; 4941 4942 if Has_Aspects (N) then 4943 Analyze_Aspect_Specifications (N, Id); 4944 end if; 4945 4946 Analyze_Dimension (N); 4947 4948 -- Verify whether the object declaration introduces an illegal hidden 4949 -- state within a package subject to a null abstract state. 4950 4951 if Ekind (Id) = E_Variable then 4952 Check_No_Hidden_State (Id); 4953 end if; 4954 4955 Restore_Ghost_Mode (Saved_GM); 4956 end Analyze_Object_Declaration; 4957 4958 --------------------------- 4959 -- Analyze_Others_Choice -- 4960 --------------------------- 4961 4962 -- Nothing to do for the others choice node itself, the semantic analysis 4963 -- of the others choice will occur as part of the processing of the parent 4964 4965 procedure Analyze_Others_Choice (N : Node_Id) is 4966 pragma Warnings (Off, N); 4967 begin 4968 null; 4969 end Analyze_Others_Choice; 4970 4971 ------------------------------------------- 4972 -- Analyze_Private_Extension_Declaration -- 4973 ------------------------------------------- 4974 4975 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is 4976 Indic : constant Node_Id := Subtype_Indication (N); 4977 T : constant Entity_Id := Defining_Identifier (N); 4978 Iface : Entity_Id; 4979 Iface_Elmt : Elmt_Id; 4980 Parent_Base : Entity_Id; 4981 Parent_Type : Entity_Id; 4982 4983 begin 4984 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces 4985 4986 if Is_Non_Empty_List (Interface_List (N)) then 4987 declare 4988 Intf : Node_Id; 4989 T : Entity_Id; 4990 4991 begin 4992 Intf := First (Interface_List (N)); 4993 while Present (Intf) loop 4994 T := Find_Type_Of_Subtype_Indic (Intf); 4995 4996 Diagnose_Interface (Intf, T); 4997 Next (Intf); 4998 end loop; 4999 end; 5000 end if; 5001 5002 Generate_Definition (T); 5003 5004 -- For other than Ada 2012, just enter the name in the current scope 5005 5006 if Ada_Version < Ada_2012 then 5007 Enter_Name (T); 5008 5009 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling 5010 -- case of private type that completes an incomplete type. 5011 5012 else 5013 declare 5014 Prev : Entity_Id; 5015 5016 begin 5017 Prev := Find_Type_Name (N); 5018 5019 pragma Assert (Prev = T 5020 or else (Ekind (Prev) = E_Incomplete_Type 5021 and then Present (Full_View (Prev)) 5022 and then Full_View (Prev) = T)); 5023 end; 5024 end if; 5025 5026 Parent_Type := Find_Type_Of_Subtype_Indic (Indic); 5027 Parent_Base := Base_Type (Parent_Type); 5028 5029 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then 5030 Set_Ekind (T, Ekind (Parent_Type)); 5031 Set_Etype (T, Any_Type); 5032 goto Leave; 5033 5034 elsif not Is_Tagged_Type (Parent_Type) then 5035 Error_Msg_N 5036 ("parent of type extension must be a tagged type ", Indic); 5037 goto Leave; 5038 5039 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then 5040 Error_Msg_N ("premature derivation of incomplete type", Indic); 5041 goto Leave; 5042 5043 elsif Is_Concurrent_Type (Parent_Type) then 5044 Error_Msg_N 5045 ("parent type of a private extension cannot be a synchronized " 5046 & "tagged type (RM 3.9.1 (3/1))", N); 5047 5048 Set_Etype (T, Any_Type); 5049 Set_Ekind (T, E_Limited_Private_Type); 5050 Set_Private_Dependents (T, New_Elmt_List); 5051 Set_Error_Posted (T); 5052 goto Leave; 5053 end if; 5054 5055 -- Perhaps the parent type should be changed to the class-wide type's 5056 -- specific type in this case to prevent cascading errors ??? 5057 5058 if Is_Class_Wide_Type (Parent_Type) then 5059 Error_Msg_N 5060 ("parent of type extension must not be a class-wide type", Indic); 5061 goto Leave; 5062 end if; 5063 5064 if (not Is_Package_Or_Generic_Package (Current_Scope) 5065 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration) 5066 or else In_Private_Part (Current_Scope) 5067 then 5068 Error_Msg_N ("invalid context for private extension", N); 5069 end if; 5070 5071 -- Set common attributes 5072 5073 Set_Is_Pure (T, Is_Pure (Current_Scope)); 5074 Set_Scope (T, Current_Scope); 5075 Set_Ekind (T, E_Record_Type_With_Private); 5076 Init_Size_Align (T); 5077 Set_Default_SSO (T); 5078 Set_No_Reordering (T, No_Component_Reordering); 5079 5080 Set_Etype (T, Parent_Base); 5081 Propagate_Concurrent_Flags (T, Parent_Base); 5082 5083 Set_Convention (T, Convention (Parent_Type)); 5084 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type)); 5085 Set_Is_First_Subtype (T); 5086 Make_Class_Wide_Type (T); 5087 5088 -- Set the SPARK mode from the current context 5089 5090 Set_SPARK_Pragma (T, SPARK_Mode_Pragma); 5091 Set_SPARK_Pragma_Inherited (T); 5092 5093 if Unknown_Discriminants_Present (N) then 5094 Set_Discriminant_Constraint (T, No_Elist); 5095 end if; 5096 5097 Build_Derived_Record_Type (N, Parent_Type, T); 5098 5099 -- A private extension inherits the Default_Initial_Condition pragma 5100 -- coming from any parent type within the derivation chain. 5101 5102 if Has_DIC (Parent_Type) then 5103 Set_Has_Inherited_DIC (T); 5104 end if; 5105 5106 -- A private extension inherits any class-wide invariants coming from a 5107 -- parent type or an interface. Note that the invariant procedure of the 5108 -- parent type should not be inherited because the private extension may 5109 -- define invariants of its own. 5110 5111 if Has_Inherited_Invariants (Parent_Type) 5112 or else Has_Inheritable_Invariants (Parent_Type) 5113 then 5114 Set_Has_Inherited_Invariants (T); 5115 5116 elsif Present (Interfaces (T)) then 5117 Iface_Elmt := First_Elmt (Interfaces (T)); 5118 while Present (Iface_Elmt) loop 5119 Iface := Node (Iface_Elmt); 5120 5121 if Has_Inheritable_Invariants (Iface) then 5122 Set_Has_Inherited_Invariants (T); 5123 exit; 5124 end if; 5125 5126 Next_Elmt (Iface_Elmt); 5127 end loop; 5128 end if; 5129 5130 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten 5131 -- synchronized formal derived type. 5132 5133 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then 5134 Set_Is_Limited_Record (T); 5135 5136 -- Formal derived type case 5137 5138 if Is_Generic_Type (T) then 5139 5140 -- The parent must be a tagged limited type or a synchronized 5141 -- interface. 5142 5143 if (not Is_Tagged_Type (Parent_Type) 5144 or else not Is_Limited_Type (Parent_Type)) 5145 and then 5146 (not Is_Interface (Parent_Type) 5147 or else not Is_Synchronized_Interface (Parent_Type)) 5148 then 5149 Error_Msg_NE 5150 ("parent type of & must be tagged limited or synchronized", 5151 N, T); 5152 end if; 5153 5154 -- The progenitors (if any) must be limited or synchronized 5155 -- interfaces. 5156 5157 if Present (Interfaces (T)) then 5158 Iface_Elmt := First_Elmt (Interfaces (T)); 5159 while Present (Iface_Elmt) loop 5160 Iface := Node (Iface_Elmt); 5161 5162 if not Is_Limited_Interface (Iface) 5163 and then not Is_Synchronized_Interface (Iface) 5164 then 5165 Error_Msg_NE 5166 ("progenitor & must be limited or synchronized", 5167 N, Iface); 5168 end if; 5169 5170 Next_Elmt (Iface_Elmt); 5171 end loop; 5172 end if; 5173 5174 -- Regular derived extension, the parent must be a limited or 5175 -- synchronized interface. 5176 5177 else 5178 if not Is_Interface (Parent_Type) 5179 or else (not Is_Limited_Interface (Parent_Type) 5180 and then not Is_Synchronized_Interface (Parent_Type)) 5181 then 5182 Error_Msg_NE 5183 ("parent type of & must be limited interface", N, T); 5184 end if; 5185 end if; 5186 5187 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private 5188 -- extension with a synchronized parent must be explicitly declared 5189 -- synchronized, because the full view will be a synchronized type. 5190 -- This must be checked before the check for limited types below, 5191 -- to ensure that types declared limited are not allowed to extend 5192 -- synchronized interfaces. 5193 5194 elsif Is_Interface (Parent_Type) 5195 and then Is_Synchronized_Interface (Parent_Type) 5196 and then not Synchronized_Present (N) 5197 then 5198 Error_Msg_NE 5199 ("private extension of& must be explicitly synchronized", 5200 N, Parent_Type); 5201 5202 elsif Limited_Present (N) then 5203 Set_Is_Limited_Record (T); 5204 5205 if not Is_Limited_Type (Parent_Type) 5206 and then 5207 (not Is_Interface (Parent_Type) 5208 or else not Is_Limited_Interface (Parent_Type)) 5209 then 5210 Error_Msg_NE ("parent type& of limited extension must be limited", 5211 N, Parent_Type); 5212 end if; 5213 end if; 5214 5215 -- Remember that its parent type has a private extension. Used to warn 5216 -- on public primitives of the parent type defined after its private 5217 -- extensions (see Check_Dispatching_Operation). 5218 5219 Set_Has_Private_Extension (Parent_Type); 5220 5221 <<Leave>> 5222 if Has_Aspects (N) then 5223 Analyze_Aspect_Specifications (N, T); 5224 end if; 5225 end Analyze_Private_Extension_Declaration; 5226 5227 --------------------------------- 5228 -- Analyze_Subtype_Declaration -- 5229 --------------------------------- 5230 5231 procedure Analyze_Subtype_Declaration 5232 (N : Node_Id; 5233 Skip : Boolean := False) 5234 is 5235 Id : constant Entity_Id := Defining_Identifier (N); 5236 R_Checks : Check_Result; 5237 T : Entity_Id; 5238 5239 begin 5240 Generate_Definition (Id); 5241 Set_Is_Pure (Id, Is_Pure (Current_Scope)); 5242 Init_Size_Align (Id); 5243 5244 -- The following guard condition on Enter_Name is to handle cases where 5245 -- the defining identifier has already been entered into the scope but 5246 -- the declaration as a whole needs to be analyzed. 5247 5248 -- This case in particular happens for derived enumeration types. The 5249 -- derived enumeration type is processed as an inserted enumeration type 5250 -- declaration followed by a rewritten subtype declaration. The defining 5251 -- identifier, however, is entered into the name scope very early in the 5252 -- processing of the original type declaration and therefore needs to be 5253 -- avoided here, when the created subtype declaration is analyzed. (See 5254 -- Build_Derived_Types) 5255 5256 -- This also happens when the full view of a private type is derived 5257 -- type with constraints. In this case the entity has been introduced 5258 -- in the private declaration. 5259 5260 -- Finally this happens in some complex cases when validity checks are 5261 -- enabled, where the same subtype declaration may be analyzed twice. 5262 -- This can happen if the subtype is created by the pre-analysis of 5263 -- an attribute tht gives the range of a loop statement, and the loop 5264 -- itself appears within an if_statement that will be rewritten during 5265 -- expansion. 5266 5267 if Skip 5268 or else (Present (Etype (Id)) 5269 and then (Is_Private_Type (Etype (Id)) 5270 or else Is_Task_Type (Etype (Id)) 5271 or else Is_Rewrite_Substitution (N))) 5272 then 5273 null; 5274 5275 elsif Current_Entity (Id) = Id then 5276 null; 5277 5278 else 5279 Enter_Name (Id); 5280 end if; 5281 5282 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P'); 5283 5284 -- Class-wide equivalent types of records with unknown discriminants 5285 -- involve the generation of an itype which serves as the private view 5286 -- of a constrained record subtype. In such cases the base type of the 5287 -- current subtype we are processing is the private itype. Use the full 5288 -- of the private itype when decorating various attributes. 5289 5290 if Is_Itype (T) 5291 and then Is_Private_Type (T) 5292 and then Present (Full_View (T)) 5293 then 5294 T := Full_View (T); 5295 end if; 5296 5297 -- Inherit common attributes 5298 5299 Set_Is_Volatile (Id, Is_Volatile (T)); 5300 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T)); 5301 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T))); 5302 Set_Convention (Id, Convention (T)); 5303 5304 -- If ancestor has predicates then so does the subtype, and in addition 5305 -- we must delay the freeze to properly arrange predicate inheritance. 5306 5307 -- The Ancestor_Type test is really unpleasant, there seem to be cases 5308 -- in which T = ID, so the above tests and assignments do nothing??? 5309 5310 if Has_Predicates (T) 5311 or else (Present (Ancestor_Subtype (T)) 5312 and then Has_Predicates (Ancestor_Subtype (T))) 5313 then 5314 Set_Has_Predicates (Id); 5315 Set_Has_Delayed_Freeze (Id); 5316 5317 -- Generated subtypes inherit the predicate function from the parent 5318 -- (no aspects to examine on the generated declaration). 5319 5320 if not Comes_From_Source (N) then 5321 Set_Ekind (Id, Ekind (T)); 5322 5323 if Present (Predicate_Function (T)) then 5324 Set_Predicate_Function (Id, Predicate_Function (T)); 5325 5326 elsif Present (Ancestor_Subtype (T)) 5327 and then Has_Predicates (Ancestor_Subtype (T)) 5328 and then Present (Predicate_Function (Ancestor_Subtype (T))) 5329 then 5330 Set_Predicate_Function (Id, 5331 Predicate_Function (Ancestor_Subtype (T))); 5332 end if; 5333 end if; 5334 end if; 5335 5336 -- Subtype of Boolean cannot have a constraint in SPARK 5337 5338 if Is_Boolean_Type (T) 5339 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication 5340 then 5341 Check_SPARK_05_Restriction 5342 ("subtype of Boolean cannot have constraint", N); 5343 end if; 5344 5345 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then 5346 declare 5347 Cstr : constant Node_Id := Constraint (Subtype_Indication (N)); 5348 One_Cstr : Node_Id; 5349 Low : Node_Id; 5350 High : Node_Id; 5351 5352 begin 5353 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then 5354 One_Cstr := First (Constraints (Cstr)); 5355 while Present (One_Cstr) loop 5356 5357 -- Index or discriminant constraint in SPARK must be a 5358 -- subtype mark. 5359 5360 if not 5361 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name) 5362 then 5363 Check_SPARK_05_Restriction 5364 ("subtype mark required", One_Cstr); 5365 5366 -- String subtype must have a lower bound of 1 in SPARK. 5367 -- Note that we do not need to test for the non-static case 5368 -- here, since that was already taken care of in 5369 -- Process_Range_Expr_In_Decl. 5370 5371 elsif Base_Type (T) = Standard_String then 5372 Get_Index_Bounds (One_Cstr, Low, High); 5373 5374 if Is_OK_Static_Expression (Low) 5375 and then Expr_Value (Low) /= 1 5376 then 5377 Check_SPARK_05_Restriction 5378 ("String subtype must have lower bound of 1", N); 5379 end if; 5380 end if; 5381 5382 Next (One_Cstr); 5383 end loop; 5384 end if; 5385 end; 5386 end if; 5387 5388 -- In the case where there is no constraint given in the subtype 5389 -- indication, Process_Subtype just returns the Subtype_Mark, so its 5390 -- semantic attributes must be established here. 5391 5392 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then 5393 Set_Etype (Id, Base_Type (T)); 5394 5395 -- Subtype of unconstrained array without constraint is not allowed 5396 -- in SPARK. 5397 5398 if Is_Array_Type (T) and then not Is_Constrained (T) then 5399 Check_SPARK_05_Restriction 5400 ("subtype of unconstrained array must have constraint", N); 5401 end if; 5402 5403 case Ekind (T) is 5404 when Array_Kind => 5405 Set_Ekind (Id, E_Array_Subtype); 5406 Copy_Array_Subtype_Attributes (Id, T); 5407 5408 when Decimal_Fixed_Point_Kind => 5409 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype); 5410 Set_Digits_Value (Id, Digits_Value (T)); 5411 Set_Delta_Value (Id, Delta_Value (T)); 5412 Set_Scale_Value (Id, Scale_Value (T)); 5413 Set_Small_Value (Id, Small_Value (T)); 5414 Set_Scalar_Range (Id, Scalar_Range (T)); 5415 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T)); 5416 Set_Is_Constrained (Id, Is_Constrained (T)); 5417 Set_Is_Known_Valid (Id, Is_Known_Valid (T)); 5418 Set_RM_Size (Id, RM_Size (T)); 5419 5420 when Enumeration_Kind => 5421 Set_Ekind (Id, E_Enumeration_Subtype); 5422 Set_First_Literal (Id, First_Literal (Base_Type (T))); 5423 Set_Scalar_Range (Id, Scalar_Range (T)); 5424 Set_Is_Character_Type (Id, Is_Character_Type (T)); 5425 Set_Is_Constrained (Id, Is_Constrained (T)); 5426 Set_Is_Known_Valid (Id, Is_Known_Valid (T)); 5427 Set_RM_Size (Id, RM_Size (T)); 5428 Inherit_Predicate_Flags (Id, T); 5429 5430 when Ordinary_Fixed_Point_Kind => 5431 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype); 5432 Set_Scalar_Range (Id, Scalar_Range (T)); 5433 Set_Small_Value (Id, Small_Value (T)); 5434 Set_Delta_Value (Id, Delta_Value (T)); 5435 Set_Is_Constrained (Id, Is_Constrained (T)); 5436 Set_Is_Known_Valid (Id, Is_Known_Valid (T)); 5437 Set_RM_Size (Id, RM_Size (T)); 5438 5439 when Float_Kind => 5440 Set_Ekind (Id, E_Floating_Point_Subtype); 5441 Set_Scalar_Range (Id, Scalar_Range (T)); 5442 Set_Digits_Value (Id, Digits_Value (T)); 5443 Set_Is_Constrained (Id, Is_Constrained (T)); 5444 5445 -- If the floating point type has dimensions, these will be 5446 -- inherited subsequently when Analyze_Dimensions is called. 5447 5448 when Signed_Integer_Kind => 5449 Set_Ekind (Id, E_Signed_Integer_Subtype); 5450 Set_Scalar_Range (Id, Scalar_Range (T)); 5451 Set_Is_Constrained (Id, Is_Constrained (T)); 5452 Set_Is_Known_Valid (Id, Is_Known_Valid (T)); 5453 Set_RM_Size (Id, RM_Size (T)); 5454 Inherit_Predicate_Flags (Id, T); 5455 5456 when Modular_Integer_Kind => 5457 Set_Ekind (Id, E_Modular_Integer_Subtype); 5458 Set_Scalar_Range (Id, Scalar_Range (T)); 5459 Set_Is_Constrained (Id, Is_Constrained (T)); 5460 Set_Is_Known_Valid (Id, Is_Known_Valid (T)); 5461 Set_RM_Size (Id, RM_Size (T)); 5462 Inherit_Predicate_Flags (Id, T); 5463 5464 when Class_Wide_Kind => 5465 Set_Ekind (Id, E_Class_Wide_Subtype); 5466 Set_Class_Wide_Type (Id, Class_Wide_Type (T)); 5467 Set_Cloned_Subtype (Id, T); 5468 Set_Is_Tagged_Type (Id, True); 5469 Set_Has_Unknown_Discriminants 5470 (Id, True); 5471 Set_No_Tagged_Streams_Pragma 5472 (Id, No_Tagged_Streams_Pragma (T)); 5473 5474 if Ekind (T) = E_Class_Wide_Subtype then 5475 Set_Equivalent_Type (Id, Equivalent_Type (T)); 5476 end if; 5477 5478 when E_Record_Subtype 5479 | E_Record_Type 5480 => 5481 Set_Ekind (Id, E_Record_Subtype); 5482 5483 if Ekind (T) = E_Record_Subtype 5484 and then Present (Cloned_Subtype (T)) 5485 then 5486 Set_Cloned_Subtype (Id, Cloned_Subtype (T)); 5487 else 5488 Set_Cloned_Subtype (Id, T); 5489 end if; 5490 5491 Set_First_Entity (Id, First_Entity (T)); 5492 Set_Last_Entity (Id, Last_Entity (T)); 5493 Set_Has_Discriminants (Id, Has_Discriminants (T)); 5494 Set_Is_Constrained (Id, Is_Constrained (T)); 5495 Set_Is_Limited_Record (Id, Is_Limited_Record (T)); 5496 Set_Has_Implicit_Dereference 5497 (Id, Has_Implicit_Dereference (T)); 5498 Set_Has_Unknown_Discriminants 5499 (Id, Has_Unknown_Discriminants (T)); 5500 5501 if Has_Discriminants (T) then 5502 Set_Discriminant_Constraint 5503 (Id, Discriminant_Constraint (T)); 5504 Set_Stored_Constraint_From_Discriminant_Constraint (Id); 5505 5506 elsif Has_Unknown_Discriminants (Id) then 5507 Set_Discriminant_Constraint (Id, No_Elist); 5508 end if; 5509 5510 if Is_Tagged_Type (T) then 5511 Set_Is_Tagged_Type (Id, True); 5512 Set_No_Tagged_Streams_Pragma 5513 (Id, No_Tagged_Streams_Pragma (T)); 5514 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T)); 5515 Set_Direct_Primitive_Operations 5516 (Id, Direct_Primitive_Operations (T)); 5517 Set_Class_Wide_Type (Id, Class_Wide_Type (T)); 5518 5519 if Is_Interface (T) then 5520 Set_Is_Interface (Id); 5521 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T)); 5522 end if; 5523 end if; 5524 5525 when Private_Kind => 5526 Set_Ekind (Id, Subtype_Kind (Ekind (T))); 5527 Set_Has_Discriminants (Id, Has_Discriminants (T)); 5528 Set_Is_Constrained (Id, Is_Constrained (T)); 5529 Set_First_Entity (Id, First_Entity (T)); 5530 Set_Last_Entity (Id, Last_Entity (T)); 5531 Set_Private_Dependents (Id, New_Elmt_List); 5532 Set_Is_Limited_Record (Id, Is_Limited_Record (T)); 5533 Set_Has_Implicit_Dereference 5534 (Id, Has_Implicit_Dereference (T)); 5535 Set_Has_Unknown_Discriminants 5536 (Id, Has_Unknown_Discriminants (T)); 5537 Set_Known_To_Have_Preelab_Init 5538 (Id, Known_To_Have_Preelab_Init (T)); 5539 5540 if Is_Tagged_Type (T) then 5541 Set_Is_Tagged_Type (Id); 5542 Set_No_Tagged_Streams_Pragma (Id, 5543 No_Tagged_Streams_Pragma (T)); 5544 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T)); 5545 Set_Class_Wide_Type (Id, Class_Wide_Type (T)); 5546 Set_Direct_Primitive_Operations (Id, 5547 Direct_Primitive_Operations (T)); 5548 end if; 5549 5550 -- In general the attributes of the subtype of a private type 5551 -- are the attributes of the partial view of parent. However, 5552 -- the full view may be a discriminated type, and the subtype 5553 -- must share the discriminant constraint to generate correct 5554 -- calls to initialization procedures. 5555 5556 if Has_Discriminants (T) then 5557 Set_Discriminant_Constraint 5558 (Id, Discriminant_Constraint (T)); 5559 Set_Stored_Constraint_From_Discriminant_Constraint (Id); 5560 5561 elsif Present (Full_View (T)) 5562 and then Has_Discriminants (Full_View (T)) 5563 then 5564 Set_Discriminant_Constraint 5565 (Id, Discriminant_Constraint (Full_View (T))); 5566 Set_Stored_Constraint_From_Discriminant_Constraint (Id); 5567 5568 -- This would seem semantically correct, but apparently 5569 -- generates spurious errors about missing components ??? 5570 5571 -- Set_Has_Discriminants (Id); 5572 end if; 5573 5574 Prepare_Private_Subtype_Completion (Id, N); 5575 5576 -- If this is the subtype of a constrained private type with 5577 -- discriminants that has got a full view and we also have 5578 -- built a completion just above, show that the completion 5579 -- is a clone of the full view to the back-end. 5580 5581 if Has_Discriminants (T) 5582 and then not Has_Unknown_Discriminants (T) 5583 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T)) 5584 and then Present (Full_View (T)) 5585 and then Present (Full_View (Id)) 5586 then 5587 Set_Cloned_Subtype (Full_View (Id), Full_View (T)); 5588 end if; 5589 5590 when Access_Kind => 5591 Set_Ekind (Id, E_Access_Subtype); 5592 Set_Is_Constrained (Id, Is_Constrained (T)); 5593 Set_Is_Access_Constant 5594 (Id, Is_Access_Constant (T)); 5595 Set_Directly_Designated_Type 5596 (Id, Designated_Type (T)); 5597 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T)); 5598 5599 -- A Pure library_item must not contain the declaration of a 5600 -- named access type, except within a subprogram, generic 5601 -- subprogram, task unit, or protected unit, or if it has 5602 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)). 5603 5604 if Comes_From_Source (Id) 5605 and then In_Pure_Unit 5606 and then not In_Subprogram_Task_Protected_Unit 5607 and then not No_Pool_Assigned (Id) 5608 then 5609 Error_Msg_N 5610 ("named access types not allowed in pure unit", N); 5611 end if; 5612 5613 when Concurrent_Kind => 5614 Set_Ekind (Id, Subtype_Kind (Ekind (T))); 5615 Set_Corresponding_Record_Type (Id, 5616 Corresponding_Record_Type (T)); 5617 Set_First_Entity (Id, First_Entity (T)); 5618 Set_First_Private_Entity (Id, First_Private_Entity (T)); 5619 Set_Has_Discriminants (Id, Has_Discriminants (T)); 5620 Set_Is_Constrained (Id, Is_Constrained (T)); 5621 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T)); 5622 Set_Last_Entity (Id, Last_Entity (T)); 5623 5624 if Is_Tagged_Type (T) then 5625 Set_No_Tagged_Streams_Pragma 5626 (Id, No_Tagged_Streams_Pragma (T)); 5627 end if; 5628 5629 if Has_Discriminants (T) then 5630 Set_Discriminant_Constraint 5631 (Id, Discriminant_Constraint (T)); 5632 Set_Stored_Constraint_From_Discriminant_Constraint (Id); 5633 end if; 5634 5635 when Incomplete_Kind => 5636 if Ada_Version >= Ada_2005 then 5637 5638 -- In Ada 2005 an incomplete type can be explicitly tagged: 5639 -- propagate indication. Note that we also have to include 5640 -- subtypes for Ada 2012 extended use of incomplete types. 5641 5642 Set_Ekind (Id, E_Incomplete_Subtype); 5643 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T)); 5644 Set_Private_Dependents (Id, New_Elmt_List); 5645 5646 if Is_Tagged_Type (Id) then 5647 Set_No_Tagged_Streams_Pragma 5648 (Id, No_Tagged_Streams_Pragma (T)); 5649 Set_Direct_Primitive_Operations (Id, New_Elmt_List); 5650 end if; 5651 5652 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an 5653 -- incomplete type visible through a limited with clause. 5654 5655 if From_Limited_With (T) 5656 and then Present (Non_Limited_View (T)) 5657 then 5658 Set_From_Limited_With (Id); 5659 Set_Non_Limited_View (Id, Non_Limited_View (T)); 5660 5661 -- Ada 2005 (AI-412): Add the regular incomplete subtype 5662 -- to the private dependents of the original incomplete 5663 -- type for future transformation. 5664 5665 else 5666 Append_Elmt (Id, Private_Dependents (T)); 5667 end if; 5668 5669 -- If the subtype name denotes an incomplete type an error 5670 -- was already reported by Process_Subtype. 5671 5672 else 5673 Set_Etype (Id, Any_Type); 5674 end if; 5675 5676 when others => 5677 raise Program_Error; 5678 end case; 5679 end if; 5680 5681 if Etype (Id) = Any_Type then 5682 goto Leave; 5683 end if; 5684 5685 -- Some common processing on all types 5686 5687 Set_Size_Info (Id, T); 5688 Set_First_Rep_Item (Id, First_Rep_Item (T)); 5689 5690 -- If the parent type is a generic actual, so is the subtype. This may 5691 -- happen in a nested instance. Why Comes_From_Source test??? 5692 5693 if not Comes_From_Source (N) then 5694 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T)); 5695 end if; 5696 5697 -- If this is a subtype declaration for an actual in an instance, 5698 -- inherit static and dynamic predicates if any. 5699 5700 -- If declaration has no aspect specifications, inherit predicate 5701 -- info as well. Unclear how to handle the case of both specified 5702 -- and inherited predicates ??? Other inherited aspects, such as 5703 -- invariants, should be OK, but the combination with later pragmas 5704 -- may also require special merging. 5705 5706 if Has_Predicates (T) 5707 and then Present (Predicate_Function (T)) 5708 and then 5709 ((In_Instance and then not Comes_From_Source (N)) 5710 or else No (Aspect_Specifications (N))) 5711 then 5712 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T)); 5713 5714 if Has_Static_Predicate (T) then 5715 Set_Has_Static_Predicate (Id); 5716 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T)); 5717 end if; 5718 end if; 5719 5720 -- Remaining processing depends on characteristics of base type 5721 5722 T := Etype (Id); 5723 5724 Set_Is_Immediately_Visible (Id, True); 5725 Set_Depends_On_Private (Id, Has_Private_Component (T)); 5726 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T)); 5727 5728 if Is_Interface (T) then 5729 Set_Is_Interface (Id); 5730 end if; 5731 5732 if Present (Generic_Parent_Type (N)) 5733 and then 5734 (Nkind (Parent (Generic_Parent_Type (N))) /= 5735 N_Formal_Type_Declaration 5736 or else Nkind (Formal_Type_Definition 5737 (Parent (Generic_Parent_Type (N)))) /= 5738 N_Formal_Private_Type_Definition) 5739 then 5740 if Is_Tagged_Type (Id) then 5741 5742 -- If this is a generic actual subtype for a synchronized type, 5743 -- the primitive operations are those of the corresponding record 5744 -- for which there is a separate subtype declaration. 5745 5746 if Is_Concurrent_Type (Id) then 5747 null; 5748 elsif Is_Class_Wide_Type (Id) then 5749 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T)); 5750 else 5751 Derive_Subprograms (Generic_Parent_Type (N), Id, T); 5752 end if; 5753 5754 elsif Scope (Etype (Id)) /= Standard_Standard then 5755 Derive_Subprograms (Generic_Parent_Type (N), Id); 5756 end if; 5757 end if; 5758 5759 if Is_Private_Type (T) and then Present (Full_View (T)) then 5760 Conditional_Delay (Id, Full_View (T)); 5761 5762 -- The subtypes of components or subcomponents of protected types 5763 -- do not need freeze nodes, which would otherwise appear in the 5764 -- wrong scope (before the freeze node for the protected type). The 5765 -- proper subtypes are those of the subcomponents of the corresponding 5766 -- record. 5767 5768 elsif Ekind (Scope (Id)) /= E_Protected_Type 5769 and then Present (Scope (Scope (Id))) -- error defense 5770 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type 5771 then 5772 Conditional_Delay (Id, T); 5773 end if; 5774 5775 -- If we have a subtype of an incomplete type whose full type is a 5776 -- derived numeric type, we need to have a freeze node for the subtype. 5777 -- Otherwise gigi will complain while computing the (static) bounds of 5778 -- the subtype. 5779 5780 if Is_Itype (T) 5781 and then Is_Elementary_Type (Id) 5782 and then Etype (Id) /= Id 5783 then 5784 declare 5785 Partial : constant Entity_Id := 5786 Incomplete_Or_Partial_View (First_Subtype (Id)); 5787 begin 5788 if Present (Partial) 5789 and then Ekind (Partial) = E_Incomplete_Type 5790 then 5791 Set_Has_Delayed_Freeze (Id); 5792 end if; 5793 end; 5794 end if; 5795 5796 -- Check that Constraint_Error is raised for a scalar subtype indication 5797 -- when the lower or upper bound of a non-null range lies outside the 5798 -- range of the type mark. 5799 5800 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then 5801 if Is_Scalar_Type (Etype (Id)) 5802 and then Scalar_Range (Id) /= 5803 Scalar_Range 5804 (Etype (Subtype_Mark (Subtype_Indication (N)))) 5805 then 5806 Apply_Range_Check 5807 (Scalar_Range (Id), 5808 Etype (Subtype_Mark (Subtype_Indication (N)))); 5809 5810 -- In the array case, check compatibility for each index 5811 5812 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id)) 5813 then 5814 -- This really should be a subprogram that finds the indications 5815 -- to check??? 5816 5817 declare 5818 Subt_Index : Node_Id := First_Index (Id); 5819 Target_Index : Node_Id := 5820 First_Index (Etype 5821 (Subtype_Mark (Subtype_Indication (N)))); 5822 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N); 5823 5824 begin 5825 while Present (Subt_Index) loop 5826 if ((Nkind (Subt_Index) = N_Identifier 5827 and then Ekind (Entity (Subt_Index)) in Scalar_Kind) 5828 or else Nkind (Subt_Index) = N_Subtype_Indication) 5829 and then 5830 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range 5831 then 5832 declare 5833 Target_Typ : constant Entity_Id := 5834 Etype (Target_Index); 5835 begin 5836 R_Checks := 5837 Get_Range_Checks 5838 (Scalar_Range (Etype (Subt_Index)), 5839 Target_Typ, 5840 Etype (Subt_Index), 5841 Defining_Identifier (N)); 5842 5843 -- Reset Has_Dynamic_Range_Check on the subtype to 5844 -- prevent elision of the index check due to a dynamic 5845 -- check generated for a preceding index (needed since 5846 -- Insert_Range_Checks tries to avoid generating 5847 -- redundant checks on a given declaration). 5848 5849 Set_Has_Dynamic_Range_Check (N, False); 5850 5851 Insert_Range_Checks 5852 (R_Checks, 5853 N, 5854 Target_Typ, 5855 Sloc (Defining_Identifier (N))); 5856 5857 -- Record whether this index involved a dynamic check 5858 5859 Has_Dyn_Chk := 5860 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N); 5861 end; 5862 end if; 5863 5864 Next_Index (Subt_Index); 5865 Next_Index (Target_Index); 5866 end loop; 5867 5868 -- Finally, mark whether the subtype involves dynamic checks 5869 5870 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk); 5871 end; 5872 end if; 5873 end if; 5874 5875 Set_Optimize_Alignment_Flags (Id); 5876 Check_Eliminated (Id); 5877 5878 <<Leave>> 5879 if Has_Aspects (N) then 5880 Analyze_Aspect_Specifications (N, Id); 5881 end if; 5882 5883 Analyze_Dimension (N); 5884 5885 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype 5886 -- indications on composite types where the constraints are dynamic. 5887 -- Note that object declarations and aggregates generate implicit 5888 -- subtype declarations, which this covers. One special case is that the 5889 -- implicitly generated "=" for discriminated types includes an 5890 -- offending subtype declaration, which is harmless, so we ignore it 5891 -- here. 5892 5893 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then 5894 declare 5895 Cstr : constant Node_Id := Constraint (Subtype_Indication (N)); 5896 begin 5897 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint 5898 and then not (Is_Internal (Id) 5899 and then Is_TSS (Scope (Id), 5900 TSS_Composite_Equality)) 5901 and then not Within_Init_Proc 5902 and then not All_Composite_Constraints_Static (Cstr) 5903 then 5904 Check_Restriction (No_Dynamic_Sized_Objects, Cstr); 5905 end if; 5906 end; 5907 end if; 5908 end Analyze_Subtype_Declaration; 5909 5910 -------------------------------- 5911 -- Analyze_Subtype_Indication -- 5912 -------------------------------- 5913 5914 procedure Analyze_Subtype_Indication (N : Node_Id) is 5915 T : constant Entity_Id := Subtype_Mark (N); 5916 R : constant Node_Id := Range_Expression (Constraint (N)); 5917 5918 begin 5919 Analyze (T); 5920 5921 if R /= Error then 5922 Analyze (R); 5923 Set_Etype (N, Etype (R)); 5924 Resolve (R, Entity (T)); 5925 else 5926 Set_Error_Posted (R); 5927 Set_Error_Posted (T); 5928 end if; 5929 end Analyze_Subtype_Indication; 5930 5931 -------------------------- 5932 -- Analyze_Variant_Part -- 5933 -------------------------- 5934 5935 procedure Analyze_Variant_Part (N : Node_Id) is 5936 Discr_Name : Node_Id; 5937 Discr_Type : Entity_Id; 5938 5939 procedure Process_Variant (A : Node_Id); 5940 -- Analyze declarations for a single variant 5941 5942 package Analyze_Variant_Choices is 5943 new Generic_Analyze_Choices (Process_Variant); 5944 use Analyze_Variant_Choices; 5945 5946 --------------------- 5947 -- Process_Variant -- 5948 --------------------- 5949 5950 procedure Process_Variant (A : Node_Id) is 5951 CL : constant Node_Id := Component_List (A); 5952 begin 5953 if not Null_Present (CL) then 5954 Analyze_Declarations (Component_Items (CL)); 5955 5956 if Present (Variant_Part (CL)) then 5957 Analyze (Variant_Part (CL)); 5958 end if; 5959 end if; 5960 end Process_Variant; 5961 5962 -- Start of processing for Analyze_Variant_Part 5963 5964 begin 5965 Discr_Name := Name (N); 5966 Analyze (Discr_Name); 5967 5968 -- If Discr_Name bad, get out (prevent cascaded errors) 5969 5970 if Etype (Discr_Name) = Any_Type then 5971 return; 5972 end if; 5973 5974 -- Check invalid discriminant in variant part 5975 5976 if Ekind (Entity (Discr_Name)) /= E_Discriminant then 5977 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name); 5978 end if; 5979 5980 Discr_Type := Etype (Entity (Discr_Name)); 5981 5982 if not Is_Discrete_Type (Discr_Type) then 5983 Error_Msg_N 5984 ("discriminant in a variant part must be of a discrete type", 5985 Name (N)); 5986 return; 5987 end if; 5988 5989 -- Now analyze the choices, which also analyzes the declarations that 5990 -- are associated with each choice. 5991 5992 Analyze_Choices (Variants (N), Discr_Type); 5993 5994 -- Note: we used to instantiate and call Check_Choices here to check 5995 -- that the choices covered the discriminant, but it's too early to do 5996 -- that because of statically predicated subtypes, whose analysis may 5997 -- be deferred to their freeze point which may be as late as the freeze 5998 -- point of the containing record. So this call is now to be found in 5999 -- Freeze_Record_Declaration. 6000 6001 end Analyze_Variant_Part; 6002 6003 ---------------------------- 6004 -- Array_Type_Declaration -- 6005 ---------------------------- 6006 6007 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is 6008 Component_Def : constant Node_Id := Component_Definition (Def); 6009 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def); 6010 P : constant Node_Id := Parent (Def); 6011 Element_Type : Entity_Id; 6012 Implicit_Base : Entity_Id; 6013 Index : Node_Id; 6014 Nb_Index : Nat; 6015 Priv : Entity_Id; 6016 Related_Id : Entity_Id := Empty; 6017 6018 begin 6019 if Nkind (Def) = N_Constrained_Array_Definition then 6020 Index := First (Discrete_Subtype_Definitions (Def)); 6021 else 6022 Index := First (Subtype_Marks (Def)); 6023 end if; 6024 6025 -- Find proper names for the implicit types which may be public. In case 6026 -- of anonymous arrays we use the name of the first object of that type 6027 -- as prefix. 6028 6029 if No (T) then 6030 Related_Id := Defining_Identifier (P); 6031 else 6032 Related_Id := T; 6033 end if; 6034 6035 Nb_Index := 1; 6036 while Present (Index) loop 6037 Analyze (Index); 6038 6039 -- Test for odd case of trying to index a type by the type itself 6040 6041 if Is_Entity_Name (Index) and then Entity (Index) = T then 6042 Error_Msg_N ("type& cannot be indexed by itself", Index); 6043 Set_Entity (Index, Standard_Boolean); 6044 Set_Etype (Index, Standard_Boolean); 6045 end if; 6046 6047 -- Check SPARK restriction requiring a subtype mark 6048 6049 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then 6050 Check_SPARK_05_Restriction ("subtype mark required", Index); 6051 end if; 6052 6053 -- Add a subtype declaration for each index of private array type 6054 -- declaration whose etype is also private. For example: 6055 6056 -- package Pkg is 6057 -- type Index is private; 6058 -- private 6059 -- type Table is array (Index) of ... 6060 -- end; 6061 6062 -- This is currently required by the expander for the internally 6063 -- generated equality subprogram of records with variant parts in 6064 -- which the etype of some component is such private type. 6065 6066 if Ekind (Current_Scope) = E_Package 6067 and then In_Private_Part (Current_Scope) 6068 and then Has_Private_Declaration (Etype (Index)) 6069 then 6070 declare 6071 Loc : constant Source_Ptr := Sloc (Def); 6072 Decl : Entity_Id; 6073 New_E : Entity_Id; 6074 6075 begin 6076 New_E := Make_Temporary (Loc, 'T'); 6077 Set_Is_Internal (New_E); 6078 6079 Decl := 6080 Make_Subtype_Declaration (Loc, 6081 Defining_Identifier => New_E, 6082 Subtype_Indication => 6083 New_Occurrence_Of (Etype (Index), Loc)); 6084 6085 Insert_Before (Parent (Def), Decl); 6086 Analyze (Decl); 6087 Set_Etype (Index, New_E); 6088 6089 -- If the index is a range or a subtype indication it carries 6090 -- no entity. Example: 6091 6092 -- package Pkg is 6093 -- type T is private; 6094 -- private 6095 -- type T is new Natural; 6096 -- Table : array (T(1) .. T(10)) of Boolean; 6097 -- end Pkg; 6098 6099 -- Otherwise the type of the reference is its entity. 6100 6101 if Is_Entity_Name (Index) then 6102 Set_Entity (Index, New_E); 6103 end if; 6104 end; 6105 end if; 6106 6107 Make_Index (Index, P, Related_Id, Nb_Index); 6108 6109 -- Check error of subtype with predicate for index type 6110 6111 Bad_Predicated_Subtype_Use 6112 ("subtype& has predicate, not allowed as index subtype", 6113 Index, Etype (Index)); 6114 6115 -- Move to next index 6116 6117 Next_Index (Index); 6118 Nb_Index := Nb_Index + 1; 6119 end loop; 6120 6121 -- Process subtype indication if one is present 6122 6123 if Present (Component_Typ) then 6124 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C'); 6125 6126 Set_Etype (Component_Typ, Element_Type); 6127 6128 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then 6129 Check_SPARK_05_Restriction 6130 ("subtype mark required", Component_Typ); 6131 end if; 6132 6133 -- Ada 2005 (AI-230): Access Definition case 6134 6135 else pragma Assert (Present (Access_Definition (Component_Def))); 6136 6137 -- Indicate that the anonymous access type is created by the 6138 -- array type declaration. 6139 6140 Element_Type := Access_Definition 6141 (Related_Nod => P, 6142 N => Access_Definition (Component_Def)); 6143 Set_Is_Local_Anonymous_Access (Element_Type); 6144 6145 -- Propagate the parent. This field is needed if we have to generate 6146 -- the master_id associated with an anonymous access to task type 6147 -- component (see Expand_N_Full_Type_Declaration.Build_Master) 6148 6149 Set_Parent (Element_Type, Parent (T)); 6150 6151 -- Ada 2005 (AI-230): In case of components that are anonymous access 6152 -- types the level of accessibility depends on the enclosing type 6153 -- declaration 6154 6155 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230) 6156 6157 -- Ada 2005 (AI-254) 6158 6159 declare 6160 CD : constant Node_Id := 6161 Access_To_Subprogram_Definition 6162 (Access_Definition (Component_Def)); 6163 begin 6164 if Present (CD) and then Protected_Present (CD) then 6165 Element_Type := 6166 Replace_Anonymous_Access_To_Protected_Subprogram (Def); 6167 end if; 6168 end; 6169 end if; 6170 6171 -- Constrained array case 6172 6173 if No (T) then 6174 T := Create_Itype (E_Void, P, Related_Id, 'T'); 6175 end if; 6176 6177 if Nkind (Def) = N_Constrained_Array_Definition then 6178 6179 -- Establish Implicit_Base as unconstrained base type 6180 6181 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B'); 6182 6183 Set_Etype (Implicit_Base, Implicit_Base); 6184 Set_Scope (Implicit_Base, Current_Scope); 6185 Set_Has_Delayed_Freeze (Implicit_Base); 6186 Set_Default_SSO (Implicit_Base); 6187 6188 -- The constrained array type is a subtype of the unconstrained one 6189 6190 Set_Ekind (T, E_Array_Subtype); 6191 Init_Size_Align (T); 6192 Set_Etype (T, Implicit_Base); 6193 Set_Scope (T, Current_Scope); 6194 Set_Is_Constrained (T); 6195 Set_First_Index (T, 6196 First (Discrete_Subtype_Definitions (Def))); 6197 Set_Has_Delayed_Freeze (T); 6198 6199 -- Complete setup of implicit base type 6200 6201 Set_Component_Size (Implicit_Base, Uint_0); 6202 Set_Component_Type (Implicit_Base, Element_Type); 6203 Set_Finalize_Storage_Only 6204 (Implicit_Base, 6205 Finalize_Storage_Only (Element_Type)); 6206 Set_First_Index (Implicit_Base, First_Index (T)); 6207 Set_Has_Controlled_Component 6208 (Implicit_Base, 6209 Has_Controlled_Component (Element_Type) 6210 or else Is_Controlled (Element_Type)); 6211 Set_Packed_Array_Impl_Type 6212 (Implicit_Base, Empty); 6213 6214 Propagate_Concurrent_Flags (Implicit_Base, Element_Type); 6215 6216 -- Unconstrained array case 6217 6218 else 6219 Set_Ekind (T, E_Array_Type); 6220 Init_Size_Align (T); 6221 Set_Etype (T, T); 6222 Set_Scope (T, Current_Scope); 6223 Set_Component_Size (T, Uint_0); 6224 Set_Is_Constrained (T, False); 6225 Set_First_Index (T, First (Subtype_Marks (Def))); 6226 Set_Has_Delayed_Freeze (T, True); 6227 Propagate_Concurrent_Flags (T, Element_Type); 6228 Set_Has_Controlled_Component (T, Has_Controlled_Component 6229 (Element_Type) 6230 or else 6231 Is_Controlled (Element_Type)); 6232 Set_Finalize_Storage_Only (T, Finalize_Storage_Only 6233 (Element_Type)); 6234 Set_Default_SSO (T); 6235 end if; 6236 6237 -- Common attributes for both cases 6238 6239 Set_Component_Type (Base_Type (T), Element_Type); 6240 Set_Packed_Array_Impl_Type (T, Empty); 6241 6242 if Aliased_Present (Component_Definition (Def)) then 6243 Check_SPARK_05_Restriction 6244 ("aliased is not allowed", Component_Definition (Def)); 6245 Set_Has_Aliased_Components (Etype (T)); 6246 end if; 6247 6248 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the 6249 -- array type to ensure that objects of this type are initialized. 6250 6251 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then 6252 Set_Can_Never_Be_Null (T); 6253 6254 if Null_Exclusion_Present (Component_Definition (Def)) 6255 6256 -- No need to check itypes because in their case this check was 6257 -- done at their point of creation 6258 6259 and then not Is_Itype (Element_Type) 6260 then 6261 Error_Msg_N 6262 ("`NOT NULL` not allowed (null already excluded)", 6263 Subtype_Indication (Component_Definition (Def))); 6264 end if; 6265 end if; 6266 6267 Priv := Private_Component (Element_Type); 6268 6269 if Present (Priv) then 6270 6271 -- Check for circular definitions 6272 6273 if Priv = Any_Type then 6274 Set_Component_Type (Etype (T), Any_Type); 6275 6276 -- There is a gap in the visibility of operations on the composite 6277 -- type only if the component type is defined in a different scope. 6278 6279 elsif Scope (Priv) = Current_Scope then 6280 null; 6281 6282 elsif Is_Limited_Type (Priv) then 6283 Set_Is_Limited_Composite (Etype (T)); 6284 Set_Is_Limited_Composite (T); 6285 else 6286 Set_Is_Private_Composite (Etype (T)); 6287 Set_Is_Private_Composite (T); 6288 end if; 6289 end if; 6290 6291 -- A syntax error in the declaration itself may lead to an empty index 6292 -- list, in which case do a minimal patch. 6293 6294 if No (First_Index (T)) then 6295 Error_Msg_N ("missing index definition in array type declaration", T); 6296 6297 declare 6298 Indexes : constant List_Id := 6299 New_List (New_Occurrence_Of (Any_Id, Sloc (T))); 6300 begin 6301 Set_Discrete_Subtype_Definitions (Def, Indexes); 6302 Set_First_Index (T, First (Indexes)); 6303 return; 6304 end; 6305 end if; 6306 6307 -- Create a concatenation operator for the new type. Internal array 6308 -- types created for packed entities do not need such, they are 6309 -- compatible with the user-defined type. 6310 6311 if Number_Dimensions (T) = 1 6312 and then not Is_Packed_Array_Impl_Type (T) 6313 then 6314 New_Concatenation_Op (T); 6315 end if; 6316 6317 -- In the case of an unconstrained array the parser has already verified 6318 -- that all the indexes are unconstrained but we still need to make sure 6319 -- that the element type is constrained. 6320 6321 if not Is_Definite_Subtype (Element_Type) then 6322 Error_Msg_N 6323 ("unconstrained element type in array declaration", 6324 Subtype_Indication (Component_Def)); 6325 6326 elsif Is_Abstract_Type (Element_Type) then 6327 Error_Msg_N 6328 ("the type of a component cannot be abstract", 6329 Subtype_Indication (Component_Def)); 6330 end if; 6331 6332 -- There may be an invariant declared for the component type, but 6333 -- the construction of the component invariant checking procedure 6334 -- takes place during expansion. 6335 end Array_Type_Declaration; 6336 6337 ------------------------------------------------------ 6338 -- Replace_Anonymous_Access_To_Protected_Subprogram -- 6339 ------------------------------------------------------ 6340 6341 function Replace_Anonymous_Access_To_Protected_Subprogram 6342 (N : Node_Id) return Entity_Id 6343 is 6344 Loc : constant Source_Ptr := Sloc (N); 6345 6346 Curr_Scope : constant Scope_Stack_Entry := 6347 Scope_Stack.Table (Scope_Stack.Last); 6348 6349 Anon : constant Entity_Id := Make_Temporary (Loc, 'S'); 6350 6351 Acc : Node_Id; 6352 -- Access definition in declaration 6353 6354 Comp : Node_Id; 6355 -- Object definition or formal definition with an access definition 6356 6357 Decl : Node_Id; 6358 -- Declaration of anonymous access to subprogram type 6359 6360 Spec : Node_Id; 6361 -- Original specification in access to subprogram 6362 6363 P : Node_Id; 6364 6365 begin 6366 Set_Is_Internal (Anon); 6367 6368 case Nkind (N) is 6369 when N_Constrained_Array_Definition 6370 | N_Component_Declaration 6371 | N_Unconstrained_Array_Definition 6372 => 6373 Comp := Component_Definition (N); 6374 Acc := Access_Definition (Comp); 6375 6376 when N_Discriminant_Specification => 6377 Comp := Discriminant_Type (N); 6378 Acc := Comp; 6379 6380 when N_Parameter_Specification => 6381 Comp := Parameter_Type (N); 6382 Acc := Comp; 6383 6384 when N_Access_Function_Definition => 6385 Comp := Result_Definition (N); 6386 Acc := Comp; 6387 6388 when N_Object_Declaration => 6389 Comp := Object_Definition (N); 6390 Acc := Comp; 6391 6392 when N_Function_Specification => 6393 Comp := Result_Definition (N); 6394 Acc := Comp; 6395 6396 when others => 6397 raise Program_Error; 6398 end case; 6399 6400 Spec := Access_To_Subprogram_Definition (Acc); 6401 6402 Decl := 6403 Make_Full_Type_Declaration (Loc, 6404 Defining_Identifier => Anon, 6405 Type_Definition => Copy_Separate_Tree (Spec)); 6406 6407 Mark_Rewrite_Insertion (Decl); 6408 6409 -- In ASIS mode, analyze the profile on the original node, because 6410 -- the separate copy does not provide enough links to recover the 6411 -- original tree. Analysis is limited to type annotations, within 6412 -- a temporary scope that serves as an anonymous subprogram to collect 6413 -- otherwise useless temporaries and itypes. 6414 6415 if ASIS_Mode then 6416 declare 6417 Typ : constant Entity_Id := Make_Temporary (Loc, 'S'); 6418 6419 begin 6420 if Nkind (Spec) = N_Access_Function_Definition then 6421 Set_Ekind (Typ, E_Function); 6422 else 6423 Set_Ekind (Typ, E_Procedure); 6424 end if; 6425 6426 Set_Parent (Typ, N); 6427 Set_Scope (Typ, Current_Scope); 6428 Push_Scope (Typ); 6429 6430 -- Nothing to do if procedure is parameterless 6431 6432 if Present (Parameter_Specifications (Spec)) then 6433 Process_Formals (Parameter_Specifications (Spec), Spec); 6434 end if; 6435 6436 if Nkind (Spec) = N_Access_Function_Definition then 6437 declare 6438 Def : constant Node_Id := Result_Definition (Spec); 6439 6440 begin 6441 -- The result might itself be an anonymous access type, so 6442 -- have to recurse. 6443 6444 if Nkind (Def) = N_Access_Definition then 6445 if Present (Access_To_Subprogram_Definition (Def)) then 6446 Set_Etype 6447 (Def, 6448 Replace_Anonymous_Access_To_Protected_Subprogram 6449 (Spec)); 6450 else 6451 Find_Type (Subtype_Mark (Def)); 6452 end if; 6453 6454 else 6455 Find_Type (Def); 6456 end if; 6457 end; 6458 end if; 6459 6460 End_Scope; 6461 end; 6462 end if; 6463 6464 -- Insert the new declaration in the nearest enclosing scope. If the 6465 -- parent is a body and N is its return type, the declaration belongs 6466 -- in the enclosing scope. Likewise if N is the type of a parameter. 6467 6468 P := Parent (N); 6469 6470 if Nkind (N) = N_Function_Specification 6471 and then Nkind (P) = N_Subprogram_Body 6472 then 6473 P := Parent (P); 6474 elsif Nkind (N) = N_Parameter_Specification 6475 and then Nkind (P) in N_Subprogram_Specification 6476 and then Nkind (Parent (P)) = N_Subprogram_Body 6477 then 6478 P := Parent (Parent (P)); 6479 end if; 6480 6481 while Present (P) and then not Has_Declarations (P) loop 6482 P := Parent (P); 6483 end loop; 6484 6485 pragma Assert (Present (P)); 6486 6487 if Nkind (P) = N_Package_Specification then 6488 Prepend (Decl, Visible_Declarations (P)); 6489 else 6490 Prepend (Decl, Declarations (P)); 6491 end if; 6492 6493 -- Replace the anonymous type with an occurrence of the new declaration. 6494 -- In all cases the rewritten node does not have the null-exclusion 6495 -- attribute because (if present) it was already inherited by the 6496 -- anonymous entity (Anon). Thus, in case of components we do not 6497 -- inherit this attribute. 6498 6499 if Nkind (N) = N_Parameter_Specification then 6500 Rewrite (Comp, New_Occurrence_Of (Anon, Loc)); 6501 Set_Etype (Defining_Identifier (N), Anon); 6502 Set_Null_Exclusion_Present (N, False); 6503 6504 elsif Nkind (N) = N_Object_Declaration then 6505 Rewrite (Comp, New_Occurrence_Of (Anon, Loc)); 6506 Set_Etype (Defining_Identifier (N), Anon); 6507 6508 elsif Nkind (N) = N_Access_Function_Definition then 6509 Rewrite (Comp, New_Occurrence_Of (Anon, Loc)); 6510 6511 elsif Nkind (N) = N_Function_Specification then 6512 Rewrite (Comp, New_Occurrence_Of (Anon, Loc)); 6513 Set_Etype (Defining_Unit_Name (N), Anon); 6514 6515 else 6516 Rewrite (Comp, 6517 Make_Component_Definition (Loc, 6518 Subtype_Indication => New_Occurrence_Of (Anon, Loc))); 6519 end if; 6520 6521 Mark_Rewrite_Insertion (Comp); 6522 6523 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) 6524 or else (Nkind (Parent (N)) = N_Full_Type_Declaration 6525 and then not Is_Type (Current_Scope)) 6526 then 6527 6528 -- Declaration can be analyzed in the current scope. 6529 6530 Analyze (Decl); 6531 6532 else 6533 -- Temporarily remove the current scope (record or subprogram) from 6534 -- the stack to add the new declarations to the enclosing scope. 6535 -- The anonymous entity is an Itype with the proper attributes. 6536 6537 Scope_Stack.Decrement_Last; 6538 Analyze (Decl); 6539 Set_Is_Itype (Anon); 6540 Set_Associated_Node_For_Itype (Anon, N); 6541 Scope_Stack.Append (Curr_Scope); 6542 end if; 6543 6544 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type); 6545 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target); 6546 return Anon; 6547 end Replace_Anonymous_Access_To_Protected_Subprogram; 6548 6549 ------------------------------- 6550 -- Build_Derived_Access_Type -- 6551 ------------------------------- 6552 6553 procedure Build_Derived_Access_Type 6554 (N : Node_Id; 6555 Parent_Type : Entity_Id; 6556 Derived_Type : Entity_Id) 6557 is 6558 S : constant Node_Id := Subtype_Indication (Type_Definition (N)); 6559 6560 Desig_Type : Entity_Id; 6561 Discr : Entity_Id; 6562 Discr_Con_Elist : Elist_Id; 6563 Discr_Con_El : Elmt_Id; 6564 Subt : Entity_Id; 6565 6566 begin 6567 -- Set the designated type so it is available in case this is an access 6568 -- to a self-referential type, e.g. a standard list type with a next 6569 -- pointer. Will be reset after subtype is built. 6570 6571 Set_Directly_Designated_Type 6572 (Derived_Type, Designated_Type (Parent_Type)); 6573 6574 Subt := Process_Subtype (S, N); 6575 6576 if Nkind (S) /= N_Subtype_Indication 6577 and then Subt /= Base_Type (Subt) 6578 then 6579 Set_Ekind (Derived_Type, E_Access_Subtype); 6580 end if; 6581 6582 if Ekind (Derived_Type) = E_Access_Subtype then 6583 declare 6584 Pbase : constant Entity_Id := Base_Type (Parent_Type); 6585 Ibase : constant Entity_Id := 6586 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B'); 6587 Svg_Chars : constant Name_Id := Chars (Ibase); 6588 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase); 6589 6590 begin 6591 Copy_Node (Pbase, Ibase); 6592 6593 -- Restore Itype status after Copy_Node 6594 6595 Set_Is_Itype (Ibase); 6596 Set_Associated_Node_For_Itype (Ibase, N); 6597 6598 Set_Chars (Ibase, Svg_Chars); 6599 Set_Next_Entity (Ibase, Svg_Next_E); 6600 Set_Sloc (Ibase, Sloc (Derived_Type)); 6601 Set_Scope (Ibase, Scope (Derived_Type)); 6602 Set_Freeze_Node (Ibase, Empty); 6603 Set_Is_Frozen (Ibase, False); 6604 Set_Comes_From_Source (Ibase, False); 6605 Set_Is_First_Subtype (Ibase, False); 6606 6607 Set_Etype (Ibase, Pbase); 6608 Set_Etype (Derived_Type, Ibase); 6609 end; 6610 end if; 6611 6612 Set_Directly_Designated_Type 6613 (Derived_Type, Designated_Type (Subt)); 6614 6615 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt)); 6616 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type)); 6617 Set_Size_Info (Derived_Type, Parent_Type); 6618 Set_RM_Size (Derived_Type, RM_Size (Parent_Type)); 6619 Set_Depends_On_Private (Derived_Type, 6620 Has_Private_Component (Derived_Type)); 6621 Conditional_Delay (Derived_Type, Subt); 6622 6623 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify 6624 -- that it is not redundant. 6625 6626 if Null_Exclusion_Present (Type_Definition (N)) then 6627 Set_Can_Never_Be_Null (Derived_Type); 6628 6629 elsif Can_Never_Be_Null (Parent_Type) then 6630 Set_Can_Never_Be_Null (Derived_Type); 6631 end if; 6632 6633 -- Note: we do not copy the Storage_Size_Variable, since we always go to 6634 -- the root type for this information. 6635 6636 -- Apply range checks to discriminants for derived record case 6637 -- ??? THIS CODE SHOULD NOT BE HERE REALLY. 6638 6639 Desig_Type := Designated_Type (Derived_Type); 6640 6641 if Is_Composite_Type (Desig_Type) 6642 and then (not Is_Array_Type (Desig_Type)) 6643 and then Has_Discriminants (Desig_Type) 6644 and then Base_Type (Desig_Type) /= Desig_Type 6645 then 6646 Discr_Con_Elist := Discriminant_Constraint (Desig_Type); 6647 Discr_Con_El := First_Elmt (Discr_Con_Elist); 6648 6649 Discr := First_Discriminant (Base_Type (Desig_Type)); 6650 while Present (Discr_Con_El) loop 6651 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr)); 6652 Next_Elmt (Discr_Con_El); 6653 Next_Discriminant (Discr); 6654 end loop; 6655 end if; 6656 end Build_Derived_Access_Type; 6657 6658 ------------------------------ 6659 -- Build_Derived_Array_Type -- 6660 ------------------------------ 6661 6662 procedure Build_Derived_Array_Type 6663 (N : Node_Id; 6664 Parent_Type : Entity_Id; 6665 Derived_Type : Entity_Id) 6666 is 6667 Loc : constant Source_Ptr := Sloc (N); 6668 Tdef : constant Node_Id := Type_Definition (N); 6669 Indic : constant Node_Id := Subtype_Indication (Tdef); 6670 Parent_Base : constant Entity_Id := Base_Type (Parent_Type); 6671 Implicit_Base : Entity_Id := Empty; 6672 New_Indic : Node_Id; 6673 6674 procedure Make_Implicit_Base; 6675 -- If the parent subtype is constrained, the derived type is a subtype 6676 -- of an implicit base type derived from the parent base. 6677 6678 ------------------------ 6679 -- Make_Implicit_Base -- 6680 ------------------------ 6681 6682 procedure Make_Implicit_Base is 6683 begin 6684 Implicit_Base := 6685 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B'); 6686 6687 Set_Ekind (Implicit_Base, Ekind (Parent_Base)); 6688 Set_Etype (Implicit_Base, Parent_Base); 6689 6690 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base); 6691 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base); 6692 6693 Set_Has_Delayed_Freeze (Implicit_Base, True); 6694 end Make_Implicit_Base; 6695 6696 -- Start of processing for Build_Derived_Array_Type 6697 6698 begin 6699 if not Is_Constrained (Parent_Type) then 6700 if Nkind (Indic) /= N_Subtype_Indication then 6701 Set_Ekind (Derived_Type, E_Array_Type); 6702 6703 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type); 6704 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type); 6705 6706 Set_Has_Delayed_Freeze (Derived_Type, True); 6707 6708 else 6709 Make_Implicit_Base; 6710 Set_Etype (Derived_Type, Implicit_Base); 6711 6712 New_Indic := 6713 Make_Subtype_Declaration (Loc, 6714 Defining_Identifier => Derived_Type, 6715 Subtype_Indication => 6716 Make_Subtype_Indication (Loc, 6717 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc), 6718 Constraint => Constraint (Indic))); 6719 6720 Rewrite (N, New_Indic); 6721 Analyze (N); 6722 end if; 6723 6724 else 6725 if Nkind (Indic) /= N_Subtype_Indication then 6726 Make_Implicit_Base; 6727 6728 Set_Ekind (Derived_Type, Ekind (Parent_Type)); 6729 Set_Etype (Derived_Type, Implicit_Base); 6730 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type); 6731 6732 else 6733 Error_Msg_N ("illegal constraint on constrained type", Indic); 6734 end if; 6735 end if; 6736 6737 -- If parent type is not a derived type itself, and is declared in 6738 -- closed scope (e.g. a subprogram), then we must explicitly introduce 6739 -- the new type's concatenation operator since Derive_Subprograms 6740 -- will not inherit the parent's operator. If the parent type is 6741 -- unconstrained, the operator is of the unconstrained base type. 6742 6743 if Number_Dimensions (Parent_Type) = 1 6744 and then not Is_Limited_Type (Parent_Type) 6745 and then not Is_Derived_Type (Parent_Type) 6746 and then not Is_Package_Or_Generic_Package 6747 (Scope (Base_Type (Parent_Type))) 6748 then 6749 if not Is_Constrained (Parent_Type) 6750 and then Is_Constrained (Derived_Type) 6751 then 6752 New_Concatenation_Op (Implicit_Base); 6753 else 6754 New_Concatenation_Op (Derived_Type); 6755 end if; 6756 end if; 6757 end Build_Derived_Array_Type; 6758 6759 ----------------------------------- 6760 -- Build_Derived_Concurrent_Type -- 6761 ----------------------------------- 6762 6763 procedure Build_Derived_Concurrent_Type 6764 (N : Node_Id; 6765 Parent_Type : Entity_Id; 6766 Derived_Type : Entity_Id) 6767 is 6768 Loc : constant Source_Ptr := Sloc (N); 6769 6770 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C'); 6771 Corr_Decl : Node_Id; 6772 Corr_Decl_Needed : Boolean; 6773 -- If the derived type has fewer discriminants than its parent, the 6774 -- corresponding record is also a derived type, in order to account for 6775 -- the bound discriminants. We create a full type declaration for it in 6776 -- this case. 6777 6778 Constraint_Present : constant Boolean := 6779 Nkind (Subtype_Indication (Type_Definition (N))) = 6780 N_Subtype_Indication; 6781 6782 D_Constraint : Node_Id; 6783 New_Constraint : Elist_Id := No_Elist; 6784 Old_Disc : Entity_Id; 6785 New_Disc : Entity_Id; 6786 New_N : Node_Id; 6787 6788 begin 6789 Set_Stored_Constraint (Derived_Type, No_Elist); 6790 Corr_Decl_Needed := False; 6791 Old_Disc := Empty; 6792 6793 if Present (Discriminant_Specifications (N)) 6794 and then Constraint_Present 6795 then 6796 Old_Disc := First_Discriminant (Parent_Type); 6797 New_Disc := First (Discriminant_Specifications (N)); 6798 while Present (New_Disc) and then Present (Old_Disc) loop 6799 Next_Discriminant (Old_Disc); 6800 Next (New_Disc); 6801 end loop; 6802 end if; 6803 6804 if Present (Old_Disc) and then Expander_Active then 6805 6806 -- The new type has fewer discriminants, so we need to create a new 6807 -- corresponding record, which is derived from the corresponding 6808 -- record of the parent, and has a stored constraint that captures 6809 -- the values of the discriminant constraints. The corresponding 6810 -- record is needed only if expander is active and code generation is 6811 -- enabled. 6812 6813 -- The type declaration for the derived corresponding record has the 6814 -- same discriminant part and constraints as the current declaration. 6815 -- Copy the unanalyzed tree to build declaration. 6816 6817 Corr_Decl_Needed := True; 6818 New_N := Copy_Separate_Tree (N); 6819 6820 Corr_Decl := 6821 Make_Full_Type_Declaration (Loc, 6822 Defining_Identifier => Corr_Record, 6823 Discriminant_Specifications => 6824 Discriminant_Specifications (New_N), 6825 Type_Definition => 6826 Make_Derived_Type_Definition (Loc, 6827 Subtype_Indication => 6828 Make_Subtype_Indication (Loc, 6829 Subtype_Mark => 6830 New_Occurrence_Of 6831 (Corresponding_Record_Type (Parent_Type), Loc), 6832 Constraint => 6833 Constraint 6834 (Subtype_Indication (Type_Definition (New_N)))))); 6835 end if; 6836 6837 -- Copy Storage_Size and Relative_Deadline variables if task case 6838 6839 if Is_Task_Type (Parent_Type) then 6840 Set_Storage_Size_Variable (Derived_Type, 6841 Storage_Size_Variable (Parent_Type)); 6842 Set_Relative_Deadline_Variable (Derived_Type, 6843 Relative_Deadline_Variable (Parent_Type)); 6844 end if; 6845 6846 if Present (Discriminant_Specifications (N)) then 6847 Push_Scope (Derived_Type); 6848 Check_Or_Process_Discriminants (N, Derived_Type); 6849 6850 if Constraint_Present then 6851 New_Constraint := 6852 Expand_To_Stored_Constraint 6853 (Parent_Type, 6854 Build_Discriminant_Constraints 6855 (Parent_Type, 6856 Subtype_Indication (Type_Definition (N)), True)); 6857 end if; 6858 6859 End_Scope; 6860 6861 elsif Constraint_Present then 6862 6863 -- Build constrained subtype, copying the constraint, and derive 6864 -- from it to create a derived constrained type. 6865 6866 declare 6867 Loc : constant Source_Ptr := Sloc (N); 6868 Anon : constant Entity_Id := 6869 Make_Defining_Identifier (Loc, 6870 Chars => New_External_Name (Chars (Derived_Type), 'T')); 6871 Decl : Node_Id; 6872 6873 begin 6874 Decl := 6875 Make_Subtype_Declaration (Loc, 6876 Defining_Identifier => Anon, 6877 Subtype_Indication => 6878 New_Copy_Tree (Subtype_Indication (Type_Definition (N)))); 6879 Insert_Before (N, Decl); 6880 Analyze (Decl); 6881 6882 Rewrite (Subtype_Indication (Type_Definition (N)), 6883 New_Occurrence_Of (Anon, Loc)); 6884 Set_Analyzed (Derived_Type, False); 6885 Analyze (N); 6886 return; 6887 end; 6888 end if; 6889 6890 -- By default, operations and private data are inherited from parent. 6891 -- However, in the presence of bound discriminants, a new corresponding 6892 -- record will be created, see below. 6893 6894 Set_Has_Discriminants 6895 (Derived_Type, Has_Discriminants (Parent_Type)); 6896 Set_Corresponding_Record_Type 6897 (Derived_Type, Corresponding_Record_Type (Parent_Type)); 6898 6899 -- Is_Constrained is set according the parent subtype, but is set to 6900 -- False if the derived type is declared with new discriminants. 6901 6902 Set_Is_Constrained 6903 (Derived_Type, 6904 (Is_Constrained (Parent_Type) or else Constraint_Present) 6905 and then not Present (Discriminant_Specifications (N))); 6906 6907 if Constraint_Present then 6908 if not Has_Discriminants (Parent_Type) then 6909 Error_Msg_N ("untagged parent must have discriminants", N); 6910 6911 elsif Present (Discriminant_Specifications (N)) then 6912 6913 -- Verify that new discriminants are used to constrain old ones 6914 6915 D_Constraint := 6916 First 6917 (Constraints 6918 (Constraint (Subtype_Indication (Type_Definition (N))))); 6919 6920 Old_Disc := First_Discriminant (Parent_Type); 6921 6922 while Present (D_Constraint) loop 6923 if Nkind (D_Constraint) /= N_Discriminant_Association then 6924 6925 -- Positional constraint. If it is a reference to a new 6926 -- discriminant, it constrains the corresponding old one. 6927 6928 if Nkind (D_Constraint) = N_Identifier then 6929 New_Disc := First_Discriminant (Derived_Type); 6930 while Present (New_Disc) loop 6931 exit when Chars (New_Disc) = Chars (D_Constraint); 6932 Next_Discriminant (New_Disc); 6933 end loop; 6934 6935 if Present (New_Disc) then 6936 Set_Corresponding_Discriminant (New_Disc, Old_Disc); 6937 end if; 6938 end if; 6939 6940 Next_Discriminant (Old_Disc); 6941 6942 -- if this is a named constraint, search by name for the old 6943 -- discriminants constrained by the new one. 6944 6945 elsif Nkind (Expression (D_Constraint)) = N_Identifier then 6946 6947 -- Find new discriminant with that name 6948 6949 New_Disc := First_Discriminant (Derived_Type); 6950 while Present (New_Disc) loop 6951 exit when 6952 Chars (New_Disc) = Chars (Expression (D_Constraint)); 6953 Next_Discriminant (New_Disc); 6954 end loop; 6955 6956 if Present (New_Disc) then 6957 6958 -- Verify that new discriminant renames some discriminant 6959 -- of the parent type, and associate the new discriminant 6960 -- with one or more old ones that it renames. 6961 6962 declare 6963 Selector : Node_Id; 6964 6965 begin 6966 Selector := First (Selector_Names (D_Constraint)); 6967 while Present (Selector) loop 6968 Old_Disc := First_Discriminant (Parent_Type); 6969 while Present (Old_Disc) loop 6970 exit when Chars (Old_Disc) = Chars (Selector); 6971 Next_Discriminant (Old_Disc); 6972 end loop; 6973 6974 if Present (Old_Disc) then 6975 Set_Corresponding_Discriminant 6976 (New_Disc, Old_Disc); 6977 end if; 6978 6979 Next (Selector); 6980 end loop; 6981 end; 6982 end if; 6983 end if; 6984 6985 Next (D_Constraint); 6986 end loop; 6987 6988 New_Disc := First_Discriminant (Derived_Type); 6989 while Present (New_Disc) loop 6990 if No (Corresponding_Discriminant (New_Disc)) then 6991 Error_Msg_NE 6992 ("new discriminant& must constrain old one", N, New_Disc); 6993 6994 elsif not 6995 Subtypes_Statically_Compatible 6996 (Etype (New_Disc), 6997 Etype (Corresponding_Discriminant (New_Disc))) 6998 then 6999 Error_Msg_NE 7000 ("& not statically compatible with parent discriminant", 7001 N, New_Disc); 7002 end if; 7003 7004 Next_Discriminant (New_Disc); 7005 end loop; 7006 end if; 7007 7008 elsif Present (Discriminant_Specifications (N)) then 7009 Error_Msg_N 7010 ("missing discriminant constraint in untagged derivation", N); 7011 end if; 7012 7013 -- The entity chain of the derived type includes the new discriminants 7014 -- but shares operations with the parent. 7015 7016 if Present (Discriminant_Specifications (N)) then 7017 Old_Disc := First_Discriminant (Parent_Type); 7018 while Present (Old_Disc) loop 7019 if No (Next_Entity (Old_Disc)) 7020 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant 7021 then 7022 Set_Next_Entity 7023 (Last_Entity (Derived_Type), Next_Entity (Old_Disc)); 7024 exit; 7025 end if; 7026 7027 Next_Discriminant (Old_Disc); 7028 end loop; 7029 7030 else 7031 Set_First_Entity (Derived_Type, First_Entity (Parent_Type)); 7032 if Has_Discriminants (Parent_Type) then 7033 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type)); 7034 Set_Discriminant_Constraint ( 7035 Derived_Type, Discriminant_Constraint (Parent_Type)); 7036 end if; 7037 end if; 7038 7039 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type)); 7040 7041 Set_Has_Completion (Derived_Type); 7042 7043 if Corr_Decl_Needed then 7044 Set_Stored_Constraint (Derived_Type, New_Constraint); 7045 Insert_After (N, Corr_Decl); 7046 Analyze (Corr_Decl); 7047 Set_Corresponding_Record_Type (Derived_Type, Corr_Record); 7048 end if; 7049 end Build_Derived_Concurrent_Type; 7050 7051 ------------------------------------ 7052 -- Build_Derived_Enumeration_Type -- 7053 ------------------------------------ 7054 7055 procedure Build_Derived_Enumeration_Type 7056 (N : Node_Id; 7057 Parent_Type : Entity_Id; 7058 Derived_Type : Entity_Id) 7059 is 7060 Loc : constant Source_Ptr := Sloc (N); 7061 Def : constant Node_Id := Type_Definition (N); 7062 Indic : constant Node_Id := Subtype_Indication (Def); 7063 Implicit_Base : Entity_Id; 7064 Literal : Entity_Id; 7065 New_Lit : Entity_Id; 7066 Literals_List : List_Id; 7067 Type_Decl : Node_Id; 7068 Hi, Lo : Node_Id; 7069 Rang_Expr : Node_Id; 7070 7071 begin 7072 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do 7073 -- not have explicit literals lists we need to process types derived 7074 -- from them specially. This is handled by Derived_Standard_Character. 7075 -- If the parent type is a generic type, there are no literals either, 7076 -- and we construct the same skeletal representation as for the generic 7077 -- parent type. 7078 7079 if Is_Standard_Character_Type (Parent_Type) then 7080 Derived_Standard_Character (N, Parent_Type, Derived_Type); 7081 7082 elsif Is_Generic_Type (Root_Type (Parent_Type)) then 7083 declare 7084 Lo : Node_Id; 7085 Hi : Node_Id; 7086 7087 begin 7088 if Nkind (Indic) /= N_Subtype_Indication then 7089 Lo := 7090 Make_Attribute_Reference (Loc, 7091 Attribute_Name => Name_First, 7092 Prefix => New_Occurrence_Of (Derived_Type, Loc)); 7093 Set_Etype (Lo, Derived_Type); 7094 7095 Hi := 7096 Make_Attribute_Reference (Loc, 7097 Attribute_Name => Name_Last, 7098 Prefix => New_Occurrence_Of (Derived_Type, Loc)); 7099 Set_Etype (Hi, Derived_Type); 7100 7101 Set_Scalar_Range (Derived_Type, 7102 Make_Range (Loc, 7103 Low_Bound => Lo, 7104 High_Bound => Hi)); 7105 else 7106 7107 -- Analyze subtype indication and verify compatibility 7108 -- with parent type. 7109 7110 if Base_Type (Process_Subtype (Indic, N)) /= 7111 Base_Type (Parent_Type) 7112 then 7113 Error_Msg_N 7114 ("illegal constraint for formal discrete type", N); 7115 end if; 7116 end if; 7117 end; 7118 7119 else 7120 -- If a constraint is present, analyze the bounds to catch 7121 -- premature usage of the derived literals. 7122 7123 if Nkind (Indic) = N_Subtype_Indication 7124 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range 7125 then 7126 Analyze (Low_Bound (Range_Expression (Constraint (Indic)))); 7127 Analyze (High_Bound (Range_Expression (Constraint (Indic)))); 7128 end if; 7129 7130 -- Introduce an implicit base type for the derived type even if there 7131 -- is no constraint attached to it, since this seems closer to the 7132 -- Ada semantics. Build a full type declaration tree for the derived 7133 -- type using the implicit base type as the defining identifier. The 7134 -- build a subtype declaration tree which applies the constraint (if 7135 -- any) have it replace the derived type declaration. 7136 7137 Literal := First_Literal (Parent_Type); 7138 Literals_List := New_List; 7139 while Present (Literal) 7140 and then Ekind (Literal) = E_Enumeration_Literal 7141 loop 7142 -- Literals of the derived type have the same representation as 7143 -- those of the parent type, but this representation can be 7144 -- overridden by an explicit representation clause. Indicate 7145 -- that there is no explicit representation given yet. These 7146 -- derived literals are implicit operations of the new type, 7147 -- and can be overridden by explicit ones. 7148 7149 if Nkind (Literal) = N_Defining_Character_Literal then 7150 New_Lit := 7151 Make_Defining_Character_Literal (Loc, Chars (Literal)); 7152 else 7153 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal)); 7154 end if; 7155 7156 Set_Ekind (New_Lit, E_Enumeration_Literal); 7157 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal)); 7158 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal)); 7159 Set_Enumeration_Rep_Expr (New_Lit, Empty); 7160 Set_Alias (New_Lit, Literal); 7161 Set_Is_Known_Valid (New_Lit, True); 7162 7163 Append (New_Lit, Literals_List); 7164 Next_Literal (Literal); 7165 end loop; 7166 7167 Implicit_Base := 7168 Make_Defining_Identifier (Sloc (Derived_Type), 7169 Chars => New_External_Name (Chars (Derived_Type), 'B')); 7170 7171 -- Indicate the proper nature of the derived type. This must be done 7172 -- before analysis of the literals, to recognize cases when a literal 7173 -- may be hidden by a previous explicit function definition (cf. 7174 -- c83031a). 7175 7176 Set_Ekind (Derived_Type, E_Enumeration_Subtype); 7177 Set_Etype (Derived_Type, Implicit_Base); 7178 7179 Type_Decl := 7180 Make_Full_Type_Declaration (Loc, 7181 Defining_Identifier => Implicit_Base, 7182 Discriminant_Specifications => No_List, 7183 Type_Definition => 7184 Make_Enumeration_Type_Definition (Loc, Literals_List)); 7185 7186 Mark_Rewrite_Insertion (Type_Decl); 7187 Insert_Before (N, Type_Decl); 7188 Analyze (Type_Decl); 7189 7190 -- The anonymous base now has a full declaration, but this base 7191 -- is not a first subtype. 7192 7193 Set_Is_First_Subtype (Implicit_Base, False); 7194 7195 -- After the implicit base is analyzed its Etype needs to be changed 7196 -- to reflect the fact that it is derived from the parent type which 7197 -- was ignored during analysis. We also set the size at this point. 7198 7199 Set_Etype (Implicit_Base, Parent_Type); 7200 7201 Set_Size_Info (Implicit_Base, Parent_Type); 7202 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type)); 7203 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type)); 7204 7205 -- Copy other flags from parent type 7206 7207 Set_Has_Non_Standard_Rep 7208 (Implicit_Base, Has_Non_Standard_Rep 7209 (Parent_Type)); 7210 Set_Has_Pragma_Ordered 7211 (Implicit_Base, Has_Pragma_Ordered 7212 (Parent_Type)); 7213 Set_Has_Delayed_Freeze (Implicit_Base); 7214 7215 -- Process the subtype indication including a validation check on the 7216 -- constraint, if any. If a constraint is given, its bounds must be 7217 -- implicitly converted to the new type. 7218 7219 if Nkind (Indic) = N_Subtype_Indication then 7220 declare 7221 R : constant Node_Id := 7222 Range_Expression (Constraint (Indic)); 7223 7224 begin 7225 if Nkind (R) = N_Range then 7226 Hi := Build_Scalar_Bound 7227 (High_Bound (R), Parent_Type, Implicit_Base); 7228 Lo := Build_Scalar_Bound 7229 (Low_Bound (R), Parent_Type, Implicit_Base); 7230 7231 else 7232 -- Constraint is a Range attribute. Replace with explicit 7233 -- mention of the bounds of the prefix, which must be a 7234 -- subtype. 7235 7236 Analyze (Prefix (R)); 7237 Hi := 7238 Convert_To (Implicit_Base, 7239 Make_Attribute_Reference (Loc, 7240 Attribute_Name => Name_Last, 7241 Prefix => 7242 New_Occurrence_Of (Entity (Prefix (R)), Loc))); 7243 7244 Lo := 7245 Convert_To (Implicit_Base, 7246 Make_Attribute_Reference (Loc, 7247 Attribute_Name => Name_First, 7248 Prefix => 7249 New_Occurrence_Of (Entity (Prefix (R)), Loc))); 7250 end if; 7251 end; 7252 7253 else 7254 Hi := 7255 Build_Scalar_Bound 7256 (Type_High_Bound (Parent_Type), 7257 Parent_Type, Implicit_Base); 7258 Lo := 7259 Build_Scalar_Bound 7260 (Type_Low_Bound (Parent_Type), 7261 Parent_Type, Implicit_Base); 7262 end if; 7263 7264 Rang_Expr := 7265 Make_Range (Loc, 7266 Low_Bound => Lo, 7267 High_Bound => Hi); 7268 7269 -- If we constructed a default range for the case where no range 7270 -- was given, then the expressions in the range must not freeze 7271 -- since they do not correspond to expressions in the source. 7272 -- However, if the type inherits predicates the expressions will 7273 -- be elaborated earlier and must freeze. 7274 7275 if Nkind (Indic) /= N_Subtype_Indication 7276 and then not Has_Predicates (Derived_Type) 7277 then 7278 Set_Must_Not_Freeze (Lo); 7279 Set_Must_Not_Freeze (Hi); 7280 Set_Must_Not_Freeze (Rang_Expr); 7281 end if; 7282 7283 Rewrite (N, 7284 Make_Subtype_Declaration (Loc, 7285 Defining_Identifier => Derived_Type, 7286 Subtype_Indication => 7287 Make_Subtype_Indication (Loc, 7288 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc), 7289 Constraint => 7290 Make_Range_Constraint (Loc, 7291 Range_Expression => Rang_Expr)))); 7292 7293 Analyze (N); 7294 7295 -- Propagate the aspects from the original type declaration to the 7296 -- declaration of the implicit base. 7297 7298 Move_Aspects (From => Original_Node (N), To => Type_Decl); 7299 7300 -- Apply a range check. Since this range expression doesn't have an 7301 -- Etype, we have to specifically pass the Source_Typ parameter. Is 7302 -- this right??? 7303 7304 if Nkind (Indic) = N_Subtype_Indication then 7305 Apply_Range_Check 7306 (Range_Expression (Constraint (Indic)), Parent_Type, 7307 Source_Typ => Entity (Subtype_Mark (Indic))); 7308 end if; 7309 end if; 7310 end Build_Derived_Enumeration_Type; 7311 7312 -------------------------------- 7313 -- Build_Derived_Numeric_Type -- 7314 -------------------------------- 7315 7316 procedure Build_Derived_Numeric_Type 7317 (N : Node_Id; 7318 Parent_Type : Entity_Id; 7319 Derived_Type : Entity_Id) 7320 is 7321 Loc : constant Source_Ptr := Sloc (N); 7322 Tdef : constant Node_Id := Type_Definition (N); 7323 Indic : constant Node_Id := Subtype_Indication (Tdef); 7324 Parent_Base : constant Entity_Id := Base_Type (Parent_Type); 7325 No_Constraint : constant Boolean := Nkind (Indic) /= 7326 N_Subtype_Indication; 7327 Implicit_Base : Entity_Id; 7328 7329 Lo : Node_Id; 7330 Hi : Node_Id; 7331 7332 begin 7333 -- Process the subtype indication including a validation check on 7334 -- the constraint if any. 7335 7336 Discard_Node (Process_Subtype (Indic, N)); 7337 7338 -- Introduce an implicit base type for the derived type even if there 7339 -- is no constraint attached to it, since this seems closer to the Ada 7340 -- semantics. 7341 7342 Implicit_Base := 7343 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B'); 7344 7345 Set_Etype (Implicit_Base, Parent_Base); 7346 Set_Ekind (Implicit_Base, Ekind (Parent_Base)); 7347 Set_Size_Info (Implicit_Base, Parent_Base); 7348 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base)); 7349 Set_Parent (Implicit_Base, Parent (Derived_Type)); 7350 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base)); 7351 7352 -- Set RM Size for discrete type or decimal fixed-point type 7353 -- Ordinary fixed-point is excluded, why??? 7354 7355 if Is_Discrete_Type (Parent_Base) 7356 or else Is_Decimal_Fixed_Point_Type (Parent_Base) 7357 then 7358 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base)); 7359 end if; 7360 7361 Set_Has_Delayed_Freeze (Implicit_Base); 7362 7363 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base)); 7364 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base)); 7365 7366 Set_Scalar_Range (Implicit_Base, 7367 Make_Range (Loc, 7368 Low_Bound => Lo, 7369 High_Bound => Hi)); 7370 7371 if Has_Infinities (Parent_Base) then 7372 Set_Includes_Infinities (Scalar_Range (Implicit_Base)); 7373 end if; 7374 7375 -- The Derived_Type, which is the entity of the declaration, is a 7376 -- subtype of the implicit base. Its Ekind is a subtype, even in the 7377 -- absence of an explicit constraint. 7378 7379 Set_Etype (Derived_Type, Implicit_Base); 7380 7381 -- If we did not have a constraint, then the Ekind is set from the 7382 -- parent type (otherwise Process_Subtype has set the bounds) 7383 7384 if No_Constraint then 7385 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type))); 7386 end if; 7387 7388 -- If we did not have a range constraint, then set the range from the 7389 -- parent type. Otherwise, the Process_Subtype call has set the bounds. 7390 7391 if No_Constraint or else not Has_Range_Constraint (Indic) then 7392 Set_Scalar_Range (Derived_Type, 7393 Make_Range (Loc, 7394 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)), 7395 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type)))); 7396 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type)); 7397 7398 if Has_Infinities (Parent_Type) then 7399 Set_Includes_Infinities (Scalar_Range (Derived_Type)); 7400 end if; 7401 7402 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type)); 7403 end if; 7404 7405 Set_Is_Descendant_Of_Address (Derived_Type, 7406 Is_Descendant_Of_Address (Parent_Type)); 7407 Set_Is_Descendant_Of_Address (Implicit_Base, 7408 Is_Descendant_Of_Address (Parent_Type)); 7409 7410 -- Set remaining type-specific fields, depending on numeric type 7411 7412 if Is_Modular_Integer_Type (Parent_Type) then 7413 Set_Modulus (Implicit_Base, Modulus (Parent_Base)); 7414 7415 Set_Non_Binary_Modulus 7416 (Implicit_Base, Non_Binary_Modulus (Parent_Base)); 7417 7418 Set_Is_Known_Valid 7419 (Implicit_Base, Is_Known_Valid (Parent_Base)); 7420 7421 elsif Is_Floating_Point_Type (Parent_Type) then 7422 7423 -- Digits of base type is always copied from the digits value of 7424 -- the parent base type, but the digits of the derived type will 7425 -- already have been set if there was a constraint present. 7426 7427 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base)); 7428 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base)); 7429 7430 if No_Constraint then 7431 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type)); 7432 end if; 7433 7434 elsif Is_Fixed_Point_Type (Parent_Type) then 7435 7436 -- Small of base type and derived type are always copied from the 7437 -- parent base type, since smalls never change. The delta of the 7438 -- base type is also copied from the parent base type. However the 7439 -- delta of the derived type will have been set already if a 7440 -- constraint was present. 7441 7442 Set_Small_Value (Derived_Type, Small_Value (Parent_Base)); 7443 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base)); 7444 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base)); 7445 7446 if No_Constraint then 7447 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type)); 7448 end if; 7449 7450 -- The scale and machine radix in the decimal case are always 7451 -- copied from the parent base type. 7452 7453 if Is_Decimal_Fixed_Point_Type (Parent_Type) then 7454 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base)); 7455 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base)); 7456 7457 Set_Machine_Radix_10 7458 (Derived_Type, Machine_Radix_10 (Parent_Base)); 7459 Set_Machine_Radix_10 7460 (Implicit_Base, Machine_Radix_10 (Parent_Base)); 7461 7462 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base)); 7463 7464 if No_Constraint then 7465 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base)); 7466 7467 else 7468 -- the analysis of the subtype_indication sets the 7469 -- digits value of the derived type. 7470 7471 null; 7472 end if; 7473 end if; 7474 end if; 7475 7476 if Is_Integer_Type (Parent_Type) then 7477 Set_Has_Shift_Operator 7478 (Implicit_Base, Has_Shift_Operator (Parent_Type)); 7479 end if; 7480 7481 -- The type of the bounds is that of the parent type, and they 7482 -- must be converted to the derived type. 7483 7484 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc); 7485 7486 -- The implicit_base should be frozen when the derived type is frozen, 7487 -- but note that it is used in the conversions of the bounds. For fixed 7488 -- types we delay the determination of the bounds until the proper 7489 -- freezing point. For other numeric types this is rejected by GCC, for 7490 -- reasons that are currently unclear (???), so we choose to freeze the 7491 -- implicit base now. In the case of integers and floating point types 7492 -- this is harmless because subsequent representation clauses cannot 7493 -- affect anything, but it is still baffling that we cannot use the 7494 -- same mechanism for all derived numeric types. 7495 7496 -- There is a further complication: actually some representation 7497 -- clauses can affect the implicit base type. For example, attribute 7498 -- definition clauses for stream-oriented attributes need to set the 7499 -- corresponding TSS entries on the base type, and this normally 7500 -- cannot be done after the base type is frozen, so the circuitry in 7501 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility 7502 -- and not use Set_TSS in this case. 7503 7504 -- There are also consequences for the case of delayed representation 7505 -- aspects for some cases. For example, a Size aspect is delayed and 7506 -- should not be evaluated to the freeze point. This early freezing 7507 -- means that the size attribute evaluation happens too early??? 7508 7509 if Is_Fixed_Point_Type (Parent_Type) then 7510 Conditional_Delay (Implicit_Base, Parent_Type); 7511 else 7512 Freeze_Before (N, Implicit_Base); 7513 end if; 7514 end Build_Derived_Numeric_Type; 7515 7516 -------------------------------- 7517 -- Build_Derived_Private_Type -- 7518 -------------------------------- 7519 7520 procedure Build_Derived_Private_Type 7521 (N : Node_Id; 7522 Parent_Type : Entity_Id; 7523 Derived_Type : Entity_Id; 7524 Is_Completion : Boolean; 7525 Derive_Subps : Boolean := True) 7526 is 7527 Loc : constant Source_Ptr := Sloc (N); 7528 Par_Base : constant Entity_Id := Base_Type (Parent_Type); 7529 Par_Scope : constant Entity_Id := Scope (Par_Base); 7530 Full_N : constant Node_Id := New_Copy_Tree (N); 7531 Full_Der : Entity_Id := New_Copy (Derived_Type); 7532 Full_P : Entity_Id; 7533 7534 procedure Build_Full_Derivation; 7535 -- Build full derivation, i.e. derive from the full view 7536 7537 procedure Copy_And_Build; 7538 -- Copy derived type declaration, replace parent with its full view, 7539 -- and build derivation 7540 7541 --------------------------- 7542 -- Build_Full_Derivation -- 7543 --------------------------- 7544 7545 procedure Build_Full_Derivation is 7546 begin 7547 -- If parent scope is not open, install the declarations 7548 7549 if not In_Open_Scopes (Par_Scope) then 7550 Install_Private_Declarations (Par_Scope); 7551 Install_Visible_Declarations (Par_Scope); 7552 Copy_And_Build; 7553 Uninstall_Declarations (Par_Scope); 7554 7555 -- If parent scope is open and in another unit, and parent has a 7556 -- completion, then the derivation is taking place in the visible 7557 -- part of a child unit. In that case retrieve the full view of 7558 -- the parent momentarily. 7559 7560 elsif not In_Same_Source_Unit (N, Parent_Type) then 7561 Full_P := Full_View (Parent_Type); 7562 Exchange_Declarations (Parent_Type); 7563 Copy_And_Build; 7564 Exchange_Declarations (Full_P); 7565 7566 -- Otherwise it is a local derivation 7567 7568 else 7569 Copy_And_Build; 7570 end if; 7571 end Build_Full_Derivation; 7572 7573 -------------------- 7574 -- Copy_And_Build -- 7575 -------------------- 7576 7577 procedure Copy_And_Build is 7578 Full_Parent : Entity_Id := Parent_Type; 7579 7580 begin 7581 -- If the parent is itself derived from another private type, 7582 -- installing the private declarations has not affected its 7583 -- privacy status, so use its own full view explicitly. 7584 7585 if Is_Private_Type (Full_Parent) 7586 and then Present (Full_View (Full_Parent)) 7587 then 7588 Full_Parent := Full_View (Full_Parent); 7589 end if; 7590 7591 -- And its underlying full view if necessary 7592 7593 if Is_Private_Type (Full_Parent) 7594 and then Present (Underlying_Full_View (Full_Parent)) 7595 then 7596 Full_Parent := Underlying_Full_View (Full_Parent); 7597 end if; 7598 7599 -- For record, access and most enumeration types, derivation from 7600 -- the full view requires a fully-fledged declaration. In the other 7601 -- cases, just use an itype. 7602 7603 if Ekind (Full_Parent) in Record_Kind 7604 or else Ekind (Full_Parent) in Access_Kind 7605 or else 7606 (Ekind (Full_Parent) in Enumeration_Kind 7607 and then not Is_Standard_Character_Type (Full_Parent) 7608 and then not Is_Generic_Type (Root_Type (Full_Parent))) 7609 then 7610 -- Copy and adjust declaration to provide a completion for what 7611 -- is originally a private declaration. Indicate that full view 7612 -- is internally generated. 7613 7614 Set_Comes_From_Source (Full_N, False); 7615 Set_Comes_From_Source (Full_Der, False); 7616 Set_Parent (Full_Der, Full_N); 7617 Set_Defining_Identifier (Full_N, Full_Der); 7618 7619 -- If there are no constraints, adjust the subtype mark 7620 7621 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /= 7622 N_Subtype_Indication 7623 then 7624 Set_Subtype_Indication 7625 (Type_Definition (Full_N), 7626 New_Occurrence_Of (Full_Parent, Sloc (Full_N))); 7627 end if; 7628 7629 Insert_After (N, Full_N); 7630 7631 -- Build full view of derived type from full view of parent which 7632 -- is now installed. Subprograms have been derived on the partial 7633 -- view, the completion does not derive them anew. 7634 7635 if Ekind (Full_Parent) in Record_Kind then 7636 7637 -- If parent type is tagged, the completion inherits the proper 7638 -- primitive operations. 7639 7640 if Is_Tagged_Type (Parent_Type) then 7641 Build_Derived_Record_Type 7642 (Full_N, Full_Parent, Full_Der, Derive_Subps); 7643 else 7644 Build_Derived_Record_Type 7645 (Full_N, Full_Parent, Full_Der, Derive_Subps => False); 7646 end if; 7647 7648 else 7649 Build_Derived_Type 7650 (Full_N, Full_Parent, Full_Der, 7651 Is_Completion => False, Derive_Subps => False); 7652 end if; 7653 7654 -- The full declaration has been introduced into the tree and 7655 -- processed in the step above. It should not be analyzed again 7656 -- (when encountered later in the current list of declarations) 7657 -- to prevent spurious name conflicts. The full entity remains 7658 -- invisible. 7659 7660 Set_Analyzed (Full_N); 7661 7662 else 7663 Full_Der := 7664 Make_Defining_Identifier (Sloc (Derived_Type), 7665 Chars => Chars (Derived_Type)); 7666 Set_Is_Itype (Full_Der); 7667 Set_Associated_Node_For_Itype (Full_Der, N); 7668 Set_Parent (Full_Der, N); 7669 Build_Derived_Type 7670 (N, Full_Parent, Full_Der, 7671 Is_Completion => False, Derive_Subps => False); 7672 end if; 7673 7674 Set_Has_Private_Declaration (Full_Der); 7675 Set_Has_Private_Declaration (Derived_Type); 7676 7677 Set_Scope (Full_Der, Scope (Derived_Type)); 7678 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type)); 7679 Set_Has_Size_Clause (Full_Der, False); 7680 Set_Has_Alignment_Clause (Full_Der, False); 7681 Set_Has_Delayed_Freeze (Full_Der); 7682 Set_Is_Frozen (Full_Der, False); 7683 Set_Freeze_Node (Full_Der, Empty); 7684 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der)); 7685 Set_Is_Public (Full_Der, Is_Public (Derived_Type)); 7686 7687 -- The convention on the base type may be set in the private part 7688 -- and not propagated to the subtype until later, so we obtain the 7689 -- convention from the base type of the parent. 7690 7691 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent))); 7692 end Copy_And_Build; 7693 7694 -- Start of processing for Build_Derived_Private_Type 7695 7696 begin 7697 if Is_Tagged_Type (Parent_Type) then 7698 Full_P := Full_View (Parent_Type); 7699 7700 -- A type extension of a type with unknown discriminants is an 7701 -- indefinite type that the back-end cannot handle directly. 7702 -- We treat it as a private type, and build a completion that is 7703 -- derived from the full view of the parent, and hopefully has 7704 -- known discriminants. 7705 7706 -- If the full view of the parent type has an underlying record view, 7707 -- use it to generate the underlying record view of this derived type 7708 -- (required for chains of derivations with unknown discriminants). 7709 7710 -- Minor optimization: we avoid the generation of useless underlying 7711 -- record view entities if the private type declaration has unknown 7712 -- discriminants but its corresponding full view has no 7713 -- discriminants. 7714 7715 if Has_Unknown_Discriminants (Parent_Type) 7716 and then Present (Full_P) 7717 and then (Has_Discriminants (Full_P) 7718 or else Present (Underlying_Record_View (Full_P))) 7719 and then not In_Open_Scopes (Par_Scope) 7720 and then Expander_Active 7721 then 7722 declare 7723 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T'); 7724 New_Ext : constant Node_Id := 7725 Copy_Separate_Tree 7726 (Record_Extension_Part (Type_Definition (N))); 7727 Decl : Node_Id; 7728 7729 begin 7730 Build_Derived_Record_Type 7731 (N, Parent_Type, Derived_Type, Derive_Subps); 7732 7733 -- Build anonymous completion, as a derivation from the full 7734 -- view of the parent. This is not a completion in the usual 7735 -- sense, because the current type is not private. 7736 7737 Decl := 7738 Make_Full_Type_Declaration (Loc, 7739 Defining_Identifier => Full_Der, 7740 Type_Definition => 7741 Make_Derived_Type_Definition (Loc, 7742 Subtype_Indication => 7743 New_Copy_Tree 7744 (Subtype_Indication (Type_Definition (N))), 7745 Record_Extension_Part => New_Ext)); 7746 7747 -- If the parent type has an underlying record view, use it 7748 -- here to build the new underlying record view. 7749 7750 if Present (Underlying_Record_View (Full_P)) then 7751 pragma Assert 7752 (Nkind (Subtype_Indication (Type_Definition (Decl))) 7753 = N_Identifier); 7754 Set_Entity (Subtype_Indication (Type_Definition (Decl)), 7755 Underlying_Record_View (Full_P)); 7756 end if; 7757 7758 Install_Private_Declarations (Par_Scope); 7759 Install_Visible_Declarations (Par_Scope); 7760 Insert_Before (N, Decl); 7761 7762 -- Mark entity as an underlying record view before analysis, 7763 -- to avoid generating the list of its primitive operations 7764 -- (which is not really required for this entity) and thus 7765 -- prevent spurious errors associated with missing overriding 7766 -- of abstract primitives (overridden only for Derived_Type). 7767 7768 Set_Ekind (Full_Der, E_Record_Type); 7769 Set_Is_Underlying_Record_View (Full_Der); 7770 Set_Default_SSO (Full_Der); 7771 Set_No_Reordering (Full_Der, No_Component_Reordering); 7772 7773 Analyze (Decl); 7774 7775 pragma Assert (Has_Discriminants (Full_Der) 7776 and then not Has_Unknown_Discriminants (Full_Der)); 7777 7778 Uninstall_Declarations (Par_Scope); 7779 7780 -- Freeze the underlying record view, to prevent generation of 7781 -- useless dispatching information, which is simply shared with 7782 -- the real derived type. 7783 7784 Set_Is_Frozen (Full_Der); 7785 7786 -- If the derived type has access discriminants, create 7787 -- references to their anonymous types now, to prevent 7788 -- back-end problems when their first use is in generated 7789 -- bodies of primitives. 7790 7791 declare 7792 E : Entity_Id; 7793 7794 begin 7795 E := First_Entity (Full_Der); 7796 7797 while Present (E) loop 7798 if Ekind (E) = E_Discriminant 7799 and then Ekind (Etype (E)) = E_Anonymous_Access_Type 7800 then 7801 Build_Itype_Reference (Etype (E), Decl); 7802 end if; 7803 7804 Next_Entity (E); 7805 end loop; 7806 end; 7807 7808 -- Set up links between real entity and underlying record view 7809 7810 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der)); 7811 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type); 7812 end; 7813 7814 -- If discriminants are known, build derived record 7815 7816 else 7817 Build_Derived_Record_Type 7818 (N, Parent_Type, Derived_Type, Derive_Subps); 7819 end if; 7820 7821 return; 7822 7823 elsif Has_Discriminants (Parent_Type) then 7824 7825 -- Build partial view of derived type from partial view of parent. 7826 -- This must be done before building the full derivation because the 7827 -- second derivation will modify the discriminants of the first and 7828 -- the discriminants are chained with the rest of the components in 7829 -- the full derivation. 7830 7831 Build_Derived_Record_Type 7832 (N, Parent_Type, Derived_Type, Derive_Subps); 7833 7834 -- Build the full derivation if this is not the anonymous derived 7835 -- base type created by Build_Derived_Record_Type in the constrained 7836 -- case (see point 5. of its head comment) since we build it for the 7837 -- derived subtype. And skip it for protected types altogether, as 7838 -- gigi does not use these types directly. 7839 7840 if Present (Full_View (Parent_Type)) 7841 and then not Is_Itype (Derived_Type) 7842 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind) 7843 then 7844 declare 7845 Der_Base : constant Entity_Id := Base_Type (Derived_Type); 7846 Discr : Entity_Id; 7847 Last_Discr : Entity_Id; 7848 7849 begin 7850 -- If this is not a completion, construct the implicit full 7851 -- view by deriving from the full view of the parent type. 7852 -- But if this is a completion, the derived private type 7853 -- being built is a full view and the full derivation can 7854 -- only be its underlying full view. 7855 7856 Build_Full_Derivation; 7857 7858 if not Is_Completion then 7859 Set_Full_View (Derived_Type, Full_Der); 7860 else 7861 Set_Underlying_Full_View (Derived_Type, Full_Der); 7862 Set_Is_Underlying_Full_View (Full_Der); 7863 end if; 7864 7865 if not Is_Base_Type (Derived_Type) then 7866 Set_Full_View (Der_Base, Base_Type (Full_Der)); 7867 end if; 7868 7869 -- Copy the discriminant list from full view to the partial 7870 -- view (base type and its subtype). Gigi requires that the 7871 -- partial and full views have the same discriminants. 7872 7873 -- Note that since the partial view points to discriminants 7874 -- in the full view, their scope will be that of the full 7875 -- view. This might cause some front end problems and need 7876 -- adjustment??? 7877 7878 Discr := First_Discriminant (Base_Type (Full_Der)); 7879 Set_First_Entity (Der_Base, Discr); 7880 7881 loop 7882 Last_Discr := Discr; 7883 Next_Discriminant (Discr); 7884 exit when No (Discr); 7885 end loop; 7886 7887 Set_Last_Entity (Der_Base, Last_Discr); 7888 Set_First_Entity (Derived_Type, First_Entity (Der_Base)); 7889 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base)); 7890 end; 7891 end if; 7892 7893 elsif Present (Full_View (Parent_Type)) 7894 and then Has_Discriminants (Full_View (Parent_Type)) 7895 then 7896 if Has_Unknown_Discriminants (Parent_Type) 7897 and then Nkind (Subtype_Indication (Type_Definition (N))) = 7898 N_Subtype_Indication 7899 then 7900 Error_Msg_N 7901 ("cannot constrain type with unknown discriminants", 7902 Subtype_Indication (Type_Definition (N))); 7903 return; 7904 end if; 7905 7906 -- If this is not a completion, construct the implicit full view by 7907 -- deriving from the full view of the parent type. But if this is a 7908 -- completion, the derived private type being built is a full view 7909 -- and the full derivation can only be its underlying full view. 7910 7911 Build_Full_Derivation; 7912 7913 if not Is_Completion then 7914 Set_Full_View (Derived_Type, Full_Der); 7915 else 7916 Set_Underlying_Full_View (Derived_Type, Full_Der); 7917 Set_Is_Underlying_Full_View (Full_Der); 7918 end if; 7919 7920 -- In any case, the primitive operations are inherited from the 7921 -- parent type, not from the internal full view. 7922 7923 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type)); 7924 7925 if Derive_Subps then 7926 Derive_Subprograms (Parent_Type, Derived_Type); 7927 end if; 7928 7929 Set_Stored_Constraint (Derived_Type, No_Elist); 7930 Set_Is_Constrained 7931 (Derived_Type, Is_Constrained (Full_View (Parent_Type))); 7932 7933 else 7934 -- Untagged type, No discriminants on either view 7935 7936 if Nkind (Subtype_Indication (Type_Definition (N))) = 7937 N_Subtype_Indication 7938 then 7939 Error_Msg_N 7940 ("illegal constraint on type without discriminants", N); 7941 end if; 7942 7943 if Present (Discriminant_Specifications (N)) 7944 and then Present (Full_View (Parent_Type)) 7945 and then not Is_Tagged_Type (Full_View (Parent_Type)) 7946 then 7947 Error_Msg_N ("cannot add discriminants to untagged type", N); 7948 end if; 7949 7950 Set_Stored_Constraint (Derived_Type, No_Elist); 7951 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type)); 7952 7953 Set_Is_Controlled_Active 7954 (Derived_Type, Is_Controlled_Active (Parent_Type)); 7955 7956 Set_Disable_Controlled 7957 (Derived_Type, Disable_Controlled (Parent_Type)); 7958 7959 Set_Has_Controlled_Component 7960 (Derived_Type, Has_Controlled_Component (Parent_Type)); 7961 7962 -- Direct controlled types do not inherit Finalize_Storage_Only flag 7963 7964 if not Is_Controlled (Parent_Type) then 7965 Set_Finalize_Storage_Only 7966 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type)); 7967 end if; 7968 7969 -- If this is not a completion, construct the implicit full view by 7970 -- deriving from the full view of the parent type. 7971 7972 -- ??? If the parent is untagged private and its completion is 7973 -- tagged, this mechanism will not work because we cannot derive from 7974 -- the tagged full view unless we have an extension. 7975 7976 if Present (Full_View (Parent_Type)) 7977 and then not Is_Tagged_Type (Full_View (Parent_Type)) 7978 and then not Is_Completion 7979 then 7980 Build_Full_Derivation; 7981 Set_Full_View (Derived_Type, Full_Der); 7982 end if; 7983 end if; 7984 7985 Set_Has_Unknown_Discriminants (Derived_Type, 7986 Has_Unknown_Discriminants (Parent_Type)); 7987 7988 if Is_Private_Type (Derived_Type) then 7989 Set_Private_Dependents (Derived_Type, New_Elmt_List); 7990 end if; 7991 7992 -- If the parent base type is in scope, add the derived type to its 7993 -- list of private dependents, because its full view may become 7994 -- visible subsequently (in a nested private part, a body, or in a 7995 -- further child unit). 7996 7997 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then 7998 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type)); 7999 8000 -- Check for unusual case where a type completed by a private 8001 -- derivation occurs within a package nested in a child unit, and 8002 -- the parent is declared in an ancestor. 8003 8004 if Is_Child_Unit (Scope (Current_Scope)) 8005 and then Is_Completion 8006 and then In_Private_Part (Current_Scope) 8007 and then Scope (Parent_Type) /= Current_Scope 8008 8009 -- Note that if the parent has a completion in the private part, 8010 -- (which is itself a derivation from some other private type) 8011 -- it is that completion that is visible, there is no full view 8012 -- available, and no special processing is needed. 8013 8014 and then Present (Full_View (Parent_Type)) 8015 then 8016 -- In this case, the full view of the parent type will become 8017 -- visible in the body of the enclosing child, and only then will 8018 -- the current type be possibly non-private. Build an underlying 8019 -- full view that will be installed when the enclosing child body 8020 -- is compiled. 8021 8022 if Present (Underlying_Full_View (Derived_Type)) then 8023 Full_Der := Underlying_Full_View (Derived_Type); 8024 else 8025 Build_Full_Derivation; 8026 Set_Underlying_Full_View (Derived_Type, Full_Der); 8027 Set_Is_Underlying_Full_View (Full_Der); 8028 end if; 8029 8030 -- The full view will be used to swap entities on entry/exit to 8031 -- the body, and must appear in the entity list for the package. 8032 8033 Append_Entity (Full_Der, Scope (Derived_Type)); 8034 end if; 8035 end if; 8036 end Build_Derived_Private_Type; 8037 8038 ------------------------------- 8039 -- Build_Derived_Record_Type -- 8040 ------------------------------- 8041 8042 -- 1. INTRODUCTION 8043 8044 -- Ideally we would like to use the same model of type derivation for 8045 -- tagged and untagged record types. Unfortunately this is not quite 8046 -- possible because the semantics of representation clauses is different 8047 -- for tagged and untagged records under inheritance. Consider the 8048 -- following: 8049 8050 -- type R (...) is [tagged] record ... end record; 8051 -- type T (...) is new R (...) [with ...]; 8052 8053 -- The representation clauses for T can specify a completely different 8054 -- record layout from R's. Hence the same component can be placed in two 8055 -- very different positions in objects of type T and R. If R and T are 8056 -- tagged types, representation clauses for T can only specify the layout 8057 -- of non inherited components, thus components that are common in R and T 8058 -- have the same position in objects of type R and T. 8059 8060 -- This has two implications. The first is that the entire tree for R's 8061 -- declaration needs to be copied for T in the untagged case, so that T 8062 -- can be viewed as a record type of its own with its own representation 8063 -- clauses. The second implication is the way we handle discriminants. 8064 -- Specifically, in the untagged case we need a way to communicate to Gigi 8065 -- what are the real discriminants in the record, while for the semantics 8066 -- we need to consider those introduced by the user to rename the 8067 -- discriminants in the parent type. This is handled by introducing the 8068 -- notion of stored discriminants. See below for more. 8069 8070 -- Fortunately the way regular components are inherited can be handled in 8071 -- the same way in tagged and untagged types. 8072 8073 -- To complicate things a bit more the private view of a private extension 8074 -- cannot be handled in the same way as the full view (for one thing the 8075 -- semantic rules are somewhat different). We will explain what differs 8076 -- below. 8077 8078 -- 2. DISCRIMINANTS UNDER INHERITANCE 8079 8080 -- The semantic rules governing the discriminants of derived types are 8081 -- quite subtle. 8082 8083 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new 8084 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART] 8085 8086 -- If parent type has discriminants, then the discriminants that are 8087 -- declared in the derived type are [3.4 (11)]: 8088 8089 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if 8090 -- there is one; 8091 8092 -- o Otherwise, each discriminant of the parent type (implicitly declared 8093 -- in the same order with the same specifications). In this case, the 8094 -- discriminants are said to be "inherited", or if unknown in the parent 8095 -- are also unknown in the derived type. 8096 8097 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]: 8098 8099 -- o The parent subtype must be constrained; 8100 8101 -- o If the parent type is not a tagged type, then each discriminant of 8102 -- the derived type must be used in the constraint defining a parent 8103 -- subtype. [Implementation note: This ensures that the new discriminant 8104 -- can share storage with an existing discriminant.] 8105 8106 -- For the derived type each discriminant of the parent type is either 8107 -- inherited, constrained to equal some new discriminant of the derived 8108 -- type, or constrained to the value of an expression. 8109 8110 -- When inherited or constrained to equal some new discriminant, the 8111 -- parent discriminant and the discriminant of the derived type are said 8112 -- to "correspond". 8113 8114 -- If a discriminant of the parent type is constrained to a specific value 8115 -- in the derived type definition, then the discriminant is said to be 8116 -- "specified" by that derived type definition. 8117 8118 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES 8119 8120 -- We have spoken about stored discriminants in point 1 (introduction) 8121 -- above. There are two sorts of stored discriminants: implicit and 8122 -- explicit. As long as the derived type inherits the same discriminants as 8123 -- the root record type, stored discriminants are the same as regular 8124 -- discriminants, and are said to be implicit. However, if any discriminant 8125 -- in the root type was renamed in the derived type, then the derived 8126 -- type will contain explicit stored discriminants. Explicit stored 8127 -- discriminants are discriminants in addition to the semantically visible 8128 -- discriminants defined for the derived type. Stored discriminants are 8129 -- used by Gigi to figure out what are the physical discriminants in 8130 -- objects of the derived type (see precise definition in einfo.ads). 8131 -- As an example, consider the following: 8132 8133 -- type R (D1, D2, D3 : Int) is record ... end record; 8134 -- type T1 is new R; 8135 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1); 8136 -- type T3 is new T2; 8137 -- type T4 (Y : Int) is new T3 (Y, 99); 8138 8139 -- The following table summarizes the discriminants and stored 8140 -- discriminants in R and T1 through T4: 8141 8142 -- Type Discrim Stored Discrim Comment 8143 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R 8144 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1 8145 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2 8146 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3 8147 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4 8148 8149 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to 8150 -- find the corresponding discriminant in the parent type, while 8151 -- Original_Record_Component (abbreviated ORC below) the actual physical 8152 -- component that is renamed. Finally the field Is_Completely_Hidden 8153 -- (abbreviated ICH below) is set for all explicit stored discriminants 8154 -- (see einfo.ads for more info). For the above example this gives: 8155 8156 -- Discrim CD ORC ICH 8157 -- ^^^^^^^ ^^ ^^^ ^^^ 8158 -- D1 in R empty itself no 8159 -- D2 in R empty itself no 8160 -- D3 in R empty itself no 8161 8162 -- D1 in T1 D1 in R itself no 8163 -- D2 in T1 D2 in R itself no 8164 -- D3 in T1 D3 in R itself no 8165 8166 -- X1 in T2 D3 in T1 D3 in T2 no 8167 -- X2 in T2 D1 in T1 D1 in T2 no 8168 -- D1 in T2 empty itself yes 8169 -- D2 in T2 empty itself yes 8170 -- D3 in T2 empty itself yes 8171 8172 -- X1 in T3 X1 in T2 D3 in T3 no 8173 -- X2 in T3 X2 in T2 D1 in T3 no 8174 -- D1 in T3 empty itself yes 8175 -- D2 in T3 empty itself yes 8176 -- D3 in T3 empty itself yes 8177 8178 -- Y in T4 X1 in T3 D3 in T4 no 8179 -- D1 in T4 empty itself yes 8180 -- D2 in T4 empty itself yes 8181 -- D3 in T4 empty itself yes 8182 8183 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES 8184 8185 -- Type derivation for tagged types is fairly straightforward. If no 8186 -- discriminants are specified by the derived type, these are inherited 8187 -- from the parent. No explicit stored discriminants are ever necessary. 8188 -- The only manipulation that is done to the tree is that of adding a 8189 -- _parent field with parent type and constrained to the same constraint 8190 -- specified for the parent in the derived type definition. For instance: 8191 8192 -- type R (D1, D2, D3 : Int) is tagged record ... end record; 8193 -- type T1 is new R with null record; 8194 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record; 8195 8196 -- are changed into: 8197 8198 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record 8199 -- _parent : R (D1, D2, D3); 8200 -- end record; 8201 8202 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record 8203 -- _parent : T1 (X2, 88, X1); 8204 -- end record; 8205 8206 -- The discriminants actually present in R, T1 and T2 as well as their CD, 8207 -- ORC and ICH fields are: 8208 8209 -- Discrim CD ORC ICH 8210 -- ^^^^^^^ ^^ ^^^ ^^^ 8211 -- D1 in R empty itself no 8212 -- D2 in R empty itself no 8213 -- D3 in R empty itself no 8214 8215 -- D1 in T1 D1 in R D1 in R no 8216 -- D2 in T1 D2 in R D2 in R no 8217 -- D3 in T1 D3 in R D3 in R no 8218 8219 -- X1 in T2 D3 in T1 D3 in R no 8220 -- X2 in T2 D1 in T1 D1 in R no 8221 8222 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS 8223 -- 8224 -- Regardless of whether we dealing with a tagged or untagged type 8225 -- we will transform all derived type declarations of the form 8226 -- 8227 -- type T is new R (...) [with ...]; 8228 -- or 8229 -- subtype S is R (...); 8230 -- type T is new S [with ...]; 8231 -- into 8232 -- type BT is new R [with ...]; 8233 -- subtype T is BT (...); 8234 -- 8235 -- That is, the base derived type is constrained only if it has no 8236 -- discriminants. The reason for doing this is that GNAT's semantic model 8237 -- assumes that a base type with discriminants is unconstrained. 8238 -- 8239 -- Note that, strictly speaking, the above transformation is not always 8240 -- correct. Consider for instance the following excerpt from ACVC b34011a: 8241 -- 8242 -- procedure B34011A is 8243 -- type REC (D : integer := 0) is record 8244 -- I : Integer; 8245 -- end record; 8246 8247 -- package P is 8248 -- type T6 is new Rec; 8249 -- function F return T6; 8250 -- end P; 8251 8252 -- use P; 8253 -- package Q6 is 8254 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F. 8255 -- end Q6; 8256 -- 8257 -- The definition of Q6.U is illegal. However transforming Q6.U into 8258 8259 -- type BaseU is new T6; 8260 -- subtype U is BaseU (Q6.F.I) 8261 8262 -- turns U into a legal subtype, which is incorrect. To avoid this problem 8263 -- we always analyze the constraint (in this case (Q6.F.I)) before applying 8264 -- the transformation described above. 8265 8266 -- There is another instance where the above transformation is incorrect. 8267 -- Consider: 8268 8269 -- package Pack is 8270 -- type Base (D : Integer) is tagged null record; 8271 -- procedure P (X : Base); 8272 8273 -- type Der is new Base (2) with null record; 8274 -- procedure P (X : Der); 8275 -- end Pack; 8276 8277 -- Then the above transformation turns this into 8278 8279 -- type Der_Base is new Base with null record; 8280 -- -- procedure P (X : Base) is implicitly inherited here 8281 -- -- as procedure P (X : Der_Base). 8282 8283 -- subtype Der is Der_Base (2); 8284 -- procedure P (X : Der); 8285 -- -- The overriding of P (X : Der_Base) is illegal since we 8286 -- -- have a parameter conformance problem. 8287 8288 -- To get around this problem, after having semantically processed Der_Base 8289 -- and the rewritten subtype declaration for Der, we copy Der_Base field 8290 -- Discriminant_Constraint from Der so that when parameter conformance is 8291 -- checked when P is overridden, no semantic errors are flagged. 8292 8293 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS 8294 8295 -- Regardless of whether we are dealing with a tagged or untagged type 8296 -- we will transform all derived type declarations of the form 8297 8298 -- type R (D1, .., Dn : ...) is [tagged] record ...; 8299 -- type T is new R [with ...]; 8300 -- into 8301 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...]; 8302 8303 -- The reason for such transformation is that it allows us to implement a 8304 -- very clean form of component inheritance as explained below. 8305 8306 -- Note that this transformation is not achieved by direct tree rewriting 8307 -- and manipulation, but rather by redoing the semantic actions that the 8308 -- above transformation will entail. This is done directly in routine 8309 -- Inherit_Components. 8310 8311 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE 8312 8313 -- In both tagged and untagged derived types, regular non discriminant 8314 -- components are inherited in the derived type from the parent type. In 8315 -- the absence of discriminants component, inheritance is straightforward 8316 -- as components can simply be copied from the parent. 8317 8318 -- If the parent has discriminants, inheriting components constrained with 8319 -- these discriminants requires caution. Consider the following example: 8320 8321 -- type R (D1, D2 : Positive) is [tagged] record 8322 -- S : String (D1 .. D2); 8323 -- end record; 8324 8325 -- type T1 is new R [with null record]; 8326 -- type T2 (X : positive) is new R (1, X) [with null record]; 8327 8328 -- As explained in 6. above, T1 is rewritten as 8329 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record]; 8330 -- which makes the treatment for T1 and T2 identical. 8331 8332 -- What we want when inheriting S, is that references to D1 and D2 in R are 8333 -- replaced with references to their correct constraints, i.e. D1 and D2 in 8334 -- T1 and 1 and X in T2. So all R's discriminant references are replaced 8335 -- with either discriminant references in the derived type or expressions. 8336 -- This replacement is achieved as follows: before inheriting R's 8337 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is 8338 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1 8339 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible). 8340 -- For T2, for instance, this has the effect of replacing String (D1 .. D2) 8341 -- by String (1 .. X). 8342 8343 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS 8344 8345 -- We explain here the rules governing private type extensions relevant to 8346 -- type derivation. These rules are explained on the following example: 8347 8348 -- type D [(...)] is new A [(...)] with private; <-- partial view 8349 -- type D [(...)] is new P [(...)] with null record; <-- full view 8350 8351 -- Type A is called the ancestor subtype of the private extension. 8352 -- Type P is the parent type of the full view of the private extension. It 8353 -- must be A or a type derived from A. 8354 8355 -- The rules concerning the discriminants of private type extensions are 8356 -- [7.3(10-13)]: 8357 8358 -- o If a private extension inherits known discriminants from the ancestor 8359 -- subtype, then the full view must also inherit its discriminants from 8360 -- the ancestor subtype and the parent subtype of the full view must be 8361 -- constrained if and only if the ancestor subtype is constrained. 8362 8363 -- o If a partial view has unknown discriminants, then the full view may 8364 -- define a definite or an indefinite subtype, with or without 8365 -- discriminants. 8366 8367 -- o If a partial view has neither known nor unknown discriminants, then 8368 -- the full view must define a definite subtype. 8369 8370 -- o If the ancestor subtype of a private extension has constrained 8371 -- discriminants, then the parent subtype of the full view must impose a 8372 -- statically matching constraint on those discriminants. 8373 8374 -- This means that only the following forms of private extensions are 8375 -- allowed: 8376 8377 -- type D is new A with private; <-- partial view 8378 -- type D is new P with null record; <-- full view 8379 8380 -- If A has no discriminants than P has no discriminants, otherwise P must 8381 -- inherit A's discriminants. 8382 8383 -- type D is new A (...) with private; <-- partial view 8384 -- type D is new P (:::) with null record; <-- full view 8385 8386 -- P must inherit A's discriminants and (...) and (:::) must statically 8387 -- match. 8388 8389 -- subtype A is R (...); 8390 -- type D is new A with private; <-- partial view 8391 -- type D is new P with null record; <-- full view 8392 8393 -- P must have inherited R's discriminants and must be derived from A or 8394 -- any of its subtypes. 8395 8396 -- type D (..) is new A with private; <-- partial view 8397 -- type D (..) is new P [(:::)] with null record; <-- full view 8398 8399 -- No specific constraints on P's discriminants or constraint (:::). 8400 -- Note that A can be unconstrained, but the parent subtype P must either 8401 -- be constrained or (:::) must be present. 8402 8403 -- type D (..) is new A [(...)] with private; <-- partial view 8404 -- type D (..) is new P [(:::)] with null record; <-- full view 8405 8406 -- P's constraints on A's discriminants must statically match those 8407 -- imposed by (...). 8408 8409 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS 8410 8411 -- The full view of a private extension is handled exactly as described 8412 -- above. The model chose for the private view of a private extension is 8413 -- the same for what concerns discriminants (i.e. they receive the same 8414 -- treatment as in the tagged case). However, the private view of the 8415 -- private extension always inherits the components of the parent base, 8416 -- without replacing any discriminant reference. Strictly speaking this is 8417 -- incorrect. However, Gigi never uses this view to generate code so this 8418 -- is a purely semantic issue. In theory, a set of transformations similar 8419 -- to those given in 5. and 6. above could be applied to private views of 8420 -- private extensions to have the same model of component inheritance as 8421 -- for non private extensions. However, this is not done because it would 8422 -- further complicate private type processing. Semantically speaking, this 8423 -- leaves us in an uncomfortable situation. As an example consider: 8424 8425 -- package Pack is 8426 -- type R (D : integer) is tagged record 8427 -- S : String (1 .. D); 8428 -- end record; 8429 -- procedure P (X : R); 8430 -- type T is new R (1) with private; 8431 -- private 8432 -- type T is new R (1) with null record; 8433 -- end; 8434 8435 -- This is transformed into: 8436 8437 -- package Pack is 8438 -- type R (D : integer) is tagged record 8439 -- S : String (1 .. D); 8440 -- end record; 8441 -- procedure P (X : R); 8442 -- type T is new R (1) with private; 8443 -- private 8444 -- type BaseT is new R with null record; 8445 -- subtype T is BaseT (1); 8446 -- end; 8447 8448 -- (strictly speaking the above is incorrect Ada) 8449 8450 -- From the semantic standpoint the private view of private extension T 8451 -- should be flagged as constrained since one can clearly have 8452 -- 8453 -- Obj : T; 8454 -- 8455 -- in a unit withing Pack. However, when deriving subprograms for the 8456 -- private view of private extension T, T must be seen as unconstrained 8457 -- since T has discriminants (this is a constraint of the current 8458 -- subprogram derivation model). Thus, when processing the private view of 8459 -- a private extension such as T, we first mark T as unconstrained, we 8460 -- process it, we perform program derivation and just before returning from 8461 -- Build_Derived_Record_Type we mark T as constrained. 8462 8463 -- ??? Are there are other uncomfortable cases that we will have to 8464 -- deal with. 8465 8466 -- 10. RECORD_TYPE_WITH_PRIVATE complications 8467 8468 -- Types that are derived from a visible record type and have a private 8469 -- extension present other peculiarities. They behave mostly like private 8470 -- types, but if they have primitive operations defined, these will not 8471 -- have the proper signatures for further inheritance, because other 8472 -- primitive operations will use the implicit base that we define for 8473 -- private derivations below. This affect subprogram inheritance (see 8474 -- Derive_Subprograms for details). We also derive the implicit base from 8475 -- the base type of the full view, so that the implicit base is a record 8476 -- type and not another private type, This avoids infinite loops. 8477 8478 procedure Build_Derived_Record_Type 8479 (N : Node_Id; 8480 Parent_Type : Entity_Id; 8481 Derived_Type : Entity_Id; 8482 Derive_Subps : Boolean := True) 8483 is 8484 Discriminant_Specs : constant Boolean := 8485 Present (Discriminant_Specifications (N)); 8486 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type); 8487 Loc : constant Source_Ptr := Sloc (N); 8488 Private_Extension : constant Boolean := 8489 Nkind (N) = N_Private_Extension_Declaration; 8490 Assoc_List : Elist_Id; 8491 Constraint_Present : Boolean; 8492 Constrs : Elist_Id; 8493 Discrim : Entity_Id; 8494 Indic : Node_Id; 8495 Inherit_Discrims : Boolean := False; 8496 Last_Discrim : Entity_Id; 8497 New_Base : Entity_Id; 8498 New_Decl : Node_Id; 8499 New_Discrs : Elist_Id; 8500 New_Indic : Node_Id; 8501 Parent_Base : Entity_Id; 8502 Save_Etype : Entity_Id; 8503 Save_Discr_Constr : Elist_Id; 8504 Save_Next_Entity : Entity_Id; 8505 Type_Def : Node_Id; 8506 8507 Discs : Elist_Id := New_Elmt_List; 8508 -- An empty Discs list means that there were no constraints in the 8509 -- subtype indication or that there was an error processing it. 8510 8511 begin 8512 if Ekind (Parent_Type) = E_Record_Type_With_Private 8513 and then Present (Full_View (Parent_Type)) 8514 and then Has_Discriminants (Parent_Type) 8515 then 8516 Parent_Base := Base_Type (Full_View (Parent_Type)); 8517 else 8518 Parent_Base := Base_Type (Parent_Type); 8519 end if; 8520 8521 -- AI05-0115: if this is a derivation from a private type in some 8522 -- other scope that may lead to invisible components for the derived 8523 -- type, mark it accordingly. 8524 8525 if Is_Private_Type (Parent_Type) then 8526 if Scope (Parent_Base) = Scope (Derived_Type) then 8527 null; 8528 8529 elsif In_Open_Scopes (Scope (Parent_Base)) 8530 and then In_Private_Part (Scope (Parent_Base)) 8531 then 8532 null; 8533 8534 else 8535 Set_Has_Private_Ancestor (Derived_Type); 8536 end if; 8537 8538 else 8539 Set_Has_Private_Ancestor 8540 (Derived_Type, Has_Private_Ancestor (Parent_Type)); 8541 end if; 8542 8543 -- Before we start the previously documented transformations, here is 8544 -- little fix for size and alignment of tagged types. Normally when we 8545 -- derive type D from type P, we copy the size and alignment of P as the 8546 -- default for D, and in the absence of explicit representation clauses 8547 -- for D, the size and alignment are indeed the same as the parent. 8548 8549 -- But this is wrong for tagged types, since fields may be added, and 8550 -- the default size may need to be larger, and the default alignment may 8551 -- need to be larger. 8552 8553 -- We therefore reset the size and alignment fields in the tagged case. 8554 -- Note that the size and alignment will in any case be at least as 8555 -- large as the parent type (since the derived type has a copy of the 8556 -- parent type in the _parent field) 8557 8558 -- The type is also marked as being tagged here, which is needed when 8559 -- processing components with a self-referential anonymous access type 8560 -- in the call to Check_Anonymous_Access_Components below. Note that 8561 -- this flag is also set later on for completeness. 8562 8563 if Is_Tagged then 8564 Set_Is_Tagged_Type (Derived_Type); 8565 Init_Size_Align (Derived_Type); 8566 end if; 8567 8568 -- STEP 0a: figure out what kind of derived type declaration we have 8569 8570 if Private_Extension then 8571 Type_Def := N; 8572 Set_Ekind (Derived_Type, E_Record_Type_With_Private); 8573 Set_Default_SSO (Derived_Type); 8574 Set_No_Reordering (Derived_Type, No_Component_Reordering); 8575 8576 else 8577 Type_Def := Type_Definition (N); 8578 8579 -- Ekind (Parent_Base) is not necessarily E_Record_Type since 8580 -- Parent_Base can be a private type or private extension. However, 8581 -- for tagged types with an extension the newly added fields are 8582 -- visible and hence the Derived_Type is always an E_Record_Type. 8583 -- (except that the parent may have its own private fields). 8584 -- For untagged types we preserve the Ekind of the Parent_Base. 8585 8586 if Present (Record_Extension_Part (Type_Def)) then 8587 Set_Ekind (Derived_Type, E_Record_Type); 8588 Set_Default_SSO (Derived_Type); 8589 Set_No_Reordering (Derived_Type, No_Component_Reordering); 8590 8591 -- Create internal access types for components with anonymous 8592 -- access types. 8593 8594 if Ada_Version >= Ada_2005 then 8595 Check_Anonymous_Access_Components 8596 (N, Derived_Type, Derived_Type, 8597 Component_List (Record_Extension_Part (Type_Def))); 8598 end if; 8599 8600 else 8601 Set_Ekind (Derived_Type, Ekind (Parent_Base)); 8602 end if; 8603 end if; 8604 8605 -- Indic can either be an N_Identifier if the subtype indication 8606 -- contains no constraint or an N_Subtype_Indication if the subtype 8607 -- indication has a constraint. 8608 8609 Indic := Subtype_Indication (Type_Def); 8610 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication); 8611 8612 -- Check that the type has visible discriminants. The type may be 8613 -- a private type with unknown discriminants whose full view has 8614 -- discriminants which are invisible. 8615 8616 if Constraint_Present then 8617 if not Has_Discriminants (Parent_Base) 8618 or else 8619 (Has_Unknown_Discriminants (Parent_Base) 8620 and then Is_Private_Type (Parent_Base)) 8621 then 8622 Error_Msg_N 8623 ("invalid constraint: type has no discriminant", 8624 Constraint (Indic)); 8625 8626 Constraint_Present := False; 8627 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic))); 8628 8629 elsif Is_Constrained (Parent_Type) then 8630 Error_Msg_N 8631 ("invalid constraint: parent type is already constrained", 8632 Constraint (Indic)); 8633 8634 Constraint_Present := False; 8635 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic))); 8636 end if; 8637 end if; 8638 8639 -- STEP 0b: If needed, apply transformation given in point 5. above 8640 8641 if not Private_Extension 8642 and then Has_Discriminants (Parent_Type) 8643 and then not Discriminant_Specs 8644 and then (Is_Constrained (Parent_Type) or else Constraint_Present) 8645 then 8646 -- First, we must analyze the constraint (see comment in point 5.) 8647 -- The constraint may come from the subtype indication of the full 8648 -- declaration. 8649 8650 if Constraint_Present then 8651 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic); 8652 8653 -- If there is no explicit constraint, there might be one that is 8654 -- inherited from a constrained parent type. In that case verify that 8655 -- it conforms to the constraint in the partial view. In perverse 8656 -- cases the parent subtypes of the partial and full view can have 8657 -- different constraints. 8658 8659 elsif Present (Stored_Constraint (Parent_Type)) then 8660 New_Discrs := Stored_Constraint (Parent_Type); 8661 8662 else 8663 New_Discrs := No_Elist; 8664 end if; 8665 8666 if Has_Discriminants (Derived_Type) 8667 and then Has_Private_Declaration (Derived_Type) 8668 and then Present (Discriminant_Constraint (Derived_Type)) 8669 and then Present (New_Discrs) 8670 then 8671 -- Verify that constraints of the full view statically match 8672 -- those given in the partial view. 8673 8674 declare 8675 C1, C2 : Elmt_Id; 8676 8677 begin 8678 C1 := First_Elmt (New_Discrs); 8679 C2 := First_Elmt (Discriminant_Constraint (Derived_Type)); 8680 while Present (C1) and then Present (C2) loop 8681 if Fully_Conformant_Expressions (Node (C1), Node (C2)) 8682 or else 8683 (Is_OK_Static_Expression (Node (C1)) 8684 and then Is_OK_Static_Expression (Node (C2)) 8685 and then 8686 Expr_Value (Node (C1)) = Expr_Value (Node (C2))) 8687 then 8688 null; 8689 8690 else 8691 if Constraint_Present then 8692 Error_Msg_N 8693 ("constraint not conformant to previous declaration", 8694 Node (C1)); 8695 else 8696 Error_Msg_N 8697 ("constraint of full view is incompatible " 8698 & "with partial view", N); 8699 end if; 8700 end if; 8701 8702 Next_Elmt (C1); 8703 Next_Elmt (C2); 8704 end loop; 8705 end; 8706 end if; 8707 8708 -- Insert and analyze the declaration for the unconstrained base type 8709 8710 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B'); 8711 8712 New_Decl := 8713 Make_Full_Type_Declaration (Loc, 8714 Defining_Identifier => New_Base, 8715 Type_Definition => 8716 Make_Derived_Type_Definition (Loc, 8717 Abstract_Present => Abstract_Present (Type_Def), 8718 Limited_Present => Limited_Present (Type_Def), 8719 Subtype_Indication => 8720 New_Occurrence_Of (Parent_Base, Loc), 8721 Record_Extension_Part => 8722 Relocate_Node (Record_Extension_Part (Type_Def)), 8723 Interface_List => Interface_List (Type_Def))); 8724 8725 Set_Parent (New_Decl, Parent (N)); 8726 Mark_Rewrite_Insertion (New_Decl); 8727 Insert_Before (N, New_Decl); 8728 8729 -- In the extension case, make sure ancestor is frozen appropriately 8730 -- (see also non-discriminated case below). 8731 8732 if Present (Record_Extension_Part (Type_Def)) 8733 or else Is_Interface (Parent_Base) 8734 then 8735 Freeze_Before (New_Decl, Parent_Type); 8736 end if; 8737 8738 -- Note that this call passes False for the Derive_Subps parameter 8739 -- because subprogram derivation is deferred until after creating 8740 -- the subtype (see below). 8741 8742 Build_Derived_Type 8743 (New_Decl, Parent_Base, New_Base, 8744 Is_Completion => False, Derive_Subps => False); 8745 8746 -- ??? This needs re-examination to determine whether the 8747 -- above call can simply be replaced by a call to Analyze. 8748 8749 Set_Analyzed (New_Decl); 8750 8751 -- Insert and analyze the declaration for the constrained subtype 8752 8753 if Constraint_Present then 8754 New_Indic := 8755 Make_Subtype_Indication (Loc, 8756 Subtype_Mark => New_Occurrence_Of (New_Base, Loc), 8757 Constraint => Relocate_Node (Constraint (Indic))); 8758 8759 else 8760 declare 8761 Constr_List : constant List_Id := New_List; 8762 C : Elmt_Id; 8763 Expr : Node_Id; 8764 8765 begin 8766 C := First_Elmt (Discriminant_Constraint (Parent_Type)); 8767 while Present (C) loop 8768 Expr := Node (C); 8769 8770 -- It is safe here to call New_Copy_Tree since we called 8771 -- Force_Evaluation on each constraint previously 8772 -- in Build_Discriminant_Constraints. 8773 8774 Append (New_Copy_Tree (Expr), To => Constr_List); 8775 8776 Next_Elmt (C); 8777 end loop; 8778 8779 New_Indic := 8780 Make_Subtype_Indication (Loc, 8781 Subtype_Mark => New_Occurrence_Of (New_Base, Loc), 8782 Constraint => 8783 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List)); 8784 end; 8785 end if; 8786 8787 Rewrite (N, 8788 Make_Subtype_Declaration (Loc, 8789 Defining_Identifier => Derived_Type, 8790 Subtype_Indication => New_Indic)); 8791 8792 Analyze (N); 8793 8794 -- Derivation of subprograms must be delayed until the full subtype 8795 -- has been established, to ensure proper overriding of subprograms 8796 -- inherited by full types. If the derivations occurred as part of 8797 -- the call to Build_Derived_Type above, then the check for type 8798 -- conformance would fail because earlier primitive subprograms 8799 -- could still refer to the full type prior the change to the new 8800 -- subtype and hence would not match the new base type created here. 8801 -- Subprograms are not derived, however, when Derive_Subps is False 8802 -- (since otherwise there could be redundant derivations). 8803 8804 if Derive_Subps then 8805 Derive_Subprograms (Parent_Type, Derived_Type); 8806 end if; 8807 8808 -- For tagged types the Discriminant_Constraint of the new base itype 8809 -- is inherited from the first subtype so that no subtype conformance 8810 -- problem arise when the first subtype overrides primitive 8811 -- operations inherited by the implicit base type. 8812 8813 if Is_Tagged then 8814 Set_Discriminant_Constraint 8815 (New_Base, Discriminant_Constraint (Derived_Type)); 8816 end if; 8817 8818 return; 8819 end if; 8820 8821 -- If we get here Derived_Type will have no discriminants or it will be 8822 -- a discriminated unconstrained base type. 8823 8824 -- STEP 1a: perform preliminary actions/checks for derived tagged types 8825 8826 if Is_Tagged then 8827 8828 -- The parent type is frozen for non-private extensions (RM 13.14(7)) 8829 -- The declaration of a specific descendant of an interface type 8830 -- freezes the interface type (RM 13.14). 8831 8832 if not Private_Extension or else Is_Interface (Parent_Base) then 8833 Freeze_Before (N, Parent_Type); 8834 end if; 8835 8836 -- In Ada 2005 (AI-344), the restriction that a derived tagged type 8837 -- cannot be declared at a deeper level than its parent type is 8838 -- removed. The check on derivation within a generic body is also 8839 -- relaxed, but there's a restriction that a derived tagged type 8840 -- cannot be declared in a generic body if it's derived directly 8841 -- or indirectly from a formal type of that generic. 8842 8843 if Ada_Version >= Ada_2005 then 8844 if Present (Enclosing_Generic_Body (Derived_Type)) then 8845 declare 8846 Ancestor_Type : Entity_Id; 8847 8848 begin 8849 -- Check to see if any ancestor of the derived type is a 8850 -- formal type. 8851 8852 Ancestor_Type := Parent_Type; 8853 while not Is_Generic_Type (Ancestor_Type) 8854 and then Etype (Ancestor_Type) /= Ancestor_Type 8855 loop 8856 Ancestor_Type := Etype (Ancestor_Type); 8857 end loop; 8858 8859 -- If the derived type does have a formal type as an 8860 -- ancestor, then it's an error if the derived type is 8861 -- declared within the body of the generic unit that 8862 -- declares the formal type in its generic formal part. It's 8863 -- sufficient to check whether the ancestor type is declared 8864 -- inside the same generic body as the derived type (such as 8865 -- within a nested generic spec), in which case the 8866 -- derivation is legal. If the formal type is declared 8867 -- outside of that generic body, then it's guaranteed that 8868 -- the derived type is declared within the generic body of 8869 -- the generic unit declaring the formal type. 8870 8871 if Is_Generic_Type (Ancestor_Type) 8872 and then Enclosing_Generic_Body (Ancestor_Type) /= 8873 Enclosing_Generic_Body (Derived_Type) 8874 then 8875 Error_Msg_NE 8876 ("parent type of& must not be descendant of formal type" 8877 & " of an enclosing generic body", 8878 Indic, Derived_Type); 8879 end if; 8880 end; 8881 end if; 8882 8883 elsif Type_Access_Level (Derived_Type) /= 8884 Type_Access_Level (Parent_Type) 8885 and then not Is_Generic_Type (Derived_Type) 8886 then 8887 if Is_Controlled (Parent_Type) then 8888 Error_Msg_N 8889 ("controlled type must be declared at the library level", 8890 Indic); 8891 else 8892 Error_Msg_N 8893 ("type extension at deeper accessibility level than parent", 8894 Indic); 8895 end if; 8896 8897 else 8898 declare 8899 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type); 8900 begin 8901 if Present (GB) 8902 and then GB /= Enclosing_Generic_Body (Parent_Base) 8903 then 8904 Error_Msg_NE 8905 ("parent type of& must not be outside generic body" 8906 & " (RM 3.9.1(4))", 8907 Indic, Derived_Type); 8908 end if; 8909 end; 8910 end if; 8911 end if; 8912 8913 -- Ada 2005 (AI-251) 8914 8915 if Ada_Version >= Ada_2005 and then Is_Tagged then 8916 8917 -- "The declaration of a specific descendant of an interface type 8918 -- freezes the interface type" (RM 13.14). 8919 8920 declare 8921 Iface : Node_Id; 8922 begin 8923 if Is_Non_Empty_List (Interface_List (Type_Def)) then 8924 Iface := First (Interface_List (Type_Def)); 8925 while Present (Iface) loop 8926 Freeze_Before (N, Etype (Iface)); 8927 Next (Iface); 8928 end loop; 8929 end if; 8930 end; 8931 end if; 8932 8933 -- STEP 1b : preliminary cleanup of the full view of private types 8934 8935 -- If the type is already marked as having discriminants, then it's the 8936 -- completion of a private type or private extension and we need to 8937 -- retain the discriminants from the partial view if the current 8938 -- declaration has Discriminant_Specifications so that we can verify 8939 -- conformance. However, we must remove any existing components that 8940 -- were inherited from the parent (and attached in Copy_And_Swap) 8941 -- because the full type inherits all appropriate components anyway, and 8942 -- we do not want the partial view's components interfering. 8943 8944 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then 8945 Discrim := First_Discriminant (Derived_Type); 8946 loop 8947 Last_Discrim := Discrim; 8948 Next_Discriminant (Discrim); 8949 exit when No (Discrim); 8950 end loop; 8951 8952 Set_Last_Entity (Derived_Type, Last_Discrim); 8953 8954 -- In all other cases wipe out the list of inherited components (even 8955 -- inherited discriminants), it will be properly rebuilt here. 8956 8957 else 8958 Set_First_Entity (Derived_Type, Empty); 8959 Set_Last_Entity (Derived_Type, Empty); 8960 end if; 8961 8962 -- STEP 1c: Initialize some flags for the Derived_Type 8963 8964 -- The following flags must be initialized here so that 8965 -- Process_Discriminants can check that discriminants of tagged types do 8966 -- not have a default initial value and that access discriminants are 8967 -- only specified for limited records. For completeness, these flags are 8968 -- also initialized along with all the other flags below. 8969 8970 -- AI-419: Limitedness is not inherited from an interface parent, so to 8971 -- be limited in that case the type must be explicitly declared as 8972 -- limited. However, task and protected interfaces are always limited. 8973 8974 if Limited_Present (Type_Def) then 8975 Set_Is_Limited_Record (Derived_Type); 8976 8977 elsif Is_Limited_Record (Parent_Type) 8978 or else (Present (Full_View (Parent_Type)) 8979 and then Is_Limited_Record (Full_View (Parent_Type))) 8980 then 8981 if not Is_Interface (Parent_Type) 8982 or else Is_Synchronized_Interface (Parent_Type) 8983 or else Is_Protected_Interface (Parent_Type) 8984 or else Is_Task_Interface (Parent_Type) 8985 then 8986 Set_Is_Limited_Record (Derived_Type); 8987 end if; 8988 end if; 8989 8990 -- STEP 2a: process discriminants of derived type if any 8991 8992 Push_Scope (Derived_Type); 8993 8994 if Discriminant_Specs then 8995 Set_Has_Unknown_Discriminants (Derived_Type, False); 8996 8997 -- The following call initializes fields Has_Discriminants and 8998 -- Discriminant_Constraint, unless we are processing the completion 8999 -- of a private type declaration. 9000 9001 Check_Or_Process_Discriminants (N, Derived_Type); 9002 9003 -- For untagged types, the constraint on the Parent_Type must be 9004 -- present and is used to rename the discriminants. 9005 9006 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then 9007 Error_Msg_N ("untagged parent must have discriminants", Indic); 9008 9009 elsif not Is_Tagged and then not Constraint_Present then 9010 Error_Msg_N 9011 ("discriminant constraint needed for derived untagged records", 9012 Indic); 9013 9014 -- Otherwise the parent subtype must be constrained unless we have a 9015 -- private extension. 9016 9017 elsif not Constraint_Present 9018 and then not Private_Extension 9019 and then not Is_Constrained (Parent_Type) 9020 then 9021 Error_Msg_N 9022 ("unconstrained type not allowed in this context", Indic); 9023 9024 elsif Constraint_Present then 9025 -- The following call sets the field Corresponding_Discriminant 9026 -- for the discriminants in the Derived_Type. 9027 9028 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True); 9029 9030 -- For untagged types all new discriminants must rename 9031 -- discriminants in the parent. For private extensions new 9032 -- discriminants cannot rename old ones (implied by [7.3(13)]). 9033 9034 Discrim := First_Discriminant (Derived_Type); 9035 while Present (Discrim) loop 9036 if not Is_Tagged 9037 and then No (Corresponding_Discriminant (Discrim)) 9038 then 9039 Error_Msg_N 9040 ("new discriminants must constrain old ones", Discrim); 9041 9042 elsif Private_Extension 9043 and then Present (Corresponding_Discriminant (Discrim)) 9044 then 9045 Error_Msg_N 9046 ("only static constraints allowed for parent" 9047 & " discriminants in the partial view", Indic); 9048 exit; 9049 end if; 9050 9051 -- If a new discriminant is used in the constraint, then its 9052 -- subtype must be statically compatible with the parent 9053 -- discriminant's subtype (3.7(15)). 9054 9055 -- However, if the record contains an array constrained by 9056 -- the discriminant but with some different bound, the compiler 9057 -- tries to create a smaller range for the discriminant type. 9058 -- (See exp_ch3.Adjust_Discriminants). In this case, where 9059 -- the discriminant type is a scalar type, the check must use 9060 -- the original discriminant type in the parent declaration. 9061 9062 declare 9063 Corr_Disc : constant Entity_Id := 9064 Corresponding_Discriminant (Discrim); 9065 Disc_Type : constant Entity_Id := Etype (Discrim); 9066 Corr_Type : Entity_Id; 9067 9068 begin 9069 if Present (Corr_Disc) then 9070 if Is_Scalar_Type (Disc_Type) then 9071 Corr_Type := 9072 Entity (Discriminant_Type (Parent (Corr_Disc))); 9073 else 9074 Corr_Type := Etype (Corr_Disc); 9075 end if; 9076 9077 if not 9078 Subtypes_Statically_Compatible (Disc_Type, Corr_Type) 9079 then 9080 Error_Msg_N 9081 ("subtype must be compatible " 9082 & "with parent discriminant", 9083 Discrim); 9084 end if; 9085 end if; 9086 end; 9087 9088 Next_Discriminant (Discrim); 9089 end loop; 9090 9091 -- Check whether the constraints of the full view statically 9092 -- match those imposed by the parent subtype [7.3(13)]. 9093 9094 if Present (Stored_Constraint (Derived_Type)) then 9095 declare 9096 C1, C2 : Elmt_Id; 9097 9098 begin 9099 C1 := First_Elmt (Discs); 9100 C2 := First_Elmt (Stored_Constraint (Derived_Type)); 9101 while Present (C1) and then Present (C2) loop 9102 if not 9103 Fully_Conformant_Expressions (Node (C1), Node (C2)) 9104 then 9105 Error_Msg_N 9106 ("not conformant with previous declaration", 9107 Node (C1)); 9108 end if; 9109 9110 Next_Elmt (C1); 9111 Next_Elmt (C2); 9112 end loop; 9113 end; 9114 end if; 9115 end if; 9116 9117 -- STEP 2b: No new discriminants, inherit discriminants if any 9118 9119 else 9120 if Private_Extension then 9121 Set_Has_Unknown_Discriminants 9122 (Derived_Type, 9123 Has_Unknown_Discriminants (Parent_Type) 9124 or else Unknown_Discriminants_Present (N)); 9125 9126 -- The partial view of the parent may have unknown discriminants, 9127 -- but if the full view has discriminants and the parent type is 9128 -- in scope they must be inherited. 9129 9130 elsif Has_Unknown_Discriminants (Parent_Type) 9131 and then 9132 (not Has_Discriminants (Parent_Type) 9133 or else not In_Open_Scopes (Scope (Parent_Base))) 9134 then 9135 Set_Has_Unknown_Discriminants (Derived_Type); 9136 end if; 9137 9138 if not Has_Unknown_Discriminants (Derived_Type) 9139 and then not Has_Unknown_Discriminants (Parent_Base) 9140 and then Has_Discriminants (Parent_Type) 9141 then 9142 Inherit_Discrims := True; 9143 Set_Has_Discriminants 9144 (Derived_Type, True); 9145 Set_Discriminant_Constraint 9146 (Derived_Type, Discriminant_Constraint (Parent_Base)); 9147 end if; 9148 9149 -- The following test is true for private types (remember 9150 -- transformation 5. is not applied to those) and in an error 9151 -- situation. 9152 9153 if Constraint_Present then 9154 Discs := Build_Discriminant_Constraints (Parent_Type, Indic); 9155 end if; 9156 9157 -- For now mark a new derived type as constrained only if it has no 9158 -- discriminants. At the end of Build_Derived_Record_Type we properly 9159 -- set this flag in the case of private extensions. See comments in 9160 -- point 9. just before body of Build_Derived_Record_Type. 9161 9162 Set_Is_Constrained 9163 (Derived_Type, 9164 not (Inherit_Discrims 9165 or else Has_Unknown_Discriminants (Derived_Type))); 9166 end if; 9167 9168 -- STEP 3: initialize fields of derived type 9169 9170 Set_Is_Tagged_Type (Derived_Type, Is_Tagged); 9171 Set_Stored_Constraint (Derived_Type, No_Elist); 9172 9173 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces 9174 -- but cannot be interfaces 9175 9176 if not Private_Extension 9177 and then Ekind (Derived_Type) /= E_Private_Type 9178 and then Ekind (Derived_Type) /= E_Limited_Private_Type 9179 then 9180 if Interface_Present (Type_Def) then 9181 Analyze_Interface_Declaration (Derived_Type, Type_Def); 9182 end if; 9183 9184 Set_Interfaces (Derived_Type, No_Elist); 9185 end if; 9186 9187 -- Fields inherited from the Parent_Type 9188 9189 Set_Has_Specified_Layout 9190 (Derived_Type, Has_Specified_Layout (Parent_Type)); 9191 Set_Is_Limited_Composite 9192 (Derived_Type, Is_Limited_Composite (Parent_Type)); 9193 Set_Is_Private_Composite 9194 (Derived_Type, Is_Private_Composite (Parent_Type)); 9195 9196 if Is_Tagged_Type (Parent_Type) then 9197 Set_No_Tagged_Streams_Pragma 9198 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type)); 9199 end if; 9200 9201 -- Fields inherited from the Parent_Base 9202 9203 Set_Has_Controlled_Component 9204 (Derived_Type, Has_Controlled_Component (Parent_Base)); 9205 Set_Has_Non_Standard_Rep 9206 (Derived_Type, Has_Non_Standard_Rep (Parent_Base)); 9207 Set_Has_Primitive_Operations 9208 (Derived_Type, Has_Primitive_Operations (Parent_Base)); 9209 9210 -- Set fields for private derived types 9211 9212 if Is_Private_Type (Derived_Type) then 9213 Set_Depends_On_Private (Derived_Type, True); 9214 Set_Private_Dependents (Derived_Type, New_Elmt_List); 9215 end if; 9216 9217 -- Inherit fields for non-private types. If this is the completion of a 9218 -- derivation from a private type, the parent itself is private and the 9219 -- attributes come from its full view, which must be present. 9220 9221 if Is_Record_Type (Derived_Type) then 9222 declare 9223 Parent_Full : Entity_Id; 9224 9225 begin 9226 if Is_Private_Type (Parent_Base) 9227 and then not Is_Record_Type (Parent_Base) 9228 then 9229 Parent_Full := Full_View (Parent_Base); 9230 else 9231 Parent_Full := Parent_Base; 9232 end if; 9233 9234 Set_Component_Alignment 9235 (Derived_Type, Component_Alignment (Parent_Full)); 9236 Set_C_Pass_By_Copy 9237 (Derived_Type, C_Pass_By_Copy (Parent_Full)); 9238 Set_Has_Complex_Representation 9239 (Derived_Type, Has_Complex_Representation (Parent_Full)); 9240 9241 -- For untagged types, inherit the layout by default to avoid 9242 -- costly changes of representation for type conversions. 9243 9244 if not Is_Tagged then 9245 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Full)); 9246 Set_No_Reordering (Derived_Type, No_Reordering (Parent_Full)); 9247 end if; 9248 end; 9249 end if; 9250 9251 -- Set fields for tagged types 9252 9253 if Is_Tagged then 9254 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List); 9255 9256 -- All tagged types defined in Ada.Finalization are controlled 9257 9258 if Chars (Scope (Derived_Type)) = Name_Finalization 9259 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada 9260 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard 9261 then 9262 Set_Is_Controlled_Active (Derived_Type); 9263 else 9264 Set_Is_Controlled_Active 9265 (Derived_Type, Is_Controlled_Active (Parent_Base)); 9266 end if; 9267 9268 -- Minor optimization: there is no need to generate the class-wide 9269 -- entity associated with an underlying record view. 9270 9271 if not Is_Underlying_Record_View (Derived_Type) then 9272 Make_Class_Wide_Type (Derived_Type); 9273 end if; 9274 9275 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def)); 9276 9277 if Has_Discriminants (Derived_Type) 9278 and then Constraint_Present 9279 then 9280 Set_Stored_Constraint 9281 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs)); 9282 end if; 9283 9284 if Ada_Version >= Ada_2005 then 9285 declare 9286 Ifaces_List : Elist_Id; 9287 9288 begin 9289 -- Checks rules 3.9.4 (13/2 and 14/2) 9290 9291 if Comes_From_Source (Derived_Type) 9292 and then not Is_Private_Type (Derived_Type) 9293 and then Is_Interface (Parent_Type) 9294 and then not Is_Interface (Derived_Type) 9295 then 9296 if Is_Task_Interface (Parent_Type) then 9297 Error_Msg_N 9298 ("(Ada 2005) task type required (RM 3.9.4 (13.2))", 9299 Derived_Type); 9300 9301 elsif Is_Protected_Interface (Parent_Type) then 9302 Error_Msg_N 9303 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))", 9304 Derived_Type); 9305 end if; 9306 end if; 9307 9308 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2) 9309 9310 Check_Interfaces (N, Type_Def); 9311 9312 -- Ada 2005 (AI-251): Collect the list of progenitors that are 9313 -- not already in the parents. 9314 9315 Collect_Interfaces 9316 (T => Derived_Type, 9317 Ifaces_List => Ifaces_List, 9318 Exclude_Parents => True); 9319 9320 Set_Interfaces (Derived_Type, Ifaces_List); 9321 9322 -- If the derived type is the anonymous type created for 9323 -- a declaration whose parent has a constraint, propagate 9324 -- the interface list to the source type. This must be done 9325 -- prior to the completion of the analysis of the source type 9326 -- because the components in the extension may contain current 9327 -- instances whose legality depends on some ancestor. 9328 9329 if Is_Itype (Derived_Type) then 9330 declare 9331 Def : constant Node_Id := 9332 Associated_Node_For_Itype (Derived_Type); 9333 begin 9334 if Present (Def) 9335 and then Nkind (Def) = N_Full_Type_Declaration 9336 then 9337 Set_Interfaces 9338 (Defining_Identifier (Def), Ifaces_List); 9339 end if; 9340 end; 9341 end if; 9342 9343 -- A type extension is automatically Ghost when one of its 9344 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is 9345 -- also inherited when the parent type is Ghost, but this is 9346 -- done in Build_Derived_Type as the mechanism also handles 9347 -- untagged derivations. 9348 9349 if Implements_Ghost_Interface (Derived_Type) then 9350 Set_Is_Ghost_Entity (Derived_Type); 9351 end if; 9352 end; 9353 end if; 9354 end if; 9355 9356 -- STEP 4: Inherit components from the parent base and constrain them. 9357 -- Apply the second transformation described in point 6. above. 9358 9359 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims) 9360 or else not Has_Discriminants (Parent_Type) 9361 or else not Is_Constrained (Parent_Type) 9362 then 9363 Constrs := Discs; 9364 else 9365 Constrs := Discriminant_Constraint (Parent_Type); 9366 end if; 9367 9368 Assoc_List := 9369 Inherit_Components 9370 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs); 9371 9372 -- STEP 5a: Copy the parent record declaration for untagged types 9373 9374 Set_Has_Implicit_Dereference 9375 (Derived_Type, Has_Implicit_Dereference (Parent_Type)); 9376 9377 if not Is_Tagged then 9378 9379 -- Discriminant_Constraint (Derived_Type) has been properly 9380 -- constructed. Save it and temporarily set it to Empty because we 9381 -- do not want the call to New_Copy_Tree below to mess this list. 9382 9383 if Has_Discriminants (Derived_Type) then 9384 Save_Discr_Constr := Discriminant_Constraint (Derived_Type); 9385 Set_Discriminant_Constraint (Derived_Type, No_Elist); 9386 else 9387 Save_Discr_Constr := No_Elist; 9388 end if; 9389 9390 -- Save the Etype field of Derived_Type. It is correctly set now, 9391 -- but the call to New_Copy tree may remap it to point to itself, 9392 -- which is not what we want. Ditto for the Next_Entity field. 9393 9394 Save_Etype := Etype (Derived_Type); 9395 Save_Next_Entity := Next_Entity (Derived_Type); 9396 9397 -- Assoc_List maps all stored discriminants in the Parent_Base to 9398 -- stored discriminants in the Derived_Type. It is fundamental that 9399 -- no types or itypes with discriminants other than the stored 9400 -- discriminants appear in the entities declared inside 9401 -- Derived_Type, since the back end cannot deal with it. 9402 9403 New_Decl := 9404 New_Copy_Tree 9405 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc); 9406 Copy_Dimensions_Of_Components (Derived_Type); 9407 9408 -- Restore the fields saved prior to the New_Copy_Tree call 9409 -- and compute the stored constraint. 9410 9411 Set_Etype (Derived_Type, Save_Etype); 9412 Set_Next_Entity (Derived_Type, Save_Next_Entity); 9413 9414 if Has_Discriminants (Derived_Type) then 9415 Set_Discriminant_Constraint 9416 (Derived_Type, Save_Discr_Constr); 9417 Set_Stored_Constraint 9418 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs)); 9419 Replace_Components (Derived_Type, New_Decl); 9420 end if; 9421 9422 -- Insert the new derived type declaration 9423 9424 Rewrite (N, New_Decl); 9425 9426 -- STEP 5b: Complete the processing for record extensions in generics 9427 9428 -- There is no completion for record extensions declared in the 9429 -- parameter part of a generic, so we need to complete processing for 9430 -- these generic record extensions here. The Record_Type_Definition call 9431 -- will change the Ekind of the components from E_Void to E_Component. 9432 9433 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then 9434 Record_Type_Definition (Empty, Derived_Type); 9435 9436 -- STEP 5c: Process the record extension for non private tagged types 9437 9438 elsif not Private_Extension then 9439 Expand_Record_Extension (Derived_Type, Type_Def); 9440 9441 -- Note : previously in ASIS mode we set the Parent_Subtype of the 9442 -- derived type to propagate some semantic information. This led 9443 -- to other ASIS failures and has been removed. 9444 9445 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the 9446 -- implemented interfaces if we are in expansion mode 9447 9448 if Expander_Active 9449 and then Has_Interfaces (Derived_Type) 9450 then 9451 Add_Interface_Tag_Components (N, Derived_Type); 9452 end if; 9453 9454 -- Analyze the record extension 9455 9456 Record_Type_Definition 9457 (Record_Extension_Part (Type_Def), Derived_Type); 9458 end if; 9459 9460 End_Scope; 9461 9462 -- Nothing else to do if there is an error in the derivation. 9463 -- An unusual case: the full view may be derived from a type in an 9464 -- instance, when the partial view was used illegally as an actual 9465 -- in that instance, leading to a circular definition. 9466 9467 if Etype (Derived_Type) = Any_Type 9468 or else Etype (Parent_Type) = Derived_Type 9469 then 9470 return; 9471 end if; 9472 9473 -- Set delayed freeze and then derive subprograms, we need to do 9474 -- this in this order so that derived subprograms inherit the 9475 -- derived freeze if necessary. 9476 9477 Set_Has_Delayed_Freeze (Derived_Type); 9478 9479 if Derive_Subps then 9480 Derive_Subprograms (Parent_Type, Derived_Type); 9481 end if; 9482 9483 -- If we have a private extension which defines a constrained derived 9484 -- type mark as constrained here after we have derived subprograms. See 9485 -- comment on point 9. just above the body of Build_Derived_Record_Type. 9486 9487 if Private_Extension and then Inherit_Discrims then 9488 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then 9489 Set_Is_Constrained (Derived_Type, True); 9490 Set_Discriminant_Constraint (Derived_Type, Discs); 9491 9492 elsif Is_Constrained (Parent_Type) then 9493 Set_Is_Constrained 9494 (Derived_Type, True); 9495 Set_Discriminant_Constraint 9496 (Derived_Type, Discriminant_Constraint (Parent_Type)); 9497 end if; 9498 end if; 9499 9500 -- Update the class-wide type, which shares the now-completed entity 9501 -- list with its specific type. In case of underlying record views, 9502 -- we do not generate the corresponding class wide entity. 9503 9504 if Is_Tagged 9505 and then not Is_Underlying_Record_View (Derived_Type) 9506 then 9507 Set_First_Entity 9508 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type)); 9509 Set_Last_Entity 9510 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type)); 9511 end if; 9512 9513 Check_Function_Writable_Actuals (N); 9514 end Build_Derived_Record_Type; 9515 9516 ------------------------ 9517 -- Build_Derived_Type -- 9518 ------------------------ 9519 9520 procedure Build_Derived_Type 9521 (N : Node_Id; 9522 Parent_Type : Entity_Id; 9523 Derived_Type : Entity_Id; 9524 Is_Completion : Boolean; 9525 Derive_Subps : Boolean := True) 9526 is 9527 Parent_Base : constant Entity_Id := Base_Type (Parent_Type); 9528 9529 begin 9530 -- Set common attributes 9531 9532 Set_Scope (Derived_Type, Current_Scope); 9533 Set_Etype (Derived_Type, Parent_Base); 9534 Set_Ekind (Derived_Type, Ekind (Parent_Base)); 9535 Propagate_Concurrent_Flags (Derived_Type, Parent_Base); 9536 9537 Set_Size_Info (Derived_Type, Parent_Type); 9538 Set_RM_Size (Derived_Type, RM_Size (Parent_Type)); 9539 9540 Set_Is_Controlled_Active 9541 (Derived_Type, Is_Controlled_Active (Parent_Type)); 9542 9543 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type)); 9544 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type)); 9545 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type)); 9546 9547 if Is_Tagged_Type (Derived_Type) then 9548 Set_No_Tagged_Streams_Pragma 9549 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type)); 9550 end if; 9551 9552 -- If the parent has primitive routines, set the derived type link 9553 9554 if Has_Primitive_Operations (Parent_Type) then 9555 Set_Derived_Type_Link (Parent_Base, Derived_Type); 9556 end if; 9557 9558 -- If the parent type is a private subtype, the convention on the base 9559 -- type may be set in the private part, and not propagated to the 9560 -- subtype until later, so we obtain the convention from the base type. 9561 9562 Set_Convention (Derived_Type, Convention (Parent_Base)); 9563 9564 -- Set SSO default for record or array type 9565 9566 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type)) 9567 and then Is_Base_Type (Derived_Type) 9568 then 9569 Set_Default_SSO (Derived_Type); 9570 end if; 9571 9572 -- A derived type inherits the Default_Initial_Condition pragma coming 9573 -- from any parent type within the derivation chain. 9574 9575 if Has_DIC (Parent_Type) then 9576 Set_Has_Inherited_DIC (Derived_Type); 9577 end if; 9578 9579 -- A derived type inherits any class-wide invariants coming from a 9580 -- parent type or an interface. Note that the invariant procedure of 9581 -- the parent type should not be inherited because the derived type may 9582 -- define invariants of its own. 9583 9584 if not Is_Interface (Derived_Type) then 9585 if Has_Inherited_Invariants (Parent_Type) 9586 or else Has_Inheritable_Invariants (Parent_Type) 9587 then 9588 Set_Has_Inherited_Invariants (Derived_Type); 9589 9590 elsif Is_Concurrent_Type (Derived_Type) 9591 or else Is_Tagged_Type (Derived_Type) 9592 then 9593 declare 9594 Iface : Entity_Id; 9595 Ifaces : Elist_Id; 9596 Iface_Elmt : Elmt_Id; 9597 9598 begin 9599 Collect_Interfaces 9600 (T => Derived_Type, 9601 Ifaces_List => Ifaces, 9602 Exclude_Parents => True); 9603 9604 if Present (Ifaces) then 9605 Iface_Elmt := First_Elmt (Ifaces); 9606 while Present (Iface_Elmt) loop 9607 Iface := Node (Iface_Elmt); 9608 9609 if Has_Inheritable_Invariants (Iface) then 9610 Set_Has_Inherited_Invariants (Derived_Type); 9611 exit; 9612 end if; 9613 9614 Next_Elmt (Iface_Elmt); 9615 end loop; 9616 end if; 9617 end; 9618 end if; 9619 end if; 9620 9621 -- We similarly inherit predicates. Note that for scalar derived types 9622 -- the predicate is inherited from the first subtype, and not from its 9623 -- (anonymous) base type. 9624 9625 if Has_Predicates (Parent_Type) 9626 or else Has_Predicates (First_Subtype (Parent_Type)) 9627 then 9628 Set_Has_Predicates (Derived_Type); 9629 end if; 9630 9631 -- The derived type inherits representation clauses from the parent 9632 -- type, and from any interfaces. 9633 9634 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type); 9635 9636 declare 9637 Iface : Node_Id := First (Abstract_Interface_List (Derived_Type)); 9638 begin 9639 while Present (Iface) loop 9640 Inherit_Rep_Item_Chain (Derived_Type, Entity (Iface)); 9641 Next (Iface); 9642 end loop; 9643 end; 9644 9645 -- If the parent type has delayed rep aspects, then mark the derived 9646 -- type as possibly inheriting a delayed rep aspect. 9647 9648 if Has_Delayed_Rep_Aspects (Parent_Type) then 9649 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type); 9650 end if; 9651 9652 -- A derived type becomes Ghost when its parent type is also Ghost 9653 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not 9654 -- directly inherited because the Ghost policy in effect may differ. 9655 9656 if Is_Ghost_Entity (Parent_Type) then 9657 Set_Is_Ghost_Entity (Derived_Type); 9658 end if; 9659 9660 -- Type dependent processing 9661 9662 case Ekind (Parent_Type) is 9663 when Numeric_Kind => 9664 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type); 9665 9666 when Array_Kind => 9667 Build_Derived_Array_Type (N, Parent_Type, Derived_Type); 9668 9669 when Class_Wide_Kind 9670 | E_Record_Subtype 9671 | E_Record_Type 9672 => 9673 Build_Derived_Record_Type 9674 (N, Parent_Type, Derived_Type, Derive_Subps); 9675 return; 9676 9677 when Enumeration_Kind => 9678 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type); 9679 9680 when Access_Kind => 9681 Build_Derived_Access_Type (N, Parent_Type, Derived_Type); 9682 9683 when Incomplete_Or_Private_Kind => 9684 Build_Derived_Private_Type 9685 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps); 9686 9687 -- For discriminated types, the derivation includes deriving 9688 -- primitive operations. For others it is done below. 9689 9690 if Is_Tagged_Type (Parent_Type) 9691 or else Has_Discriminants (Parent_Type) 9692 or else (Present (Full_View (Parent_Type)) 9693 and then Has_Discriminants (Full_View (Parent_Type))) 9694 then 9695 return; 9696 end if; 9697 9698 when Concurrent_Kind => 9699 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type); 9700 9701 when others => 9702 raise Program_Error; 9703 end case; 9704 9705 -- Nothing more to do if some error occurred 9706 9707 if Etype (Derived_Type) = Any_Type then 9708 return; 9709 end if; 9710 9711 -- Set delayed freeze and then derive subprograms, we need to do this 9712 -- in this order so that derived subprograms inherit the derived freeze 9713 -- if necessary. 9714 9715 Set_Has_Delayed_Freeze (Derived_Type); 9716 9717 if Derive_Subps then 9718 Derive_Subprograms (Parent_Type, Derived_Type); 9719 end if; 9720 9721 Set_Has_Primitive_Operations 9722 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type)); 9723 end Build_Derived_Type; 9724 9725 ----------------------- 9726 -- Build_Discriminal -- 9727 ----------------------- 9728 9729 procedure Build_Discriminal (Discrim : Entity_Id) is 9730 D_Minal : Entity_Id; 9731 CR_Disc : Entity_Id; 9732 9733 begin 9734 -- A discriminal has the same name as the discriminant 9735 9736 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim)); 9737 9738 Set_Ekind (D_Minal, E_In_Parameter); 9739 Set_Mechanism (D_Minal, Default_Mechanism); 9740 Set_Etype (D_Minal, Etype (Discrim)); 9741 Set_Scope (D_Minal, Current_Scope); 9742 Set_Parent (D_Minal, Parent (Discrim)); 9743 9744 Set_Discriminal (Discrim, D_Minal); 9745 Set_Discriminal_Link (D_Minal, Discrim); 9746 9747 -- For task types, build at once the discriminants of the corresponding 9748 -- record, which are needed if discriminants are used in entry defaults 9749 -- and in family bounds. 9750 9751 if Is_Concurrent_Type (Current_Scope) 9752 or else 9753 Is_Limited_Type (Current_Scope) 9754 then 9755 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim)); 9756 9757 Set_Ekind (CR_Disc, E_In_Parameter); 9758 Set_Mechanism (CR_Disc, Default_Mechanism); 9759 Set_Etype (CR_Disc, Etype (Discrim)); 9760 Set_Scope (CR_Disc, Current_Scope); 9761 Set_Discriminal_Link (CR_Disc, Discrim); 9762 Set_CR_Discriminant (Discrim, CR_Disc); 9763 end if; 9764 end Build_Discriminal; 9765 9766 ------------------------------------ 9767 -- Build_Discriminant_Constraints -- 9768 ------------------------------------ 9769 9770 function Build_Discriminant_Constraints 9771 (T : Entity_Id; 9772 Def : Node_Id; 9773 Derived_Def : Boolean := False) return Elist_Id 9774 is 9775 C : constant Node_Id := Constraint (Def); 9776 Nb_Discr : constant Nat := Number_Discriminants (T); 9777 9778 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty); 9779 -- Saves the expression corresponding to a given discriminant in T 9780 9781 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat; 9782 -- Return the Position number within array Discr_Expr of a discriminant 9783 -- D within the discriminant list of the discriminated type T. 9784 9785 procedure Process_Discriminant_Expression 9786 (Expr : Node_Id; 9787 D : Entity_Id); 9788 -- If this is a discriminant constraint on a partial view, do not 9789 -- generate an overflow check on the discriminant expression. The check 9790 -- will be generated when constraining the full view. Otherwise the 9791 -- backend creates duplicate symbols for the temporaries corresponding 9792 -- to the expressions to be checked, causing spurious assembler errors. 9793 9794 ------------------ 9795 -- Pos_Of_Discr -- 9796 ------------------ 9797 9798 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is 9799 Disc : Entity_Id; 9800 9801 begin 9802 Disc := First_Discriminant (T); 9803 for J in Discr_Expr'Range loop 9804 if Disc = D then 9805 return J; 9806 end if; 9807 9808 Next_Discriminant (Disc); 9809 end loop; 9810 9811 -- Note: Since this function is called on discriminants that are 9812 -- known to belong to the discriminated type, falling through the 9813 -- loop with no match signals an internal compiler error. 9814 9815 raise Program_Error; 9816 end Pos_Of_Discr; 9817 9818 ------------------------------------- 9819 -- Process_Discriminant_Expression -- 9820 ------------------------------------- 9821 9822 procedure Process_Discriminant_Expression 9823 (Expr : Node_Id; 9824 D : Entity_Id) 9825 is 9826 BDT : constant Entity_Id := Base_Type (Etype (D)); 9827 9828 begin 9829 -- If this is a discriminant constraint on a partial view, do 9830 -- not generate an overflow on the discriminant expression. The 9831 -- check will be generated when constraining the full view. 9832 9833 if Is_Private_Type (T) 9834 and then Present (Full_View (T)) 9835 then 9836 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check); 9837 else 9838 Analyze_And_Resolve (Expr, BDT); 9839 end if; 9840 end Process_Discriminant_Expression; 9841 9842 -- Declarations local to Build_Discriminant_Constraints 9843 9844 Discr : Entity_Id; 9845 E : Entity_Id; 9846 Elist : constant Elist_Id := New_Elmt_List; 9847 9848 Constr : Node_Id; 9849 Expr : Node_Id; 9850 Id : Node_Id; 9851 Position : Nat; 9852 Found : Boolean; 9853 9854 Discrim_Present : Boolean := False; 9855 9856 -- Start of processing for Build_Discriminant_Constraints 9857 9858 begin 9859 -- The following loop will process positional associations only. 9860 -- For a positional association, the (single) discriminant is 9861 -- implicitly specified by position, in textual order (RM 3.7.2). 9862 9863 Discr := First_Discriminant (T); 9864 Constr := First (Constraints (C)); 9865 for D in Discr_Expr'Range loop 9866 exit when Nkind (Constr) = N_Discriminant_Association; 9867 9868 if No (Constr) then 9869 Error_Msg_N ("too few discriminants given in constraint", C); 9870 return New_Elmt_List; 9871 9872 elsif Nkind (Constr) = N_Range 9873 or else (Nkind (Constr) = N_Attribute_Reference 9874 and then Attribute_Name (Constr) = Name_Range) 9875 then 9876 Error_Msg_N 9877 ("a range is not a valid discriminant constraint", Constr); 9878 Discr_Expr (D) := Error; 9879 9880 else 9881 Process_Discriminant_Expression (Constr, Discr); 9882 Discr_Expr (D) := Constr; 9883 end if; 9884 9885 Next_Discriminant (Discr); 9886 Next (Constr); 9887 end loop; 9888 9889 if No (Discr) and then Present (Constr) then 9890 Error_Msg_N ("too many discriminants given in constraint", Constr); 9891 return New_Elmt_List; 9892 end if; 9893 9894 -- Named associations can be given in any order, but if both positional 9895 -- and named associations are used in the same discriminant constraint, 9896 -- then positional associations must occur first, at their normal 9897 -- position. Hence once a named association is used, the rest of the 9898 -- discriminant constraint must use only named associations. 9899 9900 while Present (Constr) loop 9901 9902 -- Positional association forbidden after a named association 9903 9904 if Nkind (Constr) /= N_Discriminant_Association then 9905 Error_Msg_N ("positional association follows named one", Constr); 9906 return New_Elmt_List; 9907 9908 -- Otherwise it is a named association 9909 9910 else 9911 -- E records the type of the discriminants in the named 9912 -- association. All the discriminants specified in the same name 9913 -- association must have the same type. 9914 9915 E := Empty; 9916 9917 -- Search the list of discriminants in T to see if the simple name 9918 -- given in the constraint matches any of them. 9919 9920 Id := First (Selector_Names (Constr)); 9921 while Present (Id) loop 9922 Found := False; 9923 9924 -- If Original_Discriminant is present, we are processing a 9925 -- generic instantiation and this is an instance node. We need 9926 -- to find the name of the corresponding discriminant in the 9927 -- actual record type T and not the name of the discriminant in 9928 -- the generic formal. Example: 9929 9930 -- generic 9931 -- type G (D : int) is private; 9932 -- package P is 9933 -- subtype W is G (D => 1); 9934 -- end package; 9935 -- type Rec (X : int) is record ... end record; 9936 -- package Q is new P (G => Rec); 9937 9938 -- At the point of the instantiation, formal type G is Rec 9939 -- and therefore when reanalyzing "subtype W is G (D => 1);" 9940 -- which really looks like "subtype W is Rec (D => 1);" at 9941 -- the point of instantiation, we want to find the discriminant 9942 -- that corresponds to D in Rec, i.e. X. 9943 9944 if Present (Original_Discriminant (Id)) 9945 and then In_Instance 9946 then 9947 Discr := Find_Corresponding_Discriminant (Id, T); 9948 Found := True; 9949 9950 else 9951 Discr := First_Discriminant (T); 9952 while Present (Discr) loop 9953 if Chars (Discr) = Chars (Id) then 9954 Found := True; 9955 exit; 9956 end if; 9957 9958 Next_Discriminant (Discr); 9959 end loop; 9960 9961 if not Found then 9962 Error_Msg_N ("& does not match any discriminant", Id); 9963 return New_Elmt_List; 9964 9965 -- If the parent type is a generic formal, preserve the 9966 -- name of the discriminant for subsequent instances. 9967 -- see comment at the beginning of this if statement. 9968 9969 elsif Is_Generic_Type (Root_Type (T)) then 9970 Set_Original_Discriminant (Id, Discr); 9971 end if; 9972 end if; 9973 9974 Position := Pos_Of_Discr (T, Discr); 9975 9976 if Present (Discr_Expr (Position)) then 9977 Error_Msg_N ("duplicate constraint for discriminant&", Id); 9978 9979 else 9980 -- Each discriminant specified in the same named association 9981 -- must be associated with a separate copy of the 9982 -- corresponding expression. 9983 9984 if Present (Next (Id)) then 9985 Expr := New_Copy_Tree (Expression (Constr)); 9986 Set_Parent (Expr, Parent (Expression (Constr))); 9987 else 9988 Expr := Expression (Constr); 9989 end if; 9990 9991 Discr_Expr (Position) := Expr; 9992 Process_Discriminant_Expression (Expr, Discr); 9993 end if; 9994 9995 -- A discriminant association with more than one discriminant 9996 -- name is only allowed if the named discriminants are all of 9997 -- the same type (RM 3.7.1(8)). 9998 9999 if E = Empty then 10000 E := Base_Type (Etype (Discr)); 10001 10002 elsif Base_Type (Etype (Discr)) /= E then 10003 Error_Msg_N 10004 ("all discriminants in an association " & 10005 "must have the same type", Id); 10006 end if; 10007 10008 Next (Id); 10009 end loop; 10010 end if; 10011 10012 Next (Constr); 10013 end loop; 10014 10015 -- A discriminant constraint must provide exactly one value for each 10016 -- discriminant of the type (RM 3.7.1(8)). 10017 10018 for J in Discr_Expr'Range loop 10019 if No (Discr_Expr (J)) then 10020 Error_Msg_N ("too few discriminants given in constraint", C); 10021 return New_Elmt_List; 10022 end if; 10023 end loop; 10024 10025 -- Determine if there are discriminant expressions in the constraint 10026 10027 for J in Discr_Expr'Range loop 10028 if Denotes_Discriminant 10029 (Discr_Expr (J), Check_Concurrent => True) 10030 then 10031 Discrim_Present := True; 10032 end if; 10033 end loop; 10034 10035 -- Build an element list consisting of the expressions given in the 10036 -- discriminant constraint and apply the appropriate checks. The list 10037 -- is constructed after resolving any named discriminant associations 10038 -- and therefore the expressions appear in the textual order of the 10039 -- discriminants. 10040 10041 Discr := First_Discriminant (T); 10042 for J in Discr_Expr'Range loop 10043 if Discr_Expr (J) /= Error then 10044 Append_Elmt (Discr_Expr (J), Elist); 10045 10046 -- If any of the discriminant constraints is given by a 10047 -- discriminant and we are in a derived type declaration we 10048 -- have a discriminant renaming. Establish link between new 10049 -- and old discriminant. The new discriminant has an implicit 10050 -- dereference if the old one does. 10051 10052 if Denotes_Discriminant (Discr_Expr (J)) then 10053 if Derived_Def then 10054 declare 10055 New_Discr : constant Entity_Id := Entity (Discr_Expr (J)); 10056 10057 begin 10058 Set_Corresponding_Discriminant (New_Discr, Discr); 10059 Set_Has_Implicit_Dereference (New_Discr, 10060 Has_Implicit_Dereference (Discr)); 10061 end; 10062 end if; 10063 10064 -- Force the evaluation of non-discriminant expressions. 10065 -- If we have found a discriminant in the constraint 3.4(26) 10066 -- and 3.8(18) demand that no range checks are performed are 10067 -- after evaluation. If the constraint is for a component 10068 -- definition that has a per-object constraint, expressions are 10069 -- evaluated but not checked either. In all other cases perform 10070 -- a range check. 10071 10072 else 10073 if Discrim_Present then 10074 null; 10075 10076 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration 10077 and then Has_Per_Object_Constraint 10078 (Defining_Identifier (Parent (Parent (Def)))) 10079 then 10080 null; 10081 10082 elsif Is_Access_Type (Etype (Discr)) then 10083 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr)); 10084 10085 else 10086 Apply_Range_Check (Discr_Expr (J), Etype (Discr)); 10087 end if; 10088 10089 Force_Evaluation (Discr_Expr (J)); 10090 end if; 10091 10092 -- Check that the designated type of an access discriminant's 10093 -- expression is not a class-wide type unless the discriminant's 10094 -- designated type is also class-wide. 10095 10096 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type 10097 and then not Is_Class_Wide_Type 10098 (Designated_Type (Etype (Discr))) 10099 and then Etype (Discr_Expr (J)) /= Any_Type 10100 and then Is_Class_Wide_Type 10101 (Designated_Type (Etype (Discr_Expr (J)))) 10102 then 10103 Wrong_Type (Discr_Expr (J), Etype (Discr)); 10104 10105 elsif Is_Access_Type (Etype (Discr)) 10106 and then not Is_Access_Constant (Etype (Discr)) 10107 and then Is_Access_Type (Etype (Discr_Expr (J))) 10108 and then Is_Access_Constant (Etype (Discr_Expr (J))) 10109 then 10110 Error_Msg_NE 10111 ("constraint for discriminant& must be access to variable", 10112 Def, Discr); 10113 end if; 10114 end if; 10115 10116 Next_Discriminant (Discr); 10117 end loop; 10118 10119 return Elist; 10120 end Build_Discriminant_Constraints; 10121 10122 --------------------------------- 10123 -- Build_Discriminated_Subtype -- 10124 --------------------------------- 10125 10126 procedure Build_Discriminated_Subtype 10127 (T : Entity_Id; 10128 Def_Id : Entity_Id; 10129 Elist : Elist_Id; 10130 Related_Nod : Node_Id; 10131 For_Access : Boolean := False) 10132 is 10133 Has_Discrs : constant Boolean := Has_Discriminants (T); 10134 Constrained : constant Boolean := 10135 (Has_Discrs 10136 and then not Is_Empty_Elmt_List (Elist) 10137 and then not Is_Class_Wide_Type (T)) 10138 or else Is_Constrained (T); 10139 10140 begin 10141 if Ekind (T) = E_Record_Type then 10142 if For_Access then 10143 Set_Ekind (Def_Id, E_Private_Subtype); 10144 Set_Is_For_Access_Subtype (Def_Id, True); 10145 else 10146 Set_Ekind (Def_Id, E_Record_Subtype); 10147 end if; 10148 10149 -- Inherit preelaboration flag from base, for types for which it 10150 -- may have been set: records, private types, protected types. 10151 10152 Set_Known_To_Have_Preelab_Init 10153 (Def_Id, Known_To_Have_Preelab_Init (T)); 10154 10155 elsif Ekind (T) = E_Task_Type then 10156 Set_Ekind (Def_Id, E_Task_Subtype); 10157 10158 elsif Ekind (T) = E_Protected_Type then 10159 Set_Ekind (Def_Id, E_Protected_Subtype); 10160 Set_Known_To_Have_Preelab_Init 10161 (Def_Id, Known_To_Have_Preelab_Init (T)); 10162 10163 elsif Is_Private_Type (T) then 10164 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T))); 10165 Set_Known_To_Have_Preelab_Init 10166 (Def_Id, Known_To_Have_Preelab_Init (T)); 10167 10168 -- Private subtypes may have private dependents 10169 10170 Set_Private_Dependents (Def_Id, New_Elmt_List); 10171 10172 elsif Is_Class_Wide_Type (T) then 10173 Set_Ekind (Def_Id, E_Class_Wide_Subtype); 10174 10175 else 10176 -- Incomplete type. Attach subtype to list of dependents, to be 10177 -- completed with full view of parent type, unless is it the 10178 -- designated subtype of a record component within an init_proc. 10179 -- This last case arises for a component of an access type whose 10180 -- designated type is incomplete (e.g. a Taft Amendment type). 10181 -- The designated subtype is within an inner scope, and needs no 10182 -- elaboration, because only the access type is needed in the 10183 -- initialization procedure. 10184 10185 if Ekind (T) = E_Incomplete_Type then 10186 Set_Ekind (Def_Id, E_Incomplete_Subtype); 10187 else 10188 Set_Ekind (Def_Id, Ekind (T)); 10189 end if; 10190 10191 if For_Access and then Within_Init_Proc then 10192 null; 10193 else 10194 Append_Elmt (Def_Id, Private_Dependents (T)); 10195 end if; 10196 end if; 10197 10198 Set_Etype (Def_Id, T); 10199 Init_Size_Align (Def_Id); 10200 Set_Has_Discriminants (Def_Id, Has_Discrs); 10201 Set_Is_Constrained (Def_Id, Constrained); 10202 10203 Set_First_Entity (Def_Id, First_Entity (T)); 10204 Set_Last_Entity (Def_Id, Last_Entity (T)); 10205 Set_Has_Implicit_Dereference 10206 (Def_Id, Has_Implicit_Dereference (T)); 10207 Set_Has_Pragma_Unreferenced_Objects 10208 (Def_Id, Has_Pragma_Unreferenced_Objects (T)); 10209 10210 -- If the subtype is the completion of a private declaration, there may 10211 -- have been representation clauses for the partial view, and they must 10212 -- be preserved. Build_Derived_Type chains the inherited clauses with 10213 -- the ones appearing on the extension. If this comes from a subtype 10214 -- declaration, all clauses are inherited. 10215 10216 if No (First_Rep_Item (Def_Id)) then 10217 Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); 10218 end if; 10219 10220 if Is_Tagged_Type (T) then 10221 Set_Is_Tagged_Type (Def_Id); 10222 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T)); 10223 Make_Class_Wide_Type (Def_Id); 10224 end if; 10225 10226 Set_Stored_Constraint (Def_Id, No_Elist); 10227 10228 if Has_Discrs then 10229 Set_Discriminant_Constraint (Def_Id, Elist); 10230 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id); 10231 end if; 10232 10233 if Is_Tagged_Type (T) then 10234 10235 -- Ada 2005 (AI-251): In case of concurrent types we inherit the 10236 -- concurrent record type (which has the list of primitive 10237 -- operations). 10238 10239 if Ada_Version >= Ada_2005 10240 and then Is_Concurrent_Type (T) 10241 then 10242 Set_Corresponding_Record_Type (Def_Id, 10243 Corresponding_Record_Type (T)); 10244 else 10245 Set_Direct_Primitive_Operations (Def_Id, 10246 Direct_Primitive_Operations (T)); 10247 end if; 10248 10249 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T)); 10250 end if; 10251 10252 -- Subtypes introduced by component declarations do not need to be 10253 -- marked as delayed, and do not get freeze nodes, because the semantics 10254 -- verifies that the parents of the subtypes are frozen before the 10255 -- enclosing record is frozen. 10256 10257 if not Is_Type (Scope (Def_Id)) then 10258 Set_Depends_On_Private (Def_Id, Depends_On_Private (T)); 10259 10260 if Is_Private_Type (T) 10261 and then Present (Full_View (T)) 10262 then 10263 Conditional_Delay (Def_Id, Full_View (T)); 10264 else 10265 Conditional_Delay (Def_Id, T); 10266 end if; 10267 end if; 10268 10269 if Is_Record_Type (T) then 10270 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T)); 10271 10272 if Has_Discrs 10273 and then not Is_Empty_Elmt_List (Elist) 10274 and then not For_Access 10275 then 10276 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist); 10277 10278 elsif not For_Access then 10279 Set_Cloned_Subtype (Def_Id, T); 10280 end if; 10281 end if; 10282 end Build_Discriminated_Subtype; 10283 10284 --------------------------- 10285 -- Build_Itype_Reference -- 10286 --------------------------- 10287 10288 procedure Build_Itype_Reference 10289 (Ityp : Entity_Id; 10290 Nod : Node_Id) 10291 is 10292 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod)); 10293 begin 10294 10295 -- Itype references are only created for use by the back-end 10296 10297 if Inside_A_Generic then 10298 return; 10299 else 10300 Set_Itype (IR, Ityp); 10301 10302 -- If Nod is a library unit entity, then Insert_After won't work, 10303 -- because Nod is not a member of any list. Therefore, we use 10304 -- Add_Global_Declaration in this case. This can happen if we have a 10305 -- build-in-place library function. 10306 10307 if (Nkind (Nod) in N_Entity and then Is_Compilation_Unit (Nod)) 10308 or else 10309 (Nkind (Nod) = N_Defining_Program_Unit_Name 10310 and then Is_Compilation_Unit (Defining_Identifier (Nod))) 10311 then 10312 Add_Global_Declaration (IR); 10313 else 10314 Insert_After (Nod, IR); 10315 end if; 10316 end if; 10317 end Build_Itype_Reference; 10318 10319 ------------------------ 10320 -- Build_Scalar_Bound -- 10321 ------------------------ 10322 10323 function Build_Scalar_Bound 10324 (Bound : Node_Id; 10325 Par_T : Entity_Id; 10326 Der_T : Entity_Id) return Node_Id 10327 is 10328 New_Bound : Entity_Id; 10329 10330 begin 10331 -- Note: not clear why this is needed, how can the original bound 10332 -- be unanalyzed at this point? and if it is, what business do we 10333 -- have messing around with it? and why is the base type of the 10334 -- parent type the right type for the resolution. It probably is 10335 -- not. It is OK for the new bound we are creating, but not for 10336 -- the old one??? Still if it never happens, no problem. 10337 10338 Analyze_And_Resolve (Bound, Base_Type (Par_T)); 10339 10340 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then 10341 New_Bound := New_Copy (Bound); 10342 Set_Etype (New_Bound, Der_T); 10343 Set_Analyzed (New_Bound); 10344 10345 elsif Is_Entity_Name (Bound) then 10346 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound)); 10347 10348 -- The following is almost certainly wrong. What business do we have 10349 -- relocating a node (Bound) that is presumably still attached to 10350 -- the tree elsewhere??? 10351 10352 else 10353 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound)); 10354 end if; 10355 10356 Set_Etype (New_Bound, Der_T); 10357 return New_Bound; 10358 end Build_Scalar_Bound; 10359 10360 -------------------------------- 10361 -- Build_Underlying_Full_View -- 10362 -------------------------------- 10363 10364 procedure Build_Underlying_Full_View 10365 (N : Node_Id; 10366 Typ : Entity_Id; 10367 Par : Entity_Id) 10368 is 10369 Loc : constant Source_Ptr := Sloc (N); 10370 Subt : constant Entity_Id := 10371 Make_Defining_Identifier 10372 (Loc, New_External_Name (Chars (Typ), 'S')); 10373 10374 Constr : Node_Id; 10375 Indic : Node_Id; 10376 C : Node_Id; 10377 Id : Node_Id; 10378 10379 procedure Set_Discriminant_Name (Id : Node_Id); 10380 -- If the derived type has discriminants, they may rename discriminants 10381 -- of the parent. When building the full view of the parent, we need to 10382 -- recover the names of the original discriminants if the constraint is 10383 -- given by named associations. 10384 10385 --------------------------- 10386 -- Set_Discriminant_Name -- 10387 --------------------------- 10388 10389 procedure Set_Discriminant_Name (Id : Node_Id) is 10390 Disc : Entity_Id; 10391 10392 begin 10393 Set_Original_Discriminant (Id, Empty); 10394 10395 if Has_Discriminants (Typ) then 10396 Disc := First_Discriminant (Typ); 10397 while Present (Disc) loop 10398 if Chars (Disc) = Chars (Id) 10399 and then Present (Corresponding_Discriminant (Disc)) 10400 then 10401 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc))); 10402 end if; 10403 Next_Discriminant (Disc); 10404 end loop; 10405 end if; 10406 end Set_Discriminant_Name; 10407 10408 -- Start of processing for Build_Underlying_Full_View 10409 10410 begin 10411 if Nkind (N) = N_Full_Type_Declaration then 10412 Constr := Constraint (Subtype_Indication (Type_Definition (N))); 10413 10414 elsif Nkind (N) = N_Subtype_Declaration then 10415 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N))); 10416 10417 elsif Nkind (N) = N_Component_Declaration then 10418 Constr := 10419 New_Copy_Tree 10420 (Constraint (Subtype_Indication (Component_Definition (N)))); 10421 10422 else 10423 raise Program_Error; 10424 end if; 10425 10426 C := First (Constraints (Constr)); 10427 while Present (C) loop 10428 if Nkind (C) = N_Discriminant_Association then 10429 Id := First (Selector_Names (C)); 10430 while Present (Id) loop 10431 Set_Discriminant_Name (Id); 10432 Next (Id); 10433 end loop; 10434 end if; 10435 10436 Next (C); 10437 end loop; 10438 10439 Indic := 10440 Make_Subtype_Declaration (Loc, 10441 Defining_Identifier => Subt, 10442 Subtype_Indication => 10443 Make_Subtype_Indication (Loc, 10444 Subtype_Mark => New_Occurrence_Of (Par, Loc), 10445 Constraint => New_Copy_Tree (Constr))); 10446 10447 -- If this is a component subtype for an outer itype, it is not 10448 -- a list member, so simply set the parent link for analysis: if 10449 -- the enclosing type does not need to be in a declarative list, 10450 -- neither do the components. 10451 10452 if Is_List_Member (N) 10453 and then Nkind (N) /= N_Component_Declaration 10454 then 10455 Insert_Before (N, Indic); 10456 else 10457 Set_Parent (Indic, Parent (N)); 10458 end if; 10459 10460 Analyze (Indic); 10461 Set_Underlying_Full_View (Typ, Full_View (Subt)); 10462 Set_Is_Underlying_Full_View (Full_View (Subt)); 10463 end Build_Underlying_Full_View; 10464 10465 ------------------------------- 10466 -- Check_Abstract_Overriding -- 10467 ------------------------------- 10468 10469 procedure Check_Abstract_Overriding (T : Entity_Id) is 10470 Alias_Subp : Entity_Id; 10471 Elmt : Elmt_Id; 10472 Op_List : Elist_Id; 10473 Subp : Entity_Id; 10474 Type_Def : Node_Id; 10475 10476 procedure Check_Pragma_Implemented (Subp : Entity_Id); 10477 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine 10478 -- which has pragma Implemented already set. Check whether Subp's entity 10479 -- kind conforms to the implementation kind of the overridden routine. 10480 10481 procedure Check_Pragma_Implemented 10482 (Subp : Entity_Id; 10483 Iface_Subp : Entity_Id); 10484 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine 10485 -- Iface_Subp and both entities have pragma Implemented already set on 10486 -- them. Check whether the two implementation kinds are conforming. 10487 10488 procedure Inherit_Pragma_Implemented 10489 (Subp : Entity_Id; 10490 Iface_Subp : Entity_Id); 10491 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface 10492 -- subprogram Iface_Subp which has been marked by pragma Implemented. 10493 -- Propagate the implementation kind of Iface_Subp to Subp. 10494 10495 ------------------------------ 10496 -- Check_Pragma_Implemented -- 10497 ------------------------------ 10498 10499 procedure Check_Pragma_Implemented (Subp : Entity_Id) is 10500 Iface_Alias : constant Entity_Id := Interface_Alias (Subp); 10501 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias); 10502 Subp_Alias : constant Entity_Id := Alias (Subp); 10503 Contr_Typ : Entity_Id; 10504 Impl_Subp : Entity_Id; 10505 10506 begin 10507 -- Subp must have an alias since it is a hidden entity used to link 10508 -- an interface subprogram to its overriding counterpart. 10509 10510 pragma Assert (Present (Subp_Alias)); 10511 10512 -- Handle aliases to synchronized wrappers 10513 10514 Impl_Subp := Subp_Alias; 10515 10516 if Is_Primitive_Wrapper (Impl_Subp) then 10517 Impl_Subp := Wrapped_Entity (Impl_Subp); 10518 end if; 10519 10520 -- Extract the type of the controlling formal 10521 10522 Contr_Typ := Etype (First_Formal (Subp_Alias)); 10523 10524 if Is_Concurrent_Record_Type (Contr_Typ) then 10525 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ); 10526 end if; 10527 10528 -- An interface subprogram whose implementation kind is By_Entry must 10529 -- be implemented by an entry. 10530 10531 if Impl_Kind = Name_By_Entry 10532 and then Ekind (Impl_Subp) /= E_Entry 10533 then 10534 Error_Msg_Node_2 := Iface_Alias; 10535 Error_Msg_NE 10536 ("type & must implement abstract subprogram & with an entry", 10537 Subp_Alias, Contr_Typ); 10538 10539 elsif Impl_Kind = Name_By_Protected_Procedure then 10540 10541 -- An interface subprogram whose implementation kind is By_ 10542 -- Protected_Procedure cannot be implemented by a primitive 10543 -- procedure of a task type. 10544 10545 if Ekind (Contr_Typ) /= E_Protected_Type then 10546 Error_Msg_Node_2 := Contr_Typ; 10547 Error_Msg_NE 10548 ("interface subprogram & cannot be implemented by a " & 10549 "primitive procedure of task type &", Subp_Alias, 10550 Iface_Alias); 10551 10552 -- An interface subprogram whose implementation kind is By_ 10553 -- Protected_Procedure must be implemented by a procedure. 10554 10555 elsif Ekind (Impl_Subp) /= E_Procedure then 10556 Error_Msg_Node_2 := Iface_Alias; 10557 Error_Msg_NE 10558 ("type & must implement abstract subprogram & with a " & 10559 "procedure", Subp_Alias, Contr_Typ); 10560 10561 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented)) 10562 and then Implementation_Kind (Impl_Subp) /= Impl_Kind 10563 then 10564 Error_Msg_Name_1 := Impl_Kind; 10565 Error_Msg_N 10566 ("overriding operation& must have synchronization%", 10567 Subp_Alias); 10568 end if; 10569 10570 -- If primitive has Optional synchronization, overriding operation 10571 -- must match if it has an explicit synchronization.. 10572 10573 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented)) 10574 and then Implementation_Kind (Impl_Subp) /= Impl_Kind 10575 then 10576 Error_Msg_Name_1 := Impl_Kind; 10577 Error_Msg_N 10578 ("overriding operation& must have syncrhonization%", 10579 Subp_Alias); 10580 end if; 10581 end Check_Pragma_Implemented; 10582 10583 ------------------------------ 10584 -- Check_Pragma_Implemented -- 10585 ------------------------------ 10586 10587 procedure Check_Pragma_Implemented 10588 (Subp : Entity_Id; 10589 Iface_Subp : Entity_Id) 10590 is 10591 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp); 10592 Subp_Kind : constant Name_Id := Implementation_Kind (Subp); 10593 10594 begin 10595 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden 10596 -- and overriding subprogram are different. In general this is an 10597 -- error except when the implementation kind of the overridden 10598 -- subprograms is By_Any or Optional. 10599 10600 if Iface_Kind /= Subp_Kind 10601 and then Iface_Kind /= Name_By_Any 10602 and then Iface_Kind /= Name_Optional 10603 then 10604 if Iface_Kind = Name_By_Entry then 10605 Error_Msg_N 10606 ("incompatible implementation kind, overridden subprogram " & 10607 "is marked By_Entry", Subp); 10608 else 10609 Error_Msg_N 10610 ("incompatible implementation kind, overridden subprogram " & 10611 "is marked By_Protected_Procedure", Subp); 10612 end if; 10613 end if; 10614 end Check_Pragma_Implemented; 10615 10616 -------------------------------- 10617 -- Inherit_Pragma_Implemented -- 10618 -------------------------------- 10619 10620 procedure Inherit_Pragma_Implemented 10621 (Subp : Entity_Id; 10622 Iface_Subp : Entity_Id) 10623 is 10624 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp); 10625 Loc : constant Source_Ptr := Sloc (Subp); 10626 Impl_Prag : Node_Id; 10627 10628 begin 10629 -- Since the implementation kind is stored as a representation item 10630 -- rather than a flag, create a pragma node. 10631 10632 Impl_Prag := 10633 Make_Pragma (Loc, 10634 Chars => Name_Implemented, 10635 Pragma_Argument_Associations => New_List ( 10636 Make_Pragma_Argument_Association (Loc, 10637 Expression => New_Occurrence_Of (Subp, Loc)), 10638 10639 Make_Pragma_Argument_Association (Loc, 10640 Expression => Make_Identifier (Loc, Iface_Kind)))); 10641 10642 -- The pragma doesn't need to be analyzed because it is internally 10643 -- built. It is safe to directly register it as a rep item since we 10644 -- are only interested in the characters of the implementation kind. 10645 10646 Record_Rep_Item (Subp, Impl_Prag); 10647 end Inherit_Pragma_Implemented; 10648 10649 -- Start of processing for Check_Abstract_Overriding 10650 10651 begin 10652 Op_List := Primitive_Operations (T); 10653 10654 -- Loop to check primitive operations 10655 10656 Elmt := First_Elmt (Op_List); 10657 while Present (Elmt) loop 10658 Subp := Node (Elmt); 10659 Alias_Subp := Alias (Subp); 10660 10661 -- Inherited subprograms are identified by the fact that they do not 10662 -- come from source, and the associated source location is the 10663 -- location of the first subtype of the derived type. 10664 10665 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for 10666 -- subprograms that "require overriding". 10667 10668 -- Special exception, do not complain about failure to override the 10669 -- stream routines _Input and _Output, as well as the primitive 10670 -- operations used in dispatching selects since we always provide 10671 -- automatic overridings for these subprograms. 10672 10673 -- The partial view of T may have been a private extension, for 10674 -- which inherited functions dispatching on result are abstract. 10675 -- If the full view is a null extension, there is no need for 10676 -- overriding in Ada 2005, but wrappers need to be built for them 10677 -- (see exp_ch3, Build_Controlling_Function_Wrappers). 10678 10679 if Is_Null_Extension (T) 10680 and then Has_Controlling_Result (Subp) 10681 and then Ada_Version >= Ada_2005 10682 and then Present (Alias_Subp) 10683 and then not Comes_From_Source (Subp) 10684 and then not Is_Abstract_Subprogram (Alias_Subp) 10685 and then not Is_Access_Type (Etype (Subp)) 10686 then 10687 null; 10688 10689 -- Ada 2005 (AI-251): Internal entities of interfaces need no 10690 -- processing because this check is done with the aliased 10691 -- entity 10692 10693 elsif Present (Interface_Alias (Subp)) then 10694 null; 10695 10696 elsif (Is_Abstract_Subprogram (Subp) 10697 or else Requires_Overriding (Subp) 10698 or else 10699 (Has_Controlling_Result (Subp) 10700 and then Present (Alias_Subp) 10701 and then not Comes_From_Source (Subp) 10702 and then Sloc (Subp) = Sloc (First_Subtype (T)))) 10703 and then not Is_TSS (Subp, TSS_Stream_Input) 10704 and then not Is_TSS (Subp, TSS_Stream_Output) 10705 and then not Is_Abstract_Type (T) 10706 and then not Is_Predefined_Interface_Primitive (Subp) 10707 10708 -- Ada 2005 (AI-251): Do not consider hidden entities associated 10709 -- with abstract interface types because the check will be done 10710 -- with the aliased entity (otherwise we generate a duplicated 10711 -- error message). 10712 10713 and then not Present (Interface_Alias (Subp)) 10714 then 10715 if Present (Alias_Subp) then 10716 10717 -- Only perform the check for a derived subprogram when the 10718 -- type has an explicit record extension. This avoids incorrect 10719 -- flagging of abstract subprograms for the case of a type 10720 -- without an extension that is derived from a formal type 10721 -- with a tagged actual (can occur within a private part). 10722 10723 -- Ada 2005 (AI-391): In the case of an inherited function with 10724 -- a controlling result of the type, the rule does not apply if 10725 -- the type is a null extension (unless the parent function 10726 -- itself is abstract, in which case the function must still be 10727 -- be overridden). The expander will generate an overriding 10728 -- wrapper function calling the parent subprogram (see 10729 -- Exp_Ch3.Make_Controlling_Wrapper_Functions). 10730 10731 Type_Def := Type_Definition (Parent (T)); 10732 10733 if Nkind (Type_Def) = N_Derived_Type_Definition 10734 and then Present (Record_Extension_Part (Type_Def)) 10735 and then 10736 (Ada_Version < Ada_2005 10737 or else not Is_Null_Extension (T) 10738 or else Ekind (Subp) = E_Procedure 10739 or else not Has_Controlling_Result (Subp) 10740 or else Is_Abstract_Subprogram (Alias_Subp) 10741 or else Requires_Overriding (Subp) 10742 or else Is_Access_Type (Etype (Subp))) 10743 then 10744 -- Avoid reporting error in case of abstract predefined 10745 -- primitive inherited from interface type because the 10746 -- body of internally generated predefined primitives 10747 -- of tagged types are generated later by Freeze_Type 10748 10749 if Is_Interface (Root_Type (T)) 10750 and then Is_Abstract_Subprogram (Subp) 10751 and then Is_Predefined_Dispatching_Operation (Subp) 10752 and then not Comes_From_Source (Ultimate_Alias (Subp)) 10753 then 10754 null; 10755 10756 -- A null extension is not obliged to override an inherited 10757 -- procedure subject to pragma Extensions_Visible with value 10758 -- False and at least one controlling OUT parameter 10759 -- (SPARK RM 6.1.7(6)). 10760 10761 elsif Is_Null_Extension (T) 10762 and then Is_EVF_Procedure (Subp) 10763 then 10764 null; 10765 10766 else 10767 Error_Msg_NE 10768 ("type must be declared abstract or & overridden", 10769 T, Subp); 10770 10771 -- Traverse the whole chain of aliased subprograms to 10772 -- complete the error notification. This is especially 10773 -- useful for traceability of the chain of entities when 10774 -- the subprogram corresponds with an interface 10775 -- subprogram (which may be defined in another package). 10776 10777 if Present (Alias_Subp) then 10778 declare 10779 E : Entity_Id; 10780 10781 begin 10782 E := Subp; 10783 while Present (Alias (E)) loop 10784 10785 -- Avoid reporting redundant errors on entities 10786 -- inherited from interfaces 10787 10788 if Sloc (E) /= Sloc (T) then 10789 Error_Msg_Sloc := Sloc (E); 10790 Error_Msg_NE 10791 ("\& has been inherited #", T, Subp); 10792 end if; 10793 10794 E := Alias (E); 10795 end loop; 10796 10797 Error_Msg_Sloc := Sloc (E); 10798 10799 -- AI05-0068: report if there is an overriding 10800 -- non-abstract subprogram that is invisible. 10801 10802 if Is_Hidden (E) 10803 and then not Is_Abstract_Subprogram (E) 10804 then 10805 Error_Msg_NE 10806 ("\& subprogram# is not visible", 10807 T, Subp); 10808 10809 -- Clarify the case where a non-null extension must 10810 -- override inherited procedure subject to pragma 10811 -- Extensions_Visible with value False and at least 10812 -- one controlling OUT param. 10813 10814 elsif Is_EVF_Procedure (E) then 10815 Error_Msg_NE 10816 ("\& # is subject to Extensions_Visible False", 10817 T, Subp); 10818 10819 else 10820 Error_Msg_NE 10821 ("\& has been inherited from subprogram #", 10822 T, Subp); 10823 end if; 10824 end; 10825 end if; 10826 end if; 10827 10828 -- Ada 2005 (AI-345): Protected or task type implementing 10829 -- abstract interfaces. 10830 10831 elsif Is_Concurrent_Record_Type (T) 10832 and then Present (Interfaces (T)) 10833 then 10834 -- There is no need to check here RM 9.4(11.9/3) since we 10835 -- are processing the corresponding record type and the 10836 -- mode of the overriding subprograms was verified by 10837 -- Check_Conformance when the corresponding concurrent 10838 -- type declaration was analyzed. 10839 10840 Error_Msg_NE 10841 ("interface subprogram & must be overridden", T, Subp); 10842 10843 -- Examine primitive operations of synchronized type to find 10844 -- homonyms that have the wrong profile. 10845 10846 declare 10847 Prim : Entity_Id; 10848 10849 begin 10850 Prim := First_Entity (Corresponding_Concurrent_Type (T)); 10851 while Present (Prim) loop 10852 if Chars (Prim) = Chars (Subp) then 10853 Error_Msg_NE 10854 ("profile is not type conformant with prefixed " 10855 & "view profile of inherited operation&", 10856 Prim, Subp); 10857 end if; 10858 10859 Next_Entity (Prim); 10860 end loop; 10861 end; 10862 end if; 10863 10864 else 10865 Error_Msg_Node_2 := T; 10866 Error_Msg_N 10867 ("abstract subprogram& not allowed for type&", Subp); 10868 10869 -- Also post unconditional warning on the type (unconditional 10870 -- so that if there are more than one of these cases, we get 10871 -- them all, and not just the first one). 10872 10873 Error_Msg_Node_2 := Subp; 10874 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T); 10875 end if; 10876 10877 -- A subprogram subject to pragma Extensions_Visible with value 10878 -- "True" cannot override a subprogram subject to the same pragma 10879 -- with value "False" (SPARK RM 6.1.7(5)). 10880 10881 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True 10882 and then Present (Overridden_Operation (Subp)) 10883 and then Extensions_Visible_Status (Overridden_Operation (Subp)) = 10884 Extensions_Visible_False 10885 then 10886 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp)); 10887 Error_Msg_N 10888 ("subprogram & with Extensions_Visible True cannot override " 10889 & "subprogram # with Extensions_Visible False", Subp); 10890 end if; 10891 10892 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented 10893 10894 -- Subp is an expander-generated procedure which maps an interface 10895 -- alias to a protected wrapper. The interface alias is flagged by 10896 -- pragma Implemented. Ensure that Subp is a procedure when the 10897 -- implementation kind is By_Protected_Procedure or an entry when 10898 -- By_Entry. 10899 10900 if Ada_Version >= Ada_2012 10901 and then Is_Hidden (Subp) 10902 and then Present (Interface_Alias (Subp)) 10903 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented) 10904 then 10905 Check_Pragma_Implemented (Subp); 10906 end if; 10907 10908 -- Subp is an interface primitive which overrides another interface 10909 -- primitive marked with pragma Implemented. 10910 10911 if Ada_Version >= Ada_2012 10912 and then Present (Overridden_Operation (Subp)) 10913 and then Has_Rep_Pragma 10914 (Overridden_Operation (Subp), Name_Implemented) 10915 then 10916 -- If the overriding routine is also marked by Implemented, check 10917 -- that the two implementation kinds are conforming. 10918 10919 if Has_Rep_Pragma (Subp, Name_Implemented) then 10920 Check_Pragma_Implemented 10921 (Subp => Subp, 10922 Iface_Subp => Overridden_Operation (Subp)); 10923 10924 -- Otherwise the overriding routine inherits the implementation 10925 -- kind from the overridden subprogram. 10926 10927 else 10928 Inherit_Pragma_Implemented 10929 (Subp => Subp, 10930 Iface_Subp => Overridden_Operation (Subp)); 10931 end if; 10932 end if; 10933 10934 -- If the operation is a wrapper for a synchronized primitive, it 10935 -- may be called indirectly through a dispatching select. We assume 10936 -- that it will be referenced elsewhere indirectly, and suppress 10937 -- warnings about an unused entity. 10938 10939 if Is_Primitive_Wrapper (Subp) 10940 and then Present (Wrapped_Entity (Subp)) 10941 then 10942 Set_Referenced (Wrapped_Entity (Subp)); 10943 end if; 10944 10945 Next_Elmt (Elmt); 10946 end loop; 10947 end Check_Abstract_Overriding; 10948 10949 ------------------------------------------------ 10950 -- Check_Access_Discriminant_Requires_Limited -- 10951 ------------------------------------------------ 10952 10953 procedure Check_Access_Discriminant_Requires_Limited 10954 (D : Node_Id; 10955 Loc : Node_Id) 10956 is 10957 begin 10958 -- A discriminant_specification for an access discriminant shall appear 10959 -- only in the declaration for a task or protected type, or for a type 10960 -- with the reserved word 'limited' in its definition or in one of its 10961 -- ancestors (RM 3.7(10)). 10962 10963 -- AI-0063: The proper condition is that type must be immutably limited, 10964 -- or else be a partial view. 10965 10966 if Nkind (Discriminant_Type (D)) = N_Access_Definition then 10967 if Is_Limited_View (Current_Scope) 10968 or else 10969 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration 10970 and then Limited_Present (Parent (Current_Scope))) 10971 then 10972 null; 10973 10974 else 10975 Error_Msg_N 10976 ("access discriminants allowed only for limited types", Loc); 10977 end if; 10978 end if; 10979 end Check_Access_Discriminant_Requires_Limited; 10980 10981 ----------------------------------- 10982 -- Check_Aliased_Component_Types -- 10983 ----------------------------------- 10984 10985 procedure Check_Aliased_Component_Types (T : Entity_Id) is 10986 C : Entity_Id; 10987 10988 begin 10989 -- ??? Also need to check components of record extensions, but not 10990 -- components of protected types (which are always limited). 10991 10992 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such 10993 -- types to be unconstrained. This is safe because it is illegal to 10994 -- create access subtypes to such types with explicit discriminant 10995 -- constraints. 10996 10997 if not Is_Limited_Type (T) then 10998 if Ekind (T) = E_Record_Type then 10999 C := First_Component (T); 11000 while Present (C) loop 11001 if Is_Aliased (C) 11002 and then Has_Discriminants (Etype (C)) 11003 and then not Is_Constrained (Etype (C)) 11004 and then not In_Instance_Body 11005 and then Ada_Version < Ada_2005 11006 then 11007 Error_Msg_N 11008 ("aliased component must be constrained (RM 3.6(11))", 11009 C); 11010 end if; 11011 11012 Next_Component (C); 11013 end loop; 11014 11015 elsif Ekind (T) = E_Array_Type then 11016 if Has_Aliased_Components (T) 11017 and then Has_Discriminants (Component_Type (T)) 11018 and then not Is_Constrained (Component_Type (T)) 11019 and then not In_Instance_Body 11020 and then Ada_Version < Ada_2005 11021 then 11022 Error_Msg_N 11023 ("aliased component type must be constrained (RM 3.6(11))", 11024 T); 11025 end if; 11026 end if; 11027 end if; 11028 end Check_Aliased_Component_Types; 11029 11030 --------------------------------------- 11031 -- Check_Anonymous_Access_Components -- 11032 --------------------------------------- 11033 11034 procedure Check_Anonymous_Access_Components 11035 (Typ_Decl : Node_Id; 11036 Typ : Entity_Id; 11037 Prev : Entity_Id; 11038 Comp_List : Node_Id) 11039 is 11040 Loc : constant Source_Ptr := Sloc (Typ_Decl); 11041 Anon_Access : Entity_Id; 11042 Acc_Def : Node_Id; 11043 Comp : Node_Id; 11044 Comp_Def : Node_Id; 11045 Decl : Node_Id; 11046 Type_Def : Node_Id; 11047 11048 procedure Build_Incomplete_Type_Declaration; 11049 -- If the record type contains components that include an access to the 11050 -- current record, then create an incomplete type declaration for the 11051 -- record, to be used as the designated type of the anonymous access. 11052 -- This is done only once, and only if there is no previous partial 11053 -- view of the type. 11054 11055 function Designates_T (Subt : Node_Id) return Boolean; 11056 -- Check whether a node designates the enclosing record type, or 'Class 11057 -- of that type 11058 11059 function Mentions_T (Acc_Def : Node_Id) return Boolean; 11060 -- Check whether an access definition includes a reference to 11061 -- the enclosing record type. The reference can be a subtype mark 11062 -- in the access definition itself, a 'Class attribute reference, or 11063 -- recursively a reference appearing in a parameter specification 11064 -- or result definition of an access_to_subprogram definition. 11065 11066 -------------------------------------- 11067 -- Build_Incomplete_Type_Declaration -- 11068 -------------------------------------- 11069 11070 procedure Build_Incomplete_Type_Declaration is 11071 Decl : Node_Id; 11072 Inc_T : Entity_Id; 11073 H : Entity_Id; 11074 11075 -- Is_Tagged indicates whether the type is tagged. It is tagged if 11076 -- it's "is new ... with record" or else "is tagged record ...". 11077 11078 Is_Tagged : constant Boolean := 11079 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition 11080 and then 11081 Present (Record_Extension_Part (Type_Definition (Typ_Decl)))) 11082 or else 11083 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition 11084 and then Tagged_Present (Type_Definition (Typ_Decl))); 11085 11086 begin 11087 -- If there is a previous partial view, no need to create a new one 11088 -- If the partial view, given by Prev, is incomplete, If Prev is 11089 -- a private declaration, full declaration is flagged accordingly. 11090 11091 if Prev /= Typ then 11092 if Is_Tagged then 11093 Make_Class_Wide_Type (Prev); 11094 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev)); 11095 Set_Etype (Class_Wide_Type (Typ), Typ); 11096 end if; 11097 11098 return; 11099 11100 elsif Has_Private_Declaration (Typ) then 11101 11102 -- If we refer to T'Class inside T, and T is the completion of a 11103 -- private type, then make sure the class-wide type exists. 11104 11105 if Is_Tagged then 11106 Make_Class_Wide_Type (Typ); 11107 end if; 11108 11109 return; 11110 11111 -- If there was a previous anonymous access type, the incomplete 11112 -- type declaration will have been created already. 11113 11114 elsif Present (Current_Entity (Typ)) 11115 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type 11116 and then Full_View (Current_Entity (Typ)) = Typ 11117 then 11118 if Is_Tagged 11119 and then Comes_From_Source (Current_Entity (Typ)) 11120 and then not Is_Tagged_Type (Current_Entity (Typ)) 11121 then 11122 Make_Class_Wide_Type (Typ); 11123 Error_Msg_N 11124 ("incomplete view of tagged type should be declared tagged??", 11125 Parent (Current_Entity (Typ))); 11126 end if; 11127 return; 11128 11129 else 11130 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ)); 11131 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T); 11132 11133 -- Type has already been inserted into the current scope. Remove 11134 -- it, and add incomplete declaration for type, so that subsequent 11135 -- anonymous access types can use it. The entity is unchained from 11136 -- the homonym list and from immediate visibility. After analysis, 11137 -- the entity in the incomplete declaration becomes immediately 11138 -- visible in the record declaration that follows. 11139 11140 H := Current_Entity (Typ); 11141 11142 if H = Typ then 11143 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ)); 11144 else 11145 while Present (H) 11146 and then Homonym (H) /= Typ 11147 loop 11148 H := Homonym (Typ); 11149 end loop; 11150 11151 Set_Homonym (H, Homonym (Typ)); 11152 end if; 11153 11154 Insert_Before (Typ_Decl, Decl); 11155 Analyze (Decl); 11156 Set_Full_View (Inc_T, Typ); 11157 11158 if Is_Tagged then 11159 11160 -- Create a common class-wide type for both views, and set the 11161 -- Etype of the class-wide type to the full view. 11162 11163 Make_Class_Wide_Type (Inc_T); 11164 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T)); 11165 Set_Etype (Class_Wide_Type (Typ), Typ); 11166 end if; 11167 end if; 11168 end Build_Incomplete_Type_Declaration; 11169 11170 ------------------ 11171 -- Designates_T -- 11172 ------------------ 11173 11174 function Designates_T (Subt : Node_Id) return Boolean is 11175 Type_Id : constant Name_Id := Chars (Typ); 11176 11177 function Names_T (Nam : Node_Id) return Boolean; 11178 -- The record type has not been introduced in the current scope 11179 -- yet, so we must examine the name of the type itself, either 11180 -- an identifier T, or an expanded name of the form P.T, where 11181 -- P denotes the current scope. 11182 11183 ------------- 11184 -- Names_T -- 11185 ------------- 11186 11187 function Names_T (Nam : Node_Id) return Boolean is 11188 begin 11189 if Nkind (Nam) = N_Identifier then 11190 return Chars (Nam) = Type_Id; 11191 11192 elsif Nkind (Nam) = N_Selected_Component then 11193 if Chars (Selector_Name (Nam)) = Type_Id then 11194 if Nkind (Prefix (Nam)) = N_Identifier then 11195 return Chars (Prefix (Nam)) = Chars (Current_Scope); 11196 11197 elsif Nkind (Prefix (Nam)) = N_Selected_Component then 11198 return Chars (Selector_Name (Prefix (Nam))) = 11199 Chars (Current_Scope); 11200 else 11201 return False; 11202 end if; 11203 11204 else 11205 return False; 11206 end if; 11207 11208 else 11209 return False; 11210 end if; 11211 end Names_T; 11212 11213 -- Start of processing for Designates_T 11214 11215 begin 11216 if Nkind (Subt) = N_Identifier then 11217 return Chars (Subt) = Type_Id; 11218 11219 -- Reference can be through an expanded name which has not been 11220 -- analyzed yet, and which designates enclosing scopes. 11221 11222 elsif Nkind (Subt) = N_Selected_Component then 11223 if Names_T (Subt) then 11224 return True; 11225 11226 -- Otherwise it must denote an entity that is already visible. 11227 -- The access definition may name a subtype of the enclosing 11228 -- type, if there is a previous incomplete declaration for it. 11229 11230 else 11231 Find_Selected_Component (Subt); 11232 return 11233 Is_Entity_Name (Subt) 11234 and then Scope (Entity (Subt)) = Current_Scope 11235 and then 11236 (Chars (Base_Type (Entity (Subt))) = Type_Id 11237 or else 11238 (Is_Class_Wide_Type (Entity (Subt)) 11239 and then 11240 Chars (Etype (Base_Type (Entity (Subt)))) = 11241 Type_Id)); 11242 end if; 11243 11244 -- A reference to the current type may appear as the prefix of 11245 -- a 'Class attribute. 11246 11247 elsif Nkind (Subt) = N_Attribute_Reference 11248 and then Attribute_Name (Subt) = Name_Class 11249 then 11250 return Names_T (Prefix (Subt)); 11251 11252 else 11253 return False; 11254 end if; 11255 end Designates_T; 11256 11257 ---------------- 11258 -- Mentions_T -- 11259 ---------------- 11260 11261 function Mentions_T (Acc_Def : Node_Id) return Boolean is 11262 Param_Spec : Node_Id; 11263 11264 Acc_Subprg : constant Node_Id := 11265 Access_To_Subprogram_Definition (Acc_Def); 11266 11267 begin 11268 if No (Acc_Subprg) then 11269 return Designates_T (Subtype_Mark (Acc_Def)); 11270 end if; 11271 11272 -- Component is an access_to_subprogram: examine its formals, 11273 -- and result definition in the case of an access_to_function. 11274 11275 Param_Spec := First (Parameter_Specifications (Acc_Subprg)); 11276 while Present (Param_Spec) loop 11277 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition 11278 and then Mentions_T (Parameter_Type (Param_Spec)) 11279 then 11280 return True; 11281 11282 elsif Designates_T (Parameter_Type (Param_Spec)) then 11283 return True; 11284 end if; 11285 11286 Next (Param_Spec); 11287 end loop; 11288 11289 if Nkind (Acc_Subprg) = N_Access_Function_Definition then 11290 if Nkind (Result_Definition (Acc_Subprg)) = 11291 N_Access_Definition 11292 then 11293 return Mentions_T (Result_Definition (Acc_Subprg)); 11294 else 11295 return Designates_T (Result_Definition (Acc_Subprg)); 11296 end if; 11297 end if; 11298 11299 return False; 11300 end Mentions_T; 11301 11302 -- Start of processing for Check_Anonymous_Access_Components 11303 11304 begin 11305 if No (Comp_List) then 11306 return; 11307 end if; 11308 11309 Comp := First (Component_Items (Comp_List)); 11310 while Present (Comp) loop 11311 if Nkind (Comp) = N_Component_Declaration 11312 and then Present 11313 (Access_Definition (Component_Definition (Comp))) 11314 and then 11315 Mentions_T (Access_Definition (Component_Definition (Comp))) 11316 then 11317 Comp_Def := Component_Definition (Comp); 11318 Acc_Def := 11319 Access_To_Subprogram_Definition (Access_Definition (Comp_Def)); 11320 11321 Build_Incomplete_Type_Declaration; 11322 Anon_Access := Make_Temporary (Loc, 'S'); 11323 11324 -- Create a declaration for the anonymous access type: either 11325 -- an access_to_object or an access_to_subprogram. 11326 11327 if Present (Acc_Def) then 11328 if Nkind (Acc_Def) = N_Access_Function_Definition then 11329 Type_Def := 11330 Make_Access_Function_Definition (Loc, 11331 Parameter_Specifications => 11332 Parameter_Specifications (Acc_Def), 11333 Result_Definition => Result_Definition (Acc_Def)); 11334 else 11335 Type_Def := 11336 Make_Access_Procedure_Definition (Loc, 11337 Parameter_Specifications => 11338 Parameter_Specifications (Acc_Def)); 11339 end if; 11340 11341 else 11342 Type_Def := 11343 Make_Access_To_Object_Definition (Loc, 11344 Subtype_Indication => 11345 Relocate_Node 11346 (Subtype_Mark (Access_Definition (Comp_Def)))); 11347 11348 Set_Constant_Present 11349 (Type_Def, Constant_Present (Access_Definition (Comp_Def))); 11350 Set_All_Present 11351 (Type_Def, All_Present (Access_Definition (Comp_Def))); 11352 end if; 11353 11354 Set_Null_Exclusion_Present 11355 (Type_Def, 11356 Null_Exclusion_Present (Access_Definition (Comp_Def))); 11357 11358 Decl := 11359 Make_Full_Type_Declaration (Loc, 11360 Defining_Identifier => Anon_Access, 11361 Type_Definition => Type_Def); 11362 11363 Insert_Before (Typ_Decl, Decl); 11364 Analyze (Decl); 11365 11366 -- If an access to subprogram, create the extra formals 11367 11368 if Present (Acc_Def) then 11369 Create_Extra_Formals (Designated_Type (Anon_Access)); 11370 11371 -- If an access to object, preserve entity of designated type, 11372 -- for ASIS use, before rewriting the component definition. 11373 11374 else 11375 declare 11376 Desig : Entity_Id; 11377 11378 begin 11379 Desig := Entity (Subtype_Indication (Type_Def)); 11380 11381 -- If the access definition is to the current record, 11382 -- the visible entity at this point is an incomplete 11383 -- type. Retrieve the full view to simplify ASIS queries 11384 11385 if Ekind (Desig) = E_Incomplete_Type then 11386 Desig := Full_View (Desig); 11387 end if; 11388 11389 Set_Entity 11390 (Subtype_Mark (Access_Definition (Comp_Def)), Desig); 11391 end; 11392 end if; 11393 11394 Rewrite (Comp_Def, 11395 Make_Component_Definition (Loc, 11396 Subtype_Indication => 11397 New_Occurrence_Of (Anon_Access, Loc))); 11398 11399 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then 11400 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type); 11401 else 11402 Set_Ekind (Anon_Access, E_Anonymous_Access_Type); 11403 end if; 11404 11405 Set_Is_Local_Anonymous_Access (Anon_Access); 11406 end if; 11407 11408 Next (Comp); 11409 end loop; 11410 11411 if Present (Variant_Part (Comp_List)) then 11412 declare 11413 V : Node_Id; 11414 begin 11415 V := First_Non_Pragma (Variants (Variant_Part (Comp_List))); 11416 while Present (V) loop 11417 Check_Anonymous_Access_Components 11418 (Typ_Decl, Typ, Prev, Component_List (V)); 11419 Next_Non_Pragma (V); 11420 end loop; 11421 end; 11422 end if; 11423 end Check_Anonymous_Access_Components; 11424 11425 ---------------------- 11426 -- Check_Completion -- 11427 ---------------------- 11428 11429 procedure Check_Completion (Body_Id : Node_Id := Empty) is 11430 E : Entity_Id; 11431 11432 procedure Post_Error; 11433 -- Post error message for lack of completion for entity E 11434 11435 ---------------- 11436 -- Post_Error -- 11437 ---------------- 11438 11439 procedure Post_Error is 11440 procedure Missing_Body; 11441 -- Output missing body message 11442 11443 ------------------ 11444 -- Missing_Body -- 11445 ------------------ 11446 11447 procedure Missing_Body is 11448 begin 11449 -- Spec is in same unit, so we can post on spec 11450 11451 if In_Same_Source_Unit (Body_Id, E) then 11452 Error_Msg_N ("missing body for &", E); 11453 11454 -- Spec is in a separate unit, so we have to post on the body 11455 11456 else 11457 Error_Msg_NE ("missing body for & declared#!", Body_Id, E); 11458 end if; 11459 end Missing_Body; 11460 11461 -- Start of processing for Post_Error 11462 11463 begin 11464 if not Comes_From_Source (E) then 11465 if Ekind_In (E, E_Task_Type, E_Protected_Type) then 11466 11467 -- It may be an anonymous protected type created for a 11468 -- single variable. Post error on variable, if present. 11469 11470 declare 11471 Var : Entity_Id; 11472 11473 begin 11474 Var := First_Entity (Current_Scope); 11475 while Present (Var) loop 11476 exit when Etype (Var) = E 11477 and then Comes_From_Source (Var); 11478 11479 Next_Entity (Var); 11480 end loop; 11481 11482 if Present (Var) then 11483 E := Var; 11484 end if; 11485 end; 11486 end if; 11487 end if; 11488 11489 -- If a generated entity has no completion, then either previous 11490 -- semantic errors have disabled the expansion phase, or else we had 11491 -- missing subunits, or else we are compiling without expansion, 11492 -- or else something is very wrong. 11493 11494 if not Comes_From_Source (E) then 11495 pragma Assert 11496 (Serious_Errors_Detected > 0 11497 or else Configurable_Run_Time_Violations > 0 11498 or else Subunits_Missing 11499 or else not Expander_Active); 11500 return; 11501 11502 -- Here for source entity 11503 11504 else 11505 -- Here if no body to post the error message, so we post the error 11506 -- on the declaration that has no completion. This is not really 11507 -- the right place to post it, think about this later ??? 11508 11509 if No (Body_Id) then 11510 if Is_Type (E) then 11511 Error_Msg_NE 11512 ("missing full declaration for }", Parent (E), E); 11513 else 11514 Error_Msg_NE ("missing body for &", Parent (E), E); 11515 end if; 11516 11517 -- Package body has no completion for a declaration that appears 11518 -- in the corresponding spec. Post error on the body, with a 11519 -- reference to the non-completed declaration. 11520 11521 else 11522 Error_Msg_Sloc := Sloc (E); 11523 11524 if Is_Type (E) then 11525 Error_Msg_NE ("missing full declaration for }!", Body_Id, E); 11526 11527 elsif Is_Overloadable (E) 11528 and then Current_Entity_In_Scope (E) /= E 11529 then 11530 -- It may be that the completion is mistyped and appears as 11531 -- a distinct overloading of the entity. 11532 11533 declare 11534 Candidate : constant Entity_Id := 11535 Current_Entity_In_Scope (E); 11536 Decl : constant Node_Id := 11537 Unit_Declaration_Node (Candidate); 11538 11539 begin 11540 if Is_Overloadable (Candidate) 11541 and then Ekind (Candidate) = Ekind (E) 11542 and then Nkind (Decl) = N_Subprogram_Body 11543 and then Acts_As_Spec (Decl) 11544 then 11545 Check_Type_Conformant (Candidate, E); 11546 11547 else 11548 Missing_Body; 11549 end if; 11550 end; 11551 11552 else 11553 Missing_Body; 11554 end if; 11555 end if; 11556 end if; 11557 end Post_Error; 11558 11559 -- Local variables 11560 11561 Pack_Id : constant Entity_Id := Current_Scope; 11562 11563 -- Start of processing for Check_Completion 11564 11565 begin 11566 E := First_Entity (Pack_Id); 11567 while Present (E) loop 11568 if Is_Intrinsic_Subprogram (E) then 11569 null; 11570 11571 -- The following situation requires special handling: a child unit 11572 -- that appears in the context clause of the body of its parent: 11573 11574 -- procedure Parent.Child (...); 11575 11576 -- with Parent.Child; 11577 -- package body Parent is 11578 11579 -- Here Parent.Child appears as a local entity, but should not be 11580 -- flagged as requiring completion, because it is a compilation 11581 -- unit. 11582 11583 -- Ignore missing completion for a subprogram that does not come from 11584 -- source (including the _Call primitive operation of RAS types, 11585 -- which has to have the flag Comes_From_Source for other purposes): 11586 -- we assume that the expander will provide the missing completion. 11587 -- In case of previous errors, other expansion actions that provide 11588 -- bodies for null procedures with not be invoked, so inhibit message 11589 -- in those cases. 11590 11591 -- Note that E_Operator is not in the list that follows, because 11592 -- this kind is reserved for predefined operators, that are 11593 -- intrinsic and do not need completion. 11594 11595 elsif Ekind_In (E, E_Function, 11596 E_Procedure, 11597 E_Generic_Function, 11598 E_Generic_Procedure) 11599 then 11600 if Has_Completion (E) then 11601 null; 11602 11603 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then 11604 null; 11605 11606 elsif Is_Subprogram (E) 11607 and then (not Comes_From_Source (E) 11608 or else Chars (E) = Name_uCall) 11609 then 11610 null; 11611 11612 elsif 11613 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit 11614 then 11615 null; 11616 11617 elsif Nkind (Parent (E)) = N_Procedure_Specification 11618 and then Null_Present (Parent (E)) 11619 and then Serious_Errors_Detected > 0 11620 then 11621 null; 11622 11623 else 11624 Post_Error; 11625 end if; 11626 11627 elsif Is_Entry (E) then 11628 if not Has_Completion (E) and then 11629 (Ekind (Scope (E)) = E_Protected_Object 11630 or else Ekind (Scope (E)) = E_Protected_Type) 11631 then 11632 Post_Error; 11633 end if; 11634 11635 elsif Is_Package_Or_Generic_Package (E) then 11636 if Unit_Requires_Body (E) then 11637 if not Has_Completion (E) 11638 and then Nkind (Parent (Unit_Declaration_Node (E))) /= 11639 N_Compilation_Unit 11640 then 11641 Post_Error; 11642 end if; 11643 11644 elsif not Is_Child_Unit (E) then 11645 May_Need_Implicit_Body (E); 11646 end if; 11647 11648 -- A formal incomplete type (Ada 2012) does not require a completion; 11649 -- other incomplete type declarations do. 11650 11651 elsif Ekind (E) = E_Incomplete_Type 11652 and then No (Underlying_Type (E)) 11653 and then not Is_Generic_Type (E) 11654 then 11655 Post_Error; 11656 11657 elsif Ekind_In (E, E_Task_Type, E_Protected_Type) 11658 and then not Has_Completion (E) 11659 then 11660 Post_Error; 11661 11662 -- A single task declared in the current scope is a constant, verify 11663 -- that the body of its anonymous type is in the same scope. If the 11664 -- task is defined elsewhere, this may be a renaming declaration for 11665 -- which no completion is needed. 11666 11667 elsif Ekind (E) = E_Constant 11668 and then Ekind (Etype (E)) = E_Task_Type 11669 and then not Has_Completion (Etype (E)) 11670 and then Scope (Etype (E)) = Current_Scope 11671 then 11672 Post_Error; 11673 11674 elsif Ekind (E) = E_Protected_Object 11675 and then not Has_Completion (Etype (E)) 11676 then 11677 Post_Error; 11678 11679 elsif Ekind (E) = E_Record_Type then 11680 if Is_Tagged_Type (E) then 11681 Check_Abstract_Overriding (E); 11682 Check_Conventions (E); 11683 end if; 11684 11685 Check_Aliased_Component_Types (E); 11686 11687 elsif Ekind (E) = E_Array_Type then 11688 Check_Aliased_Component_Types (E); 11689 11690 end if; 11691 11692 Next_Entity (E); 11693 end loop; 11694 end Check_Completion; 11695 11696 ------------------------------------ 11697 -- Check_CPP_Type_Has_No_Defaults -- 11698 ------------------------------------ 11699 11700 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is 11701 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T)); 11702 Clist : Node_Id; 11703 Comp : Node_Id; 11704 11705 begin 11706 -- Obtain the component list 11707 11708 if Nkind (Tdef) = N_Record_Definition then 11709 Clist := Component_List (Tdef); 11710 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition); 11711 Clist := Component_List (Record_Extension_Part (Tdef)); 11712 end if; 11713 11714 -- Check all components to ensure no default expressions 11715 11716 if Present (Clist) then 11717 Comp := First (Component_Items (Clist)); 11718 while Present (Comp) loop 11719 if Present (Expression (Comp)) then 11720 Error_Msg_N 11721 ("component of imported 'C'P'P type cannot have " 11722 & "default expression", Expression (Comp)); 11723 end if; 11724 11725 Next (Comp); 11726 end loop; 11727 end if; 11728 end Check_CPP_Type_Has_No_Defaults; 11729 11730 ---------------------------- 11731 -- Check_Delta_Expression -- 11732 ---------------------------- 11733 11734 procedure Check_Delta_Expression (E : Node_Id) is 11735 begin 11736 if not (Is_Real_Type (Etype (E))) then 11737 Wrong_Type (E, Any_Real); 11738 11739 elsif not Is_OK_Static_Expression (E) then 11740 Flag_Non_Static_Expr 11741 ("non-static expression used for delta value!", E); 11742 11743 elsif not UR_Is_Positive (Expr_Value_R (E)) then 11744 Error_Msg_N ("delta expression must be positive", E); 11745 11746 else 11747 return; 11748 end if; 11749 11750 -- If any of above errors occurred, then replace the incorrect 11751 -- expression by the real 0.1, which should prevent further errors. 11752 11753 Rewrite (E, 11754 Make_Real_Literal (Sloc (E), Ureal_Tenth)); 11755 Analyze_And_Resolve (E, Standard_Float); 11756 end Check_Delta_Expression; 11757 11758 ----------------------------- 11759 -- Check_Digits_Expression -- 11760 ----------------------------- 11761 11762 procedure Check_Digits_Expression (E : Node_Id) is 11763 begin 11764 if not (Is_Integer_Type (Etype (E))) then 11765 Wrong_Type (E, Any_Integer); 11766 11767 elsif not Is_OK_Static_Expression (E) then 11768 Flag_Non_Static_Expr 11769 ("non-static expression used for digits value!", E); 11770 11771 elsif Expr_Value (E) <= 0 then 11772 Error_Msg_N ("digits value must be greater than zero", E); 11773 11774 else 11775 return; 11776 end if; 11777 11778 -- If any of above errors occurred, then replace the incorrect 11779 -- expression by the integer 1, which should prevent further errors. 11780 11781 Rewrite (E, Make_Integer_Literal (Sloc (E), 1)); 11782 Analyze_And_Resolve (E, Standard_Integer); 11783 11784 end Check_Digits_Expression; 11785 11786 -------------------------- 11787 -- Check_Initialization -- 11788 -------------------------- 11789 11790 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is 11791 begin 11792 -- Special processing for limited types 11793 11794 if Is_Limited_Type (T) 11795 and then not In_Instance 11796 and then not In_Inlined_Body 11797 then 11798 if not OK_For_Limited_Init (T, Exp) then 11799 11800 -- In GNAT mode, this is just a warning, to allow it to be evilly 11801 -- turned off. Otherwise it is a real error. 11802 11803 if GNAT_Mode then 11804 Error_Msg_N 11805 ("??cannot initialize entities of limited type!", Exp); 11806 11807 elsif Ada_Version < Ada_2005 then 11808 11809 -- The side effect removal machinery may generate illegal Ada 11810 -- code to avoid the usage of access types and 'reference in 11811 -- SPARK mode. Since this is legal code with respect to theorem 11812 -- proving, do not emit the error. 11813 11814 if GNATprove_Mode 11815 and then Nkind (Exp) = N_Function_Call 11816 and then Nkind (Parent (Exp)) = N_Object_Declaration 11817 and then not Comes_From_Source 11818 (Defining_Identifier (Parent (Exp))) 11819 then 11820 null; 11821 11822 else 11823 Error_Msg_N 11824 ("cannot initialize entities of limited type", Exp); 11825 Explain_Limited_Type (T, Exp); 11826 end if; 11827 11828 else 11829 -- Specialize error message according to kind of illegal 11830 -- initial expression. 11831 11832 if Nkind (Exp) = N_Type_Conversion 11833 and then Nkind (Expression (Exp)) = N_Function_Call 11834 then 11835 -- No error for internally-generated object declarations, 11836 -- which can come from build-in-place assignment statements. 11837 11838 if Nkind (Parent (Exp)) = N_Object_Declaration 11839 and then not Comes_From_Source 11840 (Defining_Identifier (Parent (Exp))) 11841 then 11842 null; 11843 11844 else 11845 Error_Msg_N 11846 ("illegal context for call to function with limited " 11847 & "result", Exp); 11848 end if; 11849 11850 else 11851 Error_Msg_N 11852 ("initialization of limited object requires aggregate or " 11853 & "function call", Exp); 11854 end if; 11855 end if; 11856 end if; 11857 end if; 11858 11859 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets 11860 -- set unless we can be sure that no range check is required. 11861 11862 if (GNATprove_Mode or not Expander_Active) 11863 and then Is_Scalar_Type (T) 11864 and then not Is_In_Range (Exp, T, Assume_Valid => True) 11865 then 11866 Set_Do_Range_Check (Exp); 11867 end if; 11868 end Check_Initialization; 11869 11870 ---------------------- 11871 -- Check_Interfaces -- 11872 ---------------------- 11873 11874 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is 11875 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N)); 11876 11877 Iface : Node_Id; 11878 Iface_Def : Node_Id; 11879 Iface_Typ : Entity_Id; 11880 Parent_Node : Node_Id; 11881 11882 Is_Task : Boolean := False; 11883 -- Set True if parent type or any progenitor is a task interface 11884 11885 Is_Protected : Boolean := False; 11886 -- Set True if parent type or any progenitor is a protected interface 11887 11888 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id); 11889 -- Check that a progenitor is compatible with declaration. If an error 11890 -- message is output, it is posted on Error_Node. 11891 11892 ------------------ 11893 -- Check_Ifaces -- 11894 ------------------ 11895 11896 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is 11897 Iface_Id : constant Entity_Id := 11898 Defining_Identifier (Parent (Iface_Def)); 11899 Type_Def : Node_Id; 11900 11901 begin 11902 if Nkind (N) = N_Private_Extension_Declaration then 11903 Type_Def := N; 11904 else 11905 Type_Def := Type_Definition (N); 11906 end if; 11907 11908 if Is_Task_Interface (Iface_Id) then 11909 Is_Task := True; 11910 11911 elsif Is_Protected_Interface (Iface_Id) then 11912 Is_Protected := True; 11913 end if; 11914 11915 if Is_Synchronized_Interface (Iface_Id) then 11916 11917 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private 11918 -- extension derived from a synchronized interface must explicitly 11919 -- be declared synchronized, because the full view will be a 11920 -- synchronized type. 11921 11922 if Nkind (N) = N_Private_Extension_Declaration then 11923 if not Synchronized_Present (N) then 11924 Error_Msg_NE 11925 ("private extension of& must be explicitly synchronized", 11926 N, Iface_Id); 11927 end if; 11928 11929 -- However, by 3.9.4(16/2), a full type that is a record extension 11930 -- is never allowed to derive from a synchronized interface (note 11931 -- that interfaces must be excluded from this check, because those 11932 -- are represented by derived type definitions in some cases). 11933 11934 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition 11935 and then not Interface_Present (Type_Definition (N)) 11936 then 11937 Error_Msg_N ("record extension cannot derive from synchronized " 11938 & "interface", Error_Node); 11939 end if; 11940 end if; 11941 11942 -- Check that the characteristics of the progenitor are compatible 11943 -- with the explicit qualifier in the declaration. 11944 -- The check only applies to qualifiers that come from source. 11945 -- Limited_Present also appears in the declaration of corresponding 11946 -- records, and the check does not apply to them. 11947 11948 if Limited_Present (Type_Def) 11949 and then not 11950 Is_Concurrent_Record_Type (Defining_Identifier (N)) 11951 then 11952 if Is_Limited_Interface (Parent_Type) 11953 and then not Is_Limited_Interface (Iface_Id) 11954 then 11955 Error_Msg_NE 11956 ("progenitor & must be limited interface", 11957 Error_Node, Iface_Id); 11958 11959 elsif 11960 (Task_Present (Iface_Def) 11961 or else Protected_Present (Iface_Def) 11962 or else Synchronized_Present (Iface_Def)) 11963 and then Nkind (N) /= N_Private_Extension_Declaration 11964 and then not Error_Posted (N) 11965 then 11966 Error_Msg_NE 11967 ("progenitor & must be limited interface", 11968 Error_Node, Iface_Id); 11969 end if; 11970 11971 -- Protected interfaces can only inherit from limited, synchronized 11972 -- or protected interfaces. 11973 11974 elsif Nkind (N) = N_Full_Type_Declaration 11975 and then Protected_Present (Type_Def) 11976 then 11977 if Limited_Present (Iface_Def) 11978 or else Synchronized_Present (Iface_Def) 11979 or else Protected_Present (Iface_Def) 11980 then 11981 null; 11982 11983 elsif Task_Present (Iface_Def) then 11984 Error_Msg_N ("(Ada 2005) protected interface cannot inherit " 11985 & "from task interface", Error_Node); 11986 11987 else 11988 Error_Msg_N ("(Ada 2005) protected interface cannot inherit " 11989 & "from non-limited interface", Error_Node); 11990 end if; 11991 11992 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from 11993 -- limited and synchronized. 11994 11995 elsif Synchronized_Present (Type_Def) then 11996 if Limited_Present (Iface_Def) 11997 or else Synchronized_Present (Iface_Def) 11998 then 11999 null; 12000 12001 elsif Protected_Present (Iface_Def) 12002 and then Nkind (N) /= N_Private_Extension_Declaration 12003 then 12004 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit " 12005 & "from protected interface", Error_Node); 12006 12007 elsif Task_Present (Iface_Def) 12008 and then Nkind (N) /= N_Private_Extension_Declaration 12009 then 12010 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit " 12011 & "from task interface", Error_Node); 12012 12013 elsif not Is_Limited_Interface (Iface_Id) then 12014 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit " 12015 & "from non-limited interface", Error_Node); 12016 end if; 12017 12018 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited, 12019 -- synchronized or task interfaces. 12020 12021 elsif Nkind (N) = N_Full_Type_Declaration 12022 and then Task_Present (Type_Def) 12023 then 12024 if Limited_Present (Iface_Def) 12025 or else Synchronized_Present (Iface_Def) 12026 or else Task_Present (Iface_Def) 12027 then 12028 null; 12029 12030 elsif Protected_Present (Iface_Def) then 12031 Error_Msg_N ("(Ada 2005) task interface cannot inherit from " 12032 & "protected interface", Error_Node); 12033 12034 else 12035 Error_Msg_N ("(Ada 2005) task interface cannot inherit from " 12036 & "non-limited interface", Error_Node); 12037 end if; 12038 end if; 12039 end Check_Ifaces; 12040 12041 -- Start of processing for Check_Interfaces 12042 12043 begin 12044 if Is_Interface (Parent_Type) then 12045 if Is_Task_Interface (Parent_Type) then 12046 Is_Task := True; 12047 12048 elsif Is_Protected_Interface (Parent_Type) then 12049 Is_Protected := True; 12050 end if; 12051 end if; 12052 12053 if Nkind (N) = N_Private_Extension_Declaration then 12054 12055 -- Check that progenitors are compatible with declaration 12056 12057 Iface := First (Interface_List (Def)); 12058 while Present (Iface) loop 12059 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface); 12060 12061 Parent_Node := Parent (Base_Type (Iface_Typ)); 12062 Iface_Def := Type_Definition (Parent_Node); 12063 12064 if not Is_Interface (Iface_Typ) then 12065 Diagnose_Interface (Iface, Iface_Typ); 12066 else 12067 Check_Ifaces (Iface_Def, Iface); 12068 end if; 12069 12070 Next (Iface); 12071 end loop; 12072 12073 if Is_Task and Is_Protected then 12074 Error_Msg_N 12075 ("type cannot derive from task and protected interface", N); 12076 end if; 12077 12078 return; 12079 end if; 12080 12081 -- Full type declaration of derived type. 12082 -- Check compatibility with parent if it is interface type 12083 12084 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition 12085 and then Is_Interface (Parent_Type) 12086 then 12087 Parent_Node := Parent (Parent_Type); 12088 12089 -- More detailed checks for interface varieties 12090 12091 Check_Ifaces 12092 (Iface_Def => Type_Definition (Parent_Node), 12093 Error_Node => Subtype_Indication (Type_Definition (N))); 12094 end if; 12095 12096 Iface := First (Interface_List (Def)); 12097 while Present (Iface) loop 12098 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface); 12099 12100 Parent_Node := Parent (Base_Type (Iface_Typ)); 12101 Iface_Def := Type_Definition (Parent_Node); 12102 12103 if not Is_Interface (Iface_Typ) then 12104 Diagnose_Interface (Iface, Iface_Typ); 12105 12106 else 12107 -- "The declaration of a specific descendant of an interface 12108 -- type freezes the interface type" RM 13.14 12109 12110 Freeze_Before (N, Iface_Typ); 12111 Check_Ifaces (Iface_Def, Error_Node => Iface); 12112 end if; 12113 12114 Next (Iface); 12115 end loop; 12116 12117 if Is_Task and Is_Protected then 12118 Error_Msg_N 12119 ("type cannot derive from task and protected interface", N); 12120 end if; 12121 end Check_Interfaces; 12122 12123 ------------------------------------ 12124 -- Check_Or_Process_Discriminants -- 12125 ------------------------------------ 12126 12127 -- If an incomplete or private type declaration was already given for the 12128 -- type, the discriminants may have already been processed if they were 12129 -- present on the incomplete declaration. In this case a full conformance 12130 -- check has been performed in Find_Type_Name, and we then recheck here 12131 -- some properties that can't be checked on the partial view alone. 12132 -- Otherwise we call Process_Discriminants. 12133 12134 procedure Check_Or_Process_Discriminants 12135 (N : Node_Id; 12136 T : Entity_Id; 12137 Prev : Entity_Id := Empty) 12138 is 12139 begin 12140 if Has_Discriminants (T) then 12141 12142 -- Discriminants are already set on T if they were already present 12143 -- on the partial view. Make them visible to component declarations. 12144 12145 declare 12146 D : Entity_Id; 12147 -- Discriminant on T (full view) referencing expr on partial view 12148 12149 Prev_D : Entity_Id; 12150 -- Entity of corresponding discriminant on partial view 12151 12152 New_D : Node_Id; 12153 -- Discriminant specification for full view, expression is 12154 -- the syntactic copy on full view (which has been checked for 12155 -- conformance with partial view), only used here to post error 12156 -- message. 12157 12158 begin 12159 D := First_Discriminant (T); 12160 New_D := First (Discriminant_Specifications (N)); 12161 while Present (D) loop 12162 Prev_D := Current_Entity (D); 12163 Set_Current_Entity (D); 12164 Set_Is_Immediately_Visible (D); 12165 Set_Homonym (D, Prev_D); 12166 12167 -- Handle the case where there is an untagged partial view and 12168 -- the full view is tagged: must disallow discriminants with 12169 -- defaults, unless compiling for Ada 2012, which allows a 12170 -- limited tagged type to have defaulted discriminants (see 12171 -- AI05-0214). However, suppress error here if it was already 12172 -- reported on the default expression of the partial view. 12173 12174 if Is_Tagged_Type (T) 12175 and then Present (Expression (Parent (D))) 12176 and then (not Is_Limited_Type (Current_Scope) 12177 or else Ada_Version < Ada_2012) 12178 and then not Error_Posted (Expression (Parent (D))) 12179 then 12180 if Ada_Version >= Ada_2012 then 12181 Error_Msg_N 12182 ("discriminants of nonlimited tagged type cannot have " 12183 & "defaults", 12184 Expression (New_D)); 12185 else 12186 Error_Msg_N 12187 ("discriminants of tagged type cannot have defaults", 12188 Expression (New_D)); 12189 end if; 12190 end if; 12191 12192 -- Ada 2005 (AI-230): Access discriminant allowed in 12193 -- non-limited record types. 12194 12195 if Ada_Version < Ada_2005 then 12196 12197 -- This restriction gets applied to the full type here. It 12198 -- has already been applied earlier to the partial view. 12199 12200 Check_Access_Discriminant_Requires_Limited (Parent (D), N); 12201 end if; 12202 12203 Next_Discriminant (D); 12204 Next (New_D); 12205 end loop; 12206 end; 12207 12208 elsif Present (Discriminant_Specifications (N)) then 12209 Process_Discriminants (N, Prev); 12210 end if; 12211 end Check_Or_Process_Discriminants; 12212 12213 ---------------------- 12214 -- Check_Real_Bound -- 12215 ---------------------- 12216 12217 procedure Check_Real_Bound (Bound : Node_Id) is 12218 begin 12219 if not Is_Real_Type (Etype (Bound)) then 12220 Error_Msg_N 12221 ("bound in real type definition must be of real type", Bound); 12222 12223 elsif not Is_OK_Static_Expression (Bound) then 12224 Flag_Non_Static_Expr 12225 ("non-static expression used for real type bound!", Bound); 12226 12227 else 12228 return; 12229 end if; 12230 12231 Rewrite 12232 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0)); 12233 Analyze (Bound); 12234 Resolve (Bound, Standard_Float); 12235 end Check_Real_Bound; 12236 12237 ------------------------------ 12238 -- Complete_Private_Subtype -- 12239 ------------------------------ 12240 12241 procedure Complete_Private_Subtype 12242 (Priv : Entity_Id; 12243 Full : Entity_Id; 12244 Full_Base : Entity_Id; 12245 Related_Nod : Node_Id) 12246 is 12247 Save_Next_Entity : Entity_Id; 12248 Save_Homonym : Entity_Id; 12249 12250 begin 12251 -- Set semantic attributes for (implicit) private subtype completion. 12252 -- If the full type has no discriminants, then it is a copy of the 12253 -- full view of the base. Otherwise, it is a subtype of the base with 12254 -- a possible discriminant constraint. Save and restore the original 12255 -- Next_Entity field of full to ensure that the calls to Copy_Node do 12256 -- not corrupt the entity chain. 12257 12258 -- Note that the type of the full view is the same entity as the type 12259 -- of the partial view. In this fashion, the subtype has access to the 12260 -- correct view of the parent. 12261 12262 Save_Next_Entity := Next_Entity (Full); 12263 Save_Homonym := Homonym (Priv); 12264 12265 case Ekind (Full_Base) is 12266 when Class_Wide_Kind 12267 | Private_Kind 12268 | Protected_Kind 12269 | Task_Kind 12270 | E_Record_Subtype 12271 | E_Record_Type 12272 => 12273 Copy_Node (Priv, Full); 12274 12275 Set_Has_Discriminants 12276 (Full, Has_Discriminants (Full_Base)); 12277 Set_Has_Unknown_Discriminants 12278 (Full, Has_Unknown_Discriminants (Full_Base)); 12279 Set_First_Entity (Full, First_Entity (Full_Base)); 12280 Set_Last_Entity (Full, Last_Entity (Full_Base)); 12281 12282 -- If the underlying base type is constrained, we know that the 12283 -- full view of the subtype is constrained as well (the converse 12284 -- is not necessarily true). 12285 12286 if Is_Constrained (Full_Base) then 12287 Set_Is_Constrained (Full); 12288 end if; 12289 12290 when others => 12291 Copy_Node (Full_Base, Full); 12292 12293 Set_Chars (Full, Chars (Priv)); 12294 Conditional_Delay (Full, Priv); 12295 Set_Sloc (Full, Sloc (Priv)); 12296 end case; 12297 12298 Set_Next_Entity (Full, Save_Next_Entity); 12299 Set_Homonym (Full, Save_Homonym); 12300 Set_Associated_Node_For_Itype (Full, Related_Nod); 12301 12302 -- Set common attributes for all subtypes: kind, convention, etc. 12303 12304 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base))); 12305 Set_Convention (Full, Convention (Full_Base)); 12306 12307 -- The Etype of the full view is inconsistent. Gigi needs to see the 12308 -- structural full view, which is what the current scheme gives: the 12309 -- Etype of the full view is the etype of the full base. However, if the 12310 -- full base is a derived type, the full view then looks like a subtype 12311 -- of the parent, not a subtype of the full base. If instead we write: 12312 12313 -- Set_Etype (Full, Full_Base); 12314 12315 -- then we get inconsistencies in the front-end (confusion between 12316 -- views). Several outstanding bugs are related to this ??? 12317 12318 Set_Is_First_Subtype (Full, False); 12319 Set_Scope (Full, Scope (Priv)); 12320 Set_Size_Info (Full, Full_Base); 12321 Set_RM_Size (Full, RM_Size (Full_Base)); 12322 Set_Is_Itype (Full); 12323 12324 -- A subtype of a private-type-without-discriminants, whose full-view 12325 -- has discriminants with default expressions, is not constrained. 12326 12327 if not Has_Discriminants (Priv) then 12328 Set_Is_Constrained (Full, Is_Constrained (Full_Base)); 12329 12330 if Has_Discriminants (Full_Base) then 12331 Set_Discriminant_Constraint 12332 (Full, Discriminant_Constraint (Full_Base)); 12333 12334 -- The partial view may have been indefinite, the full view 12335 -- might not be. 12336 12337 Set_Has_Unknown_Discriminants 12338 (Full, Has_Unknown_Discriminants (Full_Base)); 12339 end if; 12340 end if; 12341 12342 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base)); 12343 Set_Depends_On_Private (Full, Has_Private_Component (Full)); 12344 12345 -- Freeze the private subtype entity if its parent is delayed, and not 12346 -- already frozen. We skip this processing if the type is an anonymous 12347 -- subtype of a record component, or is the corresponding record of a 12348 -- protected type, since these are processed when the enclosing type 12349 -- is frozen. If the parent type is declared in a nested package then 12350 -- the freezing of the private and full views also happens later. 12351 12352 if not Is_Type (Scope (Full)) then 12353 if Is_Itype (Priv) 12354 and then In_Same_Source_Unit (Full, Full_Base) 12355 and then Scope (Full_Base) /= Scope (Full) 12356 then 12357 Set_Has_Delayed_Freeze (Full); 12358 Set_Has_Delayed_Freeze (Priv); 12359 12360 else 12361 Set_Has_Delayed_Freeze (Full, 12362 Has_Delayed_Freeze (Full_Base) 12363 and then not Is_Frozen (Full_Base)); 12364 end if; 12365 end if; 12366 12367 Set_Freeze_Node (Full, Empty); 12368 Set_Is_Frozen (Full, False); 12369 Set_Full_View (Priv, Full); 12370 12371 if Has_Discriminants (Full) then 12372 Set_Stored_Constraint_From_Discriminant_Constraint (Full); 12373 Set_Stored_Constraint (Priv, Stored_Constraint (Full)); 12374 12375 if Has_Unknown_Discriminants (Full) then 12376 Set_Discriminant_Constraint (Full, No_Elist); 12377 end if; 12378 end if; 12379 12380 if Ekind (Full_Base) = E_Record_Type 12381 and then Has_Discriminants (Full_Base) 12382 and then Has_Discriminants (Priv) -- might not, if errors 12383 and then not Has_Unknown_Discriminants (Priv) 12384 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv)) 12385 then 12386 Create_Constrained_Components 12387 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv)); 12388 12389 -- If the full base is itself derived from private, build a congruent 12390 -- subtype of its underlying type, for use by the back end. For a 12391 -- constrained record component, the declaration cannot be placed on 12392 -- the component list, but it must nevertheless be built an analyzed, to 12393 -- supply enough information for Gigi to compute the size of component. 12394 12395 elsif Ekind (Full_Base) in Private_Kind 12396 and then Is_Derived_Type (Full_Base) 12397 and then Has_Discriminants (Full_Base) 12398 and then (Ekind (Current_Scope) /= E_Record_Subtype) 12399 then 12400 if not Is_Itype (Priv) 12401 and then 12402 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication 12403 then 12404 Build_Underlying_Full_View 12405 (Parent (Priv), Full, Etype (Full_Base)); 12406 12407 elsif Nkind (Related_Nod) = N_Component_Declaration then 12408 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base)); 12409 end if; 12410 12411 elsif Is_Record_Type (Full_Base) then 12412 12413 -- Show Full is simply a renaming of Full_Base 12414 12415 Set_Cloned_Subtype (Full, Full_Base); 12416 end if; 12417 12418 -- It is unsafe to share the bounds of a scalar type, because the Itype 12419 -- is elaborated on demand, and if a bound is non-static then different 12420 -- orders of elaboration in different units will lead to different 12421 -- external symbols. 12422 12423 if Is_Scalar_Type (Full_Base) then 12424 Set_Scalar_Range (Full, 12425 Make_Range (Sloc (Related_Nod), 12426 Low_Bound => 12427 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)), 12428 High_Bound => 12429 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base)))); 12430 12431 -- This completion inherits the bounds of the full parent, but if 12432 -- the parent is an unconstrained floating point type, so is the 12433 -- completion. 12434 12435 if Is_Floating_Point_Type (Full_Base) then 12436 Set_Includes_Infinities 12437 (Scalar_Range (Full), Has_Infinities (Full_Base)); 12438 end if; 12439 end if; 12440 12441 -- ??? It seems that a lot of fields are missing that should be copied 12442 -- from Full_Base to Full. Here are some that are introduced in a 12443 -- non-disruptive way but a cleanup is necessary. 12444 12445 if Is_Tagged_Type (Full_Base) then 12446 Set_Is_Tagged_Type (Full); 12447 Set_Direct_Primitive_Operations 12448 (Full, Direct_Primitive_Operations (Full_Base)); 12449 Set_No_Tagged_Streams_Pragma 12450 (Full, No_Tagged_Streams_Pragma (Full_Base)); 12451 12452 -- Inherit class_wide type of full_base in case the partial view was 12453 -- not tagged. Otherwise it has already been created when the private 12454 -- subtype was analyzed. 12455 12456 if No (Class_Wide_Type (Full)) then 12457 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base)); 12458 end if; 12459 12460 -- If this is a subtype of a protected or task type, constrain its 12461 -- corresponding record, unless this is a subtype without constraints, 12462 -- i.e. a simple renaming as with an actual subtype in an instance. 12463 12464 elsif Is_Concurrent_Type (Full_Base) then 12465 if Has_Discriminants (Full) 12466 and then Present (Corresponding_Record_Type (Full_Base)) 12467 and then 12468 not Is_Empty_Elmt_List (Discriminant_Constraint (Full)) 12469 then 12470 Set_Corresponding_Record_Type (Full, 12471 Constrain_Corresponding_Record 12472 (Full, Corresponding_Record_Type (Full_Base), Related_Nod)); 12473 12474 else 12475 Set_Corresponding_Record_Type (Full, 12476 Corresponding_Record_Type (Full_Base)); 12477 end if; 12478 end if; 12479 12480 -- Link rep item chain, and also setting of Has_Predicates from private 12481 -- subtype to full subtype, since we will need these on the full subtype 12482 -- to create the predicate function. Note that the full subtype may 12483 -- already have rep items, inherited from the full view of the base 12484 -- type, so we must be sure not to overwrite these entries. 12485 12486 declare 12487 Append : Boolean; 12488 Item : Node_Id; 12489 Next_Item : Node_Id; 12490 Priv_Item : Node_Id; 12491 12492 begin 12493 Item := First_Rep_Item (Full); 12494 Priv_Item := First_Rep_Item (Priv); 12495 12496 -- If no existing rep items on full type, we can just link directly 12497 -- to the list of items on the private type, if any exist.. Same if 12498 -- the rep items are only those inherited from the base 12499 12500 if (No (Item) 12501 or else Nkind (Item) /= N_Aspect_Specification 12502 or else Entity (Item) = Full_Base) 12503 and then Present (First_Rep_Item (Priv)) 12504 then 12505 Set_First_Rep_Item (Full, Priv_Item); 12506 12507 -- Otherwise, search to the end of items currently linked to the full 12508 -- subtype and append the private items to the end. However, if Priv 12509 -- and Full already have the same list of rep items, then the append 12510 -- is not done, as that would create a circularity. 12511 -- 12512 -- The partial view may have a predicate and the rep item lists of 12513 -- both views agree when inherited from the same ancestor. In that 12514 -- case, simply propagate the list from one view to the other. 12515 -- A more complex analysis needed here ??? 12516 12517 elsif Present (Priv_Item) 12518 and then Item = Next_Rep_Item (Priv_Item) 12519 then 12520 Set_First_Rep_Item (Full, Priv_Item); 12521 12522 elsif Item /= Priv_Item then 12523 Append := True; 12524 loop 12525 Next_Item := Next_Rep_Item (Item); 12526 exit when No (Next_Item); 12527 Item := Next_Item; 12528 12529 -- If the private view has aspect specifications, the full view 12530 -- inherits them. Since these aspects may already have been 12531 -- attached to the full view during derivation, do not append 12532 -- them if already present. 12533 12534 if Item = First_Rep_Item (Priv) then 12535 Append := False; 12536 exit; 12537 end if; 12538 end loop; 12539 12540 -- And link the private type items at the end of the chain 12541 12542 if Append then 12543 Set_Next_Rep_Item (Item, First_Rep_Item (Priv)); 12544 end if; 12545 end if; 12546 end; 12547 12548 -- Make sure Has_Predicates is set on full type if it is set on the 12549 -- private type. Note that it may already be set on the full type and 12550 -- if so, we don't want to unset it. Similarly, propagate information 12551 -- about delayed aspects, because the corresponding pragmas must be 12552 -- analyzed when one of the views is frozen. This last step is needed 12553 -- in particular when the full type is a scalar type for which an 12554 -- anonymous base type is constructed. 12555 12556 -- The predicate functions are generated either at the freeze point 12557 -- of the type or at the end of the visible part, and we must avoid 12558 -- generating them twice. 12559 12560 if Has_Predicates (Priv) then 12561 Set_Has_Predicates (Full); 12562 12563 if Present (Predicate_Function (Priv)) 12564 and then No (Predicate_Function (Full)) 12565 then 12566 Set_Predicate_Function (Full, Predicate_Function (Priv)); 12567 end if; 12568 end if; 12569 12570 if Has_Delayed_Aspects (Priv) then 12571 Set_Has_Delayed_Aspects (Full); 12572 end if; 12573 end Complete_Private_Subtype; 12574 12575 ---------------------------- 12576 -- Constant_Redeclaration -- 12577 ---------------------------- 12578 12579 procedure Constant_Redeclaration 12580 (Id : Entity_Id; 12581 N : Node_Id; 12582 T : out Entity_Id) 12583 is 12584 Prev : constant Entity_Id := Current_Entity_In_Scope (Id); 12585 Obj_Def : constant Node_Id := Object_Definition (N); 12586 New_T : Entity_Id; 12587 12588 procedure Check_Possible_Deferred_Completion 12589 (Prev_Id : Entity_Id; 12590 Prev_Obj_Def : Node_Id; 12591 Curr_Obj_Def : Node_Id); 12592 -- Determine whether the two object definitions describe the partial 12593 -- and the full view of a constrained deferred constant. Generate 12594 -- a subtype for the full view and verify that it statically matches 12595 -- the subtype of the partial view. 12596 12597 procedure Check_Recursive_Declaration (Typ : Entity_Id); 12598 -- If deferred constant is an access type initialized with an allocator, 12599 -- check whether there is an illegal recursion in the definition, 12600 -- through a default value of some record subcomponent. This is normally 12601 -- detected when generating init procs, but requires this additional 12602 -- mechanism when expansion is disabled. 12603 12604 ---------------------------------------- 12605 -- Check_Possible_Deferred_Completion -- 12606 ---------------------------------------- 12607 12608 procedure Check_Possible_Deferred_Completion 12609 (Prev_Id : Entity_Id; 12610 Prev_Obj_Def : Node_Id; 12611 Curr_Obj_Def : Node_Id) 12612 is 12613 begin 12614 if Nkind (Prev_Obj_Def) = N_Subtype_Indication 12615 and then Present (Constraint (Prev_Obj_Def)) 12616 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication 12617 and then Present (Constraint (Curr_Obj_Def)) 12618 then 12619 declare 12620 Loc : constant Source_Ptr := Sloc (N); 12621 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S'); 12622 Decl : constant Node_Id := 12623 Make_Subtype_Declaration (Loc, 12624 Defining_Identifier => Def_Id, 12625 Subtype_Indication => 12626 Relocate_Node (Curr_Obj_Def)); 12627 12628 begin 12629 Insert_Before_And_Analyze (N, Decl); 12630 Set_Etype (Id, Def_Id); 12631 12632 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then 12633 Error_Msg_Sloc := Sloc (Prev_Id); 12634 Error_Msg_N ("subtype does not statically match deferred " 12635 & "declaration #", N); 12636 end if; 12637 end; 12638 end if; 12639 end Check_Possible_Deferred_Completion; 12640 12641 --------------------------------- 12642 -- Check_Recursive_Declaration -- 12643 --------------------------------- 12644 12645 procedure Check_Recursive_Declaration (Typ : Entity_Id) is 12646 Comp : Entity_Id; 12647 12648 begin 12649 if Is_Record_Type (Typ) then 12650 Comp := First_Component (Typ); 12651 while Present (Comp) loop 12652 if Comes_From_Source (Comp) then 12653 if Present (Expression (Parent (Comp))) 12654 and then Is_Entity_Name (Expression (Parent (Comp))) 12655 and then Entity (Expression (Parent (Comp))) = Prev 12656 then 12657 Error_Msg_Sloc := Sloc (Parent (Comp)); 12658 Error_Msg_NE 12659 ("illegal circularity with declaration for & #", 12660 N, Comp); 12661 return; 12662 12663 elsif Is_Record_Type (Etype (Comp)) then 12664 Check_Recursive_Declaration (Etype (Comp)); 12665 end if; 12666 end if; 12667 12668 Next_Component (Comp); 12669 end loop; 12670 end if; 12671 end Check_Recursive_Declaration; 12672 12673 -- Start of processing for Constant_Redeclaration 12674 12675 begin 12676 if Nkind (Parent (Prev)) = N_Object_Declaration then 12677 if Nkind (Object_Definition 12678 (Parent (Prev))) = N_Subtype_Indication 12679 then 12680 -- Find type of new declaration. The constraints of the two 12681 -- views must match statically, but there is no point in 12682 -- creating an itype for the full view. 12683 12684 if Nkind (Obj_Def) = N_Subtype_Indication then 12685 Find_Type (Subtype_Mark (Obj_Def)); 12686 New_T := Entity (Subtype_Mark (Obj_Def)); 12687 12688 else 12689 Find_Type (Obj_Def); 12690 New_T := Entity (Obj_Def); 12691 end if; 12692 12693 T := Etype (Prev); 12694 12695 else 12696 -- The full view may impose a constraint, even if the partial 12697 -- view does not, so construct the subtype. 12698 12699 New_T := Find_Type_Of_Object (Obj_Def, N); 12700 T := New_T; 12701 end if; 12702 12703 else 12704 -- Current declaration is illegal, diagnosed below in Enter_Name 12705 12706 T := Empty; 12707 New_T := Any_Type; 12708 end if; 12709 12710 -- If previous full declaration or a renaming declaration exists, or if 12711 -- a homograph is present, let Enter_Name handle it, either with an 12712 -- error or with the removal of an overridden implicit subprogram. 12713 -- The previous one is a full declaration if it has an expression 12714 -- (which in the case of an aggregate is indicated by the Init flag). 12715 12716 if Ekind (Prev) /= E_Constant 12717 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration 12718 or else Present (Expression (Parent (Prev))) 12719 or else Has_Init_Expression (Parent (Prev)) 12720 or else Present (Full_View (Prev)) 12721 then 12722 Enter_Name (Id); 12723 12724 -- Verify that types of both declarations match, or else that both types 12725 -- are anonymous access types whose designated subtypes statically match 12726 -- (as allowed in Ada 2005 by AI-385). 12727 12728 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T) 12729 and then 12730 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type 12731 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type 12732 or else Is_Access_Constant (Etype (New_T)) /= 12733 Is_Access_Constant (Etype (Prev)) 12734 or else Can_Never_Be_Null (Etype (New_T)) /= 12735 Can_Never_Be_Null (Etype (Prev)) 12736 or else Null_Exclusion_Present (Parent (Prev)) /= 12737 Null_Exclusion_Present (Parent (Id)) 12738 or else not Subtypes_Statically_Match 12739 (Designated_Type (Etype (Prev)), 12740 Designated_Type (Etype (New_T)))) 12741 then 12742 Error_Msg_Sloc := Sloc (Prev); 12743 Error_Msg_N ("type does not match declaration#", N); 12744 Set_Full_View (Prev, Id); 12745 Set_Etype (Id, Any_Type); 12746 12747 -- A deferred constant whose type is an anonymous array is always 12748 -- illegal (unless imported). A detailed error message might be 12749 -- helpful for Ada beginners. 12750 12751 if Nkind (Object_Definition (Parent (Prev))) 12752 = N_Constrained_Array_Definition 12753 and then Nkind (Object_Definition (N)) 12754 = N_Constrained_Array_Definition 12755 then 12756 Error_Msg_N ("\each anonymous array is a distinct type", N); 12757 Error_Msg_N ("a deferred constant must have a named type", 12758 Object_Definition (Parent (Prev))); 12759 end if; 12760 12761 elsif 12762 Null_Exclusion_Present (Parent (Prev)) 12763 and then not Null_Exclusion_Present (N) 12764 then 12765 Error_Msg_Sloc := Sloc (Prev); 12766 Error_Msg_N ("null-exclusion does not match declaration#", N); 12767 Set_Full_View (Prev, Id); 12768 Set_Etype (Id, Any_Type); 12769 12770 -- If so, process the full constant declaration 12771 12772 else 12773 -- RM 7.4 (6): If the subtype defined by the subtype_indication in 12774 -- the deferred declaration is constrained, then the subtype defined 12775 -- by the subtype_indication in the full declaration shall match it 12776 -- statically. 12777 12778 Check_Possible_Deferred_Completion 12779 (Prev_Id => Prev, 12780 Prev_Obj_Def => Object_Definition (Parent (Prev)), 12781 Curr_Obj_Def => Obj_Def); 12782 12783 Set_Full_View (Prev, Id); 12784 Set_Is_Public (Id, Is_Public (Prev)); 12785 Set_Is_Internal (Id); 12786 Append_Entity (Id, Current_Scope); 12787 12788 -- Check ALIASED present if present before (RM 7.4(7)) 12789 12790 if Is_Aliased (Prev) 12791 and then not Aliased_Present (N) 12792 then 12793 Error_Msg_Sloc := Sloc (Prev); 12794 Error_Msg_N ("ALIASED required (see declaration #)", N); 12795 end if; 12796 12797 -- Check that placement is in private part and that the incomplete 12798 -- declaration appeared in the visible part. 12799 12800 if Ekind (Current_Scope) = E_Package 12801 and then not In_Private_Part (Current_Scope) 12802 then 12803 Error_Msg_Sloc := Sloc (Prev); 12804 Error_Msg_N 12805 ("full constant for declaration # must be in private part", N); 12806 12807 elsif Ekind (Current_Scope) = E_Package 12808 and then 12809 List_Containing (Parent (Prev)) /= 12810 Visible_Declarations (Package_Specification (Current_Scope)) 12811 then 12812 Error_Msg_N 12813 ("deferred constant must be declared in visible part", 12814 Parent (Prev)); 12815 end if; 12816 12817 if Is_Access_Type (T) 12818 and then Nkind (Expression (N)) = N_Allocator 12819 then 12820 Check_Recursive_Declaration (Designated_Type (T)); 12821 end if; 12822 12823 -- A deferred constant is a visible entity. If type has invariants, 12824 -- verify that the initial value satisfies them. This is not done in 12825 -- GNATprove mode, as GNATprove handles invariant checks itself. 12826 12827 if Has_Invariants (T) 12828 and then Present (Invariant_Procedure (T)) 12829 and then not GNATprove_Mode 12830 then 12831 Insert_After (N, 12832 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N)))); 12833 end if; 12834 end if; 12835 end Constant_Redeclaration; 12836 12837 ---------------------- 12838 -- Constrain_Access -- 12839 ---------------------- 12840 12841 procedure Constrain_Access 12842 (Def_Id : in out Entity_Id; 12843 S : Node_Id; 12844 Related_Nod : Node_Id) 12845 is 12846 T : constant Entity_Id := Entity (Subtype_Mark (S)); 12847 Desig_Type : constant Entity_Id := Designated_Type (T); 12848 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod); 12849 Constraint_OK : Boolean := True; 12850 12851 begin 12852 if Is_Array_Type (Desig_Type) then 12853 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P'); 12854 12855 elsif (Is_Record_Type (Desig_Type) 12856 or else Is_Incomplete_Or_Private_Type (Desig_Type)) 12857 and then not Is_Constrained (Desig_Type) 12858 then 12859 -- ??? The following code is a temporary bypass to ignore a 12860 -- discriminant constraint on access type if it is constraining 12861 -- the current record. Avoid creating the implicit subtype of the 12862 -- record we are currently compiling since right now, we cannot 12863 -- handle these. For now, just return the access type itself. 12864 12865 if Desig_Type = Current_Scope 12866 and then No (Def_Id) 12867 then 12868 Set_Ekind (Desig_Subtype, E_Record_Subtype); 12869 Def_Id := Entity (Subtype_Mark (S)); 12870 12871 -- This call added to ensure that the constraint is analyzed 12872 -- (needed for a B test). Note that we still return early from 12873 -- this procedure to avoid recursive processing. ??? 12874 12875 Constrain_Discriminated_Type 12876 (Desig_Subtype, S, Related_Nod, For_Access => True); 12877 return; 12878 end if; 12879 12880 -- Enforce rule that the constraint is illegal if there is an 12881 -- unconstrained view of the designated type. This means that the 12882 -- partial view (either a private type declaration or a derivation 12883 -- from a private type) has no discriminants. (Defect Report 12884 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001). 12885 12886 -- Rule updated for Ada 2005: The private type is said to have 12887 -- a constrained partial view, given that objects of the type 12888 -- can be declared. Furthermore, the rule applies to all access 12889 -- types, unlike the rule concerning default discriminants (see 12890 -- RM 3.7.1(7/3)) 12891 12892 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005) 12893 and then Has_Private_Declaration (Desig_Type) 12894 and then In_Open_Scopes (Scope (Desig_Type)) 12895 and then Has_Discriminants (Desig_Type) 12896 then 12897 declare 12898 Pack : constant Node_Id := 12899 Unit_Declaration_Node (Scope (Desig_Type)); 12900 Decls : List_Id; 12901 Decl : Node_Id; 12902 12903 begin 12904 if Nkind (Pack) = N_Package_Declaration then 12905 Decls := Visible_Declarations (Specification (Pack)); 12906 Decl := First (Decls); 12907 while Present (Decl) loop 12908 if (Nkind (Decl) = N_Private_Type_Declaration 12909 and then Chars (Defining_Identifier (Decl)) = 12910 Chars (Desig_Type)) 12911 12912 or else 12913 (Nkind (Decl) = N_Full_Type_Declaration 12914 and then 12915 Chars (Defining_Identifier (Decl)) = 12916 Chars (Desig_Type) 12917 and then Is_Derived_Type (Desig_Type) 12918 and then 12919 Has_Private_Declaration (Etype (Desig_Type))) 12920 then 12921 if No (Discriminant_Specifications (Decl)) then 12922 Error_Msg_N 12923 ("cannot constrain access type if designated " 12924 & "type has constrained partial view", S); 12925 end if; 12926 12927 exit; 12928 end if; 12929 12930 Next (Decl); 12931 end loop; 12932 end if; 12933 end; 12934 end if; 12935 12936 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod, 12937 For_Access => True); 12938 12939 elsif Is_Concurrent_Type (Desig_Type) 12940 and then not Is_Constrained (Desig_Type) 12941 then 12942 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' '); 12943 12944 else 12945 Error_Msg_N ("invalid constraint on access type", S); 12946 12947 -- We simply ignore an invalid constraint 12948 12949 Desig_Subtype := Desig_Type; 12950 Constraint_OK := False; 12951 end if; 12952 12953 if No (Def_Id) then 12954 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod); 12955 else 12956 Set_Ekind (Def_Id, E_Access_Subtype); 12957 end if; 12958 12959 if Constraint_OK then 12960 Set_Etype (Def_Id, Base_Type (T)); 12961 12962 if Is_Private_Type (Desig_Type) then 12963 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod); 12964 end if; 12965 else 12966 Set_Etype (Def_Id, Any_Type); 12967 end if; 12968 12969 Set_Size_Info (Def_Id, T); 12970 Set_Is_Constrained (Def_Id, Constraint_OK); 12971 Set_Directly_Designated_Type (Def_Id, Desig_Subtype); 12972 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id)); 12973 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T)); 12974 12975 Conditional_Delay (Def_Id, T); 12976 12977 -- AI-363 : Subtypes of general access types whose designated types have 12978 -- default discriminants are disallowed. In instances, the rule has to 12979 -- be checked against the actual, of which T is the subtype. In a 12980 -- generic body, the rule is checked assuming that the actual type has 12981 -- defaulted discriminants. 12982 12983 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then 12984 if Ekind (Base_Type (T)) = E_General_Access_Type 12985 and then Has_Defaulted_Discriminants (Desig_Type) 12986 then 12987 if Ada_Version < Ada_2005 then 12988 Error_Msg_N 12989 ("access subtype of general access type would not " & 12990 "be allowed in Ada 2005?y?", S); 12991 else 12992 Error_Msg_N 12993 ("access subtype of general access type not allowed", S); 12994 end if; 12995 12996 Error_Msg_N ("\discriminants have defaults", S); 12997 12998 elsif Is_Access_Type (T) 12999 and then Is_Generic_Type (Desig_Type) 13000 and then Has_Discriminants (Desig_Type) 13001 and then In_Package_Body (Current_Scope) 13002 then 13003 if Ada_Version < Ada_2005 then 13004 Error_Msg_N 13005 ("access subtype would not be allowed in generic body " 13006 & "in Ada 2005?y?", S); 13007 else 13008 Error_Msg_N 13009 ("access subtype not allowed in generic body", S); 13010 end if; 13011 13012 Error_Msg_N 13013 ("\designated type is a discriminated formal", S); 13014 end if; 13015 end if; 13016 end Constrain_Access; 13017 13018 --------------------- 13019 -- Constrain_Array -- 13020 --------------------- 13021 13022 procedure Constrain_Array 13023 (Def_Id : in out Entity_Id; 13024 SI : Node_Id; 13025 Related_Nod : Node_Id; 13026 Related_Id : Entity_Id; 13027 Suffix : Character) 13028 is 13029 C : constant Node_Id := Constraint (SI); 13030 Number_Of_Constraints : Nat := 0; 13031 Index : Node_Id; 13032 S, T : Entity_Id; 13033 Constraint_OK : Boolean := True; 13034 13035 begin 13036 T := Entity (Subtype_Mark (SI)); 13037 13038 if Is_Access_Type (T) then 13039 T := Designated_Type (T); 13040 end if; 13041 13042 -- If an index constraint follows a subtype mark in a subtype indication 13043 -- then the type or subtype denoted by the subtype mark must not already 13044 -- impose an index constraint. The subtype mark must denote either an 13045 -- unconstrained array type or an access type whose designated type 13046 -- is such an array type... (RM 3.6.1) 13047 13048 if Is_Constrained (T) then 13049 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI)); 13050 Constraint_OK := False; 13051 13052 else 13053 S := First (Constraints (C)); 13054 while Present (S) loop 13055 Number_Of_Constraints := Number_Of_Constraints + 1; 13056 Next (S); 13057 end loop; 13058 13059 -- In either case, the index constraint must provide a discrete 13060 -- range for each index of the array type and the type of each 13061 -- discrete range must be the same as that of the corresponding 13062 -- index. (RM 3.6.1) 13063 13064 if Number_Of_Constraints /= Number_Dimensions (T) then 13065 Error_Msg_NE ("incorrect number of index constraints for }", C, T); 13066 Constraint_OK := False; 13067 13068 else 13069 S := First (Constraints (C)); 13070 Index := First_Index (T); 13071 Analyze (Index); 13072 13073 -- Apply constraints to each index type 13074 13075 for J in 1 .. Number_Of_Constraints loop 13076 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J); 13077 Next (Index); 13078 Next (S); 13079 end loop; 13080 13081 end if; 13082 end if; 13083 13084 if No (Def_Id) then 13085 Def_Id := 13086 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix); 13087 Set_Parent (Def_Id, Related_Nod); 13088 13089 else 13090 Set_Ekind (Def_Id, E_Array_Subtype); 13091 end if; 13092 13093 Set_Size_Info (Def_Id, (T)); 13094 Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); 13095 Set_Etype (Def_Id, Base_Type (T)); 13096 13097 if Constraint_OK then 13098 Set_First_Index (Def_Id, First (Constraints (C))); 13099 else 13100 Set_First_Index (Def_Id, First_Index (T)); 13101 end if; 13102 13103 Set_Is_Constrained (Def_Id, True); 13104 Set_Is_Aliased (Def_Id, Is_Aliased (T)); 13105 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id)); 13106 13107 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T)); 13108 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T)); 13109 13110 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent. 13111 -- We need to initialize the attribute because if Def_Id is previously 13112 -- analyzed through a limited_with clause, it will have the attributes 13113 -- of an incomplete type, one of which is an Elist that overlaps the 13114 -- Packed_Array_Impl_Type field. 13115 13116 Set_Packed_Array_Impl_Type (Def_Id, Empty); 13117 13118 -- Build a freeze node if parent still needs one. Also make sure that 13119 -- the Depends_On_Private status is set because the subtype will need 13120 -- reprocessing at the time the base type does, and also we must set a 13121 -- conditional delay. 13122 13123 Set_Depends_On_Private (Def_Id, Depends_On_Private (T)); 13124 Conditional_Delay (Def_Id, T); 13125 end Constrain_Array; 13126 13127 ------------------------------ 13128 -- Constrain_Component_Type -- 13129 ------------------------------ 13130 13131 function Constrain_Component_Type 13132 (Comp : Entity_Id; 13133 Constrained_Typ : Entity_Id; 13134 Related_Node : Node_Id; 13135 Typ : Entity_Id; 13136 Constraints : Elist_Id) return Entity_Id 13137 is 13138 Loc : constant Source_Ptr := Sloc (Constrained_Typ); 13139 Compon_Type : constant Entity_Id := Etype (Comp); 13140 13141 function Build_Constrained_Array_Type 13142 (Old_Type : Entity_Id) return Entity_Id; 13143 -- If Old_Type is an array type, one of whose indexes is constrained 13144 -- by a discriminant, build an Itype whose constraint replaces the 13145 -- discriminant with its value in the constraint. 13146 13147 function Build_Constrained_Discriminated_Type 13148 (Old_Type : Entity_Id) return Entity_Id; 13149 -- Ditto for record components 13150 13151 function Build_Constrained_Access_Type 13152 (Old_Type : Entity_Id) return Entity_Id; 13153 -- Ditto for access types. Makes use of previous two functions, to 13154 -- constrain designated type. 13155 13156 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id; 13157 -- T is an array or discriminated type, C is a list of constraints 13158 -- that apply to T. This routine builds the constrained subtype. 13159 13160 function Is_Discriminant (Expr : Node_Id) return Boolean; 13161 -- Returns True if Expr is a discriminant 13162 13163 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id; 13164 -- Find the value of discriminant Discrim in Constraint 13165 13166 ----------------------------------- 13167 -- Build_Constrained_Access_Type -- 13168 ----------------------------------- 13169 13170 function Build_Constrained_Access_Type 13171 (Old_Type : Entity_Id) return Entity_Id 13172 is 13173 Desig_Type : constant Entity_Id := Designated_Type (Old_Type); 13174 Itype : Entity_Id; 13175 Desig_Subtype : Entity_Id; 13176 Scop : Entity_Id; 13177 13178 begin 13179 -- if the original access type was not embedded in the enclosing 13180 -- type definition, there is no need to produce a new access 13181 -- subtype. In fact every access type with an explicit constraint 13182 -- generates an itype whose scope is the enclosing record. 13183 13184 if not Is_Type (Scope (Old_Type)) then 13185 return Old_Type; 13186 13187 elsif Is_Array_Type (Desig_Type) then 13188 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type); 13189 13190 elsif Has_Discriminants (Desig_Type) then 13191 13192 -- This may be an access type to an enclosing record type for 13193 -- which we are constructing the constrained components. Return 13194 -- the enclosing record subtype. This is not always correct, 13195 -- but avoids infinite recursion. ??? 13196 13197 Desig_Subtype := Any_Type; 13198 13199 for J in reverse 0 .. Scope_Stack.Last loop 13200 Scop := Scope_Stack.Table (J).Entity; 13201 13202 if Is_Type (Scop) 13203 and then Base_Type (Scop) = Base_Type (Desig_Type) 13204 then 13205 Desig_Subtype := Scop; 13206 end if; 13207 13208 exit when not Is_Type (Scop); 13209 end loop; 13210 13211 if Desig_Subtype = Any_Type then 13212 Desig_Subtype := 13213 Build_Constrained_Discriminated_Type (Desig_Type); 13214 end if; 13215 13216 else 13217 return Old_Type; 13218 end if; 13219 13220 if Desig_Subtype /= Desig_Type then 13221 13222 -- The Related_Node better be here or else we won't be able 13223 -- to attach new itypes to a node in the tree. 13224 13225 pragma Assert (Present (Related_Node)); 13226 13227 Itype := Create_Itype (E_Access_Subtype, Related_Node); 13228 13229 Set_Etype (Itype, Base_Type (Old_Type)); 13230 Set_Size_Info (Itype, (Old_Type)); 13231 Set_Directly_Designated_Type (Itype, Desig_Subtype); 13232 Set_Depends_On_Private (Itype, Has_Private_Component 13233 (Old_Type)); 13234 Set_Is_Access_Constant (Itype, Is_Access_Constant 13235 (Old_Type)); 13236 13237 -- The new itype needs freezing when it depends on a not frozen 13238 -- type and the enclosing subtype needs freezing. 13239 13240 if Has_Delayed_Freeze (Constrained_Typ) 13241 and then not Is_Frozen (Constrained_Typ) 13242 then 13243 Conditional_Delay (Itype, Base_Type (Old_Type)); 13244 end if; 13245 13246 return Itype; 13247 13248 else 13249 return Old_Type; 13250 end if; 13251 end Build_Constrained_Access_Type; 13252 13253 ---------------------------------- 13254 -- Build_Constrained_Array_Type -- 13255 ---------------------------------- 13256 13257 function Build_Constrained_Array_Type 13258 (Old_Type : Entity_Id) return Entity_Id 13259 is 13260 Lo_Expr : Node_Id; 13261 Hi_Expr : Node_Id; 13262 Old_Index : Node_Id; 13263 Range_Node : Node_Id; 13264 Constr_List : List_Id; 13265 13266 Need_To_Create_Itype : Boolean := False; 13267 13268 begin 13269 Old_Index := First_Index (Old_Type); 13270 while Present (Old_Index) loop 13271 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr); 13272 13273 if Is_Discriminant (Lo_Expr) 13274 or else 13275 Is_Discriminant (Hi_Expr) 13276 then 13277 Need_To_Create_Itype := True; 13278 end if; 13279 13280 Next_Index (Old_Index); 13281 end loop; 13282 13283 if Need_To_Create_Itype then 13284 Constr_List := New_List; 13285 13286 Old_Index := First_Index (Old_Type); 13287 while Present (Old_Index) loop 13288 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr); 13289 13290 if Is_Discriminant (Lo_Expr) then 13291 Lo_Expr := Get_Discr_Value (Lo_Expr); 13292 end if; 13293 13294 if Is_Discriminant (Hi_Expr) then 13295 Hi_Expr := Get_Discr_Value (Hi_Expr); 13296 end if; 13297 13298 Range_Node := 13299 Make_Range 13300 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr)); 13301 13302 Append (Range_Node, To => Constr_List); 13303 13304 Next_Index (Old_Index); 13305 end loop; 13306 13307 return Build_Subtype (Old_Type, Constr_List); 13308 13309 else 13310 return Old_Type; 13311 end if; 13312 end Build_Constrained_Array_Type; 13313 13314 ------------------------------------------ 13315 -- Build_Constrained_Discriminated_Type -- 13316 ------------------------------------------ 13317 13318 function Build_Constrained_Discriminated_Type 13319 (Old_Type : Entity_Id) return Entity_Id 13320 is 13321 Expr : Node_Id; 13322 Constr_List : List_Id; 13323 Old_Constraint : Elmt_Id; 13324 13325 Need_To_Create_Itype : Boolean := False; 13326 13327 begin 13328 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type)); 13329 while Present (Old_Constraint) loop 13330 Expr := Node (Old_Constraint); 13331 13332 if Is_Discriminant (Expr) then 13333 Need_To_Create_Itype := True; 13334 end if; 13335 13336 Next_Elmt (Old_Constraint); 13337 end loop; 13338 13339 if Need_To_Create_Itype then 13340 Constr_List := New_List; 13341 13342 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type)); 13343 while Present (Old_Constraint) loop 13344 Expr := Node (Old_Constraint); 13345 13346 if Is_Discriminant (Expr) then 13347 Expr := Get_Discr_Value (Expr); 13348 end if; 13349 13350 Append (New_Copy_Tree (Expr), To => Constr_List); 13351 13352 Next_Elmt (Old_Constraint); 13353 end loop; 13354 13355 return Build_Subtype (Old_Type, Constr_List); 13356 13357 else 13358 return Old_Type; 13359 end if; 13360 end Build_Constrained_Discriminated_Type; 13361 13362 ------------------- 13363 -- Build_Subtype -- 13364 ------------------- 13365 13366 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is 13367 Indic : Node_Id; 13368 Subtyp_Decl : Node_Id; 13369 Def_Id : Entity_Id; 13370 Btyp : Entity_Id := Base_Type (T); 13371 13372 begin 13373 -- The Related_Node better be here or else we won't be able to 13374 -- attach new itypes to a node in the tree. 13375 13376 pragma Assert (Present (Related_Node)); 13377 13378 -- If the view of the component's type is incomplete or private 13379 -- with unknown discriminants, then the constraint must be applied 13380 -- to the full type. 13381 13382 if Has_Unknown_Discriminants (Btyp) 13383 and then Present (Underlying_Type (Btyp)) 13384 then 13385 Btyp := Underlying_Type (Btyp); 13386 end if; 13387 13388 Indic := 13389 Make_Subtype_Indication (Loc, 13390 Subtype_Mark => New_Occurrence_Of (Btyp, Loc), 13391 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C)); 13392 13393 Def_Id := Create_Itype (Ekind (T), Related_Node); 13394 13395 Subtyp_Decl := 13396 Make_Subtype_Declaration (Loc, 13397 Defining_Identifier => Def_Id, 13398 Subtype_Indication => Indic); 13399 13400 Set_Parent (Subtyp_Decl, Parent (Related_Node)); 13401 13402 -- Itypes must be analyzed with checks off (see package Itypes) 13403 13404 Analyze (Subtyp_Decl, Suppress => All_Checks); 13405 13406 return Def_Id; 13407 end Build_Subtype; 13408 13409 --------------------- 13410 -- Get_Discr_Value -- 13411 --------------------- 13412 13413 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is 13414 D : Entity_Id; 13415 E : Elmt_Id; 13416 13417 begin 13418 -- The discriminant may be declared for the type, in which case we 13419 -- find it by iterating over the list of discriminants. If the 13420 -- discriminant is inherited from a parent type, it appears as the 13421 -- corresponding discriminant of the current type. This will be the 13422 -- case when constraining an inherited component whose constraint is 13423 -- given by a discriminant of the parent. 13424 13425 D := First_Discriminant (Typ); 13426 E := First_Elmt (Constraints); 13427 13428 while Present (D) loop 13429 if D = Entity (Discrim) 13430 or else D = CR_Discriminant (Entity (Discrim)) 13431 or else Corresponding_Discriminant (D) = Entity (Discrim) 13432 then 13433 return Node (E); 13434 end if; 13435 13436 Next_Discriminant (D); 13437 Next_Elmt (E); 13438 end loop; 13439 13440 -- The Corresponding_Discriminant mechanism is incomplete, because 13441 -- the correspondence between new and old discriminants is not one 13442 -- to one: one new discriminant can constrain several old ones. In 13443 -- that case, scan sequentially the stored_constraint, the list of 13444 -- discriminants of the parents, and the constraints. 13445 13446 -- Previous code checked for the present of the Stored_Constraint 13447 -- list for the derived type, but did not use it at all. Should it 13448 -- be present when the component is a discriminated task type? 13449 13450 if Is_Derived_Type (Typ) 13451 and then Scope (Entity (Discrim)) = Etype (Typ) 13452 then 13453 D := First_Discriminant (Etype (Typ)); 13454 E := First_Elmt (Constraints); 13455 while Present (D) loop 13456 if D = Entity (Discrim) then 13457 return Node (E); 13458 end if; 13459 13460 Next_Discriminant (D); 13461 Next_Elmt (E); 13462 end loop; 13463 end if; 13464 13465 -- Something is wrong if we did not find the value 13466 13467 raise Program_Error; 13468 end Get_Discr_Value; 13469 13470 --------------------- 13471 -- Is_Discriminant -- 13472 --------------------- 13473 13474 function Is_Discriminant (Expr : Node_Id) return Boolean is 13475 Discrim_Scope : Entity_Id; 13476 13477 begin 13478 if Denotes_Discriminant (Expr) then 13479 Discrim_Scope := Scope (Entity (Expr)); 13480 13481 -- Either we have a reference to one of Typ's discriminants, 13482 13483 pragma Assert (Discrim_Scope = Typ 13484 13485 -- or to the discriminants of the parent type, in the case 13486 -- of a derivation of a tagged type with variants. 13487 13488 or else Discrim_Scope = Etype (Typ) 13489 or else Full_View (Discrim_Scope) = Etype (Typ) 13490 13491 -- or same as above for the case where the discriminants 13492 -- were declared in Typ's private view. 13493 13494 or else (Is_Private_Type (Discrim_Scope) 13495 and then Chars (Discrim_Scope) = Chars (Typ)) 13496 13497 -- or else we are deriving from the full view and the 13498 -- discriminant is declared in the private entity. 13499 13500 or else (Is_Private_Type (Typ) 13501 and then Chars (Discrim_Scope) = Chars (Typ)) 13502 13503 -- Or we are constrained the corresponding record of a 13504 -- synchronized type that completes a private declaration. 13505 13506 or else (Is_Concurrent_Record_Type (Typ) 13507 and then 13508 Corresponding_Concurrent_Type (Typ) = Discrim_Scope) 13509 13510 -- or we have a class-wide type, in which case make sure the 13511 -- discriminant found belongs to the root type. 13512 13513 or else (Is_Class_Wide_Type (Typ) 13514 and then Etype (Typ) = Discrim_Scope)); 13515 13516 return True; 13517 end if; 13518 13519 -- In all other cases we have something wrong 13520 13521 return False; 13522 end Is_Discriminant; 13523 13524 -- Start of processing for Constrain_Component_Type 13525 13526 begin 13527 if Nkind (Parent (Comp)) = N_Component_Declaration 13528 and then Comes_From_Source (Parent (Comp)) 13529 and then Comes_From_Source 13530 (Subtype_Indication (Component_Definition (Parent (Comp)))) 13531 and then 13532 Is_Entity_Name 13533 (Subtype_Indication (Component_Definition (Parent (Comp)))) 13534 then 13535 return Compon_Type; 13536 13537 elsif Is_Array_Type (Compon_Type) then 13538 return Build_Constrained_Array_Type (Compon_Type); 13539 13540 elsif Has_Discriminants (Compon_Type) then 13541 return Build_Constrained_Discriminated_Type (Compon_Type); 13542 13543 elsif Is_Access_Type (Compon_Type) then 13544 return Build_Constrained_Access_Type (Compon_Type); 13545 13546 else 13547 return Compon_Type; 13548 end if; 13549 end Constrain_Component_Type; 13550 13551 -------------------------- 13552 -- Constrain_Concurrent -- 13553 -------------------------- 13554 13555 -- For concurrent types, the associated record value type carries the same 13556 -- discriminants, so when we constrain a concurrent type, we must constrain 13557 -- the corresponding record type as well. 13558 13559 procedure Constrain_Concurrent 13560 (Def_Id : in out Entity_Id; 13561 SI : Node_Id; 13562 Related_Nod : Node_Id; 13563 Related_Id : Entity_Id; 13564 Suffix : Character) 13565 is 13566 -- Retrieve Base_Type to ensure getting to the concurrent type in the 13567 -- case of a private subtype (needed when only doing semantic analysis). 13568 13569 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI))); 13570 T_Val : Entity_Id; 13571 13572 begin 13573 if Is_Access_Type (T_Ent) then 13574 T_Ent := Designated_Type (T_Ent); 13575 end if; 13576 13577 T_Val := Corresponding_Record_Type (T_Ent); 13578 13579 if Present (T_Val) then 13580 13581 if No (Def_Id) then 13582 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix); 13583 13584 -- Elaborate itype now, as it may be used in a subsequent 13585 -- synchronized operation in another scope. 13586 13587 if Nkind (Related_Nod) = N_Full_Type_Declaration then 13588 Build_Itype_Reference (Def_Id, Related_Nod); 13589 end if; 13590 end if; 13591 13592 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod); 13593 Set_First_Private_Entity (Def_Id, First_Private_Entity (T_Ent)); 13594 13595 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id)); 13596 Set_Corresponding_Record_Type (Def_Id, 13597 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod)); 13598 13599 else 13600 -- If there is no associated record, expansion is disabled and this 13601 -- is a generic context. Create a subtype in any case, so that 13602 -- semantic analysis can proceed. 13603 13604 if No (Def_Id) then 13605 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix); 13606 end if; 13607 13608 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod); 13609 end if; 13610 end Constrain_Concurrent; 13611 13612 ------------------------------------ 13613 -- Constrain_Corresponding_Record -- 13614 ------------------------------------ 13615 13616 function Constrain_Corresponding_Record 13617 (Prot_Subt : Entity_Id; 13618 Corr_Rec : Entity_Id; 13619 Related_Nod : Node_Id) return Entity_Id 13620 is 13621 T_Sub : constant Entity_Id := 13622 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C'); 13623 13624 begin 13625 Set_Etype (T_Sub, Corr_Rec); 13626 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt)); 13627 Set_Is_Constrained (T_Sub, True); 13628 Set_First_Entity (T_Sub, First_Entity (Corr_Rec)); 13629 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec)); 13630 13631 if Has_Discriminants (Prot_Subt) then -- False only if errors. 13632 Set_Discriminant_Constraint 13633 (T_Sub, Discriminant_Constraint (Prot_Subt)); 13634 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub); 13635 Create_Constrained_Components 13636 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub)); 13637 end if; 13638 13639 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub)); 13640 13641 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then 13642 Conditional_Delay (T_Sub, Corr_Rec); 13643 13644 else 13645 -- This is a component subtype: it will be frozen in the context of 13646 -- the enclosing record's init_proc, so that discriminant references 13647 -- are resolved to discriminals. (Note: we used to skip freezing 13648 -- altogether in that case, which caused errors downstream for 13649 -- components of a bit packed array type). 13650 13651 Set_Has_Delayed_Freeze (T_Sub); 13652 end if; 13653 13654 return T_Sub; 13655 end Constrain_Corresponding_Record; 13656 13657 ----------------------- 13658 -- Constrain_Decimal -- 13659 ----------------------- 13660 13661 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is 13662 T : constant Entity_Id := Entity (Subtype_Mark (S)); 13663 C : constant Node_Id := Constraint (S); 13664 Loc : constant Source_Ptr := Sloc (C); 13665 Range_Expr : Node_Id; 13666 Digits_Expr : Node_Id; 13667 Digits_Val : Uint; 13668 Bound_Val : Ureal; 13669 13670 begin 13671 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype); 13672 13673 if Nkind (C) = N_Range_Constraint then 13674 Range_Expr := Range_Expression (C); 13675 Digits_Val := Digits_Value (T); 13676 13677 else 13678 pragma Assert (Nkind (C) = N_Digits_Constraint); 13679 13680 Check_SPARK_05_Restriction ("digits constraint is not allowed", S); 13681 13682 Digits_Expr := Digits_Expression (C); 13683 Analyze_And_Resolve (Digits_Expr, Any_Integer); 13684 13685 Check_Digits_Expression (Digits_Expr); 13686 Digits_Val := Expr_Value (Digits_Expr); 13687 13688 if Digits_Val > Digits_Value (T) then 13689 Error_Msg_N 13690 ("digits expression is incompatible with subtype", C); 13691 Digits_Val := Digits_Value (T); 13692 end if; 13693 13694 if Present (Range_Constraint (C)) then 13695 Range_Expr := Range_Expression (Range_Constraint (C)); 13696 else 13697 Range_Expr := Empty; 13698 end if; 13699 end if; 13700 13701 Set_Etype (Def_Id, Base_Type (T)); 13702 Set_Size_Info (Def_Id, (T)); 13703 Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); 13704 Set_Delta_Value (Def_Id, Delta_Value (T)); 13705 Set_Scale_Value (Def_Id, Scale_Value (T)); 13706 Set_Small_Value (Def_Id, Small_Value (T)); 13707 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T)); 13708 Set_Digits_Value (Def_Id, Digits_Val); 13709 13710 -- Manufacture range from given digits value if no range present 13711 13712 if No (Range_Expr) then 13713 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T); 13714 Range_Expr := 13715 Make_Range (Loc, 13716 Low_Bound => 13717 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))), 13718 High_Bound => 13719 Convert_To (T, Make_Real_Literal (Loc, Bound_Val))); 13720 end if; 13721 13722 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T); 13723 Set_Discrete_RM_Size (Def_Id); 13724 13725 -- Unconditionally delay the freeze, since we cannot set size 13726 -- information in all cases correctly until the freeze point. 13727 13728 Set_Has_Delayed_Freeze (Def_Id); 13729 end Constrain_Decimal; 13730 13731 ---------------------------------- 13732 -- Constrain_Discriminated_Type -- 13733 ---------------------------------- 13734 13735 procedure Constrain_Discriminated_Type 13736 (Def_Id : Entity_Id; 13737 S : Node_Id; 13738 Related_Nod : Node_Id; 13739 For_Access : Boolean := False) 13740 is 13741 E : Entity_Id := Entity (Subtype_Mark (S)); 13742 T : Entity_Id; 13743 13744 procedure Fixup_Bad_Constraint; 13745 -- Called after finding a bad constraint, and after having posted an 13746 -- appropriate error message. The goal is to leave type Def_Id in as 13747 -- reasonable state as possible. 13748 13749 -------------------------- 13750 -- Fixup_Bad_Constraint -- 13751 -------------------------- 13752 13753 procedure Fixup_Bad_Constraint is 13754 begin 13755 -- Set a reasonable Ekind for the entity, including incomplete types. 13756 13757 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T))); 13758 13759 -- Set Etype to the known type, to reduce chances of cascaded errors 13760 13761 Set_Etype (Def_Id, E); 13762 Set_Error_Posted (Def_Id); 13763 end Fixup_Bad_Constraint; 13764 13765 -- Local variables 13766 13767 C : Node_Id; 13768 Constr : Elist_Id := New_Elmt_List; 13769 13770 -- Start of processing for Constrain_Discriminated_Type 13771 13772 begin 13773 C := Constraint (S); 13774 13775 -- A discriminant constraint is only allowed in a subtype indication, 13776 -- after a subtype mark. This subtype mark must denote either a type 13777 -- with discriminants, or an access type whose designated type is a 13778 -- type with discriminants. A discriminant constraint specifies the 13779 -- values of these discriminants (RM 3.7.2(5)). 13780 13781 T := Base_Type (Entity (Subtype_Mark (S))); 13782 13783 if Is_Access_Type (T) then 13784 T := Designated_Type (T); 13785 end if; 13786 13787 -- In an instance it may be necessary to retrieve the full view of a 13788 -- type with unknown discriminants, or a full view with defaulted 13789 -- discriminants. In other contexts the constraint is illegal. 13790 13791 if In_Instance 13792 and then Is_Private_Type (T) 13793 and then Present (Full_View (T)) 13794 and then 13795 (Has_Unknown_Discriminants (T) 13796 or else 13797 (not Has_Discriminants (T) 13798 and then Has_Discriminants (Full_View (T)) 13799 and then Present (Discriminant_Default_Value 13800 (First_Discriminant (Full_View (T)))))) 13801 then 13802 T := Full_View (T); 13803 E := Full_View (E); 13804 end if; 13805 13806 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid 13807 -- generating an error for access-to-incomplete subtypes. 13808 13809 if Ada_Version >= Ada_2005 13810 and then Ekind (T) = E_Incomplete_Type 13811 and then Nkind (Parent (S)) = N_Subtype_Declaration 13812 and then not Is_Itype (Def_Id) 13813 then 13814 -- A little sanity check: emit an error message if the type has 13815 -- discriminants to begin with. Type T may be a regular incomplete 13816 -- type or imported via a limited with clause. 13817 13818 if Has_Discriminants (T) 13819 or else (From_Limited_With (T) 13820 and then Present (Non_Limited_View (T)) 13821 and then Nkind (Parent (Non_Limited_View (T))) = 13822 N_Full_Type_Declaration 13823 and then Present (Discriminant_Specifications 13824 (Parent (Non_Limited_View (T))))) 13825 then 13826 Error_Msg_N 13827 ("(Ada 2005) incomplete subtype may not be constrained", C); 13828 else 13829 Error_Msg_N ("invalid constraint: type has no discriminant", C); 13830 end if; 13831 13832 Fixup_Bad_Constraint; 13833 return; 13834 13835 -- Check that the type has visible discriminants. The type may be 13836 -- a private type with unknown discriminants whose full view has 13837 -- discriminants which are invisible. 13838 13839 elsif not Has_Discriminants (T) 13840 or else 13841 (Has_Unknown_Discriminants (T) 13842 and then Is_Private_Type (T)) 13843 then 13844 Error_Msg_N ("invalid constraint: type has no discriminant", C); 13845 Fixup_Bad_Constraint; 13846 return; 13847 13848 elsif Is_Constrained (E) 13849 or else (Ekind (E) = E_Class_Wide_Subtype 13850 and then Present (Discriminant_Constraint (E))) 13851 then 13852 Error_Msg_N ("type is already constrained", Subtype_Mark (S)); 13853 Fixup_Bad_Constraint; 13854 return; 13855 end if; 13856 13857 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint 13858 -- applies to the base type. 13859 13860 T := Base_Type (T); 13861 13862 Constr := Build_Discriminant_Constraints (T, S); 13863 13864 -- If the list returned was empty we had an error in building the 13865 -- discriminant constraint. We have also already signalled an error 13866 -- in the incomplete type case 13867 13868 if Is_Empty_Elmt_List (Constr) then 13869 Fixup_Bad_Constraint; 13870 return; 13871 end if; 13872 13873 Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access); 13874 end Constrain_Discriminated_Type; 13875 13876 --------------------------- 13877 -- Constrain_Enumeration -- 13878 --------------------------- 13879 13880 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is 13881 T : constant Entity_Id := Entity (Subtype_Mark (S)); 13882 C : constant Node_Id := Constraint (S); 13883 13884 begin 13885 Set_Ekind (Def_Id, E_Enumeration_Subtype); 13886 13887 Set_First_Literal (Def_Id, First_Literal (Base_Type (T))); 13888 13889 Set_Etype (Def_Id, Base_Type (T)); 13890 Set_Size_Info (Def_Id, (T)); 13891 Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); 13892 Set_Is_Character_Type (Def_Id, Is_Character_Type (T)); 13893 13894 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T); 13895 13896 Set_Discrete_RM_Size (Def_Id); 13897 end Constrain_Enumeration; 13898 13899 ---------------------- 13900 -- Constrain_Float -- 13901 ---------------------- 13902 13903 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is 13904 T : constant Entity_Id := Entity (Subtype_Mark (S)); 13905 C : Node_Id; 13906 D : Node_Id; 13907 Rais : Node_Id; 13908 13909 begin 13910 Set_Ekind (Def_Id, E_Floating_Point_Subtype); 13911 13912 Set_Etype (Def_Id, Base_Type (T)); 13913 Set_Size_Info (Def_Id, (T)); 13914 Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); 13915 13916 -- Process the constraint 13917 13918 C := Constraint (S); 13919 13920 -- Digits constraint present 13921 13922 if Nkind (C) = N_Digits_Constraint then 13923 13924 Check_SPARK_05_Restriction ("digits constraint is not allowed", S); 13925 Check_Restriction (No_Obsolescent_Features, C); 13926 13927 if Warn_On_Obsolescent_Feature then 13928 Error_Msg_N 13929 ("subtype digits constraint is an " & 13930 "obsolescent feature (RM J.3(8))?j?", C); 13931 end if; 13932 13933 D := Digits_Expression (C); 13934 Analyze_And_Resolve (D, Any_Integer); 13935 Check_Digits_Expression (D); 13936 Set_Digits_Value (Def_Id, Expr_Value (D)); 13937 13938 -- Check that digits value is in range. Obviously we can do this 13939 -- at compile time, but it is strictly a runtime check, and of 13940 -- course there is an ACVC test that checks this. 13941 13942 if Digits_Value (Def_Id) > Digits_Value (T) then 13943 Error_Msg_Uint_1 := Digits_Value (T); 13944 Error_Msg_N ("??digits value is too large, maximum is ^", D); 13945 Rais := 13946 Make_Raise_Constraint_Error (Sloc (D), 13947 Reason => CE_Range_Check_Failed); 13948 Insert_Action (Declaration_Node (Def_Id), Rais); 13949 end if; 13950 13951 C := Range_Constraint (C); 13952 13953 -- No digits constraint present 13954 13955 else 13956 Set_Digits_Value (Def_Id, Digits_Value (T)); 13957 end if; 13958 13959 -- Range constraint present 13960 13961 if Nkind (C) = N_Range_Constraint then 13962 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T); 13963 13964 -- No range constraint present 13965 13966 else 13967 pragma Assert (No (C)); 13968 Set_Scalar_Range (Def_Id, Scalar_Range (T)); 13969 end if; 13970 13971 Set_Is_Constrained (Def_Id); 13972 end Constrain_Float; 13973 13974 --------------------- 13975 -- Constrain_Index -- 13976 --------------------- 13977 13978 procedure Constrain_Index 13979 (Index : Node_Id; 13980 S : Node_Id; 13981 Related_Nod : Node_Id; 13982 Related_Id : Entity_Id; 13983 Suffix : Character; 13984 Suffix_Index : Nat) 13985 is 13986 Def_Id : Entity_Id; 13987 R : Node_Id := Empty; 13988 T : constant Entity_Id := Etype (Index); 13989 13990 begin 13991 Def_Id := 13992 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index); 13993 Set_Etype (Def_Id, Base_Type (T)); 13994 13995 if Nkind (S) = N_Range 13996 or else 13997 (Nkind (S) = N_Attribute_Reference 13998 and then Attribute_Name (S) = Name_Range) 13999 then 14000 -- A Range attribute will be transformed into N_Range by Resolve 14001 14002 Analyze (S); 14003 Set_Etype (S, T); 14004 R := S; 14005 14006 Process_Range_Expr_In_Decl (R, T); 14007 14008 if not Error_Posted (S) 14009 and then 14010 (Nkind (S) /= N_Range 14011 or else not Covers (T, (Etype (Low_Bound (S)))) 14012 or else not Covers (T, (Etype (High_Bound (S))))) 14013 then 14014 if Base_Type (T) /= Any_Type 14015 and then Etype (Low_Bound (S)) /= Any_Type 14016 and then Etype (High_Bound (S)) /= Any_Type 14017 then 14018 Error_Msg_N ("range expected", S); 14019 end if; 14020 end if; 14021 14022 elsif Nkind (S) = N_Subtype_Indication then 14023 14024 -- The parser has verified that this is a discrete indication 14025 14026 Resolve_Discrete_Subtype_Indication (S, T); 14027 Bad_Predicated_Subtype_Use 14028 ("subtype& has predicate, not allowed in index constraint", 14029 S, Entity (Subtype_Mark (S))); 14030 14031 R := Range_Expression (Constraint (S)); 14032 14033 -- Capture values of bounds and generate temporaries for them if 14034 -- needed, since checks may cause duplication of the expressions 14035 -- which must not be reevaluated. 14036 14037 -- The forced evaluation removes side effects from expressions, which 14038 -- should occur also in GNATprove mode. Otherwise, we end up with 14039 -- unexpected insertions of actions at places where this is not 14040 -- supposed to occur, e.g. on default parameters of a call. 14041 14042 if Expander_Active or GNATprove_Mode then 14043 Force_Evaluation 14044 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True); 14045 Force_Evaluation 14046 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True); 14047 end if; 14048 14049 elsif Nkind (S) = N_Discriminant_Association then 14050 14051 -- Syntactically valid in subtype indication 14052 14053 Error_Msg_N ("invalid index constraint", S); 14054 Rewrite (S, New_Occurrence_Of (T, Sloc (S))); 14055 return; 14056 14057 -- Subtype_Mark case, no anonymous subtypes to construct 14058 14059 else 14060 Analyze (S); 14061 14062 if Is_Entity_Name (S) then 14063 if not Is_Type (Entity (S)) then 14064 Error_Msg_N ("expect subtype mark for index constraint", S); 14065 14066 elsif Base_Type (Entity (S)) /= Base_Type (T) then 14067 Wrong_Type (S, Base_Type (T)); 14068 14069 -- Check error of subtype with predicate in index constraint 14070 14071 else 14072 Bad_Predicated_Subtype_Use 14073 ("subtype& has predicate, not allowed in index constraint", 14074 S, Entity (S)); 14075 end if; 14076 14077 return; 14078 14079 else 14080 Error_Msg_N ("invalid index constraint", S); 14081 Rewrite (S, New_Occurrence_Of (T, Sloc (S))); 14082 return; 14083 end if; 14084 end if; 14085 14086 -- Complete construction of the Itype 14087 14088 if Is_Modular_Integer_Type (T) then 14089 Set_Ekind (Def_Id, E_Modular_Integer_Subtype); 14090 14091 elsif Is_Integer_Type (T) then 14092 Set_Ekind (Def_Id, E_Signed_Integer_Subtype); 14093 14094 else 14095 Set_Ekind (Def_Id, E_Enumeration_Subtype); 14096 Set_Is_Character_Type (Def_Id, Is_Character_Type (T)); 14097 Set_First_Literal (Def_Id, First_Literal (T)); 14098 end if; 14099 14100 Set_Size_Info (Def_Id, (T)); 14101 Set_RM_Size (Def_Id, RM_Size (T)); 14102 Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); 14103 14104 Set_Scalar_Range (Def_Id, R); 14105 14106 Set_Etype (S, Def_Id); 14107 Set_Discrete_RM_Size (Def_Id); 14108 end Constrain_Index; 14109 14110 ----------------------- 14111 -- Constrain_Integer -- 14112 ----------------------- 14113 14114 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is 14115 T : constant Entity_Id := Entity (Subtype_Mark (S)); 14116 C : constant Node_Id := Constraint (S); 14117 14118 begin 14119 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T); 14120 14121 if Is_Modular_Integer_Type (T) then 14122 Set_Ekind (Def_Id, E_Modular_Integer_Subtype); 14123 else 14124 Set_Ekind (Def_Id, E_Signed_Integer_Subtype); 14125 end if; 14126 14127 Set_Etype (Def_Id, Base_Type (T)); 14128 Set_Size_Info (Def_Id, (T)); 14129 Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); 14130 Set_Discrete_RM_Size (Def_Id); 14131 end Constrain_Integer; 14132 14133 ------------------------------ 14134 -- Constrain_Ordinary_Fixed -- 14135 ------------------------------ 14136 14137 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is 14138 T : constant Entity_Id := Entity (Subtype_Mark (S)); 14139 C : Node_Id; 14140 D : Node_Id; 14141 Rais : Node_Id; 14142 14143 begin 14144 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype); 14145 Set_Etype (Def_Id, Base_Type (T)); 14146 Set_Size_Info (Def_Id, (T)); 14147 Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); 14148 Set_Small_Value (Def_Id, Small_Value (T)); 14149 14150 -- Process the constraint 14151 14152 C := Constraint (S); 14153 14154 -- Delta constraint present 14155 14156 if Nkind (C) = N_Delta_Constraint then 14157 14158 Check_SPARK_05_Restriction ("delta constraint is not allowed", S); 14159 Check_Restriction (No_Obsolescent_Features, C); 14160 14161 if Warn_On_Obsolescent_Feature then 14162 Error_Msg_S 14163 ("subtype delta constraint is an " & 14164 "obsolescent feature (RM J.3(7))?j?"); 14165 end if; 14166 14167 D := Delta_Expression (C); 14168 Analyze_And_Resolve (D, Any_Real); 14169 Check_Delta_Expression (D); 14170 Set_Delta_Value (Def_Id, Expr_Value_R (D)); 14171 14172 -- Check that delta value is in range. Obviously we can do this 14173 -- at compile time, but it is strictly a runtime check, and of 14174 -- course there is an ACVC test that checks this. 14175 14176 if Delta_Value (Def_Id) < Delta_Value (T) then 14177 Error_Msg_N ("??delta value is too small", D); 14178 Rais := 14179 Make_Raise_Constraint_Error (Sloc (D), 14180 Reason => CE_Range_Check_Failed); 14181 Insert_Action (Declaration_Node (Def_Id), Rais); 14182 end if; 14183 14184 C := Range_Constraint (C); 14185 14186 -- No delta constraint present 14187 14188 else 14189 Set_Delta_Value (Def_Id, Delta_Value (T)); 14190 end if; 14191 14192 -- Range constraint present 14193 14194 if Nkind (C) = N_Range_Constraint then 14195 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T); 14196 14197 -- No range constraint present 14198 14199 else 14200 pragma Assert (No (C)); 14201 Set_Scalar_Range (Def_Id, Scalar_Range (T)); 14202 end if; 14203 14204 Set_Discrete_RM_Size (Def_Id); 14205 14206 -- Unconditionally delay the freeze, since we cannot set size 14207 -- information in all cases correctly until the freeze point. 14208 14209 Set_Has_Delayed_Freeze (Def_Id); 14210 end Constrain_Ordinary_Fixed; 14211 14212 ----------------------- 14213 -- Contain_Interface -- 14214 ----------------------- 14215 14216 function Contain_Interface 14217 (Iface : Entity_Id; 14218 Ifaces : Elist_Id) return Boolean 14219 is 14220 Iface_Elmt : Elmt_Id; 14221 14222 begin 14223 if Present (Ifaces) then 14224 Iface_Elmt := First_Elmt (Ifaces); 14225 while Present (Iface_Elmt) loop 14226 if Node (Iface_Elmt) = Iface then 14227 return True; 14228 end if; 14229 14230 Next_Elmt (Iface_Elmt); 14231 end loop; 14232 end if; 14233 14234 return False; 14235 end Contain_Interface; 14236 14237 --------------------------- 14238 -- Convert_Scalar_Bounds -- 14239 --------------------------- 14240 14241 procedure Convert_Scalar_Bounds 14242 (N : Node_Id; 14243 Parent_Type : Entity_Id; 14244 Derived_Type : Entity_Id; 14245 Loc : Source_Ptr) 14246 is 14247 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type); 14248 14249 Lo : Node_Id; 14250 Hi : Node_Id; 14251 Rng : Node_Id; 14252 14253 begin 14254 -- Defend against previous errors 14255 14256 if No (Scalar_Range (Derived_Type)) then 14257 Check_Error_Detected; 14258 return; 14259 end if; 14260 14261 Lo := Build_Scalar_Bound 14262 (Type_Low_Bound (Derived_Type), 14263 Parent_Type, Implicit_Base); 14264 14265 Hi := Build_Scalar_Bound 14266 (Type_High_Bound (Derived_Type), 14267 Parent_Type, Implicit_Base); 14268 14269 Rng := 14270 Make_Range (Loc, 14271 Low_Bound => Lo, 14272 High_Bound => Hi); 14273 14274 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type)); 14275 14276 Set_Parent (Rng, N); 14277 Set_Scalar_Range (Derived_Type, Rng); 14278 14279 -- Analyze the bounds 14280 14281 Analyze_And_Resolve (Lo, Implicit_Base); 14282 Analyze_And_Resolve (Hi, Implicit_Base); 14283 14284 -- Analyze the range itself, except that we do not analyze it if 14285 -- the bounds are real literals, and we have a fixed-point type. 14286 -- The reason for this is that we delay setting the bounds in this 14287 -- case till we know the final Small and Size values (see circuit 14288 -- in Freeze.Freeze_Fixed_Point_Type for further details). 14289 14290 if Is_Fixed_Point_Type (Parent_Type) 14291 and then Nkind (Lo) = N_Real_Literal 14292 and then Nkind (Hi) = N_Real_Literal 14293 then 14294 return; 14295 14296 -- Here we do the analysis of the range 14297 14298 -- Note: we do this manually, since if we do a normal Analyze and 14299 -- Resolve call, there are problems with the conversions used for 14300 -- the derived type range. 14301 14302 else 14303 Set_Etype (Rng, Implicit_Base); 14304 Set_Analyzed (Rng, True); 14305 end if; 14306 end Convert_Scalar_Bounds; 14307 14308 ------------------- 14309 -- Copy_And_Swap -- 14310 ------------------- 14311 14312 procedure Copy_And_Swap (Priv, Full : Entity_Id) is 14313 begin 14314 -- Initialize new full declaration entity by copying the pertinent 14315 -- fields of the corresponding private declaration entity. 14316 14317 -- We temporarily set Ekind to a value appropriate for a type to 14318 -- avoid assert failures in Einfo from checking for setting type 14319 -- attributes on something that is not a type. Ekind (Priv) is an 14320 -- appropriate choice, since it allowed the attributes to be set 14321 -- in the first place. This Ekind value will be modified later. 14322 14323 Set_Ekind (Full, Ekind (Priv)); 14324 14325 -- Also set Etype temporarily to Any_Type, again, in the absence 14326 -- of errors, it will be properly reset, and if there are errors, 14327 -- then we want a value of Any_Type to remain. 14328 14329 Set_Etype (Full, Any_Type); 14330 14331 -- Now start copying attributes 14332 14333 Set_Has_Discriminants (Full, Has_Discriminants (Priv)); 14334 14335 if Has_Discriminants (Full) then 14336 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv)); 14337 Set_Stored_Constraint (Full, Stored_Constraint (Priv)); 14338 end if; 14339 14340 Set_First_Rep_Item (Full, First_Rep_Item (Priv)); 14341 Set_Homonym (Full, Homonym (Priv)); 14342 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv)); 14343 Set_Is_Public (Full, Is_Public (Priv)); 14344 Set_Is_Pure (Full, Is_Pure (Priv)); 14345 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv)); 14346 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv)); 14347 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv)); 14348 Set_Has_Pragma_Unreferenced_Objects 14349 (Full, Has_Pragma_Unreferenced_Objects 14350 (Priv)); 14351 14352 Conditional_Delay (Full, Priv); 14353 14354 if Is_Tagged_Type (Full) then 14355 Set_Direct_Primitive_Operations 14356 (Full, Direct_Primitive_Operations (Priv)); 14357 Set_No_Tagged_Streams_Pragma 14358 (Full, No_Tagged_Streams_Pragma (Priv)); 14359 14360 if Is_Base_Type (Priv) then 14361 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv)); 14362 end if; 14363 end if; 14364 14365 Set_Is_Volatile (Full, Is_Volatile (Priv)); 14366 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv)); 14367 Set_Scope (Full, Scope (Priv)); 14368 Set_Next_Entity (Full, Next_Entity (Priv)); 14369 Set_First_Entity (Full, First_Entity (Priv)); 14370 Set_Last_Entity (Full, Last_Entity (Priv)); 14371 14372 -- If access types have been recorded for later handling, keep them in 14373 -- the full view so that they get handled when the full view freeze 14374 -- node is expanded. 14375 14376 if Present (Freeze_Node (Priv)) 14377 and then Present (Access_Types_To_Process (Freeze_Node (Priv))) 14378 then 14379 Ensure_Freeze_Node (Full); 14380 Set_Access_Types_To_Process 14381 (Freeze_Node (Full), 14382 Access_Types_To_Process (Freeze_Node (Priv))); 14383 end if; 14384 14385 -- Swap the two entities. Now Private is the full type entity and Full 14386 -- is the private one. They will be swapped back at the end of the 14387 -- private part. This swapping ensures that the entity that is visible 14388 -- in the private part is the full declaration. 14389 14390 Exchange_Entities (Priv, Full); 14391 Append_Entity (Full, Scope (Full)); 14392 end Copy_And_Swap; 14393 14394 ------------------------------------- 14395 -- Copy_Array_Base_Type_Attributes -- 14396 ------------------------------------- 14397 14398 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is 14399 begin 14400 Set_Component_Alignment (T1, Component_Alignment (T2)); 14401 Set_Component_Type (T1, Component_Type (T2)); 14402 Set_Component_Size (T1, Component_Size (T2)); 14403 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2)); 14404 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2)); 14405 Propagate_Concurrent_Flags (T1, T2); 14406 Set_Is_Packed (T1, Is_Packed (T2)); 14407 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2)); 14408 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2)); 14409 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2)); 14410 end Copy_Array_Base_Type_Attributes; 14411 14412 ----------------------------------- 14413 -- Copy_Array_Subtype_Attributes -- 14414 ----------------------------------- 14415 14416 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is 14417 begin 14418 Set_Size_Info (T1, T2); 14419 14420 Set_First_Index (T1, First_Index (T2)); 14421 Set_Is_Aliased (T1, Is_Aliased (T2)); 14422 Set_Is_Volatile (T1, Is_Volatile (T2)); 14423 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2)); 14424 Set_Is_Constrained (T1, Is_Constrained (T2)); 14425 Set_Depends_On_Private (T1, Has_Private_Component (T2)); 14426 Inherit_Rep_Item_Chain (T1, T2); 14427 Set_Convention (T1, Convention (T2)); 14428 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2)); 14429 Set_Is_Private_Composite (T1, Is_Private_Composite (T2)); 14430 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2)); 14431 end Copy_Array_Subtype_Attributes; 14432 14433 ----------------------------------- 14434 -- Create_Constrained_Components -- 14435 ----------------------------------- 14436 14437 procedure Create_Constrained_Components 14438 (Subt : Entity_Id; 14439 Decl_Node : Node_Id; 14440 Typ : Entity_Id; 14441 Constraints : Elist_Id) 14442 is 14443 Loc : constant Source_Ptr := Sloc (Subt); 14444 Comp_List : constant Elist_Id := New_Elmt_List; 14445 Parent_Type : constant Entity_Id := Etype (Typ); 14446 Assoc_List : constant List_Id := New_List; 14447 Discr_Val : Elmt_Id; 14448 Errors : Boolean; 14449 New_C : Entity_Id; 14450 Old_C : Entity_Id; 14451 Is_Static : Boolean := True; 14452 14453 procedure Collect_Fixed_Components (Typ : Entity_Id); 14454 -- Collect parent type components that do not appear in a variant part 14455 14456 procedure Create_All_Components; 14457 -- Iterate over Comp_List to create the components of the subtype 14458 14459 function Create_Component (Old_Compon : Entity_Id) return Entity_Id; 14460 -- Creates a new component from Old_Compon, copying all the fields from 14461 -- it, including its Etype, inserts the new component in the Subt entity 14462 -- chain and returns the new component. 14463 14464 function Is_Variant_Record (T : Entity_Id) return Boolean; 14465 -- If true, and discriminants are static, collect only components from 14466 -- variants selected by discriminant values. 14467 14468 ------------------------------ 14469 -- Collect_Fixed_Components -- 14470 ------------------------------ 14471 14472 procedure Collect_Fixed_Components (Typ : Entity_Id) is 14473 begin 14474 -- Build association list for discriminants, and find components of the 14475 -- variant part selected by the values of the discriminants. 14476 14477 Old_C := First_Discriminant (Typ); 14478 Discr_Val := First_Elmt (Constraints); 14479 while Present (Old_C) loop 14480 Append_To (Assoc_List, 14481 Make_Component_Association (Loc, 14482 Choices => New_List (New_Occurrence_Of (Old_C, Loc)), 14483 Expression => New_Copy (Node (Discr_Val)))); 14484 14485 Next_Elmt (Discr_Val); 14486 Next_Discriminant (Old_C); 14487 end loop; 14488 14489 -- The tag and the possible parent component are unconditionally in 14490 -- the subtype. 14491 14492 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then 14493 Old_C := First_Component (Typ); 14494 while Present (Old_C) loop 14495 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then 14496 Append_Elmt (Old_C, Comp_List); 14497 end if; 14498 14499 Next_Component (Old_C); 14500 end loop; 14501 end if; 14502 end Collect_Fixed_Components; 14503 14504 --------------------------- 14505 -- Create_All_Components -- 14506 --------------------------- 14507 14508 procedure Create_All_Components is 14509 Comp : Elmt_Id; 14510 14511 begin 14512 Comp := First_Elmt (Comp_List); 14513 while Present (Comp) loop 14514 Old_C := Node (Comp); 14515 New_C := Create_Component (Old_C); 14516 14517 Set_Etype 14518 (New_C, 14519 Constrain_Component_Type 14520 (Old_C, Subt, Decl_Node, Typ, Constraints)); 14521 Set_Is_Public (New_C, Is_Public (Subt)); 14522 14523 Next_Elmt (Comp); 14524 end loop; 14525 end Create_All_Components; 14526 14527 ---------------------- 14528 -- Create_Component -- 14529 ---------------------- 14530 14531 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is 14532 New_Compon : constant Entity_Id := New_Copy (Old_Compon); 14533 14534 begin 14535 if Ekind (Old_Compon) = E_Discriminant 14536 and then Is_Completely_Hidden (Old_Compon) 14537 then 14538 -- This is a shadow discriminant created for a discriminant of 14539 -- the parent type, which needs to be present in the subtype. 14540 -- Give the shadow discriminant an internal name that cannot 14541 -- conflict with that of visible components. 14542 14543 Set_Chars (New_Compon, New_Internal_Name ('C')); 14544 end if; 14545 14546 -- Set the parent so we have a proper link for freezing etc. This is 14547 -- not a real parent pointer, since of course our parent does not own 14548 -- up to us and reference us, we are an illegitimate child of the 14549 -- original parent. 14550 14551 Set_Parent (New_Compon, Parent (Old_Compon)); 14552 14553 -- We do not want this node marked as Comes_From_Source, since 14554 -- otherwise it would get first class status and a separate cross- 14555 -- reference line would be generated. Illegitimate children do not 14556 -- rate such recognition. 14557 14558 Set_Comes_From_Source (New_Compon, False); 14559 14560 -- But it is a real entity, and a birth certificate must be properly 14561 -- registered by entering it into the entity list. 14562 14563 Enter_Name (New_Compon); 14564 14565 return New_Compon; 14566 end Create_Component; 14567 14568 ----------------------- 14569 -- Is_Variant_Record -- 14570 ----------------------- 14571 14572 function Is_Variant_Record (T : Entity_Id) return Boolean is 14573 begin 14574 return Nkind (Parent (T)) = N_Full_Type_Declaration 14575 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition 14576 and then Present (Component_List (Type_Definition (Parent (T)))) 14577 and then 14578 Present 14579 (Variant_Part (Component_List (Type_Definition (Parent (T))))); 14580 end Is_Variant_Record; 14581 14582 -- Start of processing for Create_Constrained_Components 14583 14584 begin 14585 pragma Assert (Subt /= Base_Type (Subt)); 14586 pragma Assert (Typ = Base_Type (Typ)); 14587 14588 Set_First_Entity (Subt, Empty); 14589 Set_Last_Entity (Subt, Empty); 14590 14591 -- Check whether constraint is fully static, in which case we can 14592 -- optimize the list of components. 14593 14594 Discr_Val := First_Elmt (Constraints); 14595 while Present (Discr_Val) loop 14596 if not Is_OK_Static_Expression (Node (Discr_Val)) then 14597 Is_Static := False; 14598 exit; 14599 end if; 14600 14601 Next_Elmt (Discr_Val); 14602 end loop; 14603 14604 Set_Has_Static_Discriminants (Subt, Is_Static); 14605 14606 Push_Scope (Subt); 14607 14608 -- Inherit the discriminants of the parent type 14609 14610 Add_Discriminants : declare 14611 Num_Disc : Nat; 14612 Num_Gird : Nat; 14613 14614 begin 14615 Num_Disc := 0; 14616 Old_C := First_Discriminant (Typ); 14617 14618 while Present (Old_C) loop 14619 Num_Disc := Num_Disc + 1; 14620 New_C := Create_Component (Old_C); 14621 Set_Is_Public (New_C, Is_Public (Subt)); 14622 Next_Discriminant (Old_C); 14623 end loop; 14624 14625 -- For an untagged derived subtype, the number of discriminants may 14626 -- be smaller than the number of inherited discriminants, because 14627 -- several of them may be renamed by a single new discriminant or 14628 -- constrained. In this case, add the hidden discriminants back into 14629 -- the subtype, because they need to be present if the optimizer of 14630 -- the GCC 4.x back-end decides to break apart assignments between 14631 -- objects using the parent view into member-wise assignments. 14632 14633 Num_Gird := 0; 14634 14635 if Is_Derived_Type (Typ) 14636 and then not Is_Tagged_Type (Typ) 14637 then 14638 Old_C := First_Stored_Discriminant (Typ); 14639 14640 while Present (Old_C) loop 14641 Num_Gird := Num_Gird + 1; 14642 Next_Stored_Discriminant (Old_C); 14643 end loop; 14644 end if; 14645 14646 if Num_Gird > Num_Disc then 14647 14648 -- Find out multiple uses of new discriminants, and add hidden 14649 -- components for the extra renamed discriminants. We recognize 14650 -- multiple uses through the Corresponding_Discriminant of a 14651 -- new discriminant: if it constrains several old discriminants, 14652 -- this field points to the last one in the parent type. The 14653 -- stored discriminants of the derived type have the same name 14654 -- as those of the parent. 14655 14656 declare 14657 Constr : Elmt_Id; 14658 New_Discr : Entity_Id; 14659 Old_Discr : Entity_Id; 14660 14661 begin 14662 Constr := First_Elmt (Stored_Constraint (Typ)); 14663 Old_Discr := First_Stored_Discriminant (Typ); 14664 while Present (Constr) loop 14665 if Is_Entity_Name (Node (Constr)) 14666 and then Ekind (Entity (Node (Constr))) = E_Discriminant 14667 then 14668 New_Discr := Entity (Node (Constr)); 14669 14670 if Chars (Corresponding_Discriminant (New_Discr)) /= 14671 Chars (Old_Discr) 14672 then 14673 -- The new discriminant has been used to rename a 14674 -- subsequent old discriminant. Introduce a shadow 14675 -- component for the current old discriminant. 14676 14677 New_C := Create_Component (Old_Discr); 14678 Set_Original_Record_Component (New_C, Old_Discr); 14679 end if; 14680 14681 else 14682 -- The constraint has eliminated the old discriminant. 14683 -- Introduce a shadow component. 14684 14685 New_C := Create_Component (Old_Discr); 14686 Set_Original_Record_Component (New_C, Old_Discr); 14687 end if; 14688 14689 Next_Elmt (Constr); 14690 Next_Stored_Discriminant (Old_Discr); 14691 end loop; 14692 end; 14693 end if; 14694 end Add_Discriminants; 14695 14696 if Is_Static 14697 and then Is_Variant_Record (Typ) 14698 then 14699 Collect_Fixed_Components (Typ); 14700 14701 Gather_Components ( 14702 Typ, 14703 Component_List (Type_Definition (Parent (Typ))), 14704 Governed_By => Assoc_List, 14705 Into => Comp_List, 14706 Report_Errors => Errors); 14707 pragma Assert (not Errors 14708 or else Serious_Errors_Detected > 0); 14709 14710 Create_All_Components; 14711 14712 -- If the subtype declaration is created for a tagged type derivation 14713 -- with constraints, we retrieve the record definition of the parent 14714 -- type to select the components of the proper variant. 14715 14716 elsif Is_Static 14717 and then Is_Tagged_Type (Typ) 14718 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration 14719 and then 14720 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition 14721 and then Is_Variant_Record (Parent_Type) 14722 then 14723 Collect_Fixed_Components (Typ); 14724 14725 Gather_Components 14726 (Typ, 14727 Component_List (Type_Definition (Parent (Parent_Type))), 14728 Governed_By => Assoc_List, 14729 Into => Comp_List, 14730 Report_Errors => Errors); 14731 14732 -- Note: previously there was a check at this point that no errors 14733 -- were detected. As a consequence of AI05-220 there may be an error 14734 -- if an inherited discriminant that controls a variant has a non- 14735 -- static constraint. 14736 14737 -- If the tagged derivation has a type extension, collect all the 14738 -- new components therein. 14739 14740 if Present (Record_Extension_Part (Type_Definition (Parent (Typ)))) 14741 then 14742 Old_C := First_Component (Typ); 14743 while Present (Old_C) loop 14744 if Original_Record_Component (Old_C) = Old_C 14745 and then Chars (Old_C) /= Name_uTag 14746 and then Chars (Old_C) /= Name_uParent 14747 then 14748 Append_Elmt (Old_C, Comp_List); 14749 end if; 14750 14751 Next_Component (Old_C); 14752 end loop; 14753 end if; 14754 14755 Create_All_Components; 14756 14757 else 14758 -- If discriminants are not static, or if this is a multi-level type 14759 -- extension, we have to include all components of the parent type. 14760 14761 Old_C := First_Component (Typ); 14762 while Present (Old_C) loop 14763 New_C := Create_Component (Old_C); 14764 14765 Set_Etype 14766 (New_C, 14767 Constrain_Component_Type 14768 (Old_C, Subt, Decl_Node, Typ, Constraints)); 14769 Set_Is_Public (New_C, Is_Public (Subt)); 14770 14771 Next_Component (Old_C); 14772 end loop; 14773 end if; 14774 14775 End_Scope; 14776 end Create_Constrained_Components; 14777 14778 ------------------------------------------ 14779 -- Decimal_Fixed_Point_Type_Declaration -- 14780 ------------------------------------------ 14781 14782 procedure Decimal_Fixed_Point_Type_Declaration 14783 (T : Entity_Id; 14784 Def : Node_Id) 14785 is 14786 Loc : constant Source_Ptr := Sloc (Def); 14787 Digs_Expr : constant Node_Id := Digits_Expression (Def); 14788 Delta_Expr : constant Node_Id := Delta_Expression (Def); 14789 Implicit_Base : Entity_Id; 14790 Digs_Val : Uint; 14791 Delta_Val : Ureal; 14792 Scale_Val : Uint; 14793 Bound_Val : Ureal; 14794 14795 begin 14796 Check_SPARK_05_Restriction 14797 ("decimal fixed point type is not allowed", Def); 14798 Check_Restriction (No_Fixed_Point, Def); 14799 14800 -- Create implicit base type 14801 14802 Implicit_Base := 14803 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B'); 14804 Set_Etype (Implicit_Base, Implicit_Base); 14805 14806 -- Analyze and process delta expression 14807 14808 Analyze_And_Resolve (Delta_Expr, Universal_Real); 14809 14810 Check_Delta_Expression (Delta_Expr); 14811 Delta_Val := Expr_Value_R (Delta_Expr); 14812 14813 -- Check delta is power of 10, and determine scale value from it 14814 14815 declare 14816 Val : Ureal; 14817 14818 begin 14819 Scale_Val := Uint_0; 14820 Val := Delta_Val; 14821 14822 if Val < Ureal_1 then 14823 while Val < Ureal_1 loop 14824 Val := Val * Ureal_10; 14825 Scale_Val := Scale_Val + 1; 14826 end loop; 14827 14828 if Scale_Val > 18 then 14829 Error_Msg_N ("scale exceeds maximum value of 18", Def); 14830 Scale_Val := UI_From_Int (+18); 14831 end if; 14832 14833 else 14834 while Val > Ureal_1 loop 14835 Val := Val / Ureal_10; 14836 Scale_Val := Scale_Val - 1; 14837 end loop; 14838 14839 if Scale_Val < -18 then 14840 Error_Msg_N ("scale is less than minimum value of -18", Def); 14841 Scale_Val := UI_From_Int (-18); 14842 end if; 14843 end if; 14844 14845 if Val /= Ureal_1 then 14846 Error_Msg_N ("delta expression must be a power of 10", Def); 14847 Delta_Val := Ureal_10 ** (-Scale_Val); 14848 end if; 14849 end; 14850 14851 -- Set delta, scale and small (small = delta for decimal type) 14852 14853 Set_Delta_Value (Implicit_Base, Delta_Val); 14854 Set_Scale_Value (Implicit_Base, Scale_Val); 14855 Set_Small_Value (Implicit_Base, Delta_Val); 14856 14857 -- Analyze and process digits expression 14858 14859 Analyze_And_Resolve (Digs_Expr, Any_Integer); 14860 Check_Digits_Expression (Digs_Expr); 14861 Digs_Val := Expr_Value (Digs_Expr); 14862 14863 if Digs_Val > 18 then 14864 Digs_Val := UI_From_Int (+18); 14865 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr); 14866 end if; 14867 14868 Set_Digits_Value (Implicit_Base, Digs_Val); 14869 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val; 14870 14871 -- Set range of base type from digits value for now. This will be 14872 -- expanded to represent the true underlying base range by Freeze. 14873 14874 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val); 14875 14876 -- Note: We leave size as zero for now, size will be set at freeze 14877 -- time. We have to do this for ordinary fixed-point, because the size 14878 -- depends on the specified small, and we might as well do the same for 14879 -- decimal fixed-point. 14880 14881 pragma Assert (Esize (Implicit_Base) = Uint_0); 14882 14883 -- If there are bounds given in the declaration use them as the 14884 -- bounds of the first named subtype. 14885 14886 if Present (Real_Range_Specification (Def)) then 14887 declare 14888 RRS : constant Node_Id := Real_Range_Specification (Def); 14889 Low : constant Node_Id := Low_Bound (RRS); 14890 High : constant Node_Id := High_Bound (RRS); 14891 Low_Val : Ureal; 14892 High_Val : Ureal; 14893 14894 begin 14895 Analyze_And_Resolve (Low, Any_Real); 14896 Analyze_And_Resolve (High, Any_Real); 14897 Check_Real_Bound (Low); 14898 Check_Real_Bound (High); 14899 Low_Val := Expr_Value_R (Low); 14900 High_Val := Expr_Value_R (High); 14901 14902 if Low_Val < (-Bound_Val) then 14903 Error_Msg_N 14904 ("range low bound too small for digits value", Low); 14905 Low_Val := -Bound_Val; 14906 end if; 14907 14908 if High_Val > Bound_Val then 14909 Error_Msg_N 14910 ("range high bound too large for digits value", High); 14911 High_Val := Bound_Val; 14912 end if; 14913 14914 Set_Fixed_Range (T, Loc, Low_Val, High_Val); 14915 end; 14916 14917 -- If no explicit range, use range that corresponds to given 14918 -- digits value. This will end up as the final range for the 14919 -- first subtype. 14920 14921 else 14922 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val); 14923 end if; 14924 14925 -- Complete entity for first subtype. The inheritance of the rep item 14926 -- chain ensures that SPARK-related pragmas are not clobbered when the 14927 -- decimal fixed point type acts as a full view of a private type. 14928 14929 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype); 14930 Set_Etype (T, Implicit_Base); 14931 Set_Size_Info (T, Implicit_Base); 14932 Inherit_Rep_Item_Chain (T, Implicit_Base); 14933 Set_Digits_Value (T, Digs_Val); 14934 Set_Delta_Value (T, Delta_Val); 14935 Set_Small_Value (T, Delta_Val); 14936 Set_Scale_Value (T, Scale_Val); 14937 Set_Is_Constrained (T); 14938 end Decimal_Fixed_Point_Type_Declaration; 14939 14940 ----------------------------------- 14941 -- Derive_Progenitor_Subprograms -- 14942 ----------------------------------- 14943 14944 procedure Derive_Progenitor_Subprograms 14945 (Parent_Type : Entity_Id; 14946 Tagged_Type : Entity_Id) 14947 is 14948 E : Entity_Id; 14949 Elmt : Elmt_Id; 14950 Iface : Entity_Id; 14951 Iface_Elmt : Elmt_Id; 14952 Iface_Subp : Entity_Id; 14953 New_Subp : Entity_Id := Empty; 14954 Prim_Elmt : Elmt_Id; 14955 Subp : Entity_Id; 14956 Typ : Entity_Id; 14957 14958 begin 14959 pragma Assert (Ada_Version >= Ada_2005 14960 and then Is_Record_Type (Tagged_Type) 14961 and then Is_Tagged_Type (Tagged_Type) 14962 and then Has_Interfaces (Tagged_Type)); 14963 14964 -- Step 1: Transfer to the full-view primitives associated with the 14965 -- partial-view that cover interface primitives. Conceptually this 14966 -- work should be done later by Process_Full_View; done here to 14967 -- simplify its implementation at later stages. It can be safely 14968 -- done here because interfaces must be visible in the partial and 14969 -- private view (RM 7.3(7.3/2)). 14970 14971 -- Small optimization: This work is only required if the parent may 14972 -- have entities whose Alias attribute reference an interface primitive. 14973 -- Such a situation may occur if the parent is an abstract type and the 14974 -- primitive has not been yet overridden or if the parent is a generic 14975 -- formal type covering interfaces. 14976 14977 -- If the tagged type is not abstract, it cannot have abstract 14978 -- primitives (the only entities in the list of primitives of 14979 -- non-abstract tagged types that can reference abstract primitives 14980 -- through its Alias attribute are the internal entities that have 14981 -- attribute Interface_Alias, and these entities are generated later 14982 -- by Add_Internal_Interface_Entities). 14983 14984 if In_Private_Part (Current_Scope) 14985 and then (Is_Abstract_Type (Parent_Type) 14986 or else 14987 Is_Generic_Type (Parent_Type)) 14988 then 14989 Elmt := First_Elmt (Primitive_Operations (Tagged_Type)); 14990 while Present (Elmt) loop 14991 Subp := Node (Elmt); 14992 14993 -- At this stage it is not possible to have entities in the list 14994 -- of primitives that have attribute Interface_Alias. 14995 14996 pragma Assert (No (Interface_Alias (Subp))); 14997 14998 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp)); 14999 15000 if Is_Interface (Typ) then 15001 E := Find_Primitive_Covering_Interface 15002 (Tagged_Type => Tagged_Type, 15003 Iface_Prim => Subp); 15004 15005 if Present (E) 15006 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ 15007 then 15008 Replace_Elmt (Elmt, E); 15009 Remove_Homonym (Subp); 15010 end if; 15011 end if; 15012 15013 Next_Elmt (Elmt); 15014 end loop; 15015 end if; 15016 15017 -- Step 2: Add primitives of progenitors that are not implemented by 15018 -- parents of Tagged_Type. 15019 15020 if Present (Interfaces (Base_Type (Tagged_Type))) then 15021 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type))); 15022 while Present (Iface_Elmt) loop 15023 Iface := Node (Iface_Elmt); 15024 15025 Prim_Elmt := First_Elmt (Primitive_Operations (Iface)); 15026 while Present (Prim_Elmt) loop 15027 Iface_Subp := Node (Prim_Elmt); 15028 15029 -- Exclude derivation of predefined primitives except those 15030 -- that come from source, or are inherited from one that comes 15031 -- from source. Required to catch declarations of equality 15032 -- operators of interfaces. For example: 15033 15034 -- type Iface is interface; 15035 -- function "=" (Left, Right : Iface) return Boolean; 15036 15037 if not Is_Predefined_Dispatching_Operation (Iface_Subp) 15038 or else Comes_From_Source (Ultimate_Alias (Iface_Subp)) 15039 then 15040 E := Find_Primitive_Covering_Interface 15041 (Tagged_Type => Tagged_Type, 15042 Iface_Prim => Iface_Subp); 15043 15044 -- If not found we derive a new primitive leaving its alias 15045 -- attribute referencing the interface primitive. 15046 15047 if No (E) then 15048 Derive_Subprogram 15049 (New_Subp, Iface_Subp, Tagged_Type, Iface); 15050 15051 -- Ada 2012 (AI05-0197): If the covering primitive's name 15052 -- differs from the name of the interface primitive then it 15053 -- is a private primitive inherited from a parent type. In 15054 -- such case, given that Tagged_Type covers the interface, 15055 -- the inherited private primitive becomes visible. For such 15056 -- purpose we add a new entity that renames the inherited 15057 -- private primitive. 15058 15059 elsif Chars (E) /= Chars (Iface_Subp) then 15060 pragma Assert (Has_Suffix (E, 'P')); 15061 Derive_Subprogram 15062 (New_Subp, Iface_Subp, Tagged_Type, Iface); 15063 Set_Alias (New_Subp, E); 15064 Set_Is_Abstract_Subprogram (New_Subp, 15065 Is_Abstract_Subprogram (E)); 15066 15067 -- Propagate to the full view interface entities associated 15068 -- with the partial view. 15069 15070 elsif In_Private_Part (Current_Scope) 15071 and then Present (Alias (E)) 15072 and then Alias (E) = Iface_Subp 15073 and then 15074 List_Containing (Parent (E)) /= 15075 Private_Declarations 15076 (Specification 15077 (Unit_Declaration_Node (Current_Scope))) 15078 then 15079 Append_Elmt (E, Primitive_Operations (Tagged_Type)); 15080 end if; 15081 end if; 15082 15083 Next_Elmt (Prim_Elmt); 15084 end loop; 15085 15086 Next_Elmt (Iface_Elmt); 15087 end loop; 15088 end if; 15089 end Derive_Progenitor_Subprograms; 15090 15091 ----------------------- 15092 -- Derive_Subprogram -- 15093 ----------------------- 15094 15095 procedure Derive_Subprogram 15096 (New_Subp : out Entity_Id; 15097 Parent_Subp : Entity_Id; 15098 Derived_Type : Entity_Id; 15099 Parent_Type : Entity_Id; 15100 Actual_Subp : Entity_Id := Empty) 15101 is 15102 Formal : Entity_Id; 15103 -- Formal parameter of parent primitive operation 15104 15105 Formal_Of_Actual : Entity_Id; 15106 -- Formal parameter of actual operation, when the derivation is to 15107 -- create a renaming for a primitive operation of an actual in an 15108 -- instantiation. 15109 15110 New_Formal : Entity_Id; 15111 -- Formal of inherited operation 15112 15113 Visible_Subp : Entity_Id := Parent_Subp; 15114 15115 function Is_Private_Overriding return Boolean; 15116 -- If Subp is a private overriding of a visible operation, the inherited 15117 -- operation derives from the overridden op (even though its body is the 15118 -- overriding one) and the inherited operation is visible now. See 15119 -- sem_disp to see the full details of the handling of the overridden 15120 -- subprogram, which is removed from the list of primitive operations of 15121 -- the type. The overridden subprogram is saved locally in Visible_Subp, 15122 -- and used to diagnose abstract operations that need overriding in the 15123 -- derived type. 15124 15125 procedure Replace_Type (Id, New_Id : Entity_Id); 15126 -- When the type is an anonymous access type, create a new access type 15127 -- designating the derived type. 15128 15129 procedure Set_Derived_Name; 15130 -- This procedure sets the appropriate Chars name for New_Subp. This 15131 -- is normally just a copy of the parent name. An exception arises for 15132 -- type support subprograms, where the name is changed to reflect the 15133 -- name of the derived type, e.g. if type foo is derived from type bar, 15134 -- then a procedure barDA is derived with a name fooDA. 15135 15136 --------------------------- 15137 -- Is_Private_Overriding -- 15138 --------------------------- 15139 15140 function Is_Private_Overriding return Boolean is 15141 Prev : Entity_Id; 15142 15143 begin 15144 -- If the parent is not a dispatching operation there is no 15145 -- need to investigate overridings 15146 15147 if not Is_Dispatching_Operation (Parent_Subp) then 15148 return False; 15149 end if; 15150 15151 -- The visible operation that is overridden is a homonym of the 15152 -- parent subprogram. We scan the homonym chain to find the one 15153 -- whose alias is the subprogram we are deriving. 15154 15155 Prev := Current_Entity (Parent_Subp); 15156 while Present (Prev) loop 15157 if Ekind (Prev) = Ekind (Parent_Subp) 15158 and then Alias (Prev) = Parent_Subp 15159 and then Scope (Parent_Subp) = Scope (Prev) 15160 and then not Is_Hidden (Prev) 15161 then 15162 Visible_Subp := Prev; 15163 return True; 15164 end if; 15165 15166 Prev := Homonym (Prev); 15167 end loop; 15168 15169 return False; 15170 end Is_Private_Overriding; 15171 15172 ------------------ 15173 -- Replace_Type -- 15174 ------------------ 15175 15176 procedure Replace_Type (Id, New_Id : Entity_Id) is 15177 Id_Type : constant Entity_Id := Etype (Id); 15178 Acc_Type : Entity_Id; 15179 Par : constant Node_Id := Parent (Derived_Type); 15180 15181 begin 15182 -- When the type is an anonymous access type, create a new access 15183 -- type designating the derived type. This itype must be elaborated 15184 -- at the point of the derivation, not on subsequent calls that may 15185 -- be out of the proper scope for Gigi, so we insert a reference to 15186 -- it after the derivation. 15187 15188 if Ekind (Id_Type) = E_Anonymous_Access_Type then 15189 declare 15190 Desig_Typ : Entity_Id := Designated_Type (Id_Type); 15191 15192 begin 15193 if Ekind (Desig_Typ) = E_Record_Type_With_Private 15194 and then Present (Full_View (Desig_Typ)) 15195 and then not Is_Private_Type (Parent_Type) 15196 then 15197 Desig_Typ := Full_View (Desig_Typ); 15198 end if; 15199 15200 if Base_Type (Desig_Typ) = Base_Type (Parent_Type) 15201 15202 -- Ada 2005 (AI-251): Handle also derivations of abstract 15203 -- interface primitives. 15204 15205 or else (Is_Interface (Desig_Typ) 15206 and then not Is_Class_Wide_Type (Desig_Typ)) 15207 then 15208 Acc_Type := New_Copy (Id_Type); 15209 Set_Etype (Acc_Type, Acc_Type); 15210 Set_Scope (Acc_Type, New_Subp); 15211 15212 -- Set size of anonymous access type. If we have an access 15213 -- to an unconstrained array, this is a fat pointer, so it 15214 -- is sizes at twice addtress size. 15215 15216 if Is_Array_Type (Desig_Typ) 15217 and then not Is_Constrained (Desig_Typ) 15218 then 15219 Init_Size (Acc_Type, 2 * System_Address_Size); 15220 15221 -- Other cases use a thin pointer 15222 15223 else 15224 Init_Size (Acc_Type, System_Address_Size); 15225 end if; 15226 15227 -- Set remaining characterstics of anonymous access type 15228 15229 Init_Alignment (Acc_Type); 15230 Set_Directly_Designated_Type (Acc_Type, Derived_Type); 15231 15232 Set_Etype (New_Id, Acc_Type); 15233 Set_Scope (New_Id, New_Subp); 15234 15235 -- Create a reference to it 15236 15237 Build_Itype_Reference (Acc_Type, Parent (Derived_Type)); 15238 15239 else 15240 Set_Etype (New_Id, Id_Type); 15241 end if; 15242 end; 15243 15244 -- In Ada2012, a formal may have an incomplete type but the type 15245 -- derivation that inherits the primitive follows the full view. 15246 15247 elsif Base_Type (Id_Type) = Base_Type (Parent_Type) 15248 or else 15249 (Ekind (Id_Type) = E_Record_Type_With_Private 15250 and then Present (Full_View (Id_Type)) 15251 and then 15252 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type)) 15253 or else 15254 (Ada_Version >= Ada_2012 15255 and then Ekind (Id_Type) = E_Incomplete_Type 15256 and then Full_View (Id_Type) = Parent_Type) 15257 then 15258 -- Constraint checks on formals are generated during expansion, 15259 -- based on the signature of the original subprogram. The bounds 15260 -- of the derived type are not relevant, and thus we can use 15261 -- the base type for the formals. However, the return type may be 15262 -- used in a context that requires that the proper static bounds 15263 -- be used (a case statement, for example) and for those cases 15264 -- we must use the derived type (first subtype), not its base. 15265 15266 -- If the derived_type_definition has no constraints, we know that 15267 -- the derived type has the same constraints as the first subtype 15268 -- of the parent, and we can also use it rather than its base, 15269 -- which can lead to more efficient code. 15270 15271 if Etype (Id) = Parent_Type then 15272 if Is_Scalar_Type (Parent_Type) 15273 and then 15274 Subtypes_Statically_Compatible (Parent_Type, Derived_Type) 15275 then 15276 Set_Etype (New_Id, Derived_Type); 15277 15278 elsif Nkind (Par) = N_Full_Type_Declaration 15279 and then 15280 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition 15281 and then 15282 Is_Entity_Name 15283 (Subtype_Indication (Type_Definition (Par))) 15284 then 15285 Set_Etype (New_Id, Derived_Type); 15286 15287 else 15288 Set_Etype (New_Id, Base_Type (Derived_Type)); 15289 end if; 15290 15291 else 15292 Set_Etype (New_Id, Base_Type (Derived_Type)); 15293 end if; 15294 15295 else 15296 Set_Etype (New_Id, Etype (Id)); 15297 end if; 15298 end Replace_Type; 15299 15300 ---------------------- 15301 -- Set_Derived_Name -- 15302 ---------------------- 15303 15304 procedure Set_Derived_Name is 15305 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp); 15306 begin 15307 if Nm = TSS_Null then 15308 Set_Chars (New_Subp, Chars (Parent_Subp)); 15309 else 15310 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm)); 15311 end if; 15312 end Set_Derived_Name; 15313 15314 -- Start of processing for Derive_Subprogram 15315 15316 begin 15317 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type)); 15318 Set_Ekind (New_Subp, Ekind (Parent_Subp)); 15319 15320 -- Check whether the inherited subprogram is a private operation that 15321 -- should be inherited but not yet made visible. Such subprograms can 15322 -- become visible at a later point (e.g., the private part of a public 15323 -- child unit) via Declare_Inherited_Private_Subprograms. If the 15324 -- following predicate is true, then this is not such a private 15325 -- operation and the subprogram simply inherits the name of the parent 15326 -- subprogram. Note the special check for the names of controlled 15327 -- operations, which are currently exempted from being inherited with 15328 -- a hidden name because they must be findable for generation of 15329 -- implicit run-time calls. 15330 15331 if not Is_Hidden (Parent_Subp) 15332 or else Is_Internal (Parent_Subp) 15333 or else Is_Private_Overriding 15334 or else Is_Internal_Name (Chars (Parent_Subp)) 15335 or else (Is_Controlled (Parent_Type) 15336 and then Nam_In (Chars (Parent_Subp), Name_Adjust, 15337 Name_Finalize, 15338 Name_Initialize)) 15339 then 15340 Set_Derived_Name; 15341 15342 -- An inherited dispatching equality will be overridden by an internally 15343 -- generated one, or by an explicit one, so preserve its name and thus 15344 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a 15345 -- private operation it may become invisible if the full view has 15346 -- progenitors, and the dispatch table will be malformed. 15347 -- We check that the type is limited to handle the anomalous declaration 15348 -- of Limited_Controlled, which is derived from a non-limited type, and 15349 -- which is handled specially elsewhere as well. 15350 15351 elsif Chars (Parent_Subp) = Name_Op_Eq 15352 and then Is_Dispatching_Operation (Parent_Subp) 15353 and then Etype (Parent_Subp) = Standard_Boolean 15354 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp))) 15355 and then 15356 Etype (First_Formal (Parent_Subp)) = 15357 Etype (Next_Formal (First_Formal (Parent_Subp))) 15358 then 15359 Set_Derived_Name; 15360 15361 -- If parent is hidden, this can be a regular derivation if the 15362 -- parent is immediately visible in a non-instantiating context, 15363 -- or if we are in the private part of an instance. This test 15364 -- should still be refined ??? 15365 15366 -- The test for In_Instance_Not_Visible avoids inheriting the derived 15367 -- operation as a non-visible operation in cases where the parent 15368 -- subprogram might not be visible now, but was visible within the 15369 -- original generic, so it would be wrong to make the inherited 15370 -- subprogram non-visible now. (Not clear if this test is fully 15371 -- correct; are there any cases where we should declare the inherited 15372 -- operation as not visible to avoid it being overridden, e.g., when 15373 -- the parent type is a generic actual with private primitives ???) 15374 15375 -- (they should be treated the same as other private inherited 15376 -- subprograms, but it's not clear how to do this cleanly). ??? 15377 15378 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type))) 15379 and then Is_Immediately_Visible (Parent_Subp) 15380 and then not In_Instance) 15381 or else In_Instance_Not_Visible 15382 then 15383 Set_Derived_Name; 15384 15385 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram 15386 -- overrides an interface primitive because interface primitives 15387 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2)) 15388 15389 elsif Ada_Version >= Ada_2005 15390 and then Is_Dispatching_Operation (Parent_Subp) 15391 and then Present (Covered_Interface_Op (Parent_Subp)) 15392 then 15393 Set_Derived_Name; 15394 15395 -- Otherwise, the type is inheriting a private operation, so enter it 15396 -- with a special name so it can't be overridden. 15397 15398 else 15399 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P')); 15400 end if; 15401 15402 Set_Parent (New_Subp, Parent (Derived_Type)); 15403 15404 if Present (Actual_Subp) then 15405 Replace_Type (Actual_Subp, New_Subp); 15406 else 15407 Replace_Type (Parent_Subp, New_Subp); 15408 end if; 15409 15410 Conditional_Delay (New_Subp, Parent_Subp); 15411 15412 -- If we are creating a renaming for a primitive operation of an 15413 -- actual of a generic derived type, we must examine the signature 15414 -- of the actual primitive, not that of the generic formal, which for 15415 -- example may be an interface. However the name and initial value 15416 -- of the inherited operation are those of the formal primitive. 15417 15418 Formal := First_Formal (Parent_Subp); 15419 15420 if Present (Actual_Subp) then 15421 Formal_Of_Actual := First_Formal (Actual_Subp); 15422 else 15423 Formal_Of_Actual := Empty; 15424 end if; 15425 15426 while Present (Formal) loop 15427 New_Formal := New_Copy (Formal); 15428 15429 -- Normally we do not go copying parents, but in the case of 15430 -- formals, we need to link up to the declaration (which is the 15431 -- parameter specification), and it is fine to link up to the 15432 -- original formal's parameter specification in this case. 15433 15434 Set_Parent (New_Formal, Parent (Formal)); 15435 Append_Entity (New_Formal, New_Subp); 15436 15437 if Present (Formal_Of_Actual) then 15438 Replace_Type (Formal_Of_Actual, New_Formal); 15439 Next_Formal (Formal_Of_Actual); 15440 else 15441 Replace_Type (Formal, New_Formal); 15442 end if; 15443 15444 Next_Formal (Formal); 15445 end loop; 15446 15447 -- If this derivation corresponds to a tagged generic actual, then 15448 -- primitive operations rename those of the actual. Otherwise the 15449 -- primitive operations rename those of the parent type, If the parent 15450 -- renames an intrinsic operator, so does the new subprogram. We except 15451 -- concatenation, which is always properly typed, and does not get 15452 -- expanded as other intrinsic operations. 15453 15454 if No (Actual_Subp) then 15455 if Is_Intrinsic_Subprogram (Parent_Subp) then 15456 Set_Is_Intrinsic_Subprogram (New_Subp); 15457 15458 if Present (Alias (Parent_Subp)) 15459 and then Chars (Parent_Subp) /= Name_Op_Concat 15460 then 15461 Set_Alias (New_Subp, Alias (Parent_Subp)); 15462 else 15463 Set_Alias (New_Subp, Parent_Subp); 15464 end if; 15465 15466 else 15467 Set_Alias (New_Subp, Parent_Subp); 15468 end if; 15469 15470 else 15471 Set_Alias (New_Subp, Actual_Subp); 15472 end if; 15473 15474 -- Derived subprograms of a tagged type must inherit the convention 15475 -- of the parent subprogram (a requirement of AI-117). Derived 15476 -- subprograms of untagged types simply get convention Ada by default. 15477 15478 -- If the derived type is a tagged generic formal type with unknown 15479 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)). 15480 15481 -- However, if the type is derived from a generic formal, the further 15482 -- inherited subprogram has the convention of the non-generic ancestor. 15483 -- Otherwise there would be no way to override the operation. 15484 -- (This is subject to forthcoming ARG discussions). 15485 15486 if Is_Tagged_Type (Derived_Type) then 15487 if Is_Generic_Type (Derived_Type) 15488 and then Has_Unknown_Discriminants (Derived_Type) 15489 then 15490 Set_Convention (New_Subp, Convention_Intrinsic); 15491 15492 else 15493 if Is_Generic_Type (Parent_Type) 15494 and then Has_Unknown_Discriminants (Parent_Type) 15495 then 15496 Set_Convention (New_Subp, Convention (Alias (Parent_Subp))); 15497 else 15498 Set_Convention (New_Subp, Convention (Parent_Subp)); 15499 end if; 15500 end if; 15501 end if; 15502 15503 -- Predefined controlled operations retain their name even if the parent 15504 -- is hidden (see above), but they are not primitive operations if the 15505 -- ancestor is not visible, for example if the parent is a private 15506 -- extension completed with a controlled extension. Note that a full 15507 -- type that is controlled can break privacy: the flag Is_Controlled is 15508 -- set on both views of the type. 15509 15510 if Is_Controlled (Parent_Type) 15511 and then Nam_In (Chars (Parent_Subp), Name_Initialize, 15512 Name_Adjust, 15513 Name_Finalize) 15514 and then Is_Hidden (Parent_Subp) 15515 and then not Is_Visibly_Controlled (Parent_Type) 15516 then 15517 Set_Is_Hidden (New_Subp); 15518 end if; 15519 15520 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp)); 15521 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp)); 15522 15523 if Ekind (Parent_Subp) = E_Procedure then 15524 Set_Is_Valued_Procedure 15525 (New_Subp, Is_Valued_Procedure (Parent_Subp)); 15526 else 15527 Set_Has_Controlling_Result 15528 (New_Subp, Has_Controlling_Result (Parent_Subp)); 15529 end if; 15530 15531 -- No_Return must be inherited properly. If this is overridden in the 15532 -- case of a dispatching operation, then a check is made in Sem_Disp 15533 -- that the overriding operation is also No_Return (no such check is 15534 -- required for the case of non-dispatching operation. 15535 15536 Set_No_Return (New_Subp, No_Return (Parent_Subp)); 15537 15538 -- A derived function with a controlling result is abstract. If the 15539 -- Derived_Type is a nonabstract formal generic derived type, then 15540 -- inherited operations are not abstract: the required check is done at 15541 -- instantiation time. If the derivation is for a generic actual, the 15542 -- function is not abstract unless the actual is. 15543 15544 if Is_Generic_Type (Derived_Type) 15545 and then not Is_Abstract_Type (Derived_Type) 15546 then 15547 null; 15548 15549 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract" 15550 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2). 15551 15552 -- A subprogram subject to pragma Extensions_Visible with value False 15553 -- requires overriding if the subprogram has at least one controlling 15554 -- OUT parameter (SPARK RM 6.1.7(6)). 15555 15556 elsif Ada_Version >= Ada_2005 15557 and then (Is_Abstract_Subprogram (Alias (New_Subp)) 15558 or else (Is_Tagged_Type (Derived_Type) 15559 and then Etype (New_Subp) = Derived_Type 15560 and then not Is_Null_Extension (Derived_Type)) 15561 or else (Is_Tagged_Type (Derived_Type) 15562 and then Ekind (Etype (New_Subp)) = 15563 E_Anonymous_Access_Type 15564 and then Designated_Type (Etype (New_Subp)) = 15565 Derived_Type 15566 and then not Is_Null_Extension (Derived_Type)) 15567 or else (Comes_From_Source (Alias (New_Subp)) 15568 and then Is_EVF_Procedure (Alias (New_Subp)))) 15569 and then No (Actual_Subp) 15570 then 15571 if not Is_Tagged_Type (Derived_Type) 15572 or else Is_Abstract_Type (Derived_Type) 15573 or else Is_Abstract_Subprogram (Alias (New_Subp)) 15574 then 15575 Set_Is_Abstract_Subprogram (New_Subp); 15576 else 15577 Set_Requires_Overriding (New_Subp); 15578 end if; 15579 15580 elsif Ada_Version < Ada_2005 15581 and then (Is_Abstract_Subprogram (Alias (New_Subp)) 15582 or else (Is_Tagged_Type (Derived_Type) 15583 and then Etype (New_Subp) = Derived_Type 15584 and then No (Actual_Subp))) 15585 then 15586 Set_Is_Abstract_Subprogram (New_Subp); 15587 15588 -- AI05-0097 : an inherited operation that dispatches on result is 15589 -- abstract if the derived type is abstract, even if the parent type 15590 -- is concrete and the derived type is a null extension. 15591 15592 elsif Has_Controlling_Result (Alias (New_Subp)) 15593 and then Is_Abstract_Type (Etype (New_Subp)) 15594 then 15595 Set_Is_Abstract_Subprogram (New_Subp); 15596 15597 -- Finally, if the parent type is abstract we must verify that all 15598 -- inherited operations are either non-abstract or overridden, or that 15599 -- the derived type itself is abstract (this check is performed at the 15600 -- end of a package declaration, in Check_Abstract_Overriding). A 15601 -- private overriding in the parent type will not be visible in the 15602 -- derivation if we are not in an inner package or in a child unit of 15603 -- the parent type, in which case the abstractness of the inherited 15604 -- operation is carried to the new subprogram. 15605 15606 elsif Is_Abstract_Type (Parent_Type) 15607 and then not In_Open_Scopes (Scope (Parent_Type)) 15608 and then Is_Private_Overriding 15609 and then Is_Abstract_Subprogram (Visible_Subp) 15610 then 15611 if No (Actual_Subp) then 15612 Set_Alias (New_Subp, Visible_Subp); 15613 Set_Is_Abstract_Subprogram (New_Subp, True); 15614 15615 else 15616 -- If this is a derivation for an instance of a formal derived 15617 -- type, abstractness comes from the primitive operation of the 15618 -- actual, not from the operation inherited from the ancestor. 15619 15620 Set_Is_Abstract_Subprogram 15621 (New_Subp, Is_Abstract_Subprogram (Actual_Subp)); 15622 end if; 15623 end if; 15624 15625 New_Overloaded_Entity (New_Subp, Derived_Type); 15626 15627 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide 15628 -- preconditions and the derived type is abstract, the derived operation 15629 -- is abstract as well if parent subprogram is not abstract or null. 15630 15631 if Is_Abstract_Type (Derived_Type) 15632 and then Has_Non_Trivial_Precondition (Parent_Subp) 15633 and then Present (Interfaces (Derived_Type)) 15634 then 15635 15636 -- Add useful attributes of subprogram before the freeze point, 15637 -- in case freezing is delayed or there are previous errors. 15638 15639 Set_Is_Dispatching_Operation (New_Subp); 15640 15641 declare 15642 Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp); 15643 15644 begin 15645 if Present (Iface_Prim) 15646 and then Has_Non_Trivial_Precondition (Iface_Prim) 15647 then 15648 Set_Is_Abstract_Subprogram (New_Subp); 15649 end if; 15650 end; 15651 end if; 15652 15653 -- Check for case of a derived subprogram for the instantiation of a 15654 -- formal derived tagged type, if so mark the subprogram as dispatching 15655 -- and inherit the dispatching attributes of the actual subprogram. The 15656 -- derived subprogram is effectively renaming of the actual subprogram, 15657 -- so it needs to have the same attributes as the actual. 15658 15659 if Present (Actual_Subp) 15660 and then Is_Dispatching_Operation (Actual_Subp) 15661 then 15662 Set_Is_Dispatching_Operation (New_Subp); 15663 15664 if Present (DTC_Entity (Actual_Subp)) then 15665 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp)); 15666 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp)); 15667 end if; 15668 end if; 15669 15670 -- Indicate that a derived subprogram does not require a body and that 15671 -- it does not require processing of default expressions. 15672 15673 Set_Has_Completion (New_Subp); 15674 Set_Default_Expressions_Processed (New_Subp); 15675 15676 if Ekind (New_Subp) = E_Function then 15677 Set_Mechanism (New_Subp, Mechanism (Parent_Subp)); 15678 end if; 15679 end Derive_Subprogram; 15680 15681 ------------------------ 15682 -- Derive_Subprograms -- 15683 ------------------------ 15684 15685 procedure Derive_Subprograms 15686 (Parent_Type : Entity_Id; 15687 Derived_Type : Entity_Id; 15688 Generic_Actual : Entity_Id := Empty) 15689 is 15690 Op_List : constant Elist_Id := 15691 Collect_Primitive_Operations (Parent_Type); 15692 15693 function Check_Derived_Type return Boolean; 15694 -- Check that all the entities derived from Parent_Type are found in 15695 -- the list of primitives of Derived_Type exactly in the same order. 15696 15697 procedure Derive_Interface_Subprogram 15698 (New_Subp : out Entity_Id; 15699 Subp : Entity_Id; 15700 Actual_Subp : Entity_Id); 15701 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp 15702 -- (which is an interface primitive). If Generic_Actual is present then 15703 -- Actual_Subp is the actual subprogram corresponding with the generic 15704 -- subprogram Subp. 15705 15706 ------------------------ 15707 -- Check_Derived_Type -- 15708 ------------------------ 15709 15710 function Check_Derived_Type return Boolean is 15711 E : Entity_Id; 15712 Elmt : Elmt_Id; 15713 List : Elist_Id; 15714 New_Subp : Entity_Id; 15715 Op_Elmt : Elmt_Id; 15716 Subp : Entity_Id; 15717 15718 begin 15719 -- Traverse list of entities in the current scope searching for 15720 -- an incomplete type whose full-view is derived type. 15721 15722 E := First_Entity (Scope (Derived_Type)); 15723 while Present (E) and then E /= Derived_Type loop 15724 if Ekind (E) = E_Incomplete_Type 15725 and then Present (Full_View (E)) 15726 and then Full_View (E) = Derived_Type 15727 then 15728 -- Disable this test if Derived_Type completes an incomplete 15729 -- type because in such case more primitives can be added 15730 -- later to the list of primitives of Derived_Type by routine 15731 -- Process_Incomplete_Dependents 15732 15733 return True; 15734 end if; 15735 15736 E := Next_Entity (E); 15737 end loop; 15738 15739 List := Collect_Primitive_Operations (Derived_Type); 15740 Elmt := First_Elmt (List); 15741 15742 Op_Elmt := First_Elmt (Op_List); 15743 while Present (Op_Elmt) loop 15744 Subp := Node (Op_Elmt); 15745 New_Subp := Node (Elmt); 15746 15747 -- At this early stage Derived_Type has no entities with attribute 15748 -- Interface_Alias. In addition, such primitives are always 15749 -- located at the end of the list of primitives of Parent_Type. 15750 -- Therefore, if found we can safely stop processing pending 15751 -- entities. 15752 15753 exit when Present (Interface_Alias (Subp)); 15754 15755 -- Handle hidden entities 15756 15757 if not Is_Predefined_Dispatching_Operation (Subp) 15758 and then Is_Hidden (Subp) 15759 then 15760 if Present (New_Subp) 15761 and then Primitive_Names_Match (Subp, New_Subp) 15762 then 15763 Next_Elmt (Elmt); 15764 end if; 15765 15766 else 15767 if not Present (New_Subp) 15768 or else Ekind (Subp) /= Ekind (New_Subp) 15769 or else not Primitive_Names_Match (Subp, New_Subp) 15770 then 15771 return False; 15772 end if; 15773 15774 Next_Elmt (Elmt); 15775 end if; 15776 15777 Next_Elmt (Op_Elmt); 15778 end loop; 15779 15780 return True; 15781 end Check_Derived_Type; 15782 15783 --------------------------------- 15784 -- Derive_Interface_Subprogram -- 15785 --------------------------------- 15786 15787 procedure Derive_Interface_Subprogram 15788 (New_Subp : out Entity_Id; 15789 Subp : Entity_Id; 15790 Actual_Subp : Entity_Id) 15791 is 15792 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp); 15793 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp); 15794 15795 begin 15796 pragma Assert (Is_Interface (Iface_Type)); 15797 15798 Derive_Subprogram 15799 (New_Subp => New_Subp, 15800 Parent_Subp => Iface_Subp, 15801 Derived_Type => Derived_Type, 15802 Parent_Type => Iface_Type, 15803 Actual_Subp => Actual_Subp); 15804 15805 -- Given that this new interface entity corresponds with a primitive 15806 -- of the parent that was not overridden we must leave it associated 15807 -- with its parent primitive to ensure that it will share the same 15808 -- dispatch table slot when overridden. We must set the Alias to Subp 15809 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram 15810 -- (in case we inherited Subp from Iface_Type via a nonabstract 15811 -- generic formal type). 15812 15813 if No (Actual_Subp) then 15814 Set_Alias (New_Subp, Subp); 15815 15816 declare 15817 T : Entity_Id := Find_Dispatching_Type (Subp); 15818 begin 15819 while Etype (T) /= T loop 15820 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then 15821 Set_Is_Abstract_Subprogram (New_Subp, False); 15822 exit; 15823 end if; 15824 15825 T := Etype (T); 15826 end loop; 15827 end; 15828 15829 -- For instantiations this is not needed since the previous call to 15830 -- Derive_Subprogram leaves the entity well decorated. 15831 15832 else 15833 pragma Assert (Alias (New_Subp) = Actual_Subp); 15834 null; 15835 end if; 15836 end Derive_Interface_Subprogram; 15837 15838 -- Local variables 15839 15840 Alias_Subp : Entity_Id; 15841 Act_List : Elist_Id; 15842 Act_Elmt : Elmt_Id; 15843 Act_Subp : Entity_Id := Empty; 15844 Elmt : Elmt_Id; 15845 Need_Search : Boolean := False; 15846 New_Subp : Entity_Id := Empty; 15847 Parent_Base : Entity_Id; 15848 Subp : Entity_Id; 15849 15850 -- Start of processing for Derive_Subprograms 15851 15852 begin 15853 if Ekind (Parent_Type) = E_Record_Type_With_Private 15854 and then Has_Discriminants (Parent_Type) 15855 and then Present (Full_View (Parent_Type)) 15856 then 15857 Parent_Base := Full_View (Parent_Type); 15858 else 15859 Parent_Base := Parent_Type; 15860 end if; 15861 15862 if Present (Generic_Actual) then 15863 Act_List := Collect_Primitive_Operations (Generic_Actual); 15864 Act_Elmt := First_Elmt (Act_List); 15865 else 15866 Act_List := No_Elist; 15867 Act_Elmt := No_Elmt; 15868 end if; 15869 15870 -- Derive primitives inherited from the parent. Note that if the generic 15871 -- actual is present, this is not really a type derivation, it is a 15872 -- completion within an instance. 15873 15874 -- Case 1: Derived_Type does not implement interfaces 15875 15876 if not Is_Tagged_Type (Derived_Type) 15877 or else (not Has_Interfaces (Derived_Type) 15878 and then not (Present (Generic_Actual) 15879 and then Has_Interfaces (Generic_Actual))) 15880 then 15881 Elmt := First_Elmt (Op_List); 15882 while Present (Elmt) loop 15883 Subp := Node (Elmt); 15884 15885 -- Literals are derived earlier in the process of building the 15886 -- derived type, and are skipped here. 15887 15888 if Ekind (Subp) = E_Enumeration_Literal then 15889 null; 15890 15891 -- The actual is a direct descendant and the common primitive 15892 -- operations appear in the same order. 15893 15894 -- If the generic parent type is present, the derived type is an 15895 -- instance of a formal derived type, and within the instance its 15896 -- operations are those of the actual. We derive from the formal 15897 -- type but make the inherited operations aliases of the 15898 -- corresponding operations of the actual. 15899 15900 else 15901 pragma Assert (No (Node (Act_Elmt)) 15902 or else (Primitive_Names_Match (Subp, Node (Act_Elmt)) 15903 and then 15904 Type_Conformant 15905 (Subp, Node (Act_Elmt), 15906 Skip_Controlling_Formals => True))); 15907 15908 Derive_Subprogram 15909 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt)); 15910 15911 if Present (Act_Elmt) then 15912 Next_Elmt (Act_Elmt); 15913 end if; 15914 end if; 15915 15916 Next_Elmt (Elmt); 15917 end loop; 15918 15919 -- Case 2: Derived_Type implements interfaces 15920 15921 else 15922 -- If the parent type has no predefined primitives we remove 15923 -- predefined primitives from the list of primitives of generic 15924 -- actual to simplify the complexity of this algorithm. 15925 15926 if Present (Generic_Actual) then 15927 declare 15928 Has_Predefined_Primitives : Boolean := False; 15929 15930 begin 15931 -- Check if the parent type has predefined primitives 15932 15933 Elmt := First_Elmt (Op_List); 15934 while Present (Elmt) loop 15935 Subp := Node (Elmt); 15936 15937 if Is_Predefined_Dispatching_Operation (Subp) 15938 and then not Comes_From_Source (Ultimate_Alias (Subp)) 15939 then 15940 Has_Predefined_Primitives := True; 15941 exit; 15942 end if; 15943 15944 Next_Elmt (Elmt); 15945 end loop; 15946 15947 -- Remove predefined primitives of Generic_Actual. We must use 15948 -- an auxiliary list because in case of tagged types the value 15949 -- returned by Collect_Primitive_Operations is the value stored 15950 -- in its Primitive_Operations attribute (and we don't want to 15951 -- modify its current contents). 15952 15953 if not Has_Predefined_Primitives then 15954 declare 15955 Aux_List : constant Elist_Id := New_Elmt_List; 15956 15957 begin 15958 Elmt := First_Elmt (Act_List); 15959 while Present (Elmt) loop 15960 Subp := Node (Elmt); 15961 15962 if not Is_Predefined_Dispatching_Operation (Subp) 15963 or else Comes_From_Source (Subp) 15964 then 15965 Append_Elmt (Subp, Aux_List); 15966 end if; 15967 15968 Next_Elmt (Elmt); 15969 end loop; 15970 15971 Act_List := Aux_List; 15972 end; 15973 end if; 15974 15975 Act_Elmt := First_Elmt (Act_List); 15976 Act_Subp := Node (Act_Elmt); 15977 end; 15978 end if; 15979 15980 -- Stage 1: If the generic actual is not present we derive the 15981 -- primitives inherited from the parent type. If the generic parent 15982 -- type is present, the derived type is an instance of a formal 15983 -- derived type, and within the instance its operations are those of 15984 -- the actual. We derive from the formal type but make the inherited 15985 -- operations aliases of the corresponding operations of the actual. 15986 15987 Elmt := First_Elmt (Op_List); 15988 while Present (Elmt) loop 15989 Subp := Node (Elmt); 15990 Alias_Subp := Ultimate_Alias (Subp); 15991 15992 -- Do not derive internal entities of the parent that link 15993 -- interface primitives with their covering primitive. These 15994 -- entities will be added to this type when frozen. 15995 15996 if Present (Interface_Alias (Subp)) then 15997 goto Continue; 15998 end if; 15999 16000 -- If the generic actual is present find the corresponding 16001 -- operation in the generic actual. If the parent type is a 16002 -- direct ancestor of the derived type then, even if it is an 16003 -- interface, the operations are inherited from the primary 16004 -- dispatch table and are in the proper order. If we detect here 16005 -- that primitives are not in the same order we traverse the list 16006 -- of primitive operations of the actual to find the one that 16007 -- implements the interface primitive. 16008 16009 if Need_Search 16010 or else 16011 (Present (Generic_Actual) 16012 and then Present (Act_Subp) 16013 and then not 16014 (Primitive_Names_Match (Subp, Act_Subp) 16015 and then 16016 Type_Conformant (Subp, Act_Subp, 16017 Skip_Controlling_Formals => True))) 16018 then 16019 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual, 16020 Use_Full_View => True)); 16021 16022 -- Remember that we need searching for all pending primitives 16023 16024 Need_Search := True; 16025 16026 -- Handle entities associated with interface primitives 16027 16028 if Present (Alias_Subp) 16029 and then Is_Interface (Find_Dispatching_Type (Alias_Subp)) 16030 and then not Is_Predefined_Dispatching_Operation (Subp) 16031 then 16032 -- Search for the primitive in the homonym chain 16033 16034 Act_Subp := 16035 Find_Primitive_Covering_Interface 16036 (Tagged_Type => Generic_Actual, 16037 Iface_Prim => Alias_Subp); 16038 16039 -- Previous search may not locate primitives covering 16040 -- interfaces defined in generics units or instantiations. 16041 -- (it fails if the covering primitive has formals whose 16042 -- type is also defined in generics or instantiations). 16043 -- In such case we search in the list of primitives of the 16044 -- generic actual for the internal entity that links the 16045 -- interface primitive and the covering primitive. 16046 16047 if No (Act_Subp) 16048 and then Is_Generic_Type (Parent_Type) 16049 then 16050 -- This code has been designed to handle only generic 16051 -- formals that implement interfaces that are defined 16052 -- in a generic unit or instantiation. If this code is 16053 -- needed for other cases we must review it because 16054 -- (given that it relies on Original_Location to locate 16055 -- the primitive of Generic_Actual that covers the 16056 -- interface) it could leave linked through attribute 16057 -- Alias entities of unrelated instantiations). 16058 16059 pragma Assert 16060 (Is_Generic_Unit 16061 (Scope (Find_Dispatching_Type (Alias_Subp))) 16062 or else 16063 Instantiation_Depth 16064 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0); 16065 16066 declare 16067 Iface_Prim_Loc : constant Source_Ptr := 16068 Original_Location (Sloc (Alias_Subp)); 16069 16070 Elmt : Elmt_Id; 16071 Prim : Entity_Id; 16072 16073 begin 16074 Elmt := 16075 First_Elmt (Primitive_Operations (Generic_Actual)); 16076 16077 Search : while Present (Elmt) loop 16078 Prim := Node (Elmt); 16079 16080 if Present (Interface_Alias (Prim)) 16081 and then Original_Location 16082 (Sloc (Interface_Alias (Prim))) = 16083 Iface_Prim_Loc 16084 then 16085 Act_Subp := Alias (Prim); 16086 exit Search; 16087 end if; 16088 16089 Next_Elmt (Elmt); 16090 end loop Search; 16091 end; 16092 end if; 16093 16094 pragma Assert (Present (Act_Subp) 16095 or else Is_Abstract_Type (Generic_Actual) 16096 or else Serious_Errors_Detected > 0); 16097 16098 -- Handle predefined primitives plus the rest of user-defined 16099 -- primitives 16100 16101 else 16102 Act_Elmt := First_Elmt (Act_List); 16103 while Present (Act_Elmt) loop 16104 Act_Subp := Node (Act_Elmt); 16105 16106 exit when Primitive_Names_Match (Subp, Act_Subp) 16107 and then Type_Conformant 16108 (Subp, Act_Subp, 16109 Skip_Controlling_Formals => True) 16110 and then No (Interface_Alias (Act_Subp)); 16111 16112 Next_Elmt (Act_Elmt); 16113 end loop; 16114 16115 if No (Act_Elmt) then 16116 Act_Subp := Empty; 16117 end if; 16118 end if; 16119 end if; 16120 16121 -- Case 1: If the parent is a limited interface then it has the 16122 -- predefined primitives of synchronized interfaces. However, the 16123 -- actual type may be a non-limited type and hence it does not 16124 -- have such primitives. 16125 16126 if Present (Generic_Actual) 16127 and then not Present (Act_Subp) 16128 and then Is_Limited_Interface (Parent_Base) 16129 and then Is_Predefined_Interface_Primitive (Subp) 16130 then 16131 null; 16132 16133 -- Case 2: Inherit entities associated with interfaces that were 16134 -- not covered by the parent type. We exclude here null interface 16135 -- primitives because they do not need special management. 16136 16137 -- We also exclude interface operations that are renamings. If the 16138 -- subprogram is an explicit renaming of an interface primitive, 16139 -- it is a regular primitive operation, and the presence of its 16140 -- alias is not relevant: it has to be derived like any other 16141 -- primitive. 16142 16143 elsif Present (Alias (Subp)) 16144 and then Nkind (Unit_Declaration_Node (Subp)) /= 16145 N_Subprogram_Renaming_Declaration 16146 and then Is_Interface (Find_Dispatching_Type (Alias_Subp)) 16147 and then not 16148 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification 16149 and then Null_Present (Parent (Alias_Subp))) 16150 then 16151 -- If this is an abstract private type then we transfer the 16152 -- derivation of the interface primitive from the partial view 16153 -- to the full view. This is safe because all the interfaces 16154 -- must be visible in the partial view. Done to avoid adding 16155 -- a new interface derivation to the private part of the 16156 -- enclosing package; otherwise this new derivation would be 16157 -- decorated as hidden when the analysis of the enclosing 16158 -- package completes. 16159 16160 if Is_Abstract_Type (Derived_Type) 16161 and then In_Private_Part (Current_Scope) 16162 and then Has_Private_Declaration (Derived_Type) 16163 then 16164 declare 16165 Partial_View : Entity_Id; 16166 Elmt : Elmt_Id; 16167 Ent : Entity_Id; 16168 16169 begin 16170 Partial_View := First_Entity (Current_Scope); 16171 loop 16172 exit when No (Partial_View) 16173 or else (Has_Private_Declaration (Partial_View) 16174 and then 16175 Full_View (Partial_View) = Derived_Type); 16176 16177 Next_Entity (Partial_View); 16178 end loop; 16179 16180 -- If the partial view was not found then the source code 16181 -- has errors and the derivation is not needed. 16182 16183 if Present (Partial_View) then 16184 Elmt := 16185 First_Elmt (Primitive_Operations (Partial_View)); 16186 while Present (Elmt) loop 16187 Ent := Node (Elmt); 16188 16189 if Present (Alias (Ent)) 16190 and then Ultimate_Alias (Ent) = Alias (Subp) 16191 then 16192 Append_Elmt 16193 (Ent, Primitive_Operations (Derived_Type)); 16194 exit; 16195 end if; 16196 16197 Next_Elmt (Elmt); 16198 end loop; 16199 16200 -- If the interface primitive was not found in the 16201 -- partial view then this interface primitive was 16202 -- overridden. We add a derivation to activate in 16203 -- Derive_Progenitor_Subprograms the machinery to 16204 -- search for it. 16205 16206 if No (Elmt) then 16207 Derive_Interface_Subprogram 16208 (New_Subp => New_Subp, 16209 Subp => Subp, 16210 Actual_Subp => Act_Subp); 16211 end if; 16212 end if; 16213 end; 16214 else 16215 Derive_Interface_Subprogram 16216 (New_Subp => New_Subp, 16217 Subp => Subp, 16218 Actual_Subp => Act_Subp); 16219 end if; 16220 16221 -- Case 3: Common derivation 16222 16223 else 16224 Derive_Subprogram 16225 (New_Subp => New_Subp, 16226 Parent_Subp => Subp, 16227 Derived_Type => Derived_Type, 16228 Parent_Type => Parent_Base, 16229 Actual_Subp => Act_Subp); 16230 end if; 16231 16232 -- No need to update Act_Elm if we must search for the 16233 -- corresponding operation in the generic actual 16234 16235 if not Need_Search 16236 and then Present (Act_Elmt) 16237 then 16238 Next_Elmt (Act_Elmt); 16239 Act_Subp := Node (Act_Elmt); 16240 end if; 16241 16242 <<Continue>> 16243 Next_Elmt (Elmt); 16244 end loop; 16245 16246 -- Inherit additional operations from progenitors. If the derived 16247 -- type is a generic actual, there are not new primitive operations 16248 -- for the type because it has those of the actual, and therefore 16249 -- nothing needs to be done. The renamings generated above are not 16250 -- primitive operations, and their purpose is simply to make the 16251 -- proper operations visible within an instantiation. 16252 16253 if No (Generic_Actual) then 16254 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type); 16255 end if; 16256 end if; 16257 16258 -- Final check: Direct descendants must have their primitives in the 16259 -- same order. We exclude from this test untagged types and instances 16260 -- of formal derived types. We skip this test if we have already 16261 -- reported serious errors in the sources. 16262 16263 pragma Assert (not Is_Tagged_Type (Derived_Type) 16264 or else Present (Generic_Actual) 16265 or else Serious_Errors_Detected > 0 16266 or else Check_Derived_Type); 16267 end Derive_Subprograms; 16268 16269 -------------------------------- 16270 -- Derived_Standard_Character -- 16271 -------------------------------- 16272 16273 procedure Derived_Standard_Character 16274 (N : Node_Id; 16275 Parent_Type : Entity_Id; 16276 Derived_Type : Entity_Id) 16277 is 16278 Loc : constant Source_Ptr := Sloc (N); 16279 Def : constant Node_Id := Type_Definition (N); 16280 Indic : constant Node_Id := Subtype_Indication (Def); 16281 Parent_Base : constant Entity_Id := Base_Type (Parent_Type); 16282 Implicit_Base : constant Entity_Id := 16283 Create_Itype 16284 (E_Enumeration_Type, N, Derived_Type, 'B'); 16285 16286 Lo : Node_Id; 16287 Hi : Node_Id; 16288 16289 begin 16290 Discard_Node (Process_Subtype (Indic, N)); 16291 16292 Set_Etype (Implicit_Base, Parent_Base); 16293 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type)); 16294 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type))); 16295 16296 Set_Is_Character_Type (Implicit_Base, True); 16297 Set_Has_Delayed_Freeze (Implicit_Base); 16298 16299 -- The bounds of the implicit base are the bounds of the parent base. 16300 -- Note that their type is the parent base. 16301 16302 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base)); 16303 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base)); 16304 16305 Set_Scalar_Range (Implicit_Base, 16306 Make_Range (Loc, 16307 Low_Bound => Lo, 16308 High_Bound => Hi)); 16309 16310 Conditional_Delay (Derived_Type, Parent_Type); 16311 16312 Set_Ekind (Derived_Type, E_Enumeration_Subtype); 16313 Set_Etype (Derived_Type, Implicit_Base); 16314 Set_Size_Info (Derived_Type, Parent_Type); 16315 16316 if Unknown_RM_Size (Derived_Type) then 16317 Set_RM_Size (Derived_Type, RM_Size (Parent_Type)); 16318 end if; 16319 16320 Set_Is_Character_Type (Derived_Type, True); 16321 16322 if Nkind (Indic) /= N_Subtype_Indication then 16323 16324 -- If no explicit constraint, the bounds are those 16325 -- of the parent type. 16326 16327 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type)); 16328 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type)); 16329 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi)); 16330 end if; 16331 16332 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc); 16333 16334 -- Because the implicit base is used in the conversion of the bounds, we 16335 -- have to freeze it now. This is similar to what is done for numeric 16336 -- types, and it equally suspicious, but otherwise a non-static bound 16337 -- will have a reference to an unfrozen type, which is rejected by Gigi 16338 -- (???). This requires specific care for definition of stream 16339 -- attributes. For details, see comments at the end of 16340 -- Build_Derived_Numeric_Type. 16341 16342 Freeze_Before (N, Implicit_Base); 16343 end Derived_Standard_Character; 16344 16345 ------------------------------ 16346 -- Derived_Type_Declaration -- 16347 ------------------------------ 16348 16349 procedure Derived_Type_Declaration 16350 (T : Entity_Id; 16351 N : Node_Id; 16352 Is_Completion : Boolean) 16353 is 16354 Parent_Type : Entity_Id; 16355 16356 function Comes_From_Generic (Typ : Entity_Id) return Boolean; 16357 -- Check whether the parent type is a generic formal, or derives 16358 -- directly or indirectly from one. 16359 16360 ------------------------ 16361 -- Comes_From_Generic -- 16362 ------------------------ 16363 16364 function Comes_From_Generic (Typ : Entity_Id) return Boolean is 16365 begin 16366 if Is_Generic_Type (Typ) then 16367 return True; 16368 16369 elsif Is_Generic_Type (Root_Type (Parent_Type)) then 16370 return True; 16371 16372 elsif Is_Private_Type (Typ) 16373 and then Present (Full_View (Typ)) 16374 and then Is_Generic_Type (Root_Type (Full_View (Typ))) 16375 then 16376 return True; 16377 16378 elsif Is_Generic_Actual_Type (Typ) then 16379 return True; 16380 16381 else 16382 return False; 16383 end if; 16384 end Comes_From_Generic; 16385 16386 -- Local variables 16387 16388 Def : constant Node_Id := Type_Definition (N); 16389 Iface_Def : Node_Id; 16390 Indic : constant Node_Id := Subtype_Indication (Def); 16391 Extension : constant Node_Id := Record_Extension_Part (Def); 16392 Parent_Node : Node_Id; 16393 Taggd : Boolean; 16394 16395 -- Start of processing for Derived_Type_Declaration 16396 16397 begin 16398 Parent_Type := Find_Type_Of_Subtype_Indic (Indic); 16399 16400 if SPARK_Mode = On 16401 and then Is_Tagged_Type (Parent_Type) 16402 then 16403 declare 16404 Partial_View : constant Entity_Id := 16405 Incomplete_Or_Partial_View (Parent_Type); 16406 16407 begin 16408 -- If the partial view was not found then the parent type is not 16409 -- a private type. Otherwise check if the partial view is a tagged 16410 -- private type. 16411 16412 if Present (Partial_View) 16413 and then Is_Private_Type (Partial_View) 16414 and then not Is_Tagged_Type (Partial_View) 16415 then 16416 Error_Msg_NE 16417 ("cannot derive from & declared as untagged private " 16418 & "(SPARK RM 3.4(1))", N, Partial_View); 16419 end if; 16420 end; 16421 end if; 16422 16423 -- Ada 2005 (AI-251): In case of interface derivation check that the 16424 -- parent is also an interface. 16425 16426 if Interface_Present (Def) then 16427 Check_SPARK_05_Restriction ("interface is not allowed", Def); 16428 16429 if not Is_Interface (Parent_Type) then 16430 Diagnose_Interface (Indic, Parent_Type); 16431 16432 else 16433 Parent_Node := Parent (Base_Type (Parent_Type)); 16434 Iface_Def := Type_Definition (Parent_Node); 16435 16436 -- Ada 2005 (AI-251): Limited interfaces can only inherit from 16437 -- other limited interfaces. 16438 16439 if Limited_Present (Def) then 16440 if Limited_Present (Iface_Def) then 16441 null; 16442 16443 elsif Protected_Present (Iface_Def) then 16444 Error_Msg_NE 16445 ("descendant of & must be declared as a protected " 16446 & "interface", N, Parent_Type); 16447 16448 elsif Synchronized_Present (Iface_Def) then 16449 Error_Msg_NE 16450 ("descendant of & must be declared as a synchronized " 16451 & "interface", N, Parent_Type); 16452 16453 elsif Task_Present (Iface_Def) then 16454 Error_Msg_NE 16455 ("descendant of & must be declared as a task interface", 16456 N, Parent_Type); 16457 16458 else 16459 Error_Msg_N 16460 ("(Ada 2005) limited interface cannot inherit from " 16461 & "non-limited interface", Indic); 16462 end if; 16463 16464 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit 16465 -- from non-limited or limited interfaces. 16466 16467 elsif not Protected_Present (Def) 16468 and then not Synchronized_Present (Def) 16469 and then not Task_Present (Def) 16470 then 16471 if Limited_Present (Iface_Def) then 16472 null; 16473 16474 elsif Protected_Present (Iface_Def) then 16475 Error_Msg_NE 16476 ("descendant of & must be declared as a protected " 16477 & "interface", N, Parent_Type); 16478 16479 elsif Synchronized_Present (Iface_Def) then 16480 Error_Msg_NE 16481 ("descendant of & must be declared as a synchronized " 16482 & "interface", N, Parent_Type); 16483 16484 elsif Task_Present (Iface_Def) then 16485 Error_Msg_NE 16486 ("descendant of & must be declared as a task interface", 16487 N, Parent_Type); 16488 else 16489 null; 16490 end if; 16491 end if; 16492 end if; 16493 end if; 16494 16495 if Is_Tagged_Type (Parent_Type) 16496 and then Is_Concurrent_Type (Parent_Type) 16497 and then not Is_Interface (Parent_Type) 16498 then 16499 Error_Msg_N 16500 ("parent type of a record extension cannot be a synchronized " 16501 & "tagged type (RM 3.9.1 (3/1))", N); 16502 Set_Etype (T, Any_Type); 16503 return; 16504 end if; 16505 16506 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor 16507 -- interfaces 16508 16509 if Is_Tagged_Type (Parent_Type) 16510 and then Is_Non_Empty_List (Interface_List (Def)) 16511 then 16512 declare 16513 Intf : Node_Id; 16514 T : Entity_Id; 16515 16516 begin 16517 Intf := First (Interface_List (Def)); 16518 while Present (Intf) loop 16519 T := Find_Type_Of_Subtype_Indic (Intf); 16520 16521 if not Is_Interface (T) then 16522 Diagnose_Interface (Intf, T); 16523 16524 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow 16525 -- a limited type from having a nonlimited progenitor. 16526 16527 elsif (Limited_Present (Def) 16528 or else (not Is_Interface (Parent_Type) 16529 and then Is_Limited_Type (Parent_Type))) 16530 and then not Is_Limited_Interface (T) 16531 then 16532 Error_Msg_NE 16533 ("progenitor interface& of limited type must be limited", 16534 N, T); 16535 end if; 16536 16537 Next (Intf); 16538 end loop; 16539 end; 16540 end if; 16541 16542 if Parent_Type = Any_Type 16543 or else Etype (Parent_Type) = Any_Type 16544 or else (Is_Class_Wide_Type (Parent_Type) 16545 and then Etype (Parent_Type) = T) 16546 then 16547 -- If Parent_Type is undefined or illegal, make new type into a 16548 -- subtype of Any_Type, and set a few attributes to prevent cascaded 16549 -- errors. If this is a self-definition, emit error now. 16550 16551 if T = Parent_Type or else T = Etype (Parent_Type) then 16552 Error_Msg_N ("type cannot be used in its own definition", Indic); 16553 end if; 16554 16555 Set_Ekind (T, Ekind (Parent_Type)); 16556 Set_Etype (T, Any_Type); 16557 Set_Scalar_Range (T, Scalar_Range (Any_Type)); 16558 16559 if Is_Tagged_Type (T) 16560 and then Is_Record_Type (T) 16561 then 16562 Set_Direct_Primitive_Operations (T, New_Elmt_List); 16563 end if; 16564 16565 return; 16566 end if; 16567 16568 -- Ada 2005 (AI-251): The case in which the parent of the full-view is 16569 -- an interface is special because the list of interfaces in the full 16570 -- view can be given in any order. For example: 16571 16572 -- type A is interface; 16573 -- type B is interface and A; 16574 -- type D is new B with private; 16575 -- private 16576 -- type D is new A and B with null record; -- 1 -- 16577 16578 -- In this case we perform the following transformation of -1-: 16579 16580 -- type D is new B and A with null record; 16581 16582 -- If the parent of the full-view covers the parent of the partial-view 16583 -- we have two possible cases: 16584 16585 -- 1) They have the same parent 16586 -- 2) The parent of the full-view implements some further interfaces 16587 16588 -- In both cases we do not need to perform the transformation. In the 16589 -- first case the source program is correct and the transformation is 16590 -- not needed; in the second case the source program does not fulfill 16591 -- the no-hidden interfaces rule (AI-396) and the error will be reported 16592 -- later. 16593 16594 -- This transformation not only simplifies the rest of the analysis of 16595 -- this type declaration but also simplifies the correct generation of 16596 -- the object layout to the expander. 16597 16598 if In_Private_Part (Current_Scope) 16599 and then Is_Interface (Parent_Type) 16600 then 16601 declare 16602 Iface : Node_Id; 16603 Partial_View : Entity_Id; 16604 Partial_View_Parent : Entity_Id; 16605 New_Iface : Node_Id; 16606 16607 begin 16608 -- Look for the associated private type declaration 16609 16610 Partial_View := Incomplete_Or_Partial_View (T); 16611 16612 -- If the partial view was not found then the source code has 16613 -- errors and the transformation is not needed. 16614 16615 if Present (Partial_View) then 16616 Partial_View_Parent := Etype (Partial_View); 16617 16618 -- If the parent of the full-view covers the parent of the 16619 -- partial-view we have nothing else to do. 16620 16621 if Interface_Present_In_Ancestor 16622 (Parent_Type, Partial_View_Parent) 16623 then 16624 null; 16625 16626 -- Traverse the list of interfaces of the full-view to look 16627 -- for the parent of the partial-view and perform the tree 16628 -- transformation. 16629 16630 else 16631 Iface := First (Interface_List (Def)); 16632 while Present (Iface) loop 16633 if Etype (Iface) = Etype (Partial_View) then 16634 Rewrite (Subtype_Indication (Def), 16635 New_Copy (Subtype_Indication 16636 (Parent (Partial_View)))); 16637 16638 New_Iface := 16639 Make_Identifier (Sloc (N), Chars (Parent_Type)); 16640 Append (New_Iface, Interface_List (Def)); 16641 16642 -- Analyze the transformed code 16643 16644 Derived_Type_Declaration (T, N, Is_Completion); 16645 return; 16646 end if; 16647 16648 Next (Iface); 16649 end loop; 16650 end if; 16651 end if; 16652 end; 16653 end if; 16654 16655 -- Only composite types other than array types are allowed to have 16656 -- discriminants. 16657 16658 if Present (Discriminant_Specifications (N)) then 16659 if (Is_Elementary_Type (Parent_Type) 16660 or else 16661 Is_Array_Type (Parent_Type)) 16662 and then not Error_Posted (N) 16663 then 16664 Error_Msg_N 16665 ("elementary or array type cannot have discriminants", 16666 Defining_Identifier (First (Discriminant_Specifications (N)))); 16667 Set_Has_Discriminants (T, False); 16668 16669 -- The type is allowed to have discriminants 16670 16671 else 16672 Check_SPARK_05_Restriction ("discriminant type is not allowed", N); 16673 end if; 16674 end if; 16675 16676 -- In Ada 83, a derived type defined in a package specification cannot 16677 -- be used for further derivation until the end of its visible part. 16678 -- Note that derivation in the private part of the package is allowed. 16679 16680 if Ada_Version = Ada_83 16681 and then Is_Derived_Type (Parent_Type) 16682 and then In_Visible_Part (Scope (Parent_Type)) 16683 then 16684 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then 16685 Error_Msg_N 16686 ("(Ada 83): premature use of type for derivation", Indic); 16687 end if; 16688 end if; 16689 16690 -- Check for early use of incomplete or private type 16691 16692 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then 16693 Error_Msg_N ("premature derivation of incomplete type", Indic); 16694 return; 16695 16696 elsif (Is_Incomplete_Or_Private_Type (Parent_Type) 16697 and then not Comes_From_Generic (Parent_Type)) 16698 or else Has_Private_Component (Parent_Type) 16699 then 16700 -- The ancestor type of a formal type can be incomplete, in which 16701 -- case only the operations of the partial view are available in the 16702 -- generic. Subsequent checks may be required when the full view is 16703 -- analyzed to verify that a derivation from a tagged type has an 16704 -- extension. 16705 16706 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then 16707 null; 16708 16709 elsif No (Underlying_Type (Parent_Type)) 16710 or else Has_Private_Component (Parent_Type) 16711 then 16712 Error_Msg_N 16713 ("premature derivation of derived or private type", Indic); 16714 16715 -- Flag the type itself as being in error, this prevents some 16716 -- nasty problems with subsequent uses of the malformed type. 16717 16718 Set_Error_Posted (T); 16719 16720 -- Check that within the immediate scope of an untagged partial 16721 -- view it's illegal to derive from the partial view if the 16722 -- full view is tagged. (7.3(7)) 16723 16724 -- We verify that the Parent_Type is a partial view by checking 16725 -- that it is not a Full_Type_Declaration (i.e. a private type or 16726 -- private extension declaration), to distinguish a partial view 16727 -- from a derivation from a private type which also appears as 16728 -- E_Private_Type. If the parent base type is not declared in an 16729 -- enclosing scope there is no need to check. 16730 16731 elsif Present (Full_View (Parent_Type)) 16732 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration 16733 and then not Is_Tagged_Type (Parent_Type) 16734 and then Is_Tagged_Type (Full_View (Parent_Type)) 16735 and then In_Open_Scopes (Scope (Base_Type (Parent_Type))) 16736 then 16737 Error_Msg_N 16738 ("premature derivation from type with tagged full view", 16739 Indic); 16740 end if; 16741 end if; 16742 16743 -- Check that form of derivation is appropriate 16744 16745 Taggd := Is_Tagged_Type (Parent_Type); 16746 16747 -- Set the parent type to the class-wide type's specific type in this 16748 -- case to prevent cascading errors 16749 16750 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then 16751 Error_Msg_N ("parent type must not be a class-wide type", Indic); 16752 Set_Etype (T, Etype (Parent_Type)); 16753 return; 16754 end if; 16755 16756 if Present (Extension) and then not Taggd then 16757 Error_Msg_N 16758 ("type derived from untagged type cannot have extension", Indic); 16759 16760 elsif No (Extension) and then Taggd then 16761 16762 -- If this declaration is within a private part (or body) of a 16763 -- generic instantiation then the derivation is allowed (the parent 16764 -- type can only appear tagged in this case if it's a generic actual 16765 -- type, since it would otherwise have been rejected in the analysis 16766 -- of the generic template). 16767 16768 if not Is_Generic_Actual_Type (Parent_Type) 16769 or else In_Visible_Part (Scope (Parent_Type)) 16770 then 16771 if Is_Class_Wide_Type (Parent_Type) then 16772 Error_Msg_N 16773 ("parent type must not be a class-wide type", Indic); 16774 16775 -- Use specific type to prevent cascaded errors. 16776 16777 Parent_Type := Etype (Parent_Type); 16778 16779 else 16780 Error_Msg_N 16781 ("type derived from tagged type must have extension", Indic); 16782 end if; 16783 end if; 16784 end if; 16785 16786 -- AI-443: Synchronized formal derived types require a private 16787 -- extension. There is no point in checking the ancestor type or 16788 -- the progenitors since the construct is wrong to begin with. 16789 16790 if Ada_Version >= Ada_2005 16791 and then Is_Generic_Type (T) 16792 and then Present (Original_Node (N)) 16793 then 16794 declare 16795 Decl : constant Node_Id := Original_Node (N); 16796 16797 begin 16798 if Nkind (Decl) = N_Formal_Type_Declaration 16799 and then Nkind (Formal_Type_Definition (Decl)) = 16800 N_Formal_Derived_Type_Definition 16801 and then Synchronized_Present (Formal_Type_Definition (Decl)) 16802 and then No (Extension) 16803 16804 -- Avoid emitting a duplicate error message 16805 16806 and then not Error_Posted (Indic) 16807 then 16808 Error_Msg_N 16809 ("synchronized derived type must have extension", N); 16810 end if; 16811 end; 16812 end if; 16813 16814 if Null_Exclusion_Present (Def) 16815 and then not Is_Access_Type (Parent_Type) 16816 then 16817 Error_Msg_N ("null exclusion can only apply to an access type", N); 16818 end if; 16819 16820 -- Avoid deriving parent primitives of underlying record views 16821 16822 Build_Derived_Type (N, Parent_Type, T, Is_Completion, 16823 Derive_Subps => not Is_Underlying_Record_View (T)); 16824 16825 -- AI-419: The parent type of an explicitly limited derived type must 16826 -- be a limited type or a limited interface. 16827 16828 if Limited_Present (Def) then 16829 Set_Is_Limited_Record (T); 16830 16831 if Is_Interface (T) then 16832 Set_Is_Limited_Interface (T); 16833 end if; 16834 16835 if not Is_Limited_Type (Parent_Type) 16836 and then 16837 (not Is_Interface (Parent_Type) 16838 or else not Is_Limited_Interface (Parent_Type)) 16839 then 16840 -- AI05-0096: a derivation in the private part of an instance is 16841 -- legal if the generic formal is untagged limited, and the actual 16842 -- is non-limited. 16843 16844 if Is_Generic_Actual_Type (Parent_Type) 16845 and then In_Private_Part (Current_Scope) 16846 and then 16847 not Is_Tagged_Type 16848 (Generic_Parent_Type (Parent (Parent_Type))) 16849 then 16850 null; 16851 16852 else 16853 Error_Msg_NE 16854 ("parent type& of limited type must be limited", 16855 N, Parent_Type); 16856 end if; 16857 end if; 16858 end if; 16859 16860 -- In SPARK, there are no derived type definitions other than type 16861 -- extensions of tagged record types. 16862 16863 if No (Extension) then 16864 Check_SPARK_05_Restriction 16865 ("derived type is not allowed", Original_Node (N)); 16866 end if; 16867 end Derived_Type_Declaration; 16868 16869 ------------------------ 16870 -- Diagnose_Interface -- 16871 ------------------------ 16872 16873 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is 16874 begin 16875 if not Is_Interface (E) and then E /= Any_Type then 16876 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E); 16877 end if; 16878 end Diagnose_Interface; 16879 16880 ---------------------------------- 16881 -- Enumeration_Type_Declaration -- 16882 ---------------------------------- 16883 16884 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is 16885 Ev : Uint; 16886 L : Node_Id; 16887 R_Node : Node_Id; 16888 B_Node : Node_Id; 16889 16890 begin 16891 -- Create identifier node representing lower bound 16892 16893 B_Node := New_Node (N_Identifier, Sloc (Def)); 16894 L := First (Literals (Def)); 16895 Set_Chars (B_Node, Chars (L)); 16896 Set_Entity (B_Node, L); 16897 Set_Etype (B_Node, T); 16898 Set_Is_Static_Expression (B_Node, True); 16899 16900 R_Node := New_Node (N_Range, Sloc (Def)); 16901 Set_Low_Bound (R_Node, B_Node); 16902 16903 Set_Ekind (T, E_Enumeration_Type); 16904 Set_First_Literal (T, L); 16905 Set_Etype (T, T); 16906 Set_Is_Constrained (T); 16907 16908 Ev := Uint_0; 16909 16910 -- Loop through literals of enumeration type setting pos and rep values 16911 -- except that if the Ekind is already set, then it means the literal 16912 -- was already constructed (case of a derived type declaration and we 16913 -- should not disturb the Pos and Rep values. 16914 16915 while Present (L) loop 16916 if Ekind (L) /= E_Enumeration_Literal then 16917 Set_Ekind (L, E_Enumeration_Literal); 16918 Set_Enumeration_Pos (L, Ev); 16919 Set_Enumeration_Rep (L, Ev); 16920 Set_Is_Known_Valid (L, True); 16921 end if; 16922 16923 Set_Etype (L, T); 16924 New_Overloaded_Entity (L); 16925 Generate_Definition (L); 16926 Set_Convention (L, Convention_Intrinsic); 16927 16928 -- Case of character literal 16929 16930 if Nkind (L) = N_Defining_Character_Literal then 16931 Set_Is_Character_Type (T, True); 16932 16933 -- Check violation of No_Wide_Characters 16934 16935 if Restriction_Check_Required (No_Wide_Characters) then 16936 Get_Name_String (Chars (L)); 16937 16938 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then 16939 Check_Restriction (No_Wide_Characters, L); 16940 end if; 16941 end if; 16942 end if; 16943 16944 Ev := Ev + 1; 16945 Next (L); 16946 end loop; 16947 16948 -- Now create a node representing upper bound 16949 16950 B_Node := New_Node (N_Identifier, Sloc (Def)); 16951 Set_Chars (B_Node, Chars (Last (Literals (Def)))); 16952 Set_Entity (B_Node, Last (Literals (Def))); 16953 Set_Etype (B_Node, T); 16954 Set_Is_Static_Expression (B_Node, True); 16955 16956 Set_High_Bound (R_Node, B_Node); 16957 16958 -- Initialize various fields of the type. Some of this information 16959 -- may be overwritten later through rep.clauses. 16960 16961 Set_Scalar_Range (T, R_Node); 16962 Set_RM_Size (T, UI_From_Int (Minimum_Size (T))); 16963 Set_Enum_Esize (T); 16964 Set_Enum_Pos_To_Rep (T, Empty); 16965 16966 -- Set Discard_Names if configuration pragma set, or if there is 16967 -- a parameterless pragma in the current declarative region 16968 16969 if Global_Discard_Names or else Discard_Names (Scope (T)) then 16970 Set_Discard_Names (T); 16971 end if; 16972 16973 -- Process end label if there is one 16974 16975 if Present (Def) then 16976 Process_End_Label (Def, 'e', T); 16977 end if; 16978 end Enumeration_Type_Declaration; 16979 16980 --------------------------------- 16981 -- Expand_To_Stored_Constraint -- 16982 --------------------------------- 16983 16984 function Expand_To_Stored_Constraint 16985 (Typ : Entity_Id; 16986 Constraint : Elist_Id) return Elist_Id 16987 is 16988 Explicitly_Discriminated_Type : Entity_Id; 16989 Expansion : Elist_Id; 16990 Discriminant : Entity_Id; 16991 16992 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id; 16993 -- Find the nearest type that actually specifies discriminants 16994 16995 --------------------------------- 16996 -- Type_With_Explicit_Discrims -- 16997 --------------------------------- 16998 16999 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is 17000 Typ : constant E := Base_Type (Id); 17001 17002 begin 17003 if Ekind (Typ) in Incomplete_Or_Private_Kind then 17004 if Present (Full_View (Typ)) then 17005 return Type_With_Explicit_Discrims (Full_View (Typ)); 17006 end if; 17007 17008 else 17009 if Has_Discriminants (Typ) then 17010 return Typ; 17011 end if; 17012 end if; 17013 17014 if Etype (Typ) = Typ then 17015 return Empty; 17016 elsif Has_Discriminants (Typ) then 17017 return Typ; 17018 else 17019 return Type_With_Explicit_Discrims (Etype (Typ)); 17020 end if; 17021 17022 end Type_With_Explicit_Discrims; 17023 17024 -- Start of processing for Expand_To_Stored_Constraint 17025 17026 begin 17027 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then 17028 return No_Elist; 17029 end if; 17030 17031 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ); 17032 17033 if No (Explicitly_Discriminated_Type) then 17034 return No_Elist; 17035 end if; 17036 17037 Expansion := New_Elmt_List; 17038 17039 Discriminant := 17040 First_Stored_Discriminant (Explicitly_Discriminated_Type); 17041 while Present (Discriminant) loop 17042 Append_Elmt 17043 (Get_Discriminant_Value 17044 (Discriminant, Explicitly_Discriminated_Type, Constraint), 17045 To => Expansion); 17046 Next_Stored_Discriminant (Discriminant); 17047 end loop; 17048 17049 return Expansion; 17050 end Expand_To_Stored_Constraint; 17051 17052 --------------------------- 17053 -- Find_Hidden_Interface -- 17054 --------------------------- 17055 17056 function Find_Hidden_Interface 17057 (Src : Elist_Id; 17058 Dest : Elist_Id) return Entity_Id 17059 is 17060 Iface : Entity_Id; 17061 Iface_Elmt : Elmt_Id; 17062 17063 begin 17064 if Present (Src) and then Present (Dest) then 17065 Iface_Elmt := First_Elmt (Src); 17066 while Present (Iface_Elmt) loop 17067 Iface := Node (Iface_Elmt); 17068 17069 if Is_Interface (Iface) 17070 and then not Contain_Interface (Iface, Dest) 17071 then 17072 return Iface; 17073 end if; 17074 17075 Next_Elmt (Iface_Elmt); 17076 end loop; 17077 end if; 17078 17079 return Empty; 17080 end Find_Hidden_Interface; 17081 17082 -------------------- 17083 -- Find_Type_Name -- 17084 -------------------- 17085 17086 function Find_Type_Name (N : Node_Id) return Entity_Id is 17087 Id : constant Entity_Id := Defining_Identifier (N); 17088 New_Id : Entity_Id; 17089 Prev : Entity_Id; 17090 Prev_Par : Node_Id; 17091 17092 procedure Check_Duplicate_Aspects; 17093 -- Check that aspects specified in a completion have not been specified 17094 -- already in the partial view. 17095 17096 procedure Tag_Mismatch; 17097 -- Diagnose a tagged partial view whose full view is untagged. We post 17098 -- the message on the full view, with a reference to the previous 17099 -- partial view. The partial view can be private or incomplete, and 17100 -- these are handled in a different manner, so we determine the position 17101 -- of the error message from the respective slocs of both. 17102 17103 ----------------------------- 17104 -- Check_Duplicate_Aspects -- 17105 ----------------------------- 17106 17107 procedure Check_Duplicate_Aspects is 17108 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id; 17109 -- Return the corresponding aspect of the partial view which matches 17110 -- the aspect id of Asp. Return Empty is no such aspect exists. 17111 17112 ----------------------------- 17113 -- Get_Partial_View_Aspect -- 17114 ----------------------------- 17115 17116 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is 17117 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp); 17118 Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par); 17119 Prev_Asp : Node_Id; 17120 17121 begin 17122 if Present (Prev_Asps) then 17123 Prev_Asp := First (Prev_Asps); 17124 while Present (Prev_Asp) loop 17125 if Get_Aspect_Id (Prev_Asp) = Asp_Id then 17126 return Prev_Asp; 17127 end if; 17128 17129 Next (Prev_Asp); 17130 end loop; 17131 end if; 17132 17133 return Empty; 17134 end Get_Partial_View_Aspect; 17135 17136 -- Local variables 17137 17138 Full_Asps : constant List_Id := Aspect_Specifications (N); 17139 Full_Asp : Node_Id; 17140 Part_Asp : Node_Id; 17141 17142 -- Start of processing for Check_Duplicate_Aspects 17143 17144 begin 17145 if Present (Full_Asps) then 17146 Full_Asp := First (Full_Asps); 17147 while Present (Full_Asp) loop 17148 Part_Asp := Get_Partial_View_Aspect (Full_Asp); 17149 17150 -- An aspect and its class-wide counterpart are two distinct 17151 -- aspects and may apply to both views of an entity. 17152 17153 if Present (Part_Asp) 17154 and then Class_Present (Part_Asp) = Class_Present (Full_Asp) 17155 then 17156 Error_Msg_N 17157 ("aspect already specified in private declaration", 17158 Full_Asp); 17159 17160 Remove (Full_Asp); 17161 return; 17162 end if; 17163 17164 if Has_Discriminants (Prev) 17165 and then not Has_Unknown_Discriminants (Prev) 17166 and then Get_Aspect_Id (Full_Asp) = 17167 Aspect_Implicit_Dereference 17168 then 17169 Error_Msg_N 17170 ("cannot specify aspect if partial view has known " 17171 & "discriminants", Full_Asp); 17172 end if; 17173 17174 Next (Full_Asp); 17175 end loop; 17176 end if; 17177 end Check_Duplicate_Aspects; 17178 17179 ------------------ 17180 -- Tag_Mismatch -- 17181 ------------------ 17182 17183 procedure Tag_Mismatch is 17184 begin 17185 if Sloc (Prev) < Sloc (Id) then 17186 if Ada_Version >= Ada_2012 17187 and then Nkind (N) = N_Private_Type_Declaration 17188 then 17189 Error_Msg_NE 17190 ("declaration of private } must be a tagged type ", Id, Prev); 17191 else 17192 Error_Msg_NE 17193 ("full declaration of } must be a tagged type ", Id, Prev); 17194 end if; 17195 17196 else 17197 if Ada_Version >= Ada_2012 17198 and then Nkind (N) = N_Private_Type_Declaration 17199 then 17200 Error_Msg_NE 17201 ("declaration of private } must be a tagged type ", Prev, Id); 17202 else 17203 Error_Msg_NE 17204 ("full declaration of } must be a tagged type ", Prev, Id); 17205 end if; 17206 end if; 17207 end Tag_Mismatch; 17208 17209 -- Start of processing for Find_Type_Name 17210 17211 begin 17212 -- Find incomplete declaration, if one was given 17213 17214 Prev := Current_Entity_In_Scope (Id); 17215 17216 -- New type declaration 17217 17218 if No (Prev) then 17219 Enter_Name (Id); 17220 return Id; 17221 17222 -- Previous declaration exists 17223 17224 else 17225 Prev_Par := Parent (Prev); 17226 17227 -- Error if not incomplete/private case except if previous 17228 -- declaration is implicit, etc. Enter_Name will emit error if 17229 -- appropriate. 17230 17231 if not Is_Incomplete_Or_Private_Type (Prev) then 17232 Enter_Name (Id); 17233 New_Id := Id; 17234 17235 -- Check invalid completion of private or incomplete type 17236 17237 elsif not Nkind_In (N, N_Full_Type_Declaration, 17238 N_Task_Type_Declaration, 17239 N_Protected_Type_Declaration) 17240 and then 17241 (Ada_Version < Ada_2012 17242 or else not Is_Incomplete_Type (Prev) 17243 or else not Nkind_In (N, N_Private_Type_Declaration, 17244 N_Private_Extension_Declaration)) 17245 then 17246 -- Completion must be a full type declarations (RM 7.3(4)) 17247 17248 Error_Msg_Sloc := Sloc (Prev); 17249 Error_Msg_NE ("invalid completion of }", Id, Prev); 17250 17251 -- Set scope of Id to avoid cascaded errors. Entity is never 17252 -- examined again, except when saving globals in generics. 17253 17254 Set_Scope (Id, Current_Scope); 17255 New_Id := Id; 17256 17257 -- If this is a repeated incomplete declaration, no further 17258 -- checks are possible. 17259 17260 if Nkind (N) = N_Incomplete_Type_Declaration then 17261 return Prev; 17262 end if; 17263 17264 -- Case of full declaration of incomplete type 17265 17266 elsif Ekind (Prev) = E_Incomplete_Type 17267 and then (Ada_Version < Ada_2012 17268 or else No (Full_View (Prev)) 17269 or else not Is_Private_Type (Full_View (Prev))) 17270 then 17271 -- Indicate that the incomplete declaration has a matching full 17272 -- declaration. The defining occurrence of the incomplete 17273 -- declaration remains the visible one, and the procedure 17274 -- Get_Full_View dereferences it whenever the type is used. 17275 17276 if Present (Full_View (Prev)) then 17277 Error_Msg_NE ("invalid redeclaration of }", Id, Prev); 17278 end if; 17279 17280 Set_Full_View (Prev, Id); 17281 Append_Entity (Id, Current_Scope); 17282 Set_Is_Public (Id, Is_Public (Prev)); 17283 Set_Is_Internal (Id); 17284 New_Id := Prev; 17285 17286 -- If the incomplete view is tagged, a class_wide type has been 17287 -- created already. Use it for the private type as well, in order 17288 -- to prevent multiple incompatible class-wide types that may be 17289 -- created for self-referential anonymous access components. 17290 17291 if Is_Tagged_Type (Prev) 17292 and then Present (Class_Wide_Type (Prev)) 17293 then 17294 Set_Ekind (Id, Ekind (Prev)); -- will be reset later 17295 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev)); 17296 17297 -- Type of the class-wide type is the current Id. Previously 17298 -- this was not done for private declarations because of order- 17299 -- of-elaboration issues in the back end, but gigi now handles 17300 -- this properly. 17301 17302 Set_Etype (Class_Wide_Type (Id), Id); 17303 end if; 17304 17305 -- Case of full declaration of private type 17306 17307 else 17308 -- If the private type was a completion of an incomplete type then 17309 -- update Prev to reference the private type 17310 17311 if Ada_Version >= Ada_2012 17312 and then Ekind (Prev) = E_Incomplete_Type 17313 and then Present (Full_View (Prev)) 17314 and then Is_Private_Type (Full_View (Prev)) 17315 then 17316 Prev := Full_View (Prev); 17317 Prev_Par := Parent (Prev); 17318 end if; 17319 17320 if Nkind (N) = N_Full_Type_Declaration 17321 and then Nkind_In 17322 (Type_Definition (N), N_Record_Definition, 17323 N_Derived_Type_Definition) 17324 and then Interface_Present (Type_Definition (N)) 17325 then 17326 Error_Msg_N 17327 ("completion of private type cannot be an interface", N); 17328 end if; 17329 17330 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then 17331 if Etype (Prev) /= Prev then 17332 17333 -- Prev is a private subtype or a derived type, and needs 17334 -- no completion. 17335 17336 Error_Msg_NE ("invalid redeclaration of }", Id, Prev); 17337 New_Id := Id; 17338 17339 elsif Ekind (Prev) = E_Private_Type 17340 and then Nkind_In (N, N_Task_Type_Declaration, 17341 N_Protected_Type_Declaration) 17342 then 17343 Error_Msg_N 17344 ("completion of nonlimited type cannot be limited", N); 17345 17346 elsif Ekind (Prev) = E_Record_Type_With_Private 17347 and then Nkind_In (N, N_Task_Type_Declaration, 17348 N_Protected_Type_Declaration) 17349 then 17350 if not Is_Limited_Record (Prev) then 17351 Error_Msg_N 17352 ("completion of nonlimited type cannot be limited", N); 17353 17354 elsif No (Interface_List (N)) then 17355 Error_Msg_N 17356 ("completion of tagged private type must be tagged", 17357 N); 17358 end if; 17359 end if; 17360 17361 -- Ada 2005 (AI-251): Private extension declaration of a task 17362 -- type or a protected type. This case arises when covering 17363 -- interface types. 17364 17365 elsif Nkind_In (N, N_Task_Type_Declaration, 17366 N_Protected_Type_Declaration) 17367 then 17368 null; 17369 17370 elsif Nkind (N) /= N_Full_Type_Declaration 17371 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition 17372 then 17373 Error_Msg_N 17374 ("full view of private extension must be an extension", N); 17375 17376 elsif not (Abstract_Present (Parent (Prev))) 17377 and then Abstract_Present (Type_Definition (N)) 17378 then 17379 Error_Msg_N 17380 ("full view of non-abstract extension cannot be abstract", N); 17381 end if; 17382 17383 if not In_Private_Part (Current_Scope) then 17384 Error_Msg_N 17385 ("declaration of full view must appear in private part", N); 17386 end if; 17387 17388 if Ada_Version >= Ada_2012 then 17389 Check_Duplicate_Aspects; 17390 end if; 17391 17392 Copy_And_Swap (Prev, Id); 17393 Set_Has_Private_Declaration (Prev); 17394 Set_Has_Private_Declaration (Id); 17395 17396 -- AI12-0133: Indicate whether we have a partial view with 17397 -- unknown discriminants, in which case initialization of objects 17398 -- of the type do not receive an invariant check. 17399 17400 Set_Partial_View_Has_Unknown_Discr 17401 (Prev, Has_Unknown_Discriminants (Id)); 17402 17403 -- Preserve aspect and iterator flags that may have been set on 17404 -- the partial view. 17405 17406 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id)); 17407 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id)); 17408 17409 -- If no error, propagate freeze_node from private to full view. 17410 -- It may have been generated for an early operational item. 17411 17412 if Present (Freeze_Node (Id)) 17413 and then Serious_Errors_Detected = 0 17414 and then No (Full_View (Id)) 17415 then 17416 Set_Freeze_Node (Prev, Freeze_Node (Id)); 17417 Set_Freeze_Node (Id, Empty); 17418 Set_First_Rep_Item (Prev, First_Rep_Item (Id)); 17419 end if; 17420 17421 Set_Full_View (Id, Prev); 17422 New_Id := Prev; 17423 end if; 17424 17425 -- Verify that full declaration conforms to partial one 17426 17427 if Is_Incomplete_Or_Private_Type (Prev) 17428 and then Present (Discriminant_Specifications (Prev_Par)) 17429 then 17430 if Present (Discriminant_Specifications (N)) then 17431 if Ekind (Prev) = E_Incomplete_Type then 17432 Check_Discriminant_Conformance (N, Prev, Prev); 17433 else 17434 Check_Discriminant_Conformance (N, Prev, Id); 17435 end if; 17436 17437 else 17438 Error_Msg_N 17439 ("missing discriminants in full type declaration", N); 17440 17441 -- To avoid cascaded errors on subsequent use, share the 17442 -- discriminants of the partial view. 17443 17444 Set_Discriminant_Specifications (N, 17445 Discriminant_Specifications (Prev_Par)); 17446 end if; 17447 end if; 17448 17449 -- A prior untagged partial view can have an associated class-wide 17450 -- type due to use of the class attribute, and in this case the full 17451 -- type must also be tagged. This Ada 95 usage is deprecated in favor 17452 -- of incomplete tagged declarations, but we check for it. 17453 17454 if Is_Type (Prev) 17455 and then (Is_Tagged_Type (Prev) 17456 or else Present (Class_Wide_Type (Prev))) 17457 then 17458 -- Ada 2012 (AI05-0162): A private type may be the completion of 17459 -- an incomplete type. 17460 17461 if Ada_Version >= Ada_2012 17462 and then Is_Incomplete_Type (Prev) 17463 and then Nkind_In (N, N_Private_Type_Declaration, 17464 N_Private_Extension_Declaration) 17465 then 17466 -- No need to check private extensions since they are tagged 17467 17468 if Nkind (N) = N_Private_Type_Declaration 17469 and then not Tagged_Present (N) 17470 then 17471 Tag_Mismatch; 17472 end if; 17473 17474 -- The full declaration is either a tagged type (including 17475 -- a synchronized type that implements interfaces) or a 17476 -- type extension, otherwise this is an error. 17477 17478 elsif Nkind_In (N, N_Task_Type_Declaration, 17479 N_Protected_Type_Declaration) 17480 then 17481 if No (Interface_List (N)) and then not Error_Posted (N) then 17482 Tag_Mismatch; 17483 end if; 17484 17485 elsif Nkind (Type_Definition (N)) = N_Record_Definition then 17486 17487 -- Indicate that the previous declaration (tagged incomplete 17488 -- or private declaration) requires the same on the full one. 17489 17490 if not Tagged_Present (Type_Definition (N)) then 17491 Tag_Mismatch; 17492 Set_Is_Tagged_Type (Id); 17493 end if; 17494 17495 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then 17496 if No (Record_Extension_Part (Type_Definition (N))) then 17497 Error_Msg_NE 17498 ("full declaration of } must be a record extension", 17499 Prev, Id); 17500 17501 -- Set some attributes to produce a usable full view 17502 17503 Set_Is_Tagged_Type (Id); 17504 end if; 17505 17506 else 17507 Tag_Mismatch; 17508 end if; 17509 end if; 17510 17511 if Present (Prev) 17512 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration 17513 and then Present (Premature_Use (Parent (Prev))) 17514 then 17515 Error_Msg_Sloc := Sloc (N); 17516 Error_Msg_N 17517 ("\full declaration #", Premature_Use (Parent (Prev))); 17518 end if; 17519 17520 return New_Id; 17521 end if; 17522 end Find_Type_Name; 17523 17524 ------------------------- 17525 -- Find_Type_Of_Object -- 17526 ------------------------- 17527 17528 function Find_Type_Of_Object 17529 (Obj_Def : Node_Id; 17530 Related_Nod : Node_Id) return Entity_Id 17531 is 17532 Def_Kind : constant Node_Kind := Nkind (Obj_Def); 17533 P : Node_Id := Parent (Obj_Def); 17534 T : Entity_Id; 17535 Nam : Name_Id; 17536 17537 begin 17538 -- If the parent is a component_definition node we climb to the 17539 -- component_declaration node 17540 17541 if Nkind (P) = N_Component_Definition then 17542 P := Parent (P); 17543 end if; 17544 17545 -- Case of an anonymous array subtype 17546 17547 if Nkind_In (Def_Kind, N_Constrained_Array_Definition, 17548 N_Unconstrained_Array_Definition) 17549 then 17550 T := Empty; 17551 Array_Type_Declaration (T, Obj_Def); 17552 17553 -- Create an explicit subtype whenever possible 17554 17555 elsif Nkind (P) /= N_Component_Declaration 17556 and then Def_Kind = N_Subtype_Indication 17557 then 17558 -- Base name of subtype on object name, which will be unique in 17559 -- the current scope. 17560 17561 -- If this is a duplicate declaration, return base type, to avoid 17562 -- generating duplicate anonymous types. 17563 17564 if Error_Posted (P) then 17565 Analyze (Subtype_Mark (Obj_Def)); 17566 return Entity (Subtype_Mark (Obj_Def)); 17567 end if; 17568 17569 Nam := 17570 New_External_Name 17571 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T'); 17572 17573 T := Make_Defining_Identifier (Sloc (P), Nam); 17574 17575 Insert_Action (Obj_Def, 17576 Make_Subtype_Declaration (Sloc (P), 17577 Defining_Identifier => T, 17578 Subtype_Indication => Relocate_Node (Obj_Def))); 17579 17580 -- This subtype may need freezing, and this will not be done 17581 -- automatically if the object declaration is not in declarative 17582 -- part. Since this is an object declaration, the type cannot always 17583 -- be frozen here. Deferred constants do not freeze their type 17584 -- (which often enough will be private). 17585 17586 if Nkind (P) = N_Object_Declaration 17587 and then Constant_Present (P) 17588 and then No (Expression (P)) 17589 then 17590 null; 17591 17592 -- Here we freeze the base type of object type to catch premature use 17593 -- of discriminated private type without a full view. 17594 17595 else 17596 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P)); 17597 end if; 17598 17599 -- Ada 2005 AI-406: the object definition in an object declaration 17600 -- can be an access definition. 17601 17602 elsif Def_Kind = N_Access_Definition then 17603 T := Access_Definition (Related_Nod, Obj_Def); 17604 17605 Set_Is_Local_Anonymous_Access 17606 (T, 17607 V => (Ada_Version < Ada_2012) 17608 or else (Nkind (P) /= N_Object_Declaration) 17609 or else Is_Library_Level_Entity (Defining_Identifier (P))); 17610 17611 -- Otherwise, the object definition is just a subtype_mark 17612 17613 else 17614 T := Process_Subtype (Obj_Def, Related_Nod); 17615 17616 -- If expansion is disabled an object definition that is an aggregate 17617 -- will not get expanded and may lead to scoping problems in the back 17618 -- end, if the object is referenced in an inner scope. In that case 17619 -- create an itype reference for the object definition now. This 17620 -- may be redundant in some cases, but harmless. 17621 17622 if Is_Itype (T) 17623 and then Nkind (Related_Nod) = N_Object_Declaration 17624 and then ASIS_Mode 17625 then 17626 Build_Itype_Reference (T, Related_Nod); 17627 end if; 17628 end if; 17629 17630 return T; 17631 end Find_Type_Of_Object; 17632 17633 -------------------------------- 17634 -- Find_Type_Of_Subtype_Indic -- 17635 -------------------------------- 17636 17637 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is 17638 Typ : Entity_Id; 17639 17640 begin 17641 -- Case of subtype mark with a constraint 17642 17643 if Nkind (S) = N_Subtype_Indication then 17644 Find_Type (Subtype_Mark (S)); 17645 Typ := Entity (Subtype_Mark (S)); 17646 17647 if not 17648 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S))) 17649 then 17650 Error_Msg_N 17651 ("incorrect constraint for this kind of type", Constraint (S)); 17652 Rewrite (S, New_Copy_Tree (Subtype_Mark (S))); 17653 end if; 17654 17655 -- Otherwise we have a subtype mark without a constraint 17656 17657 elsif Error_Posted (S) then 17658 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S))); 17659 return Any_Type; 17660 17661 else 17662 Find_Type (S); 17663 Typ := Entity (S); 17664 end if; 17665 17666 -- Check No_Wide_Characters restriction 17667 17668 Check_Wide_Character_Restriction (Typ, S); 17669 17670 return Typ; 17671 end Find_Type_Of_Subtype_Indic; 17672 17673 ------------------------------------- 17674 -- Floating_Point_Type_Declaration -- 17675 ------------------------------------- 17676 17677 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is 17678 Digs : constant Node_Id := Digits_Expression (Def); 17679 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float); 17680 Digs_Val : Uint; 17681 Base_Typ : Entity_Id; 17682 Implicit_Base : Entity_Id; 17683 Bound : Node_Id; 17684 17685 function Can_Derive_From (E : Entity_Id) return Boolean; 17686 -- Find if given digits value, and possibly a specified range, allows 17687 -- derivation from specified type 17688 17689 function Find_Base_Type return Entity_Id; 17690 -- Find a predefined base type that Def can derive from, or generate 17691 -- an error and substitute Long_Long_Float if none exists. 17692 17693 --------------------- 17694 -- Can_Derive_From -- 17695 --------------------- 17696 17697 function Can_Derive_From (E : Entity_Id) return Boolean is 17698 Spec : constant Entity_Id := Real_Range_Specification (Def); 17699 17700 begin 17701 -- Check specified "digits" constraint 17702 17703 if Digs_Val > Digits_Value (E) then 17704 return False; 17705 end if; 17706 17707 -- Check for matching range, if specified 17708 17709 if Present (Spec) then 17710 if Expr_Value_R (Type_Low_Bound (E)) > 17711 Expr_Value_R (Low_Bound (Spec)) 17712 then 17713 return False; 17714 end if; 17715 17716 if Expr_Value_R (Type_High_Bound (E)) < 17717 Expr_Value_R (High_Bound (Spec)) 17718 then 17719 return False; 17720 end if; 17721 end if; 17722 17723 return True; 17724 end Can_Derive_From; 17725 17726 -------------------- 17727 -- Find_Base_Type -- 17728 -------------------- 17729 17730 function Find_Base_Type return Entity_Id is 17731 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types); 17732 17733 begin 17734 -- Iterate over the predefined types in order, returning the first 17735 -- one that Def can derive from. 17736 17737 while Present (Choice) loop 17738 if Can_Derive_From (Node (Choice)) then 17739 return Node (Choice); 17740 end if; 17741 17742 Next_Elmt (Choice); 17743 end loop; 17744 17745 -- If we can't derive from any existing type, use Long_Long_Float 17746 -- and give appropriate message explaining the problem. 17747 17748 if Digs_Val > Max_Digs_Val then 17749 -- It might be the case that there is a type with the requested 17750 -- range, just not the combination of digits and range. 17751 17752 Error_Msg_N 17753 ("no predefined type has requested range and precision", 17754 Real_Range_Specification (Def)); 17755 17756 else 17757 Error_Msg_N 17758 ("range too large for any predefined type", 17759 Real_Range_Specification (Def)); 17760 end if; 17761 17762 return Standard_Long_Long_Float; 17763 end Find_Base_Type; 17764 17765 -- Start of processing for Floating_Point_Type_Declaration 17766 17767 begin 17768 Check_Restriction (No_Floating_Point, Def); 17769 17770 -- Create an implicit base type 17771 17772 Implicit_Base := 17773 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B'); 17774 17775 -- Analyze and verify digits value 17776 17777 Analyze_And_Resolve (Digs, Any_Integer); 17778 Check_Digits_Expression (Digs); 17779 Digs_Val := Expr_Value (Digs); 17780 17781 -- Process possible range spec and find correct type to derive from 17782 17783 Process_Real_Range_Specification (Def); 17784 17785 -- Check that requested number of digits is not too high. 17786 17787 if Digs_Val > Max_Digs_Val then 17788 17789 -- The check for Max_Base_Digits may be somewhat expensive, as it 17790 -- requires reading System, so only do it when necessary. 17791 17792 declare 17793 Max_Base_Digits : constant Uint := 17794 Expr_Value 17795 (Expression 17796 (Parent (RTE (RE_Max_Base_Digits)))); 17797 17798 begin 17799 if Digs_Val > Max_Base_Digits then 17800 Error_Msg_Uint_1 := Max_Base_Digits; 17801 Error_Msg_N ("digits value out of range, maximum is ^", Digs); 17802 17803 elsif No (Real_Range_Specification (Def)) then 17804 Error_Msg_Uint_1 := Max_Digs_Val; 17805 Error_Msg_N ("types with more than ^ digits need range spec " 17806 & "(RM 3.5.7(6))", Digs); 17807 end if; 17808 end; 17809 end if; 17810 17811 -- Find a suitable type to derive from or complain and use a substitute 17812 17813 Base_Typ := Find_Base_Type; 17814 17815 -- If there are bounds given in the declaration use them as the bounds 17816 -- of the type, otherwise use the bounds of the predefined base type 17817 -- that was chosen based on the Digits value. 17818 17819 if Present (Real_Range_Specification (Def)) then 17820 Set_Scalar_Range (T, Real_Range_Specification (Def)); 17821 Set_Is_Constrained (T); 17822 17823 -- The bounds of this range must be converted to machine numbers 17824 -- in accordance with RM 4.9(38). 17825 17826 Bound := Type_Low_Bound (T); 17827 17828 if Nkind (Bound) = N_Real_Literal then 17829 Set_Realval 17830 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound)); 17831 Set_Is_Machine_Number (Bound); 17832 end if; 17833 17834 Bound := Type_High_Bound (T); 17835 17836 if Nkind (Bound) = N_Real_Literal then 17837 Set_Realval 17838 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound)); 17839 Set_Is_Machine_Number (Bound); 17840 end if; 17841 17842 else 17843 Set_Scalar_Range (T, Scalar_Range (Base_Typ)); 17844 end if; 17845 17846 -- Complete definition of implicit base and declared first subtype. The 17847 -- inheritance of the rep item chain ensures that SPARK-related pragmas 17848 -- are not clobbered when the floating point type acts as a full view of 17849 -- a private type. 17850 17851 Set_Etype (Implicit_Base, Base_Typ); 17852 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ)); 17853 Set_Size_Info (Implicit_Base, Base_Typ); 17854 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ)); 17855 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ)); 17856 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ)); 17857 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ)); 17858 17859 Set_Ekind (T, E_Floating_Point_Subtype); 17860 Set_Etype (T, Implicit_Base); 17861 Set_Size_Info (T, Implicit_Base); 17862 Set_RM_Size (T, RM_Size (Implicit_Base)); 17863 Inherit_Rep_Item_Chain (T, Implicit_Base); 17864 Set_Digits_Value (T, Digs_Val); 17865 end Floating_Point_Type_Declaration; 17866 17867 ---------------------------- 17868 -- Get_Discriminant_Value -- 17869 ---------------------------- 17870 17871 -- This is the situation: 17872 17873 -- There is a non-derived type 17874 17875 -- type T0 (Dx, Dy, Dz...) 17876 17877 -- There are zero or more levels of derivation, with each derivation 17878 -- either purely inheriting the discriminants, or defining its own. 17879 17880 -- type Ti is new Ti-1 17881 -- or 17882 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y) 17883 -- or 17884 -- subtype Ti is ... 17885 17886 -- The subtype issue is avoided by the use of Original_Record_Component, 17887 -- and the fact that derived subtypes also derive the constraints. 17888 17889 -- This chain leads back from 17890 17891 -- Typ_For_Constraint 17892 17893 -- Typ_For_Constraint has discriminants, and the value for each 17894 -- discriminant is given by its corresponding Elmt of Constraints. 17895 17896 -- Discriminant is some discriminant in this hierarchy 17897 17898 -- We need to return its value 17899 17900 -- We do this by recursively searching each level, and looking for 17901 -- Discriminant. Once we get to the bottom, we start backing up 17902 -- returning the value for it which may in turn be a discriminant 17903 -- further up, so on the backup we continue the substitution. 17904 17905 function Get_Discriminant_Value 17906 (Discriminant : Entity_Id; 17907 Typ_For_Constraint : Entity_Id; 17908 Constraint : Elist_Id) return Node_Id 17909 is 17910 function Root_Corresponding_Discriminant 17911 (Discr : Entity_Id) return Entity_Id; 17912 -- Given a discriminant, traverse the chain of inherited discriminants 17913 -- and return the topmost discriminant. 17914 17915 function Search_Derivation_Levels 17916 (Ti : Entity_Id; 17917 Discrim_Values : Elist_Id; 17918 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id; 17919 -- This is the routine that performs the recursive search of levels 17920 -- as described above. 17921 17922 ------------------------------------- 17923 -- Root_Corresponding_Discriminant -- 17924 ------------------------------------- 17925 17926 function Root_Corresponding_Discriminant 17927 (Discr : Entity_Id) return Entity_Id 17928 is 17929 D : Entity_Id; 17930 17931 begin 17932 D := Discr; 17933 while Present (Corresponding_Discriminant (D)) loop 17934 D := Corresponding_Discriminant (D); 17935 end loop; 17936 17937 return D; 17938 end Root_Corresponding_Discriminant; 17939 17940 ------------------------------ 17941 -- Search_Derivation_Levels -- 17942 ------------------------------ 17943 17944 function Search_Derivation_Levels 17945 (Ti : Entity_Id; 17946 Discrim_Values : Elist_Id; 17947 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id 17948 is 17949 Assoc : Elmt_Id; 17950 Disc : Entity_Id; 17951 Result : Node_Or_Entity_Id; 17952 Result_Entity : Node_Id; 17953 17954 begin 17955 -- If inappropriate type, return Error, this happens only in 17956 -- cascaded error situations, and we want to avoid a blow up. 17957 17958 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then 17959 return Error; 17960 end if; 17961 17962 -- Look deeper if possible. Use Stored_Constraints only for 17963 -- untagged types. For tagged types use the given constraint. 17964 -- This asymmetry needs explanation??? 17965 17966 if not Stored_Discrim_Values 17967 and then Present (Stored_Constraint (Ti)) 17968 and then not Is_Tagged_Type (Ti) 17969 then 17970 Result := 17971 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True); 17972 else 17973 declare 17974 Td : constant Entity_Id := Etype (Ti); 17975 17976 begin 17977 if Td = Ti then 17978 Result := Discriminant; 17979 17980 else 17981 if Present (Stored_Constraint (Ti)) then 17982 Result := 17983 Search_Derivation_Levels 17984 (Td, Stored_Constraint (Ti), True); 17985 else 17986 Result := 17987 Search_Derivation_Levels 17988 (Td, Discrim_Values, Stored_Discrim_Values); 17989 end if; 17990 end if; 17991 end; 17992 end if; 17993 17994 -- Extra underlying places to search, if not found above. For 17995 -- concurrent types, the relevant discriminant appears in the 17996 -- corresponding record. For a type derived from a private type 17997 -- without discriminant, the full view inherits the discriminants 17998 -- of the full view of the parent. 17999 18000 if Result = Discriminant then 18001 if Is_Concurrent_Type (Ti) 18002 and then Present (Corresponding_Record_Type (Ti)) 18003 then 18004 Result := 18005 Search_Derivation_Levels ( 18006 Corresponding_Record_Type (Ti), 18007 Discrim_Values, 18008 Stored_Discrim_Values); 18009 18010 elsif Is_Private_Type (Ti) 18011 and then not Has_Discriminants (Ti) 18012 and then Present (Full_View (Ti)) 18013 and then Etype (Full_View (Ti)) /= Ti 18014 then 18015 Result := 18016 Search_Derivation_Levels ( 18017 Full_View (Ti), 18018 Discrim_Values, 18019 Stored_Discrim_Values); 18020 end if; 18021 end if; 18022 18023 -- If Result is not a (reference to a) discriminant, return it, 18024 -- otherwise set Result_Entity to the discriminant. 18025 18026 if Nkind (Result) = N_Defining_Identifier then 18027 pragma Assert (Result = Discriminant); 18028 Result_Entity := Result; 18029 18030 else 18031 if not Denotes_Discriminant (Result) then 18032 return Result; 18033 end if; 18034 18035 Result_Entity := Entity (Result); 18036 end if; 18037 18038 -- See if this level of derivation actually has discriminants because 18039 -- tagged derivations can add them, hence the lower levels need not 18040 -- have any. 18041 18042 if not Has_Discriminants (Ti) then 18043 return Result; 18044 end if; 18045 18046 -- Scan Ti's discriminants for Result_Entity, and return its 18047 -- corresponding value, if any. 18048 18049 Result_Entity := Original_Record_Component (Result_Entity); 18050 18051 Assoc := First_Elmt (Discrim_Values); 18052 18053 if Stored_Discrim_Values then 18054 Disc := First_Stored_Discriminant (Ti); 18055 else 18056 Disc := First_Discriminant (Ti); 18057 end if; 18058 18059 while Present (Disc) loop 18060 18061 -- If no further associations return the discriminant, value will 18062 -- be found on the second pass. 18063 18064 if No (Assoc) then 18065 return Result; 18066 end if; 18067 18068 if Original_Record_Component (Disc) = Result_Entity then 18069 return Node (Assoc); 18070 end if; 18071 18072 Next_Elmt (Assoc); 18073 18074 if Stored_Discrim_Values then 18075 Next_Stored_Discriminant (Disc); 18076 else 18077 Next_Discriminant (Disc); 18078 end if; 18079 end loop; 18080 18081 -- Could not find it 18082 18083 return Result; 18084 end Search_Derivation_Levels; 18085 18086 -- Local Variables 18087 18088 Result : Node_Or_Entity_Id; 18089 18090 -- Start of processing for Get_Discriminant_Value 18091 18092 begin 18093 -- ??? This routine is a gigantic mess and will be deleted. For the 18094 -- time being just test for the trivial case before calling recurse. 18095 18096 -- We are now celebrating the 20th anniversary of this comment! 18097 18098 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then 18099 declare 18100 D : Entity_Id; 18101 E : Elmt_Id; 18102 18103 begin 18104 D := First_Discriminant (Typ_For_Constraint); 18105 E := First_Elmt (Constraint); 18106 while Present (D) loop 18107 if Chars (D) = Chars (Discriminant) then 18108 return Node (E); 18109 end if; 18110 18111 Next_Discriminant (D); 18112 Next_Elmt (E); 18113 end loop; 18114 end; 18115 end if; 18116 18117 Result := Search_Derivation_Levels 18118 (Typ_For_Constraint, Constraint, False); 18119 18120 -- ??? hack to disappear when this routine is gone 18121 18122 if Nkind (Result) = N_Defining_Identifier then 18123 declare 18124 D : Entity_Id; 18125 E : Elmt_Id; 18126 18127 begin 18128 D := First_Discriminant (Typ_For_Constraint); 18129 E := First_Elmt (Constraint); 18130 while Present (D) loop 18131 if Root_Corresponding_Discriminant (D) = Discriminant then 18132 return Node (E); 18133 end if; 18134 18135 Next_Discriminant (D); 18136 Next_Elmt (E); 18137 end loop; 18138 end; 18139 end if; 18140 18141 pragma Assert (Nkind (Result) /= N_Defining_Identifier); 18142 return Result; 18143 end Get_Discriminant_Value; 18144 18145 -------------------------- 18146 -- Has_Range_Constraint -- 18147 -------------------------- 18148 18149 function Has_Range_Constraint (N : Node_Id) return Boolean is 18150 C : constant Node_Id := Constraint (N); 18151 18152 begin 18153 if Nkind (C) = N_Range_Constraint then 18154 return True; 18155 18156 elsif Nkind (C) = N_Digits_Constraint then 18157 return 18158 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N))) 18159 or else Present (Range_Constraint (C)); 18160 18161 elsif Nkind (C) = N_Delta_Constraint then 18162 return Present (Range_Constraint (C)); 18163 18164 else 18165 return False; 18166 end if; 18167 end Has_Range_Constraint; 18168 18169 ------------------------ 18170 -- Inherit_Components -- 18171 ------------------------ 18172 18173 function Inherit_Components 18174 (N : Node_Id; 18175 Parent_Base : Entity_Id; 18176 Derived_Base : Entity_Id; 18177 Is_Tagged : Boolean; 18178 Inherit_Discr : Boolean; 18179 Discs : Elist_Id) return Elist_Id 18180 is 18181 Assoc_List : constant Elist_Id := New_Elmt_List; 18182 18183 procedure Inherit_Component 18184 (Old_C : Entity_Id; 18185 Plain_Discrim : Boolean := False; 18186 Stored_Discrim : Boolean := False); 18187 -- Inherits component Old_C from Parent_Base to the Derived_Base. If 18188 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is 18189 -- True, Old_C is a stored discriminant. If they are both false then 18190 -- Old_C is a regular component. 18191 18192 ----------------------- 18193 -- Inherit_Component -- 18194 ----------------------- 18195 18196 procedure Inherit_Component 18197 (Old_C : Entity_Id; 18198 Plain_Discrim : Boolean := False; 18199 Stored_Discrim : Boolean := False) 18200 is 18201 procedure Set_Anonymous_Type (Id : Entity_Id); 18202 -- Id denotes the entity of an access discriminant or anonymous 18203 -- access component. Set the type of Id to either the same type of 18204 -- Old_C or create a new one depending on whether the parent and 18205 -- the child types are in the same scope. 18206 18207 ------------------------ 18208 -- Set_Anonymous_Type -- 18209 ------------------------ 18210 18211 procedure Set_Anonymous_Type (Id : Entity_Id) is 18212 Old_Typ : constant Entity_Id := Etype (Old_C); 18213 18214 begin 18215 if Scope (Parent_Base) = Scope (Derived_Base) then 18216 Set_Etype (Id, Old_Typ); 18217 18218 -- The parent and the derived type are in two different scopes. 18219 -- Reuse the type of the original discriminant / component by 18220 -- copying it in order to preserve all attributes. 18221 18222 else 18223 declare 18224 Typ : constant Entity_Id := New_Copy (Old_Typ); 18225 18226 begin 18227 Set_Etype (Id, Typ); 18228 18229 -- Since we do not generate component declarations for 18230 -- inherited components, associate the itype with the 18231 -- derived type. 18232 18233 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base)); 18234 Set_Scope (Typ, Derived_Base); 18235 end; 18236 end if; 18237 end Set_Anonymous_Type; 18238 18239 -- Local variables and constants 18240 18241 New_C : constant Entity_Id := New_Copy (Old_C); 18242 18243 Corr_Discrim : Entity_Id; 18244 Discrim : Entity_Id; 18245 18246 -- Start of processing for Inherit_Component 18247 18248 begin 18249 pragma Assert (not Is_Tagged or not Stored_Discrim); 18250 18251 Set_Parent (New_C, Parent (Old_C)); 18252 18253 -- Regular discriminants and components must be inserted in the scope 18254 -- of the Derived_Base. Do it here. 18255 18256 if not Stored_Discrim then 18257 Enter_Name (New_C); 18258 end if; 18259 18260 -- For tagged types the Original_Record_Component must point to 18261 -- whatever this field was pointing to in the parent type. This has 18262 -- already been achieved by the call to New_Copy above. 18263 18264 if not Is_Tagged then 18265 Set_Original_Record_Component (New_C, New_C); 18266 Set_Corresponding_Record_Component (New_C, Old_C); 18267 end if; 18268 18269 -- Set the proper type of an access discriminant 18270 18271 if Ekind (New_C) = E_Discriminant 18272 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type 18273 then 18274 Set_Anonymous_Type (New_C); 18275 end if; 18276 18277 -- If we have inherited a component then see if its Etype contains 18278 -- references to Parent_Base discriminants. In this case, replace 18279 -- these references with the constraints given in Discs. We do not 18280 -- do this for the partial view of private types because this is 18281 -- not needed (only the components of the full view will be used 18282 -- for code generation) and cause problem. We also avoid this 18283 -- transformation in some error situations. 18284 18285 if Ekind (New_C) = E_Component then 18286 18287 -- Set the proper type of an anonymous access component 18288 18289 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then 18290 Set_Anonymous_Type (New_C); 18291 18292 elsif (Is_Private_Type (Derived_Base) 18293 and then not Is_Generic_Type (Derived_Base)) 18294 or else (Is_Empty_Elmt_List (Discs) 18295 and then not Expander_Active) 18296 then 18297 Set_Etype (New_C, Etype (Old_C)); 18298 18299 else 18300 -- The current component introduces a circularity of the 18301 -- following kind: 18302 18303 -- limited with Pack_2; 18304 -- package Pack_1 is 18305 -- type T_1 is tagged record 18306 -- Comp : access Pack_2.T_2; 18307 -- ... 18308 -- end record; 18309 -- end Pack_1; 18310 18311 -- with Pack_1; 18312 -- package Pack_2 is 18313 -- type T_2 is new Pack_1.T_1 with ...; 18314 -- end Pack_2; 18315 18316 Set_Etype 18317 (New_C, 18318 Constrain_Component_Type 18319 (Old_C, Derived_Base, N, Parent_Base, Discs)); 18320 end if; 18321 end if; 18322 18323 -- In derived tagged types it is illegal to reference a non 18324 -- discriminant component in the parent type. To catch this, mark 18325 -- these components with an Ekind of E_Void. This will be reset in 18326 -- Record_Type_Definition after processing the record extension of 18327 -- the derived type. 18328 18329 -- If the declaration is a private extension, there is no further 18330 -- record extension to process, and the components retain their 18331 -- current kind, because they are visible at this point. 18332 18333 if Is_Tagged and then Ekind (New_C) = E_Component 18334 and then Nkind (N) /= N_Private_Extension_Declaration 18335 then 18336 Set_Ekind (New_C, E_Void); 18337 end if; 18338 18339 if Plain_Discrim then 18340 Set_Corresponding_Discriminant (New_C, Old_C); 18341 Build_Discriminal (New_C); 18342 18343 -- If we are explicitly inheriting a stored discriminant it will be 18344 -- completely hidden. 18345 18346 elsif Stored_Discrim then 18347 Set_Corresponding_Discriminant (New_C, Empty); 18348 Set_Discriminal (New_C, Empty); 18349 Set_Is_Completely_Hidden (New_C); 18350 18351 -- Set the Original_Record_Component of each discriminant in the 18352 -- derived base to point to the corresponding stored that we just 18353 -- created. 18354 18355 Discrim := First_Discriminant (Derived_Base); 18356 while Present (Discrim) loop 18357 Corr_Discrim := Corresponding_Discriminant (Discrim); 18358 18359 -- Corr_Discrim could be missing in an error situation 18360 18361 if Present (Corr_Discrim) 18362 and then Original_Record_Component (Corr_Discrim) = Old_C 18363 then 18364 Set_Original_Record_Component (Discrim, New_C); 18365 Set_Corresponding_Record_Component (Discrim, Empty); 18366 end if; 18367 18368 Next_Discriminant (Discrim); 18369 end loop; 18370 18371 Append_Entity (New_C, Derived_Base); 18372 end if; 18373 18374 if not Is_Tagged then 18375 Append_Elmt (Old_C, Assoc_List); 18376 Append_Elmt (New_C, Assoc_List); 18377 end if; 18378 end Inherit_Component; 18379 18380 -- Variables local to Inherit_Component 18381 18382 Loc : constant Source_Ptr := Sloc (N); 18383 18384 Parent_Discrim : Entity_Id; 18385 Stored_Discrim : Entity_Id; 18386 D : Entity_Id; 18387 Component : Entity_Id; 18388 18389 -- Start of processing for Inherit_Components 18390 18391 begin 18392 if not Is_Tagged then 18393 Append_Elmt (Parent_Base, Assoc_List); 18394 Append_Elmt (Derived_Base, Assoc_List); 18395 end if; 18396 18397 -- Inherit parent discriminants if needed 18398 18399 if Inherit_Discr then 18400 Parent_Discrim := First_Discriminant (Parent_Base); 18401 while Present (Parent_Discrim) loop 18402 Inherit_Component (Parent_Discrim, Plain_Discrim => True); 18403 Next_Discriminant (Parent_Discrim); 18404 end loop; 18405 end if; 18406 18407 -- Create explicit stored discrims for untagged types when necessary 18408 18409 if not Has_Unknown_Discriminants (Derived_Base) 18410 and then Has_Discriminants (Parent_Base) 18411 and then not Is_Tagged 18412 and then 18413 (not Inherit_Discr 18414 or else First_Discriminant (Parent_Base) /= 18415 First_Stored_Discriminant (Parent_Base)) 18416 then 18417 Stored_Discrim := First_Stored_Discriminant (Parent_Base); 18418 while Present (Stored_Discrim) loop 18419 Inherit_Component (Stored_Discrim, Stored_Discrim => True); 18420 Next_Stored_Discriminant (Stored_Discrim); 18421 end loop; 18422 end if; 18423 18424 -- See if we can apply the second transformation for derived types, as 18425 -- explained in point 6. in the comments above Build_Derived_Record_Type 18426 -- This is achieved by appending Derived_Base discriminants into Discs, 18427 -- which has the side effect of returning a non empty Discs list to the 18428 -- caller of Inherit_Components, which is what we want. This must be 18429 -- done for private derived types if there are explicit stored 18430 -- discriminants, to ensure that we can retrieve the values of the 18431 -- constraints provided in the ancestors. 18432 18433 if Inherit_Discr 18434 and then Is_Empty_Elmt_List (Discs) 18435 and then Present (First_Discriminant (Derived_Base)) 18436 and then 18437 (not Is_Private_Type (Derived_Base) 18438 or else Is_Completely_Hidden 18439 (First_Stored_Discriminant (Derived_Base)) 18440 or else Is_Generic_Type (Derived_Base)) 18441 then 18442 D := First_Discriminant (Derived_Base); 18443 while Present (D) loop 18444 Append_Elmt (New_Occurrence_Of (D, Loc), Discs); 18445 Next_Discriminant (D); 18446 end loop; 18447 end if; 18448 18449 -- Finally, inherit non-discriminant components unless they are not 18450 -- visible because defined or inherited from the full view of the 18451 -- parent. Don't inherit the _parent field of the parent type. 18452 18453 Component := First_Entity (Parent_Base); 18454 while Present (Component) loop 18455 18456 -- Ada 2005 (AI-251): Do not inherit components associated with 18457 -- secondary tags of the parent. 18458 18459 if Ekind (Component) = E_Component 18460 and then Present (Related_Type (Component)) 18461 then 18462 null; 18463 18464 elsif Ekind (Component) /= E_Component 18465 or else Chars (Component) = Name_uParent 18466 then 18467 null; 18468 18469 -- If the derived type is within the parent type's declarative 18470 -- region, then the components can still be inherited even though 18471 -- they aren't visible at this point. This can occur for cases 18472 -- such as within public child units where the components must 18473 -- become visible upon entering the child unit's private part. 18474 18475 elsif not Is_Visible_Component (Component) 18476 and then not In_Open_Scopes (Scope (Parent_Base)) 18477 then 18478 null; 18479 18480 elsif Ekind_In (Derived_Base, E_Private_Type, 18481 E_Limited_Private_Type) 18482 then 18483 null; 18484 18485 else 18486 Inherit_Component (Component); 18487 end if; 18488 18489 Next_Entity (Component); 18490 end loop; 18491 18492 -- For tagged derived types, inherited discriminants cannot be used in 18493 -- component declarations of the record extension part. To achieve this 18494 -- we mark the inherited discriminants as not visible. 18495 18496 if Is_Tagged and then Inherit_Discr then 18497 D := First_Discriminant (Derived_Base); 18498 while Present (D) loop 18499 Set_Is_Immediately_Visible (D, False); 18500 Next_Discriminant (D); 18501 end loop; 18502 end if; 18503 18504 return Assoc_List; 18505 end Inherit_Components; 18506 18507 ----------------------------- 18508 -- Inherit_Predicate_Flags -- 18509 ----------------------------- 18510 18511 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is 18512 begin 18513 Set_Has_Predicates (Subt, Has_Predicates (Par)); 18514 Set_Has_Static_Predicate_Aspect 18515 (Subt, Has_Static_Predicate_Aspect (Par)); 18516 Set_Has_Dynamic_Predicate_Aspect 18517 (Subt, Has_Dynamic_Predicate_Aspect (Par)); 18518 18519 -- A named subtype does not inherit the predicate function of its 18520 -- parent but an itype declared for a loop index needs the discrete 18521 -- predicate information of its parent to execute the loop properly. 18522 18523 if Is_Itype (Subt) and then Present (Predicate_Function (Par)) then 18524 Set_Subprograms_For_Type (Subt, Subprograms_For_Type (Par)); 18525 18526 if Has_Static_Predicate (Par) then 18527 Set_Static_Discrete_Predicate 18528 (Subt, Static_Discrete_Predicate (Par)); 18529 end if; 18530 end if; 18531 end Inherit_Predicate_Flags; 18532 18533 ---------------------- 18534 -- Is_EVF_Procedure -- 18535 ---------------------- 18536 18537 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is 18538 Formal : Entity_Id; 18539 18540 begin 18541 -- Examine the formals of an Extensions_Visible False procedure looking 18542 -- for a controlling OUT parameter. 18543 18544 if Ekind (Subp) = E_Procedure 18545 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False 18546 then 18547 Formal := First_Formal (Subp); 18548 while Present (Formal) loop 18549 if Ekind (Formal) = E_Out_Parameter 18550 and then Is_Controlling_Formal (Formal) 18551 then 18552 return True; 18553 end if; 18554 18555 Next_Formal (Formal); 18556 end loop; 18557 end if; 18558 18559 return False; 18560 end Is_EVF_Procedure; 18561 18562 ----------------------- 18563 -- Is_Null_Extension -- 18564 ----------------------- 18565 18566 function Is_Null_Extension (T : Entity_Id) return Boolean is 18567 Type_Decl : constant Node_Id := Parent (Base_Type (T)); 18568 Comp_List : Node_Id; 18569 Comp : Node_Id; 18570 18571 begin 18572 if Nkind (Type_Decl) /= N_Full_Type_Declaration 18573 or else not Is_Tagged_Type (T) 18574 or else Nkind (Type_Definition (Type_Decl)) /= 18575 N_Derived_Type_Definition 18576 or else No (Record_Extension_Part (Type_Definition (Type_Decl))) 18577 then 18578 return False; 18579 end if; 18580 18581 Comp_List := 18582 Component_List (Record_Extension_Part (Type_Definition (Type_Decl))); 18583 18584 if Present (Discriminant_Specifications (Type_Decl)) then 18585 return False; 18586 18587 elsif Present (Comp_List) 18588 and then Is_Non_Empty_List (Component_Items (Comp_List)) 18589 then 18590 Comp := First (Component_Items (Comp_List)); 18591 18592 -- Only user-defined components are relevant. The component list 18593 -- may also contain a parent component and internal components 18594 -- corresponding to secondary tags, but these do not determine 18595 -- whether this is a null extension. 18596 18597 while Present (Comp) loop 18598 if Comes_From_Source (Comp) then 18599 return False; 18600 end if; 18601 18602 Next (Comp); 18603 end loop; 18604 18605 return True; 18606 18607 else 18608 return True; 18609 end if; 18610 end Is_Null_Extension; 18611 18612 ------------------------------ 18613 -- Is_Valid_Constraint_Kind -- 18614 ------------------------------ 18615 18616 function Is_Valid_Constraint_Kind 18617 (T_Kind : Type_Kind; 18618 Constraint_Kind : Node_Kind) return Boolean 18619 is 18620 begin 18621 case T_Kind is 18622 when Enumeration_Kind 18623 | Integer_Kind 18624 => 18625 return Constraint_Kind = N_Range_Constraint; 18626 18627 when Decimal_Fixed_Point_Kind => 18628 return Nkind_In (Constraint_Kind, N_Digits_Constraint, 18629 N_Range_Constraint); 18630 18631 when Ordinary_Fixed_Point_Kind => 18632 return Nkind_In (Constraint_Kind, N_Delta_Constraint, 18633 N_Range_Constraint); 18634 18635 when Float_Kind => 18636 return Nkind_In (Constraint_Kind, N_Digits_Constraint, 18637 N_Range_Constraint); 18638 18639 when Access_Kind 18640 | Array_Kind 18641 | Class_Wide_Kind 18642 | Concurrent_Kind 18643 | Private_Kind 18644 | E_Incomplete_Type 18645 | E_Record_Subtype 18646 | E_Record_Type 18647 => 18648 return Constraint_Kind = N_Index_Or_Discriminant_Constraint; 18649 18650 when others => 18651 return True; -- Error will be detected later 18652 end case; 18653 end Is_Valid_Constraint_Kind; 18654 18655 -------------------------- 18656 -- Is_Visible_Component -- 18657 -------------------------- 18658 18659 function Is_Visible_Component 18660 (C : Entity_Id; 18661 N : Node_Id := Empty) return Boolean 18662 is 18663 Original_Comp : Entity_Id := Empty; 18664 Original_Type : Entity_Id; 18665 Type_Scope : Entity_Id; 18666 18667 function Is_Local_Type (Typ : Entity_Id) return Boolean; 18668 -- Check whether parent type of inherited component is declared locally, 18669 -- possibly within a nested package or instance. The current scope is 18670 -- the derived record itself. 18671 18672 ------------------- 18673 -- Is_Local_Type -- 18674 ------------------- 18675 18676 function Is_Local_Type (Typ : Entity_Id) return Boolean is 18677 Scop : Entity_Id; 18678 18679 begin 18680 Scop := Scope (Typ); 18681 while Present (Scop) 18682 and then Scop /= Standard_Standard 18683 loop 18684 if Scop = Scope (Current_Scope) then 18685 return True; 18686 end if; 18687 18688 Scop := Scope (Scop); 18689 end loop; 18690 18691 return False; 18692 end Is_Local_Type; 18693 18694 -- Start of processing for Is_Visible_Component 18695 18696 begin 18697 if Ekind_In (C, E_Component, E_Discriminant) then 18698 Original_Comp := Original_Record_Component (C); 18699 end if; 18700 18701 if No (Original_Comp) then 18702 18703 -- Premature usage, or previous error 18704 18705 return False; 18706 18707 else 18708 Original_Type := Scope (Original_Comp); 18709 Type_Scope := Scope (Base_Type (Scope (C))); 18710 end if; 18711 18712 -- This test only concerns tagged types 18713 18714 if not Is_Tagged_Type (Original_Type) then 18715 return True; 18716 18717 -- If it is _Parent or _Tag, there is no visibility issue 18718 18719 elsif not Comes_From_Source (Original_Comp) then 18720 return True; 18721 18722 -- Discriminants are visible unless the (private) type has unknown 18723 -- discriminants. If the discriminant reference is inserted for a 18724 -- discriminant check on a full view it is also visible. 18725 18726 elsif Ekind (Original_Comp) = E_Discriminant 18727 and then 18728 (not Has_Unknown_Discriminants (Original_Type) 18729 or else (Present (N) 18730 and then Nkind (N) = N_Selected_Component 18731 and then Nkind (Prefix (N)) = N_Type_Conversion 18732 and then not Comes_From_Source (Prefix (N)))) 18733 then 18734 return True; 18735 18736 -- In the body of an instantiation, check the visibility of a component 18737 -- in case it has a homograph that is a primitive operation of a private 18738 -- type which was not visible in the generic unit. 18739 18740 -- Should Is_Prefixed_Call be propagated from template to instance??? 18741 18742 elsif In_Instance_Body then 18743 if not Is_Tagged_Type (Original_Type) 18744 or else not Is_Private_Type (Original_Type) 18745 then 18746 return True; 18747 18748 else 18749 declare 18750 Subp_Elmt : Elmt_Id; 18751 18752 begin 18753 Subp_Elmt := First_Elmt (Primitive_Operations (Original_Type)); 18754 while Present (Subp_Elmt) loop 18755 18756 -- The component is hidden by a primitive operation 18757 18758 if Chars (Node (Subp_Elmt)) = Chars (C) then 18759 return False; 18760 end if; 18761 18762 Next_Elmt (Subp_Elmt); 18763 end loop; 18764 18765 return True; 18766 end; 18767 end if; 18768 18769 -- If the component has been declared in an ancestor which is currently 18770 -- a private type, then it is not visible. The same applies if the 18771 -- component's containing type is not in an open scope and the original 18772 -- component's enclosing type is a visible full view of a private type 18773 -- (which can occur in cases where an attempt is being made to reference 18774 -- a component in a sibling package that is inherited from a visible 18775 -- component of a type in an ancestor package; the component in the 18776 -- sibling package should not be visible even though the component it 18777 -- inherited from is visible). This does not apply however in the case 18778 -- where the scope of the type is a private child unit, or when the 18779 -- parent comes from a local package in which the ancestor is currently 18780 -- visible. The latter suppression of visibility is needed for cases 18781 -- that are tested in B730006. 18782 18783 elsif Is_Private_Type (Original_Type) 18784 or else 18785 (not Is_Private_Descendant (Type_Scope) 18786 and then not In_Open_Scopes (Type_Scope) 18787 and then Has_Private_Declaration (Original_Type)) 18788 then 18789 -- If the type derives from an entity in a formal package, there 18790 -- are no additional visible components. 18791 18792 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) = 18793 N_Formal_Package_Declaration 18794 then 18795 return False; 18796 18797 -- if we are not in the private part of the current package, there 18798 -- are no additional visible components. 18799 18800 elsif Ekind (Scope (Current_Scope)) = E_Package 18801 and then not In_Private_Part (Scope (Current_Scope)) 18802 then 18803 return False; 18804 else 18805 return 18806 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit)) 18807 and then In_Open_Scopes (Scope (Original_Type)) 18808 and then Is_Local_Type (Type_Scope); 18809 end if; 18810 18811 -- There is another weird way in which a component may be invisible when 18812 -- the private and the full view are not derived from the same ancestor. 18813 -- Here is an example : 18814 18815 -- type A1 is tagged record F1 : integer; end record; 18816 -- type A2 is new A1 with record F2 : integer; end record; 18817 -- type T is new A1 with private; 18818 -- private 18819 -- type T is new A2 with null record; 18820 18821 -- In this case, the full view of T inherits F1 and F2 but the private 18822 -- view inherits only F1 18823 18824 else 18825 declare 18826 Ancestor : Entity_Id := Scope (C); 18827 18828 begin 18829 loop 18830 if Ancestor = Original_Type then 18831 return True; 18832 18833 -- The ancestor may have a partial view of the original type, 18834 -- but if the full view is in scope, as in a child body, the 18835 -- component is visible. 18836 18837 elsif In_Private_Part (Scope (Original_Type)) 18838 and then Full_View (Ancestor) = Original_Type 18839 then 18840 return True; 18841 18842 elsif Ancestor = Etype (Ancestor) then 18843 18844 -- No further ancestors to examine 18845 18846 return False; 18847 end if; 18848 18849 Ancestor := Etype (Ancestor); 18850 end loop; 18851 end; 18852 end if; 18853 end Is_Visible_Component; 18854 18855 -------------------------- 18856 -- Make_Class_Wide_Type -- 18857 -------------------------- 18858 18859 procedure Make_Class_Wide_Type (T : Entity_Id) is 18860 CW_Type : Entity_Id; 18861 CW_Name : Name_Id; 18862 Next_E : Entity_Id; 18863 18864 begin 18865 if Present (Class_Wide_Type (T)) then 18866 18867 -- The class-wide type is a partially decorated entity created for a 18868 -- unanalyzed tagged type referenced through a limited with clause. 18869 -- When the tagged type is analyzed, its class-wide type needs to be 18870 -- redecorated. Note that we reuse the entity created by Decorate_ 18871 -- Tagged_Type in order to preserve all links. 18872 18873 if Materialize_Entity (Class_Wide_Type (T)) then 18874 CW_Type := Class_Wide_Type (T); 18875 Set_Materialize_Entity (CW_Type, False); 18876 18877 -- The class wide type can have been defined by the partial view, in 18878 -- which case everything is already done. 18879 18880 else 18881 return; 18882 end if; 18883 18884 -- Default case, we need to create a new class-wide type 18885 18886 else 18887 CW_Type := 18888 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T'); 18889 end if; 18890 18891 -- Inherit root type characteristics 18892 18893 CW_Name := Chars (CW_Type); 18894 Next_E := Next_Entity (CW_Type); 18895 Copy_Node (T, CW_Type); 18896 Set_Comes_From_Source (CW_Type, False); 18897 Set_Chars (CW_Type, CW_Name); 18898 Set_Parent (CW_Type, Parent (T)); 18899 Set_Next_Entity (CW_Type, Next_E); 18900 18901 -- Ensure we have a new freeze node for the class-wide type. The partial 18902 -- view may have freeze action of its own, requiring a proper freeze 18903 -- node, and the same freeze node cannot be shared between the two 18904 -- types. 18905 18906 Set_Has_Delayed_Freeze (CW_Type); 18907 Set_Freeze_Node (CW_Type, Empty); 18908 18909 -- Customize the class-wide type: It has no prim. op., it cannot be 18910 -- abstract, its Etype points back to the specific root type, and it 18911 -- cannot have any invariants. 18912 18913 Set_Ekind (CW_Type, E_Class_Wide_Type); 18914 Set_Is_Tagged_Type (CW_Type, True); 18915 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List); 18916 Set_Is_Abstract_Type (CW_Type, False); 18917 Set_Is_Constrained (CW_Type, False); 18918 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T)); 18919 Set_Default_SSO (CW_Type); 18920 Set_Has_Inheritable_Invariants (CW_Type, False); 18921 Set_Has_Inherited_Invariants (CW_Type, False); 18922 Set_Has_Own_Invariants (CW_Type, False); 18923 18924 if Ekind (T) = E_Class_Wide_Subtype then 18925 Set_Etype (CW_Type, Etype (Base_Type (T))); 18926 else 18927 Set_Etype (CW_Type, T); 18928 end if; 18929 18930 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams); 18931 18932 -- If this is the class_wide type of a constrained subtype, it does 18933 -- not have discriminants. 18934 18935 Set_Has_Discriminants (CW_Type, 18936 Has_Discriminants (T) and then not Is_Constrained (T)); 18937 18938 Set_Has_Unknown_Discriminants (CW_Type, True); 18939 Set_Class_Wide_Type (T, CW_Type); 18940 Set_Equivalent_Type (CW_Type, Empty); 18941 18942 -- The class-wide type of a class-wide type is itself (RM 3.9(14)) 18943 18944 Set_Class_Wide_Type (CW_Type, CW_Type); 18945 end Make_Class_Wide_Type; 18946 18947 ---------------- 18948 -- Make_Index -- 18949 ---------------- 18950 18951 procedure Make_Index 18952 (N : Node_Id; 18953 Related_Nod : Node_Id; 18954 Related_Id : Entity_Id := Empty; 18955 Suffix_Index : Nat := 1; 18956 In_Iter_Schm : Boolean := False) 18957 is 18958 R : Node_Id; 18959 T : Entity_Id; 18960 Def_Id : Entity_Id := Empty; 18961 Found : Boolean := False; 18962 18963 begin 18964 -- For a discrete range used in a constrained array definition and 18965 -- defined by a range, an implicit conversion to the predefined type 18966 -- INTEGER is assumed if each bound is either a numeric literal, a named 18967 -- number, or an attribute, and the type of both bounds (prior to the 18968 -- implicit conversion) is the type universal_integer. Otherwise, both 18969 -- bounds must be of the same discrete type, other than universal 18970 -- integer; this type must be determinable independently of the 18971 -- context, but using the fact that the type must be discrete and that 18972 -- both bounds must have the same type. 18973 18974 -- Character literals also have a universal type in the absence of 18975 -- of additional context, and are resolved to Standard_Character. 18976 18977 if Nkind (N) = N_Range then 18978 18979 -- The index is given by a range constraint. The bounds are known 18980 -- to be of a consistent type. 18981 18982 if not Is_Overloaded (N) then 18983 T := Etype (N); 18984 18985 -- For universal bounds, choose the specific predefined type 18986 18987 if T = Universal_Integer then 18988 T := Standard_Integer; 18989 18990 elsif T = Any_Character then 18991 Ambiguous_Character (Low_Bound (N)); 18992 18993 T := Standard_Character; 18994 end if; 18995 18996 -- The node may be overloaded because some user-defined operators 18997 -- are available, but if a universal interpretation exists it is 18998 -- also the selected one. 18999 19000 elsif Universal_Interpretation (N) = Universal_Integer then 19001 T := Standard_Integer; 19002 19003 else 19004 T := Any_Type; 19005 19006 declare 19007 Ind : Interp_Index; 19008 It : Interp; 19009 19010 begin 19011 Get_First_Interp (N, Ind, It); 19012 while Present (It.Typ) loop 19013 if Is_Discrete_Type (It.Typ) then 19014 19015 if Found 19016 and then not Covers (It.Typ, T) 19017 and then not Covers (T, It.Typ) 19018 then 19019 Error_Msg_N ("ambiguous bounds in discrete range", N); 19020 exit; 19021 else 19022 T := It.Typ; 19023 Found := True; 19024 end if; 19025 end if; 19026 19027 Get_Next_Interp (Ind, It); 19028 end loop; 19029 19030 if T = Any_Type then 19031 Error_Msg_N ("discrete type required for range", N); 19032 Set_Etype (N, Any_Type); 19033 return; 19034 19035 elsif T = Universal_Integer then 19036 T := Standard_Integer; 19037 end if; 19038 end; 19039 end if; 19040 19041 if not Is_Discrete_Type (T) then 19042 Error_Msg_N ("discrete type required for range", N); 19043 Set_Etype (N, Any_Type); 19044 return; 19045 end if; 19046 19047 if Nkind (Low_Bound (N)) = N_Attribute_Reference 19048 and then Attribute_Name (Low_Bound (N)) = Name_First 19049 and then Is_Entity_Name (Prefix (Low_Bound (N))) 19050 and then Is_Type (Entity (Prefix (Low_Bound (N)))) 19051 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N)))) 19052 then 19053 -- The type of the index will be the type of the prefix, as long 19054 -- as the upper bound is 'Last of the same type. 19055 19056 Def_Id := Entity (Prefix (Low_Bound (N))); 19057 19058 if Nkind (High_Bound (N)) /= N_Attribute_Reference 19059 or else Attribute_Name (High_Bound (N)) /= Name_Last 19060 or else not Is_Entity_Name (Prefix (High_Bound (N))) 19061 or else Entity (Prefix (High_Bound (N))) /= Def_Id 19062 then 19063 Def_Id := Empty; 19064 end if; 19065 end if; 19066 19067 R := N; 19068 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm); 19069 19070 elsif Nkind (N) = N_Subtype_Indication then 19071 19072 -- The index is given by a subtype with a range constraint 19073 19074 T := Base_Type (Entity (Subtype_Mark (N))); 19075 19076 if not Is_Discrete_Type (T) then 19077 Error_Msg_N ("discrete type required for range", N); 19078 Set_Etype (N, Any_Type); 19079 return; 19080 end if; 19081 19082 R := Range_Expression (Constraint (N)); 19083 19084 Resolve (R, T); 19085 Process_Range_Expr_In_Decl 19086 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm); 19087 19088 elsif Nkind (N) = N_Attribute_Reference then 19089 19090 -- Catch beginner's error (use of attribute other than 'Range) 19091 19092 if Attribute_Name (N) /= Name_Range then 19093 Error_Msg_N ("expect attribute ''Range", N); 19094 Set_Etype (N, Any_Type); 19095 return; 19096 end if; 19097 19098 -- If the node denotes the range of a type mark, that is also the 19099 -- resulting type, and we do not need to create an Itype for it. 19100 19101 if Is_Entity_Name (Prefix (N)) 19102 and then Comes_From_Source (N) 19103 and then Is_Type (Entity (Prefix (N))) 19104 and then Is_Discrete_Type (Entity (Prefix (N))) 19105 then 19106 Def_Id := Entity (Prefix (N)); 19107 end if; 19108 19109 Analyze_And_Resolve (N); 19110 T := Etype (N); 19111 R := N; 19112 19113 -- If none of the above, must be a subtype. We convert this to a 19114 -- range attribute reference because in the case of declared first 19115 -- named subtypes, the types in the range reference can be different 19116 -- from the type of the entity. A range attribute normalizes the 19117 -- reference and obtains the correct types for the bounds. 19118 19119 -- This transformation is in the nature of an expansion, is only 19120 -- done if expansion is active. In particular, it is not done on 19121 -- formal generic types, because we need to retain the name of the 19122 -- original index for instantiation purposes. 19123 19124 else 19125 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then 19126 Error_Msg_N ("invalid subtype mark in discrete range ", N); 19127 Set_Etype (N, Any_Integer); 19128 return; 19129 19130 else 19131 -- The type mark may be that of an incomplete type. It is only 19132 -- now that we can get the full view, previous analysis does 19133 -- not look specifically for a type mark. 19134 19135 Set_Entity (N, Get_Full_View (Entity (N))); 19136 Set_Etype (N, Entity (N)); 19137 Def_Id := Entity (N); 19138 19139 if not Is_Discrete_Type (Def_Id) then 19140 Error_Msg_N ("discrete type required for index", N); 19141 Set_Etype (N, Any_Type); 19142 return; 19143 end if; 19144 end if; 19145 19146 if Expander_Active then 19147 Rewrite (N, 19148 Make_Attribute_Reference (Sloc (N), 19149 Attribute_Name => Name_Range, 19150 Prefix => Relocate_Node (N))); 19151 19152 -- The original was a subtype mark that does not freeze. This 19153 -- means that the rewritten version must not freeze either. 19154 19155 Set_Must_Not_Freeze (N); 19156 Set_Must_Not_Freeze (Prefix (N)); 19157 Analyze_And_Resolve (N); 19158 T := Etype (N); 19159 R := N; 19160 19161 -- If expander is inactive, type is legal, nothing else to construct 19162 19163 else 19164 return; 19165 end if; 19166 end if; 19167 19168 if not Is_Discrete_Type (T) then 19169 Error_Msg_N ("discrete type required for range", N); 19170 Set_Etype (N, Any_Type); 19171 return; 19172 19173 elsif T = Any_Type then 19174 Set_Etype (N, Any_Type); 19175 return; 19176 end if; 19177 19178 -- We will now create the appropriate Itype to describe the range, but 19179 -- first a check. If we originally had a subtype, then we just label 19180 -- the range with this subtype. Not only is there no need to construct 19181 -- a new subtype, but it is wrong to do so for two reasons: 19182 19183 -- 1. A legality concern, if we have a subtype, it must not freeze, 19184 -- and the Itype would cause freezing incorrectly 19185 19186 -- 2. An efficiency concern, if we created an Itype, it would not be 19187 -- recognized as the same type for the purposes of eliminating 19188 -- checks in some circumstances. 19189 19190 -- We signal this case by setting the subtype entity in Def_Id 19191 19192 if No (Def_Id) then 19193 Def_Id := 19194 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index); 19195 Set_Etype (Def_Id, Base_Type (T)); 19196 19197 if Is_Signed_Integer_Type (T) then 19198 Set_Ekind (Def_Id, E_Signed_Integer_Subtype); 19199 19200 elsif Is_Modular_Integer_Type (T) then 19201 Set_Ekind (Def_Id, E_Modular_Integer_Subtype); 19202 19203 else 19204 Set_Ekind (Def_Id, E_Enumeration_Subtype); 19205 Set_Is_Character_Type (Def_Id, Is_Character_Type (T)); 19206 Set_First_Literal (Def_Id, First_Literal (T)); 19207 end if; 19208 19209 Set_Size_Info (Def_Id, (T)); 19210 Set_RM_Size (Def_Id, RM_Size (T)); 19211 Set_First_Rep_Item (Def_Id, First_Rep_Item (T)); 19212 19213 Set_Scalar_Range (Def_Id, R); 19214 Conditional_Delay (Def_Id, T); 19215 19216 if Nkind (N) = N_Subtype_Indication then 19217 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N))); 19218 end if; 19219 19220 -- In the subtype indication case, if the immediate parent of the 19221 -- new subtype is non-static, then the subtype we create is non- 19222 -- static, even if its bounds are static. 19223 19224 if Nkind (N) = N_Subtype_Indication 19225 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N))) 19226 then 19227 Set_Is_Non_Static_Subtype (Def_Id); 19228 end if; 19229 end if; 19230 19231 -- Final step is to label the index with this constructed type 19232 19233 Set_Etype (N, Def_Id); 19234 end Make_Index; 19235 19236 ------------------------------ 19237 -- Modular_Type_Declaration -- 19238 ------------------------------ 19239 19240 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is 19241 Mod_Expr : constant Node_Id := Expression (Def); 19242 M_Val : Uint; 19243 19244 procedure Set_Modular_Size (Bits : Int); 19245 -- Sets RM_Size to Bits, and Esize to normal word size above this 19246 19247 ---------------------- 19248 -- Set_Modular_Size -- 19249 ---------------------- 19250 19251 procedure Set_Modular_Size (Bits : Int) is 19252 begin 19253 Set_RM_Size (T, UI_From_Int (Bits)); 19254 19255 if Bits <= 8 then 19256 Init_Esize (T, 8); 19257 19258 elsif Bits <= 16 then 19259 Init_Esize (T, 16); 19260 19261 elsif Bits <= 32 then 19262 Init_Esize (T, 32); 19263 19264 else 19265 Init_Esize (T, System_Max_Binary_Modulus_Power); 19266 end if; 19267 19268 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then 19269 Set_Is_Known_Valid (T); 19270 end if; 19271 end Set_Modular_Size; 19272 19273 -- Start of processing for Modular_Type_Declaration 19274 19275 begin 19276 -- If the mod expression is (exactly) 2 * literal, where literal is 19277 -- 64 or less,then almost certainly the * was meant to be **. Warn. 19278 19279 if Warn_On_Suspicious_Modulus_Value 19280 and then Nkind (Mod_Expr) = N_Op_Multiply 19281 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal 19282 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2 19283 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal 19284 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64 19285 then 19286 Error_Msg_N 19287 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr); 19288 end if; 19289 19290 -- Proceed with analysis of mod expression 19291 19292 Analyze_And_Resolve (Mod_Expr, Any_Integer); 19293 Set_Etype (T, T); 19294 Set_Ekind (T, E_Modular_Integer_Type); 19295 Init_Alignment (T); 19296 Set_Is_Constrained (T); 19297 19298 if not Is_OK_Static_Expression (Mod_Expr) then 19299 Flag_Non_Static_Expr 19300 ("non-static expression used for modular type bound!", Mod_Expr); 19301 M_Val := 2 ** System_Max_Binary_Modulus_Power; 19302 else 19303 M_Val := Expr_Value (Mod_Expr); 19304 end if; 19305 19306 if M_Val < 1 then 19307 Error_Msg_N ("modulus value must be positive", Mod_Expr); 19308 M_Val := 2 ** System_Max_Binary_Modulus_Power; 19309 end if; 19310 19311 if M_Val > 2 ** Standard_Long_Integer_Size then 19312 Check_Restriction (No_Long_Long_Integers, Mod_Expr); 19313 end if; 19314 19315 Set_Modulus (T, M_Val); 19316 19317 -- Create bounds for the modular type based on the modulus given in 19318 -- the type declaration and then analyze and resolve those bounds. 19319 19320 Set_Scalar_Range (T, 19321 Make_Range (Sloc (Mod_Expr), 19322 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0), 19323 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1))); 19324 19325 -- Properly analyze the literals for the range. We do this manually 19326 -- because we can't go calling Resolve, since we are resolving these 19327 -- bounds with the type, and this type is certainly not complete yet. 19328 19329 Set_Etype (Low_Bound (Scalar_Range (T)), T); 19330 Set_Etype (High_Bound (Scalar_Range (T)), T); 19331 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T))); 19332 Set_Is_Static_Expression (High_Bound (Scalar_Range (T))); 19333 19334 -- Loop through powers of two to find number of bits required 19335 19336 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop 19337 19338 -- Binary case 19339 19340 if M_Val = 2 ** Bits then 19341 Set_Modular_Size (Bits); 19342 return; 19343 19344 -- Nonbinary case 19345 19346 elsif M_Val < 2 ** Bits then 19347 Check_SPARK_05_Restriction ("modulus should be a power of 2", T); 19348 Set_Non_Binary_Modulus (T); 19349 19350 if Bits > System_Max_Nonbinary_Modulus_Power then 19351 Error_Msg_Uint_1 := 19352 UI_From_Int (System_Max_Nonbinary_Modulus_Power); 19353 Error_Msg_F 19354 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr); 19355 Set_Modular_Size (System_Max_Binary_Modulus_Power); 19356 return; 19357 19358 else 19359 -- In the nonbinary case, set size as per RM 13.3(55) 19360 19361 Set_Modular_Size (Bits); 19362 return; 19363 end if; 19364 end if; 19365 19366 end loop; 19367 19368 -- If we fall through, then the size exceed System.Max_Binary_Modulus 19369 -- so we just signal an error and set the maximum size. 19370 19371 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power); 19372 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr); 19373 19374 Set_Modular_Size (System_Max_Binary_Modulus_Power); 19375 Init_Alignment (T); 19376 19377 end Modular_Type_Declaration; 19378 19379 -------------------------- 19380 -- New_Concatenation_Op -- 19381 -------------------------- 19382 19383 procedure New_Concatenation_Op (Typ : Entity_Id) is 19384 Loc : constant Source_Ptr := Sloc (Typ); 19385 Op : Entity_Id; 19386 19387 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id; 19388 -- Create abbreviated declaration for the formal of a predefined 19389 -- Operator 'Op' of type 'Typ' 19390 19391 -------------------- 19392 -- Make_Op_Formal -- 19393 -------------------- 19394 19395 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is 19396 Formal : Entity_Id; 19397 begin 19398 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P'); 19399 Set_Etype (Formal, Typ); 19400 Set_Mechanism (Formal, Default_Mechanism); 19401 return Formal; 19402 end Make_Op_Formal; 19403 19404 -- Start of processing for New_Concatenation_Op 19405 19406 begin 19407 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat); 19408 19409 Set_Ekind (Op, E_Operator); 19410 Set_Scope (Op, Current_Scope); 19411 Set_Etype (Op, Typ); 19412 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat)); 19413 Set_Is_Immediately_Visible (Op); 19414 Set_Is_Intrinsic_Subprogram (Op); 19415 Set_Has_Completion (Op); 19416 Append_Entity (Op, Current_Scope); 19417 19418 Set_Name_Entity_Id (Name_Op_Concat, Op); 19419 19420 Append_Entity (Make_Op_Formal (Typ, Op), Op); 19421 Append_Entity (Make_Op_Formal (Typ, Op), Op); 19422 end New_Concatenation_Op; 19423 19424 ------------------------- 19425 -- OK_For_Limited_Init -- 19426 ------------------------- 19427 19428 -- ???Check all calls of this, and compare the conditions under which it's 19429 -- called. 19430 19431 function OK_For_Limited_Init 19432 (Typ : Entity_Id; 19433 Exp : Node_Id) return Boolean 19434 is 19435 begin 19436 return Is_CPP_Constructor_Call (Exp) 19437 or else (Ada_Version >= Ada_2005 19438 and then not Debug_Flag_Dot_L 19439 and then OK_For_Limited_Init_In_05 (Typ, Exp)); 19440 end OK_For_Limited_Init; 19441 19442 ------------------------------- 19443 -- OK_For_Limited_Init_In_05 -- 19444 ------------------------------- 19445 19446 function OK_For_Limited_Init_In_05 19447 (Typ : Entity_Id; 19448 Exp : Node_Id) return Boolean 19449 is 19450 begin 19451 -- An object of a limited interface type can be initialized with any 19452 -- expression of a nonlimited descendant type. However this does not 19453 -- apply if this is a view conversion of some other expression. This 19454 -- is checked below. 19455 19456 if Is_Class_Wide_Type (Typ) 19457 and then Is_Limited_Interface (Typ) 19458 and then not Is_Limited_Type (Etype (Exp)) 19459 and then Nkind (Exp) /= N_Type_Conversion 19460 then 19461 return True; 19462 end if; 19463 19464 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in 19465 -- case of limited aggregates (including extension aggregates), and 19466 -- function calls. The function call may have been given in prefixed 19467 -- notation, in which case the original node is an indexed component. 19468 -- If the function is parameterless, the original node was an explicit 19469 -- dereference. The function may also be parameterless, in which case 19470 -- the source node is just an identifier. 19471 19472 -- A branch of a conditional expression may have been removed if the 19473 -- condition is statically known. This happens during expansion, and 19474 -- thus will not happen if previous errors were encountered. The check 19475 -- will have been performed on the chosen branch, which replaces the 19476 -- original conditional expression. 19477 19478 if No (Exp) then 19479 return True; 19480 end if; 19481 19482 case Nkind (Original_Node (Exp)) is 19483 when N_Aggregate 19484 | N_Extension_Aggregate 19485 | N_Function_Call 19486 | N_Op 19487 => 19488 return True; 19489 19490 when N_Identifier => 19491 return Present (Entity (Original_Node (Exp))) 19492 and then Ekind (Entity (Original_Node (Exp))) = E_Function; 19493 19494 when N_Qualified_Expression => 19495 return 19496 OK_For_Limited_Init_In_05 19497 (Typ, Expression (Original_Node (Exp))); 19498 19499 -- Ada 2005 (AI-251): If a class-wide interface object is initialized 19500 -- with a function call, the expander has rewritten the call into an 19501 -- N_Type_Conversion node to force displacement of the pointer to 19502 -- reference the component containing the secondary dispatch table. 19503 -- Otherwise a type conversion is not a legal context. 19504 -- A return statement for a build-in-place function returning a 19505 -- synchronized type also introduces an unchecked conversion. 19506 19507 when N_Type_Conversion 19508 | N_Unchecked_Type_Conversion 19509 => 19510 return not Comes_From_Source (Exp) 19511 and then 19512 OK_For_Limited_Init_In_05 19513 (Typ, Expression (Original_Node (Exp))); 19514 19515 when N_Explicit_Dereference 19516 | N_Indexed_Component 19517 | N_Selected_Component 19518 => 19519 return Nkind (Exp) = N_Function_Call; 19520 19521 -- A use of 'Input is a function call, hence allowed. Normally the 19522 -- attribute will be changed to a call, but the attribute by itself 19523 -- can occur with -gnatc. 19524 19525 when N_Attribute_Reference => 19526 return Attribute_Name (Original_Node (Exp)) = Name_Input; 19527 19528 -- "return raise ..." is OK 19529 19530 when N_Raise_Expression => 19531 return True; 19532 19533 -- For a case expression, all dependent expressions must be legal 19534 19535 when N_Case_Expression => 19536 declare 19537 Alt : Node_Id; 19538 19539 begin 19540 Alt := First (Alternatives (Original_Node (Exp))); 19541 while Present (Alt) loop 19542 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then 19543 return False; 19544 end if; 19545 19546 Next (Alt); 19547 end loop; 19548 19549 return True; 19550 end; 19551 19552 -- For an if expression, all dependent expressions must be legal 19553 19554 when N_If_Expression => 19555 declare 19556 Then_Expr : constant Node_Id := 19557 Next (First (Expressions (Original_Node (Exp)))); 19558 Else_Expr : constant Node_Id := Next (Then_Expr); 19559 begin 19560 return OK_For_Limited_Init_In_05 (Typ, Then_Expr) 19561 and then 19562 OK_For_Limited_Init_In_05 (Typ, Else_Expr); 19563 end; 19564 19565 when others => 19566 return False; 19567 end case; 19568 end OK_For_Limited_Init_In_05; 19569 19570 ------------------------------------------- 19571 -- Ordinary_Fixed_Point_Type_Declaration -- 19572 ------------------------------------------- 19573 19574 procedure Ordinary_Fixed_Point_Type_Declaration 19575 (T : Entity_Id; 19576 Def : Node_Id) 19577 is 19578 Loc : constant Source_Ptr := Sloc (Def); 19579 Delta_Expr : constant Node_Id := Delta_Expression (Def); 19580 RRS : constant Node_Id := Real_Range_Specification (Def); 19581 Implicit_Base : Entity_Id; 19582 Delta_Val : Ureal; 19583 Small_Val : Ureal; 19584 Low_Val : Ureal; 19585 High_Val : Ureal; 19586 19587 begin 19588 Check_Restriction (No_Fixed_Point, Def); 19589 19590 -- Create implicit base type 19591 19592 Implicit_Base := 19593 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B'); 19594 Set_Etype (Implicit_Base, Implicit_Base); 19595 19596 -- Analyze and process delta expression 19597 19598 Analyze_And_Resolve (Delta_Expr, Any_Real); 19599 19600 Check_Delta_Expression (Delta_Expr); 19601 Delta_Val := Expr_Value_R (Delta_Expr); 19602 19603 Set_Delta_Value (Implicit_Base, Delta_Val); 19604 19605 -- Compute default small from given delta, which is the largest power 19606 -- of two that does not exceed the given delta value. 19607 19608 declare 19609 Tmp : Ureal; 19610 Scale : Int; 19611 19612 begin 19613 Tmp := Ureal_1; 19614 Scale := 0; 19615 19616 if Delta_Val < Ureal_1 then 19617 while Delta_Val < Tmp loop 19618 Tmp := Tmp / Ureal_2; 19619 Scale := Scale + 1; 19620 end loop; 19621 19622 else 19623 loop 19624 Tmp := Tmp * Ureal_2; 19625 exit when Tmp > Delta_Val; 19626 Scale := Scale - 1; 19627 end loop; 19628 end if; 19629 19630 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2); 19631 end; 19632 19633 Set_Small_Value (Implicit_Base, Small_Val); 19634 19635 -- If no range was given, set a dummy range 19636 19637 if RRS <= Empty_Or_Error then 19638 Low_Val := -Small_Val; 19639 High_Val := Small_Val; 19640 19641 -- Otherwise analyze and process given range 19642 19643 else 19644 declare 19645 Low : constant Node_Id := Low_Bound (RRS); 19646 High : constant Node_Id := High_Bound (RRS); 19647 19648 begin 19649 Analyze_And_Resolve (Low, Any_Real); 19650 Analyze_And_Resolve (High, Any_Real); 19651 Check_Real_Bound (Low); 19652 Check_Real_Bound (High); 19653 19654 -- Obtain and set the range 19655 19656 Low_Val := Expr_Value_R (Low); 19657 High_Val := Expr_Value_R (High); 19658 19659 if Low_Val > High_Val then 19660 Error_Msg_NE ("??fixed point type& has null range", Def, T); 19661 end if; 19662 end; 19663 end if; 19664 19665 -- The range for both the implicit base and the declared first subtype 19666 -- cannot be set yet, so we use the special routine Set_Fixed_Range to 19667 -- set a temporary range in place. Note that the bounds of the base 19668 -- type will be widened to be symmetrical and to fill the available 19669 -- bits when the type is frozen. 19670 19671 -- We could do this with all discrete types, and probably should, but 19672 -- we absolutely have to do it for fixed-point, since the end-points 19673 -- of the range and the size are determined by the small value, which 19674 -- could be reset before the freeze point. 19675 19676 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val); 19677 Set_Fixed_Range (T, Loc, Low_Val, High_Val); 19678 19679 -- Complete definition of first subtype. The inheritance of the rep item 19680 -- chain ensures that SPARK-related pragmas are not clobbered when the 19681 -- ordinary fixed point type acts as a full view of a private type. 19682 19683 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype); 19684 Set_Etype (T, Implicit_Base); 19685 Init_Size_Align (T); 19686 Inherit_Rep_Item_Chain (T, Implicit_Base); 19687 Set_Small_Value (T, Small_Val); 19688 Set_Delta_Value (T, Delta_Val); 19689 Set_Is_Constrained (T); 19690 end Ordinary_Fixed_Point_Type_Declaration; 19691 19692 ---------------------------------- 19693 -- Preanalyze_Assert_Expression -- 19694 ---------------------------------- 19695 19696 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is 19697 begin 19698 In_Assertion_Expr := In_Assertion_Expr + 1; 19699 Preanalyze_Spec_Expression (N, T); 19700 In_Assertion_Expr := In_Assertion_Expr - 1; 19701 end Preanalyze_Assert_Expression; 19702 19703 ----------------------------------- 19704 -- Preanalyze_Default_Expression -- 19705 ----------------------------------- 19706 19707 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is 19708 Save_In_Default_Expr : constant Boolean := In_Default_Expr; 19709 begin 19710 In_Default_Expr := True; 19711 Preanalyze_Spec_Expression (N, T); 19712 In_Default_Expr := Save_In_Default_Expr; 19713 end Preanalyze_Default_Expression; 19714 19715 -------------------------------- 19716 -- Preanalyze_Spec_Expression -- 19717 -------------------------------- 19718 19719 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is 19720 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression; 19721 begin 19722 In_Spec_Expression := True; 19723 Preanalyze_And_Resolve (N, T); 19724 In_Spec_Expression := Save_In_Spec_Expression; 19725 end Preanalyze_Spec_Expression; 19726 19727 ---------------------------------------- 19728 -- Prepare_Private_Subtype_Completion -- 19729 ---------------------------------------- 19730 19731 procedure Prepare_Private_Subtype_Completion 19732 (Id : Entity_Id; 19733 Related_Nod : Node_Id) 19734 is 19735 Id_B : constant Entity_Id := Base_Type (Id); 19736 Full_B : Entity_Id := Full_View (Id_B); 19737 Full : Entity_Id; 19738 19739 begin 19740 if Present (Full_B) then 19741 19742 -- Get to the underlying full view if necessary 19743 19744 if Is_Private_Type (Full_B) 19745 and then Present (Underlying_Full_View (Full_B)) 19746 then 19747 Full_B := Underlying_Full_View (Full_B); 19748 end if; 19749 19750 -- The Base_Type is already completed, we can complete the subtype 19751 -- now. We have to create a new entity with the same name, Thus we 19752 -- can't use Create_Itype. 19753 19754 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id)); 19755 Set_Is_Itype (Full); 19756 Set_Associated_Node_For_Itype (Full, Related_Nod); 19757 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod); 19758 end if; 19759 19760 -- The parent subtype may be private, but the base might not, in some 19761 -- nested instances. In that case, the subtype does not need to be 19762 -- exchanged. It would still be nice to make private subtypes and their 19763 -- bases consistent at all times ??? 19764 19765 if Is_Private_Type (Id_B) then 19766 Append_Elmt (Id, Private_Dependents (Id_B)); 19767 end if; 19768 end Prepare_Private_Subtype_Completion; 19769 19770 --------------------------- 19771 -- Process_Discriminants -- 19772 --------------------------- 19773 19774 procedure Process_Discriminants 19775 (N : Node_Id; 19776 Prev : Entity_Id := Empty) 19777 is 19778 Elist : constant Elist_Id := New_Elmt_List; 19779 Id : Node_Id; 19780 Discr : Node_Id; 19781 Discr_Number : Uint; 19782 Discr_Type : Entity_Id; 19783 Default_Present : Boolean := False; 19784 Default_Not_Present : Boolean := False; 19785 19786 begin 19787 -- A composite type other than an array type can have discriminants. 19788 -- On entry, the current scope is the composite type. 19789 19790 -- The discriminants are initially entered into the scope of the type 19791 -- via Enter_Name with the default Ekind of E_Void to prevent premature 19792 -- use, as explained at the end of this procedure. 19793 19794 Discr := First (Discriminant_Specifications (N)); 19795 while Present (Discr) loop 19796 Enter_Name (Defining_Identifier (Discr)); 19797 19798 -- For navigation purposes we add a reference to the discriminant 19799 -- in the entity for the type. If the current declaration is a 19800 -- completion, place references on the partial view. Otherwise the 19801 -- type is the current scope. 19802 19803 if Present (Prev) then 19804 19805 -- The references go on the partial view, if present. If the 19806 -- partial view has discriminants, the references have been 19807 -- generated already. 19808 19809 if not Has_Discriminants (Prev) then 19810 Generate_Reference (Prev, Defining_Identifier (Discr), 'd'); 19811 end if; 19812 else 19813 Generate_Reference 19814 (Current_Scope, Defining_Identifier (Discr), 'd'); 19815 end if; 19816 19817 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then 19818 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr)); 19819 19820 -- Ada 2005 (AI-254) 19821 19822 if Present (Access_To_Subprogram_Definition 19823 (Discriminant_Type (Discr))) 19824 and then Protected_Present (Access_To_Subprogram_Definition 19825 (Discriminant_Type (Discr))) 19826 then 19827 Discr_Type := 19828 Replace_Anonymous_Access_To_Protected_Subprogram (Discr); 19829 end if; 19830 19831 else 19832 Find_Type (Discriminant_Type (Discr)); 19833 Discr_Type := Etype (Discriminant_Type (Discr)); 19834 19835 if Error_Posted (Discriminant_Type (Discr)) then 19836 Discr_Type := Any_Type; 19837 end if; 19838 end if; 19839 19840 -- Handling of discriminants that are access types 19841 19842 if Is_Access_Type (Discr_Type) then 19843 19844 -- Ada 2005 (AI-230): Access discriminant allowed in non- 19845 -- limited record types 19846 19847 if Ada_Version < Ada_2005 then 19848 Check_Access_Discriminant_Requires_Limited 19849 (Discr, Discriminant_Type (Discr)); 19850 end if; 19851 19852 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then 19853 Error_Msg_N 19854 ("(Ada 83) access discriminant not allowed", Discr); 19855 end if; 19856 19857 -- If not access type, must be a discrete type 19858 19859 elsif not Is_Discrete_Type (Discr_Type) then 19860 Error_Msg_N 19861 ("discriminants must have a discrete or access type", 19862 Discriminant_Type (Discr)); 19863 end if; 19864 19865 Set_Etype (Defining_Identifier (Discr), Discr_Type); 19866 19867 -- If a discriminant specification includes the assignment compound 19868 -- delimiter followed by an expression, the expression is the default 19869 -- expression of the discriminant; the default expression must be of 19870 -- the type of the discriminant. (RM 3.7.1) Since this expression is 19871 -- a default expression, we do the special preanalysis, since this 19872 -- expression does not freeze (see section "Handling of Default and 19873 -- Per-Object Expressions" in spec of package Sem). 19874 19875 if Present (Expression (Discr)) then 19876 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type); 19877 19878 -- Legaity checks 19879 19880 if Nkind (N) = N_Formal_Type_Declaration then 19881 Error_Msg_N 19882 ("discriminant defaults not allowed for formal type", 19883 Expression (Discr)); 19884 19885 -- Flag an error for a tagged type with defaulted discriminants, 19886 -- excluding limited tagged types when compiling for Ada 2012 19887 -- (see AI05-0214). 19888 19889 elsif Is_Tagged_Type (Current_Scope) 19890 and then (not Is_Limited_Type (Current_Scope) 19891 or else Ada_Version < Ada_2012) 19892 and then Comes_From_Source (N) 19893 then 19894 -- Note: see similar test in Check_Or_Process_Discriminants, to 19895 -- handle the (illegal) case of the completion of an untagged 19896 -- view with discriminants with defaults by a tagged full view. 19897 -- We skip the check if Discr does not come from source, to 19898 -- account for the case of an untagged derived type providing 19899 -- defaults for a renamed discriminant from a private untagged 19900 -- ancestor with a tagged full view (ACATS B460006). 19901 19902 if Ada_Version >= Ada_2012 then 19903 Error_Msg_N 19904 ("discriminants of nonlimited tagged type cannot have" 19905 & " defaults", 19906 Expression (Discr)); 19907 else 19908 Error_Msg_N 19909 ("discriminants of tagged type cannot have defaults", 19910 Expression (Discr)); 19911 end if; 19912 19913 else 19914 Default_Present := True; 19915 Append_Elmt (Expression (Discr), Elist); 19916 19917 -- Tag the defining identifiers for the discriminants with 19918 -- their corresponding default expressions from the tree. 19919 19920 Set_Discriminant_Default_Value 19921 (Defining_Identifier (Discr), Expression (Discr)); 19922 end if; 19923 19924 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag 19925 -- gets set unless we can be sure that no range check is required. 19926 19927 if (GNATprove_Mode or not Expander_Active) 19928 and then not 19929 Is_In_Range 19930 (Expression (Discr), Discr_Type, Assume_Valid => True) 19931 then 19932 Set_Do_Range_Check (Expression (Discr)); 19933 end if; 19934 19935 -- No default discriminant value given 19936 19937 else 19938 Default_Not_Present := True; 19939 end if; 19940 19941 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of 19942 -- Discr_Type but with the null-exclusion attribute 19943 19944 if Ada_Version >= Ada_2005 then 19945 19946 -- Ada 2005 (AI-231): Static checks 19947 19948 if Can_Never_Be_Null (Discr_Type) then 19949 Null_Exclusion_Static_Checks (Discr); 19950 19951 elsif Is_Access_Type (Discr_Type) 19952 and then Null_Exclusion_Present (Discr) 19953 19954 -- No need to check itypes because in their case this check 19955 -- was done at their point of creation 19956 19957 and then not Is_Itype (Discr_Type) 19958 then 19959 if Can_Never_Be_Null (Discr_Type) then 19960 Error_Msg_NE 19961 ("`NOT NULL` not allowed (& already excludes null)", 19962 Discr, 19963 Discr_Type); 19964 end if; 19965 19966 Set_Etype (Defining_Identifier (Discr), 19967 Create_Null_Excluding_Itype 19968 (T => Discr_Type, 19969 Related_Nod => Discr)); 19970 19971 -- Check for improper null exclusion if the type is otherwise 19972 -- legal for a discriminant. 19973 19974 elsif Null_Exclusion_Present (Discr) 19975 and then Is_Discrete_Type (Discr_Type) 19976 then 19977 Error_Msg_N 19978 ("null exclusion can only apply to an access type", Discr); 19979 end if; 19980 19981 -- Ada 2005 (AI-402): access discriminants of nonlimited types 19982 -- can't have defaults. Synchronized types, or types that are 19983 -- explicitly limited are fine, but special tests apply to derived 19984 -- types in generics: in a generic body we have to assume the 19985 -- worst, and therefore defaults are not allowed if the parent is 19986 -- a generic formal private type (see ACATS B370001). 19987 19988 if Is_Access_Type (Discr_Type) and then Default_Present then 19989 if Ekind (Discr_Type) /= E_Anonymous_Access_Type 19990 or else Is_Limited_Record (Current_Scope) 19991 or else Is_Concurrent_Type (Current_Scope) 19992 or else Is_Concurrent_Record_Type (Current_Scope) 19993 or else Ekind (Current_Scope) = E_Limited_Private_Type 19994 then 19995 if not Is_Derived_Type (Current_Scope) 19996 or else not Is_Generic_Type (Etype (Current_Scope)) 19997 or else not In_Package_Body (Scope (Etype (Current_Scope))) 19998 or else Limited_Present 19999 (Type_Definition (Parent (Current_Scope))) 20000 then 20001 null; 20002 20003 else 20004 Error_Msg_N 20005 ("access discriminants of nonlimited types cannot " 20006 & "have defaults", Expression (Discr)); 20007 end if; 20008 20009 elsif Present (Expression (Discr)) then 20010 Error_Msg_N 20011 ("(Ada 2005) access discriminants of nonlimited types " 20012 & "cannot have defaults", Expression (Discr)); 20013 end if; 20014 end if; 20015 end if; 20016 20017 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)). 20018 -- This check is relevant only when SPARK_Mode is on as it is not a 20019 -- standard Ada legality rule. 20020 20021 if SPARK_Mode = On 20022 and then Is_Effectively_Volatile (Defining_Identifier (Discr)) 20023 then 20024 Error_Msg_N ("discriminant cannot be volatile", Discr); 20025 end if; 20026 20027 Next (Discr); 20028 end loop; 20029 20030 -- An element list consisting of the default expressions of the 20031 -- discriminants is constructed in the above loop and used to set 20032 -- the Discriminant_Constraint attribute for the type. If an object 20033 -- is declared of this (record or task) type without any explicit 20034 -- discriminant constraint given, this element list will form the 20035 -- actual parameters for the corresponding initialization procedure 20036 -- for the type. 20037 20038 Set_Discriminant_Constraint (Current_Scope, Elist); 20039 Set_Stored_Constraint (Current_Scope, No_Elist); 20040 20041 -- Default expressions must be provided either for all or for none 20042 -- of the discriminants of a discriminant part. (RM 3.7.1) 20043 20044 if Default_Present and then Default_Not_Present then 20045 Error_Msg_N 20046 ("incomplete specification of defaults for discriminants", N); 20047 end if; 20048 20049 -- The use of the name of a discriminant is not allowed in default 20050 -- expressions of a discriminant part if the specification of the 20051 -- discriminant is itself given in the discriminant part. (RM 3.7.1) 20052 20053 -- To detect this, the discriminant names are entered initially with an 20054 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any 20055 -- attempt to use a void entity (for example in an expression that is 20056 -- type-checked) produces the error message: premature usage. Now after 20057 -- completing the semantic analysis of the discriminant part, we can set 20058 -- the Ekind of all the discriminants appropriately. 20059 20060 Discr := First (Discriminant_Specifications (N)); 20061 Discr_Number := Uint_1; 20062 while Present (Discr) loop 20063 Id := Defining_Identifier (Discr); 20064 Set_Ekind (Id, E_Discriminant); 20065 Init_Component_Location (Id); 20066 Init_Esize (Id); 20067 Set_Discriminant_Number (Id, Discr_Number); 20068 20069 -- Make sure this is always set, even in illegal programs 20070 20071 Set_Corresponding_Discriminant (Id, Empty); 20072 20073 -- Initialize the Original_Record_Component to the entity itself. 20074 -- Inherit_Components will propagate the right value to 20075 -- discriminants in derived record types. 20076 20077 Set_Original_Record_Component (Id, Id); 20078 20079 -- Create the discriminal for the discriminant 20080 20081 Build_Discriminal (Id); 20082 20083 Next (Discr); 20084 Discr_Number := Discr_Number + 1; 20085 end loop; 20086 20087 Set_Has_Discriminants (Current_Scope); 20088 end Process_Discriminants; 20089 20090 ----------------------- 20091 -- Process_Full_View -- 20092 ----------------------- 20093 20094 -- WARNING: This routine manages Ghost regions. Return statements must be 20095 -- replaced by gotos which jump to the end of the routine and restore the 20096 -- Ghost mode. 20097 20098 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is 20099 procedure Collect_Implemented_Interfaces 20100 (Typ : Entity_Id; 20101 Ifaces : Elist_Id); 20102 -- Ada 2005: Gather all the interfaces that Typ directly or 20103 -- inherently implements. Duplicate entries are not added to 20104 -- the list Ifaces. 20105 20106 ------------------------------------ 20107 -- Collect_Implemented_Interfaces -- 20108 ------------------------------------ 20109 20110 procedure Collect_Implemented_Interfaces 20111 (Typ : Entity_Id; 20112 Ifaces : Elist_Id) 20113 is 20114 Iface : Entity_Id; 20115 Iface_Elmt : Elmt_Id; 20116 20117 begin 20118 -- Abstract interfaces are only associated with tagged record types 20119 20120 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then 20121 return; 20122 end if; 20123 20124 -- Recursively climb to the ancestors 20125 20126 if Etype (Typ) /= Typ 20127 20128 -- Protect the frontend against wrong cyclic declarations like: 20129 20130 -- type B is new A with private; 20131 -- type C is new A with private; 20132 -- private 20133 -- type B is new C with null record; 20134 -- type C is new B with null record; 20135 20136 and then Etype (Typ) /= Priv_T 20137 and then Etype (Typ) /= Full_T 20138 then 20139 -- Keep separate the management of private type declarations 20140 20141 if Ekind (Typ) = E_Record_Type_With_Private then 20142 20143 -- Handle the following illegal usage: 20144 -- type Private_Type is tagged private; 20145 -- private 20146 -- type Private_Type is new Type_Implementing_Iface; 20147 20148 if Present (Full_View (Typ)) 20149 and then Etype (Typ) /= Full_View (Typ) 20150 then 20151 if Is_Interface (Etype (Typ)) then 20152 Append_Unique_Elmt (Etype (Typ), Ifaces); 20153 end if; 20154 20155 Collect_Implemented_Interfaces (Etype (Typ), Ifaces); 20156 end if; 20157 20158 -- Non-private types 20159 20160 else 20161 if Is_Interface (Etype (Typ)) then 20162 Append_Unique_Elmt (Etype (Typ), Ifaces); 20163 end if; 20164 20165 Collect_Implemented_Interfaces (Etype (Typ), Ifaces); 20166 end if; 20167 end if; 20168 20169 -- Handle entities in the list of abstract interfaces 20170 20171 if Present (Interfaces (Typ)) then 20172 Iface_Elmt := First_Elmt (Interfaces (Typ)); 20173 while Present (Iface_Elmt) loop 20174 Iface := Node (Iface_Elmt); 20175 20176 pragma Assert (Is_Interface (Iface)); 20177 20178 if not Contain_Interface (Iface, Ifaces) then 20179 Append_Elmt (Iface, Ifaces); 20180 Collect_Implemented_Interfaces (Iface, Ifaces); 20181 end if; 20182 20183 Next_Elmt (Iface_Elmt); 20184 end loop; 20185 end if; 20186 end Collect_Implemented_Interfaces; 20187 20188 -- Local variables 20189 20190 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode; 20191 20192 Full_Indic : Node_Id; 20193 Full_Parent : Entity_Id; 20194 Priv_Parent : Entity_Id; 20195 20196 -- Start of processing for Process_Full_View 20197 20198 begin 20199 Mark_And_Set_Ghost_Completion (N, Priv_T); 20200 20201 -- First some sanity checks that must be done after semantic 20202 -- decoration of the full view and thus cannot be placed with other 20203 -- similar checks in Find_Type_Name 20204 20205 if not Is_Limited_Type (Priv_T) 20206 and then (Is_Limited_Type (Full_T) 20207 or else Is_Limited_Composite (Full_T)) 20208 then 20209 if In_Instance then 20210 null; 20211 else 20212 Error_Msg_N 20213 ("completion of nonlimited type cannot be limited", Full_T); 20214 Explain_Limited_Type (Full_T, Full_T); 20215 end if; 20216 20217 elsif Is_Abstract_Type (Full_T) 20218 and then not Is_Abstract_Type (Priv_T) 20219 then 20220 Error_Msg_N 20221 ("completion of nonabstract type cannot be abstract", Full_T); 20222 20223 elsif Is_Tagged_Type (Priv_T) 20224 and then Is_Limited_Type (Priv_T) 20225 and then not Is_Limited_Type (Full_T) 20226 then 20227 -- If pragma CPP_Class was applied to the private declaration 20228 -- propagate the limitedness to the full-view 20229 20230 if Is_CPP_Class (Priv_T) then 20231 Set_Is_Limited_Record (Full_T); 20232 20233 -- GNAT allow its own definition of Limited_Controlled to disobey 20234 -- this rule in order in ease the implementation. This test is safe 20235 -- because Root_Controlled is defined in a child of System that 20236 -- normal programs are not supposed to use. 20237 20238 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then 20239 Set_Is_Limited_Composite (Full_T); 20240 else 20241 Error_Msg_N 20242 ("completion of limited tagged type must be limited", Full_T); 20243 end if; 20244 20245 elsif Is_Generic_Type (Priv_T) then 20246 Error_Msg_N ("generic type cannot have a completion", Full_T); 20247 end if; 20248 20249 -- Check that ancestor interfaces of private and full views are 20250 -- consistent. We omit this check for synchronized types because 20251 -- they are performed on the corresponding record type when frozen. 20252 20253 if Ada_Version >= Ada_2005 20254 and then Is_Tagged_Type (Priv_T) 20255 and then Is_Tagged_Type (Full_T) 20256 and then not Is_Concurrent_Type (Full_T) 20257 then 20258 declare 20259 Iface : Entity_Id; 20260 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List; 20261 Full_T_Ifaces : constant Elist_Id := New_Elmt_List; 20262 20263 begin 20264 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces); 20265 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces); 20266 20267 -- Ada 2005 (AI-251): The partial view shall be a descendant of 20268 -- an interface type if and only if the full type is descendant 20269 -- of the interface type (AARM 7.3 (7.3/2)). 20270 20271 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces); 20272 20273 if Present (Iface) then 20274 Error_Msg_NE 20275 ("interface in partial view& not implemented by full type " 20276 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface); 20277 end if; 20278 20279 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces); 20280 20281 if Present (Iface) then 20282 Error_Msg_NE 20283 ("interface & not implemented by partial view " 20284 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface); 20285 end if; 20286 end; 20287 end if; 20288 20289 if Is_Tagged_Type (Priv_T) 20290 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration 20291 and then Is_Derived_Type (Full_T) 20292 then 20293 Priv_Parent := Etype (Priv_T); 20294 20295 -- The full view of a private extension may have been transformed 20296 -- into an unconstrained derived type declaration and a subtype 20297 -- declaration (see build_derived_record_type for details). 20298 20299 if Nkind (N) = N_Subtype_Declaration then 20300 Full_Indic := Subtype_Indication (N); 20301 Full_Parent := Etype (Base_Type (Full_T)); 20302 else 20303 Full_Indic := Subtype_Indication (Type_Definition (N)); 20304 Full_Parent := Etype (Full_T); 20305 end if; 20306 20307 -- Check that the parent type of the full type is a descendant of 20308 -- the ancestor subtype given in the private extension. If either 20309 -- entity has an Etype equal to Any_Type then we had some previous 20310 -- error situation [7.3(8)]. 20311 20312 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then 20313 goto Leave; 20314 20315 -- Ada 2005 (AI-251): Interfaces in the full type can be given in 20316 -- any order. Therefore we don't have to check that its parent must 20317 -- be a descendant of the parent of the private type declaration. 20318 20319 elsif Is_Interface (Priv_Parent) 20320 and then Is_Interface (Full_Parent) 20321 then 20322 null; 20323 20324 -- Ada 2005 (AI-251): If the parent of the private type declaration 20325 -- is an interface there is no need to check that it is an ancestor 20326 -- of the associated full type declaration. The required tests for 20327 -- this case are performed by Build_Derived_Record_Type. 20328 20329 elsif not Is_Interface (Base_Type (Priv_Parent)) 20330 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent) 20331 then 20332 Error_Msg_N 20333 ("parent of full type must descend from parent of private " 20334 & "extension", Full_Indic); 20335 20336 -- First check a formal restriction, and then proceed with checking 20337 -- Ada rules. Since the formal restriction is not a serious error, we 20338 -- don't prevent further error detection for this check, hence the 20339 -- ELSE. 20340 20341 else 20342 -- In formal mode, when completing a private extension the type 20343 -- named in the private part must be exactly the same as that 20344 -- named in the visible part. 20345 20346 if Priv_Parent /= Full_Parent then 20347 Error_Msg_Name_1 := Chars (Priv_Parent); 20348 Check_SPARK_05_Restriction ("% expected", Full_Indic); 20349 end if; 20350 20351 -- Check the rules of 7.3(10): if the private extension inherits 20352 -- known discriminants, then the full type must also inherit those 20353 -- discriminants from the same (ancestor) type, and the parent 20354 -- subtype of the full type must be constrained if and only if 20355 -- the ancestor subtype of the private extension is constrained. 20356 20357 if No (Discriminant_Specifications (Parent (Priv_T))) 20358 and then not Has_Unknown_Discriminants (Priv_T) 20359 and then Has_Discriminants (Base_Type (Priv_Parent)) 20360 then 20361 declare 20362 Priv_Indic : constant Node_Id := 20363 Subtype_Indication (Parent (Priv_T)); 20364 20365 Priv_Constr : constant Boolean := 20366 Is_Constrained (Priv_Parent) 20367 or else 20368 Nkind (Priv_Indic) = N_Subtype_Indication 20369 or else 20370 Is_Constrained (Entity (Priv_Indic)); 20371 20372 Full_Constr : constant Boolean := 20373 Is_Constrained (Full_Parent) 20374 or else 20375 Nkind (Full_Indic) = N_Subtype_Indication 20376 or else 20377 Is_Constrained (Entity (Full_Indic)); 20378 20379 Priv_Discr : Entity_Id; 20380 Full_Discr : Entity_Id; 20381 20382 begin 20383 Priv_Discr := First_Discriminant (Priv_Parent); 20384 Full_Discr := First_Discriminant (Full_Parent); 20385 while Present (Priv_Discr) and then Present (Full_Discr) loop 20386 if Original_Record_Component (Priv_Discr) = 20387 Original_Record_Component (Full_Discr) 20388 or else 20389 Corresponding_Discriminant (Priv_Discr) = 20390 Corresponding_Discriminant (Full_Discr) 20391 then 20392 null; 20393 else 20394 exit; 20395 end if; 20396 20397 Next_Discriminant (Priv_Discr); 20398 Next_Discriminant (Full_Discr); 20399 end loop; 20400 20401 if Present (Priv_Discr) or else Present (Full_Discr) then 20402 Error_Msg_N 20403 ("full view must inherit discriminants of the parent " 20404 & "type used in the private extension", Full_Indic); 20405 20406 elsif Priv_Constr and then not Full_Constr then 20407 Error_Msg_N 20408 ("parent subtype of full type must be constrained", 20409 Full_Indic); 20410 20411 elsif Full_Constr and then not Priv_Constr then 20412 Error_Msg_N 20413 ("parent subtype of full type must be unconstrained", 20414 Full_Indic); 20415 end if; 20416 end; 20417 20418 -- Check the rules of 7.3(12): if a partial view has neither 20419 -- known or unknown discriminants, then the full type 20420 -- declaration shall define a definite subtype. 20421 20422 elsif not Has_Unknown_Discriminants (Priv_T) 20423 and then not Has_Discriminants (Priv_T) 20424 and then not Is_Constrained (Full_T) 20425 then 20426 Error_Msg_N 20427 ("full view must define a constrained type if partial view " 20428 & "has no discriminants", Full_T); 20429 end if; 20430 20431 -- ??????? Do we implement the following properly ????? 20432 -- If the ancestor subtype of a private extension has constrained 20433 -- discriminants, then the parent subtype of the full view shall 20434 -- impose a statically matching constraint on those discriminants 20435 -- [7.3(13)]. 20436 end if; 20437 20438 else 20439 -- For untagged types, verify that a type without discriminants is 20440 -- not completed with an unconstrained type. A separate error message 20441 -- is produced if the full type has defaulted discriminants. 20442 20443 if Is_Definite_Subtype (Priv_T) 20444 and then not Is_Definite_Subtype (Full_T) 20445 then 20446 Error_Msg_Sloc := Sloc (Parent (Priv_T)); 20447 Error_Msg_NE 20448 ("full view of& not compatible with declaration#", 20449 Full_T, Priv_T); 20450 20451 if not Is_Tagged_Type (Full_T) then 20452 Error_Msg_N 20453 ("\one is constrained, the other unconstrained", Full_T); 20454 end if; 20455 end if; 20456 end if; 20457 20458 -- AI-419: verify that the use of "limited" is consistent 20459 20460 declare 20461 Orig_Decl : constant Node_Id := Original_Node (N); 20462 20463 begin 20464 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration 20465 and then Nkind (Orig_Decl) = N_Full_Type_Declaration 20466 and then Nkind 20467 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition 20468 then 20469 if not Limited_Present (Parent (Priv_T)) 20470 and then not Synchronized_Present (Parent (Priv_T)) 20471 and then Limited_Present (Type_Definition (Orig_Decl)) 20472 then 20473 Error_Msg_N 20474 ("full view of non-limited extension cannot be limited", N); 20475 20476 -- Conversely, if the partial view carries the limited keyword, 20477 -- the full view must as well, even if it may be redundant. 20478 20479 elsif Limited_Present (Parent (Priv_T)) 20480 and then not Limited_Present (Type_Definition (Orig_Decl)) 20481 then 20482 Error_Msg_N 20483 ("full view of limited extension must be explicitly limited", 20484 N); 20485 end if; 20486 end if; 20487 end; 20488 20489 -- Ada 2005 (AI-443): A synchronized private extension must be 20490 -- completed by a task or protected type. 20491 20492 if Ada_Version >= Ada_2005 20493 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration 20494 and then Synchronized_Present (Parent (Priv_T)) 20495 and then not Is_Concurrent_Type (Full_T) 20496 then 20497 Error_Msg_N ("full view of synchronized extension must " & 20498 "be synchronized type", N); 20499 end if; 20500 20501 -- Ada 2005 AI-363: if the full view has discriminants with 20502 -- defaults, it is illegal to declare constrained access subtypes 20503 -- whose designated type is the current type. This allows objects 20504 -- of the type that are declared in the heap to be unconstrained. 20505 20506 if not Has_Unknown_Discriminants (Priv_T) 20507 and then not Has_Discriminants (Priv_T) 20508 and then Has_Discriminants (Full_T) 20509 and then 20510 Present (Discriminant_Default_Value (First_Discriminant (Full_T))) 20511 then 20512 Set_Has_Constrained_Partial_View (Full_T); 20513 Set_Has_Constrained_Partial_View (Priv_T); 20514 end if; 20515 20516 -- Create a full declaration for all its subtypes recorded in 20517 -- Private_Dependents and swap them similarly to the base type. These 20518 -- are subtypes that have been define before the full declaration of 20519 -- the private type. We also swap the entry in Private_Dependents list 20520 -- so we can properly restore the private view on exit from the scope. 20521 20522 declare 20523 Priv_Elmt : Elmt_Id; 20524 Priv_Scop : Entity_Id; 20525 Priv : Entity_Id; 20526 Full : Entity_Id; 20527 20528 begin 20529 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T)); 20530 while Present (Priv_Elmt) loop 20531 Priv := Node (Priv_Elmt); 20532 Priv_Scop := Scope (Priv); 20533 20534 if Ekind_In (Priv, E_Private_Subtype, 20535 E_Limited_Private_Subtype, 20536 E_Record_Subtype_With_Private) 20537 then 20538 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv)); 20539 Set_Is_Itype (Full); 20540 Set_Parent (Full, Parent (Priv)); 20541 Set_Associated_Node_For_Itype (Full, N); 20542 20543 -- Now we need to complete the private subtype, but since the 20544 -- base type has already been swapped, we must also swap the 20545 -- subtypes (and thus, reverse the arguments in the call to 20546 -- Complete_Private_Subtype). Also note that we may need to 20547 -- re-establish the scope of the private subtype. 20548 20549 Copy_And_Swap (Priv, Full); 20550 20551 if not In_Open_Scopes (Priv_Scop) then 20552 Push_Scope (Priv_Scop); 20553 20554 else 20555 -- Reset Priv_Scop to Empty to indicate no scope was pushed 20556 20557 Priv_Scop := Empty; 20558 end if; 20559 20560 Complete_Private_Subtype (Full, Priv, Full_T, N); 20561 20562 if Present (Priv_Scop) then 20563 Pop_Scope; 20564 end if; 20565 20566 Replace_Elmt (Priv_Elmt, Full); 20567 end if; 20568 20569 Next_Elmt (Priv_Elmt); 20570 end loop; 20571 end; 20572 20573 -- If the private view was tagged, copy the new primitive operations 20574 -- from the private view to the full view. 20575 20576 if Is_Tagged_Type (Full_T) then 20577 declare 20578 Disp_Typ : Entity_Id; 20579 Full_List : Elist_Id; 20580 Prim : Entity_Id; 20581 Prim_Elmt : Elmt_Id; 20582 Priv_List : Elist_Id; 20583 20584 function Contains 20585 (E : Entity_Id; 20586 L : Elist_Id) return Boolean; 20587 -- Determine whether list L contains element E 20588 20589 -------------- 20590 -- Contains -- 20591 -------------- 20592 20593 function Contains 20594 (E : Entity_Id; 20595 L : Elist_Id) return Boolean 20596 is 20597 List_Elmt : Elmt_Id; 20598 20599 begin 20600 List_Elmt := First_Elmt (L); 20601 while Present (List_Elmt) loop 20602 if Node (List_Elmt) = E then 20603 return True; 20604 end if; 20605 20606 Next_Elmt (List_Elmt); 20607 end loop; 20608 20609 return False; 20610 end Contains; 20611 20612 -- Start of processing 20613 20614 begin 20615 if Is_Tagged_Type (Priv_T) then 20616 Priv_List := Primitive_Operations (Priv_T); 20617 Prim_Elmt := First_Elmt (Priv_List); 20618 20619 -- In the case of a concurrent type completing a private tagged 20620 -- type, primitives may have been declared in between the two 20621 -- views. These subprograms need to be wrapped the same way 20622 -- entries and protected procedures are handled because they 20623 -- cannot be directly shared by the two views. 20624 20625 if Is_Concurrent_Type (Full_T) then 20626 declare 20627 Conc_Typ : constant Entity_Id := 20628 Corresponding_Record_Type (Full_T); 20629 Curr_Nod : Node_Id := Parent (Conc_Typ); 20630 Wrap_Spec : Node_Id; 20631 20632 begin 20633 while Present (Prim_Elmt) loop 20634 Prim := Node (Prim_Elmt); 20635 20636 if Comes_From_Source (Prim) 20637 and then not Is_Abstract_Subprogram (Prim) 20638 then 20639 Wrap_Spec := 20640 Make_Subprogram_Declaration (Sloc (Prim), 20641 Specification => 20642 Build_Wrapper_Spec 20643 (Subp_Id => Prim, 20644 Obj_Typ => Conc_Typ, 20645 Formals => 20646 Parameter_Specifications 20647 (Parent (Prim)))); 20648 20649 Insert_After (Curr_Nod, Wrap_Spec); 20650 Curr_Nod := Wrap_Spec; 20651 20652 Analyze (Wrap_Spec); 20653 20654 -- Remove the wrapper from visibility to avoid 20655 -- spurious conflict with the wrapped entity. 20656 20657 Set_Is_Immediately_Visible 20658 (Defining_Entity (Specification (Wrap_Spec)), 20659 False); 20660 end if; 20661 20662 Next_Elmt (Prim_Elmt); 20663 end loop; 20664 20665 goto Leave; 20666 end; 20667 20668 -- For non-concurrent types, transfer explicit primitives, but 20669 -- omit those inherited from the parent of the private view 20670 -- since they will be re-inherited later on. 20671 20672 else 20673 Full_List := Primitive_Operations (Full_T); 20674 20675 while Present (Prim_Elmt) loop 20676 Prim := Node (Prim_Elmt); 20677 20678 if Comes_From_Source (Prim) 20679 and then not Contains (Prim, Full_List) 20680 then 20681 Append_Elmt (Prim, Full_List); 20682 end if; 20683 20684 Next_Elmt (Prim_Elmt); 20685 end loop; 20686 end if; 20687 20688 -- Untagged private view 20689 20690 else 20691 Full_List := Primitive_Operations (Full_T); 20692 20693 -- In this case the partial view is untagged, so here we locate 20694 -- all of the earlier primitives that need to be treated as 20695 -- dispatching (those that appear between the two views). Note 20696 -- that these additional operations must all be new operations 20697 -- (any earlier operations that override inherited operations 20698 -- of the full view will already have been inserted in the 20699 -- primitives list, marked by Check_Operation_From_Private_View 20700 -- as dispatching. Note that implicit "/=" operators are 20701 -- excluded from being added to the primitives list since they 20702 -- shouldn't be treated as dispatching (tagged "/=" is handled 20703 -- specially). 20704 20705 Prim := Next_Entity (Full_T); 20706 while Present (Prim) and then Prim /= Priv_T loop 20707 if Ekind_In (Prim, E_Procedure, E_Function) then 20708 Disp_Typ := Find_Dispatching_Type (Prim); 20709 20710 if Disp_Typ = Full_T 20711 and then (Chars (Prim) /= Name_Op_Ne 20712 or else Comes_From_Source (Prim)) 20713 then 20714 Check_Controlling_Formals (Full_T, Prim); 20715 20716 if not Is_Dispatching_Operation (Prim) then 20717 Append_Elmt (Prim, Full_List); 20718 Set_Is_Dispatching_Operation (Prim, True); 20719 Set_DT_Position_Value (Prim, No_Uint); 20720 end if; 20721 20722 elsif Is_Dispatching_Operation (Prim) 20723 and then Disp_Typ /= Full_T 20724 then 20725 20726 -- Verify that it is not otherwise controlled by a 20727 -- formal or a return value of type T. 20728 20729 Check_Controlling_Formals (Disp_Typ, Prim); 20730 end if; 20731 end if; 20732 20733 Next_Entity (Prim); 20734 end loop; 20735 end if; 20736 20737 -- For the tagged case, the two views can share the same primitive 20738 -- operations list and the same class-wide type. Update attributes 20739 -- of the class-wide type which depend on the full declaration. 20740 20741 if Is_Tagged_Type (Priv_T) then 20742 Set_Direct_Primitive_Operations (Priv_T, Full_List); 20743 Set_Class_Wide_Type 20744 (Base_Type (Full_T), Class_Wide_Type (Priv_T)); 20745 20746 Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T); 20747 end if; 20748 end; 20749 end if; 20750 20751 -- Ada 2005 AI 161: Check preelaborable initialization consistency 20752 20753 if Known_To_Have_Preelab_Init (Priv_T) then 20754 20755 -- Case where there is a pragma Preelaborable_Initialization. We 20756 -- always allow this in predefined units, which is cheating a bit, 20757 -- but it means we don't have to struggle to meet the requirements in 20758 -- the RM for having Preelaborable Initialization. Otherwise we 20759 -- require that the type meets the RM rules. But we can't check that 20760 -- yet, because of the rule about overriding Initialize, so we simply 20761 -- set a flag that will be checked at freeze time. 20762 20763 if not In_Predefined_Unit (Full_T) then 20764 Set_Must_Have_Preelab_Init (Full_T); 20765 end if; 20766 end if; 20767 20768 -- If pragma CPP_Class was applied to the private type declaration, 20769 -- propagate it now to the full type declaration. 20770 20771 if Is_CPP_Class (Priv_T) then 20772 Set_Is_CPP_Class (Full_T); 20773 Set_Convention (Full_T, Convention_CPP); 20774 20775 -- Check that components of imported CPP types do not have default 20776 -- expressions. 20777 20778 Check_CPP_Type_Has_No_Defaults (Full_T); 20779 end if; 20780 20781 -- If the private view has user specified stream attributes, then so has 20782 -- the full view. 20783 20784 -- Why the test, how could these flags be already set in Full_T ??? 20785 20786 if Has_Specified_Stream_Read (Priv_T) then 20787 Set_Has_Specified_Stream_Read (Full_T); 20788 end if; 20789 20790 if Has_Specified_Stream_Write (Priv_T) then 20791 Set_Has_Specified_Stream_Write (Full_T); 20792 end if; 20793 20794 if Has_Specified_Stream_Input (Priv_T) then 20795 Set_Has_Specified_Stream_Input (Full_T); 20796 end if; 20797 20798 if Has_Specified_Stream_Output (Priv_T) then 20799 Set_Has_Specified_Stream_Output (Full_T); 20800 end if; 20801 20802 -- Propagate Default_Initial_Condition-related attributes from the 20803 -- partial view to the full view and its base type. 20804 20805 Propagate_DIC_Attributes (Full_T, From_Typ => Priv_T); 20806 Propagate_DIC_Attributes (Base_Type (Full_T), From_Typ => Priv_T); 20807 20808 -- Propagate invariant-related attributes from the partial view to the 20809 -- full view and its base type. 20810 20811 Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T); 20812 Propagate_Invariant_Attributes (Base_Type (Full_T), From_Typ => Priv_T); 20813 20814 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant 20815 -- in the full view without advertising the inheritance in the partial 20816 -- view. This can only occur when the partial view has no parent type 20817 -- and the full view has an interface as a parent. Any other scenarios 20818 -- are illegal because implemented interfaces must match between the 20819 -- two views. 20820 20821 if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then 20822 declare 20823 Full_Par : constant Entity_Id := Etype (Full_T); 20824 Priv_Par : constant Entity_Id := Etype (Priv_T); 20825 20826 begin 20827 if not Is_Interface (Priv_Par) 20828 and then Is_Interface (Full_Par) 20829 and then Has_Inheritable_Invariants (Full_Par) 20830 then 20831 Error_Msg_N 20832 ("hidden inheritance of class-wide type invariants not " 20833 & "allowed", N); 20834 end if; 20835 end; 20836 end if; 20837 20838 -- Propagate predicates to full type, and predicate function if already 20839 -- defined. It is not clear that this can actually happen? the partial 20840 -- view cannot be frozen yet, and the predicate function has not been 20841 -- built. Still it is a cheap check and seems safer to make it. 20842 20843 if Has_Predicates (Priv_T) then 20844 Set_Has_Predicates (Full_T); 20845 20846 if Present (Predicate_Function (Priv_T)) then 20847 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T)); 20848 end if; 20849 end if; 20850 20851 <<Leave>> 20852 Restore_Ghost_Mode (Saved_GM); 20853 end Process_Full_View; 20854 20855 ----------------------------------- 20856 -- Process_Incomplete_Dependents -- 20857 ----------------------------------- 20858 20859 procedure Process_Incomplete_Dependents 20860 (N : Node_Id; 20861 Full_T : Entity_Id; 20862 Inc_T : Entity_Id) 20863 is 20864 Inc_Elmt : Elmt_Id; 20865 Priv_Dep : Entity_Id; 20866 New_Subt : Entity_Id; 20867 20868 Disc_Constraint : Elist_Id; 20869 20870 begin 20871 if No (Private_Dependents (Inc_T)) then 20872 return; 20873 end if; 20874 20875 -- Itypes that may be generated by the completion of an incomplete 20876 -- subtype are not used by the back-end and not attached to the tree. 20877 -- They are created only for constraint-checking purposes. 20878 20879 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T)); 20880 while Present (Inc_Elmt) loop 20881 Priv_Dep := Node (Inc_Elmt); 20882 20883 if Ekind (Priv_Dep) = E_Subprogram_Type then 20884 20885 -- An Access_To_Subprogram type may have a return type or a 20886 -- parameter type that is incomplete. Replace with the full view. 20887 20888 if Etype (Priv_Dep) = Inc_T then 20889 Set_Etype (Priv_Dep, Full_T); 20890 end if; 20891 20892 declare 20893 Formal : Entity_Id; 20894 20895 begin 20896 Formal := First_Formal (Priv_Dep); 20897 while Present (Formal) loop 20898 if Etype (Formal) = Inc_T then 20899 Set_Etype (Formal, Full_T); 20900 end if; 20901 20902 Next_Formal (Formal); 20903 end loop; 20904 end; 20905 20906 elsif Is_Overloadable (Priv_Dep) then 20907 20908 -- If a subprogram in the incomplete dependents list is primitive 20909 -- for a tagged full type then mark it as a dispatching operation, 20910 -- check whether it overrides an inherited subprogram, and check 20911 -- restrictions on its controlling formals. Note that a protected 20912 -- operation is never dispatching: only its wrapper operation 20913 -- (which has convention Ada) is. 20914 20915 if Is_Tagged_Type (Full_T) 20916 and then Is_Primitive (Priv_Dep) 20917 and then Convention (Priv_Dep) /= Convention_Protected 20918 then 20919 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T); 20920 Set_Is_Dispatching_Operation (Priv_Dep); 20921 Check_Controlling_Formals (Full_T, Priv_Dep); 20922 end if; 20923 20924 elsif Ekind (Priv_Dep) = E_Subprogram_Body then 20925 20926 -- Can happen during processing of a body before the completion 20927 -- of a TA type. Ignore, because spec is also on dependent list. 20928 20929 return; 20930 20931 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a 20932 -- corresponding subtype of the full view. 20933 20934 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype 20935 and then Comes_From_Source (Priv_Dep) 20936 then 20937 Set_Subtype_Indication 20938 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep))); 20939 Set_Etype (Priv_Dep, Full_T); 20940 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T))); 20941 Set_Analyzed (Parent (Priv_Dep), False); 20942 20943 -- Reanalyze the declaration, suppressing the call to Enter_Name 20944 -- to avoid duplicate names. 20945 20946 Analyze_Subtype_Declaration 20947 (N => Parent (Priv_Dep), 20948 Skip => True); 20949 20950 -- Dependent is a subtype 20951 20952 else 20953 -- We build a new subtype indication using the full view of the 20954 -- incomplete parent. The discriminant constraints have been 20955 -- elaborated already at the point of the subtype declaration. 20956 20957 New_Subt := Create_Itype (E_Void, N); 20958 20959 if Has_Discriminants (Full_T) then 20960 Disc_Constraint := Discriminant_Constraint (Priv_Dep); 20961 else 20962 Disc_Constraint := No_Elist; 20963 end if; 20964 20965 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N); 20966 Set_Full_View (Priv_Dep, New_Subt); 20967 end if; 20968 20969 Next_Elmt (Inc_Elmt); 20970 end loop; 20971 end Process_Incomplete_Dependents; 20972 20973 -------------------------------- 20974 -- Process_Range_Expr_In_Decl -- 20975 -------------------------------- 20976 20977 procedure Process_Range_Expr_In_Decl 20978 (R : Node_Id; 20979 T : Entity_Id; 20980 Subtyp : Entity_Id := Empty; 20981 Check_List : List_Id := Empty_List; 20982 R_Check_Off : Boolean := False; 20983 In_Iter_Schm : Boolean := False) 20984 is 20985 Lo, Hi : Node_Id; 20986 R_Checks : Check_Result; 20987 Insert_Node : Node_Id; 20988 Def_Id : Entity_Id; 20989 20990 begin 20991 Analyze_And_Resolve (R, Base_Type (T)); 20992 20993 if Nkind (R) = N_Range then 20994 20995 -- In SPARK, all ranges should be static, with the exception of the 20996 -- discrete type definition of a loop parameter specification. 20997 20998 if not In_Iter_Schm 20999 and then not Is_OK_Static_Range (R) 21000 then 21001 Check_SPARK_05_Restriction ("range should be static", R); 21002 end if; 21003 21004 Lo := Low_Bound (R); 21005 Hi := High_Bound (R); 21006 21007 -- Validity checks on the range of a quantified expression are 21008 -- delayed until the construct is transformed into a loop. 21009 21010 if Nkind (Parent (R)) = N_Loop_Parameter_Specification 21011 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression 21012 then 21013 null; 21014 21015 -- We need to ensure validity of the bounds here, because if we 21016 -- go ahead and do the expansion, then the expanded code will get 21017 -- analyzed with range checks suppressed and we miss the check. 21018 21019 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and 21020 -- the temporaries generated by routine Remove_Side_Effects by means 21021 -- of validity checks must use the same names. When a range appears 21022 -- in the parent of a generic, the range is processed with checks 21023 -- disabled as part of the generic context and with checks enabled 21024 -- for code generation purposes. This leads to link issues as the 21025 -- generic contains references to xxx_FIRST/_LAST, but the inlined 21026 -- template sees the temporaries generated by Remove_Side_Effects. 21027 21028 else 21029 Validity_Check_Range (R, Subtyp); 21030 end if; 21031 21032 -- If there were errors in the declaration, try and patch up some 21033 -- common mistakes in the bounds. The cases handled are literals 21034 -- which are Integer where the expected type is Real and vice versa. 21035 -- These corrections allow the compilation process to proceed further 21036 -- along since some basic assumptions of the format of the bounds 21037 -- are guaranteed. 21038 21039 if Etype (R) = Any_Type then 21040 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then 21041 Rewrite (Lo, 21042 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo)))); 21043 21044 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then 21045 Rewrite (Hi, 21046 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi)))); 21047 21048 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then 21049 Rewrite (Lo, 21050 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo)))); 21051 21052 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then 21053 Rewrite (Hi, 21054 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi)))); 21055 end if; 21056 21057 Set_Etype (Lo, T); 21058 Set_Etype (Hi, T); 21059 end if; 21060 21061 -- If the bounds of the range have been mistakenly given as string 21062 -- literals (perhaps in place of character literals), then an error 21063 -- has already been reported, but we rewrite the string literal as a 21064 -- bound of the range's type to avoid blowups in later processing 21065 -- that looks at static values. 21066 21067 if Nkind (Lo) = N_String_Literal then 21068 Rewrite (Lo, 21069 Make_Attribute_Reference (Sloc (Lo), 21070 Prefix => New_Occurrence_Of (T, Sloc (Lo)), 21071 Attribute_Name => Name_First)); 21072 Analyze_And_Resolve (Lo); 21073 end if; 21074 21075 if Nkind (Hi) = N_String_Literal then 21076 Rewrite (Hi, 21077 Make_Attribute_Reference (Sloc (Hi), 21078 Prefix => New_Occurrence_Of (T, Sloc (Hi)), 21079 Attribute_Name => Name_First)); 21080 Analyze_And_Resolve (Hi); 21081 end if; 21082 21083 -- If bounds aren't scalar at this point then exit, avoiding 21084 -- problems with further processing of the range in this procedure. 21085 21086 if not Is_Scalar_Type (Etype (Lo)) then 21087 return; 21088 end if; 21089 21090 -- Resolve (actually Sem_Eval) has checked that the bounds are in 21091 -- then range of the base type. Here we check whether the bounds 21092 -- are in the range of the subtype itself. Note that if the bounds 21093 -- represent the null range the Constraint_Error exception should 21094 -- not be raised. 21095 21096 -- ??? The following code should be cleaned up as follows 21097 21098 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it 21099 -- is done in the call to Range_Check (R, T); below 21100 21101 -- 2. The use of R_Check_Off should be investigated and possibly 21102 -- removed, this would clean up things a bit. 21103 21104 if Is_Null_Range (Lo, Hi) then 21105 null; 21106 21107 else 21108 -- Capture values of bounds and generate temporaries for them 21109 -- if needed, before applying checks, since checks may cause 21110 -- duplication of the expression without forcing evaluation. 21111 21112 -- The forced evaluation removes side effects from expressions, 21113 -- which should occur also in GNATprove mode. Otherwise, we end up 21114 -- with unexpected insertions of actions at places where this is 21115 -- not supposed to occur, e.g. on default parameters of a call. 21116 21117 if Expander_Active or GNATprove_Mode then 21118 21119 -- Call Force_Evaluation to create declarations as needed to 21120 -- deal with side effects, and also create typ_FIRST/LAST 21121 -- entities for bounds if we have a subtype name. 21122 21123 -- Note: we do this transformation even if expansion is not 21124 -- active if we are in GNATprove_Mode since the transformation 21125 -- is in general required to ensure that the resulting tree has 21126 -- proper Ada semantics. 21127 21128 Force_Evaluation 21129 (Lo, Related_Id => Subtyp, Is_Low_Bound => True); 21130 Force_Evaluation 21131 (Hi, Related_Id => Subtyp, Is_High_Bound => True); 21132 end if; 21133 21134 -- We use a flag here instead of suppressing checks on the type 21135 -- because the type we check against isn't necessarily the place 21136 -- where we put the check. 21137 21138 if not R_Check_Off then 21139 R_Checks := Get_Range_Checks (R, T); 21140 21141 -- Look up tree to find an appropriate insertion point. We 21142 -- can't just use insert_actions because later processing 21143 -- depends on the insertion node. Prior to Ada 2012 the 21144 -- insertion point could only be a declaration or a loop, but 21145 -- quantified expressions can appear within any context in an 21146 -- expression, and the insertion point can be any statement, 21147 -- pragma, or declaration. 21148 21149 Insert_Node := Parent (R); 21150 while Present (Insert_Node) loop 21151 exit when 21152 Nkind (Insert_Node) in N_Declaration 21153 and then 21154 not Nkind_In 21155 (Insert_Node, N_Component_Declaration, 21156 N_Loop_Parameter_Specification, 21157 N_Function_Specification, 21158 N_Procedure_Specification); 21159 21160 exit when Nkind (Insert_Node) in N_Later_Decl_Item 21161 or else Nkind (Insert_Node) in 21162 N_Statement_Other_Than_Procedure_Call 21163 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement, 21164 N_Pragma); 21165 21166 Insert_Node := Parent (Insert_Node); 21167 end loop; 21168 21169 -- Why would Type_Decl not be present??? Without this test, 21170 -- short regression tests fail. 21171 21172 if Present (Insert_Node) then 21173 21174 -- Case of loop statement. Verify that the range is part 21175 -- of the subtype indication of the iteration scheme. 21176 21177 if Nkind (Insert_Node) = N_Loop_Statement then 21178 declare 21179 Indic : Node_Id; 21180 21181 begin 21182 Indic := Parent (R); 21183 while Present (Indic) 21184 and then Nkind (Indic) /= N_Subtype_Indication 21185 loop 21186 Indic := Parent (Indic); 21187 end loop; 21188 21189 if Present (Indic) then 21190 Def_Id := Etype (Subtype_Mark (Indic)); 21191 21192 Insert_Range_Checks 21193 (R_Checks, 21194 Insert_Node, 21195 Def_Id, 21196 Sloc (Insert_Node), 21197 R, 21198 Do_Before => True); 21199 end if; 21200 end; 21201 21202 -- Insertion before a declaration. If the declaration 21203 -- includes discriminants, the list of applicable checks 21204 -- is given by the caller. 21205 21206 elsif Nkind (Insert_Node) in N_Declaration then 21207 Def_Id := Defining_Identifier (Insert_Node); 21208 21209 if (Ekind (Def_Id) = E_Record_Type 21210 and then Depends_On_Discriminant (R)) 21211 or else 21212 (Ekind (Def_Id) = E_Protected_Type 21213 and then Has_Discriminants (Def_Id)) 21214 then 21215 Append_Range_Checks 21216 (R_Checks, 21217 Check_List, Def_Id, Sloc (Insert_Node), R); 21218 21219 else 21220 Insert_Range_Checks 21221 (R_Checks, 21222 Insert_Node, Def_Id, Sloc (Insert_Node), R); 21223 21224 end if; 21225 21226 -- Insertion before a statement. Range appears in the 21227 -- context of a quantified expression. Insertion will 21228 -- take place when expression is expanded. 21229 21230 else 21231 null; 21232 end if; 21233 end if; 21234 end if; 21235 end if; 21236 21237 -- Case of other than an explicit N_Range node 21238 21239 -- The forced evaluation removes side effects from expressions, which 21240 -- should occur also in GNATprove mode. Otherwise, we end up with 21241 -- unexpected insertions of actions at places where this is not 21242 -- supposed to occur, e.g. on default parameters of a call. 21243 21244 elsif Expander_Active or GNATprove_Mode then 21245 Get_Index_Bounds (R, Lo, Hi); 21246 Force_Evaluation (Lo); 21247 Force_Evaluation (Hi); 21248 end if; 21249 end Process_Range_Expr_In_Decl; 21250 21251 -------------------------------------- 21252 -- Process_Real_Range_Specification -- 21253 -------------------------------------- 21254 21255 procedure Process_Real_Range_Specification (Def : Node_Id) is 21256 Spec : constant Node_Id := Real_Range_Specification (Def); 21257 Lo : Node_Id; 21258 Hi : Node_Id; 21259 Err : Boolean := False; 21260 21261 procedure Analyze_Bound (N : Node_Id); 21262 -- Analyze and check one bound 21263 21264 ------------------- 21265 -- Analyze_Bound -- 21266 ------------------- 21267 21268 procedure Analyze_Bound (N : Node_Id) is 21269 begin 21270 Analyze_And_Resolve (N, Any_Real); 21271 21272 if not Is_OK_Static_Expression (N) then 21273 Flag_Non_Static_Expr 21274 ("bound in real type definition is not static!", N); 21275 Err := True; 21276 end if; 21277 end Analyze_Bound; 21278 21279 -- Start of processing for Process_Real_Range_Specification 21280 21281 begin 21282 if Present (Spec) then 21283 Lo := Low_Bound (Spec); 21284 Hi := High_Bound (Spec); 21285 Analyze_Bound (Lo); 21286 Analyze_Bound (Hi); 21287 21288 -- If error, clear away junk range specification 21289 21290 if Err then 21291 Set_Real_Range_Specification (Def, Empty); 21292 end if; 21293 end if; 21294 end Process_Real_Range_Specification; 21295 21296 --------------------- 21297 -- Process_Subtype -- 21298 --------------------- 21299 21300 function Process_Subtype 21301 (S : Node_Id; 21302 Related_Nod : Node_Id; 21303 Related_Id : Entity_Id := Empty; 21304 Suffix : Character := ' ') return Entity_Id 21305 is 21306 P : Node_Id; 21307 Def_Id : Entity_Id; 21308 Error_Node : Node_Id; 21309 Full_View_Id : Entity_Id; 21310 Subtype_Mark_Id : Entity_Id; 21311 21312 May_Have_Null_Exclusion : Boolean; 21313 21314 procedure Check_Incomplete (T : Node_Id); 21315 -- Called to verify that an incomplete type is not used prematurely 21316 21317 ---------------------- 21318 -- Check_Incomplete -- 21319 ---------------------- 21320 21321 procedure Check_Incomplete (T : Node_Id) is 21322 begin 21323 -- Ada 2005 (AI-412): Incomplete subtypes are legal 21324 21325 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type 21326 and then 21327 not (Ada_Version >= Ada_2005 21328 and then 21329 (Nkind (Parent (T)) = N_Subtype_Declaration 21330 or else (Nkind (Parent (T)) = N_Subtype_Indication 21331 and then Nkind (Parent (Parent (T))) = 21332 N_Subtype_Declaration))) 21333 then 21334 Error_Msg_N ("invalid use of type before its full declaration", T); 21335 end if; 21336 end Check_Incomplete; 21337 21338 -- Start of processing for Process_Subtype 21339 21340 begin 21341 -- Case of no constraints present 21342 21343 if Nkind (S) /= N_Subtype_Indication then 21344 Find_Type (S); 21345 21346 -- No way to proceed if the subtype indication is malformed. This 21347 -- will happen for example when the subtype indication in an object 21348 -- declaration is missing altogether and the expression is analyzed 21349 -- as if it were that indication. 21350 21351 if not Is_Entity_Name (S) then 21352 return Any_Type; 21353 end if; 21354 21355 Check_Incomplete (S); 21356 P := Parent (S); 21357 21358 -- Ada 2005 (AI-231): Static check 21359 21360 if Ada_Version >= Ada_2005 21361 and then Present (P) 21362 and then Null_Exclusion_Present (P) 21363 and then Nkind (P) /= N_Access_To_Object_Definition 21364 and then not Is_Access_Type (Entity (S)) 21365 then 21366 Error_Msg_N ("`NOT NULL` only allowed for an access type", S); 21367 end if; 21368 21369 -- The following is ugly, can't we have a range or even a flag??? 21370 21371 May_Have_Null_Exclusion := 21372 Nkind_In (P, N_Access_Definition, 21373 N_Access_Function_Definition, 21374 N_Access_Procedure_Definition, 21375 N_Access_To_Object_Definition, 21376 N_Allocator, 21377 N_Component_Definition) 21378 or else 21379 Nkind_In (P, N_Derived_Type_Definition, 21380 N_Discriminant_Specification, 21381 N_Formal_Object_Declaration, 21382 N_Object_Declaration, 21383 N_Object_Renaming_Declaration, 21384 N_Parameter_Specification, 21385 N_Subtype_Declaration); 21386 21387 -- Create an Itype that is a duplicate of Entity (S) but with the 21388 -- null-exclusion attribute. 21389 21390 if May_Have_Null_Exclusion 21391 and then Is_Access_Type (Entity (S)) 21392 and then Null_Exclusion_Present (P) 21393 21394 -- No need to check the case of an access to object definition. 21395 -- It is correct to define double not-null pointers. 21396 21397 -- Example: 21398 -- type Not_Null_Int_Ptr is not null access Integer; 21399 -- type Acc is not null access Not_Null_Int_Ptr; 21400 21401 and then Nkind (P) /= N_Access_To_Object_Definition 21402 then 21403 if Can_Never_Be_Null (Entity (S)) then 21404 case Nkind (Related_Nod) is 21405 when N_Full_Type_Declaration => 21406 if Nkind (Type_Definition (Related_Nod)) 21407 in N_Array_Type_Definition 21408 then 21409 Error_Node := 21410 Subtype_Indication 21411 (Component_Definition 21412 (Type_Definition (Related_Nod))); 21413 else 21414 Error_Node := 21415 Subtype_Indication (Type_Definition (Related_Nod)); 21416 end if; 21417 21418 when N_Subtype_Declaration => 21419 Error_Node := Subtype_Indication (Related_Nod); 21420 21421 when N_Object_Declaration => 21422 Error_Node := Object_Definition (Related_Nod); 21423 21424 when N_Component_Declaration => 21425 Error_Node := 21426 Subtype_Indication (Component_Definition (Related_Nod)); 21427 21428 when N_Allocator => 21429 Error_Node := Expression (Related_Nod); 21430 21431 when others => 21432 pragma Assert (False); 21433 Error_Node := Related_Nod; 21434 end case; 21435 21436 Error_Msg_NE 21437 ("`NOT NULL` not allowed (& already excludes null)", 21438 Error_Node, 21439 Entity (S)); 21440 end if; 21441 21442 Set_Etype (S, 21443 Create_Null_Excluding_Itype 21444 (T => Entity (S), 21445 Related_Nod => P)); 21446 Set_Entity (S, Etype (S)); 21447 end if; 21448 21449 return Entity (S); 21450 21451 -- Case of constraint present, so that we have an N_Subtype_Indication 21452 -- node (this node is created only if constraints are present). 21453 21454 else 21455 Find_Type (Subtype_Mark (S)); 21456 21457 if Nkind (Parent (S)) /= N_Access_To_Object_Definition 21458 and then not 21459 (Nkind (Parent (S)) = N_Subtype_Declaration 21460 and then Is_Itype (Defining_Identifier (Parent (S)))) 21461 then 21462 Check_Incomplete (Subtype_Mark (S)); 21463 end if; 21464 21465 P := Parent (S); 21466 Subtype_Mark_Id := Entity (Subtype_Mark (S)); 21467 21468 -- Explicit subtype declaration case 21469 21470 if Nkind (P) = N_Subtype_Declaration then 21471 Def_Id := Defining_Identifier (P); 21472 21473 -- Explicit derived type definition case 21474 21475 elsif Nkind (P) = N_Derived_Type_Definition then 21476 Def_Id := Defining_Identifier (Parent (P)); 21477 21478 -- Implicit case, the Def_Id must be created as an implicit type. 21479 -- The one exception arises in the case of concurrent types, array 21480 -- and access types, where other subsidiary implicit types may be 21481 -- created and must appear before the main implicit type. In these 21482 -- cases we leave Def_Id set to Empty as a signal that Create_Itype 21483 -- has not yet been called to create Def_Id. 21484 21485 else 21486 if Is_Array_Type (Subtype_Mark_Id) 21487 or else Is_Concurrent_Type (Subtype_Mark_Id) 21488 or else Is_Access_Type (Subtype_Mark_Id) 21489 then 21490 Def_Id := Empty; 21491 21492 -- For the other cases, we create a new unattached Itype, 21493 -- and set the indication to ensure it gets attached later. 21494 21495 else 21496 Def_Id := 21497 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix); 21498 end if; 21499 end if; 21500 21501 -- If the kind of constraint is invalid for this kind of type, 21502 -- then give an error, and then pretend no constraint was given. 21503 21504 if not Is_Valid_Constraint_Kind 21505 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S))) 21506 then 21507 Error_Msg_N 21508 ("incorrect constraint for this kind of type", Constraint (S)); 21509 21510 Rewrite (S, New_Copy_Tree (Subtype_Mark (S))); 21511 21512 -- Set Ekind of orphan itype, to prevent cascaded errors 21513 21514 if Present (Def_Id) then 21515 Set_Ekind (Def_Id, Ekind (Any_Type)); 21516 end if; 21517 21518 -- Make recursive call, having got rid of the bogus constraint 21519 21520 return Process_Subtype (S, Related_Nod, Related_Id, Suffix); 21521 end if; 21522 21523 -- Remaining processing depends on type. Select on Base_Type kind to 21524 -- ensure getting to the concrete type kind in the case of a private 21525 -- subtype (needed when only doing semantic analysis). 21526 21527 case Ekind (Base_Type (Subtype_Mark_Id)) is 21528 when Access_Kind => 21529 21530 -- If this is a constraint on a class-wide type, discard it. 21531 -- There is currently no way to express a partial discriminant 21532 -- constraint on a type with unknown discriminants. This is 21533 -- a pathology that the ACATS wisely decides not to test. 21534 21535 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then 21536 if Comes_From_Source (S) then 21537 Error_Msg_N 21538 ("constraint on class-wide type ignored??", 21539 Constraint (S)); 21540 end if; 21541 21542 if Nkind (P) = N_Subtype_Declaration then 21543 Set_Subtype_Indication (P, 21544 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S))); 21545 end if; 21546 21547 return Subtype_Mark_Id; 21548 end if; 21549 21550 Constrain_Access (Def_Id, S, Related_Nod); 21551 21552 if Expander_Active 21553 and then Is_Itype (Designated_Type (Def_Id)) 21554 and then Nkind (Related_Nod) = N_Subtype_Declaration 21555 and then not Is_Incomplete_Type (Designated_Type (Def_Id)) 21556 then 21557 Build_Itype_Reference 21558 (Designated_Type (Def_Id), Related_Nod); 21559 end if; 21560 21561 when Array_Kind => 21562 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix); 21563 21564 when Decimal_Fixed_Point_Kind => 21565 Constrain_Decimal (Def_Id, S); 21566 21567 when Enumeration_Kind => 21568 Constrain_Enumeration (Def_Id, S); 21569 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id); 21570 21571 when Ordinary_Fixed_Point_Kind => 21572 Constrain_Ordinary_Fixed (Def_Id, S); 21573 21574 when Float_Kind => 21575 Constrain_Float (Def_Id, S); 21576 21577 when Integer_Kind => 21578 Constrain_Integer (Def_Id, S); 21579 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id); 21580 21581 when Class_Wide_Kind 21582 | E_Incomplete_Type 21583 | E_Record_Subtype 21584 | E_Record_Type 21585 => 21586 Constrain_Discriminated_Type (Def_Id, S, Related_Nod); 21587 21588 if Ekind (Def_Id) = E_Incomplete_Type then 21589 Set_Private_Dependents (Def_Id, New_Elmt_List); 21590 end if; 21591 21592 when Private_Kind => 21593 Constrain_Discriminated_Type (Def_Id, S, Related_Nod); 21594 21595 -- The base type may be private but Def_Id may be a full view 21596 -- in an instance. 21597 21598 if Is_Private_Type (Def_Id) then 21599 Set_Private_Dependents (Def_Id, New_Elmt_List); 21600 end if; 21601 21602 -- In case of an invalid constraint prevent further processing 21603 -- since the type constructed is missing expected fields. 21604 21605 if Etype (Def_Id) = Any_Type then 21606 return Def_Id; 21607 end if; 21608 21609 -- If the full view is that of a task with discriminants, 21610 -- we must constrain both the concurrent type and its 21611 -- corresponding record type. Otherwise we will just propagate 21612 -- the constraint to the full view, if available. 21613 21614 if Present (Full_View (Subtype_Mark_Id)) 21615 and then Has_Discriminants (Subtype_Mark_Id) 21616 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id)) 21617 then 21618 Full_View_Id := 21619 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix); 21620 21621 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id)); 21622 Constrain_Concurrent (Full_View_Id, S, 21623 Related_Nod, Related_Id, Suffix); 21624 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id); 21625 Set_Full_View (Def_Id, Full_View_Id); 21626 21627 -- Introduce an explicit reference to the private subtype, 21628 -- to prevent scope anomalies in gigi if first use appears 21629 -- in a nested context, e.g. a later function body. 21630 -- Should this be generated in other contexts than a full 21631 -- type declaration? 21632 21633 if Is_Itype (Def_Id) 21634 and then 21635 Nkind (Parent (P)) = N_Full_Type_Declaration 21636 then 21637 Build_Itype_Reference (Def_Id, Parent (P)); 21638 end if; 21639 21640 else 21641 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod); 21642 end if; 21643 21644 when Concurrent_Kind => 21645 Constrain_Concurrent (Def_Id, S, 21646 Related_Nod, Related_Id, Suffix); 21647 21648 when others => 21649 Error_Msg_N ("invalid subtype mark in subtype indication", S); 21650 end case; 21651 21652 -- Size, Alignment, Representation aspects and Convention are always 21653 -- inherited from the base type. 21654 21655 Set_Size_Info (Def_Id, (Subtype_Mark_Id)); 21656 Set_Rep_Info (Def_Id, (Subtype_Mark_Id)); 21657 Set_Convention (Def_Id, Convention (Subtype_Mark_Id)); 21658 21659 return Def_Id; 21660 end if; 21661 end Process_Subtype; 21662 21663 ----------------------------- 21664 -- Record_Type_Declaration -- 21665 ----------------------------- 21666 21667 procedure Record_Type_Declaration 21668 (T : Entity_Id; 21669 N : Node_Id; 21670 Prev : Entity_Id) 21671 is 21672 Def : constant Node_Id := Type_Definition (N); 21673 Is_Tagged : Boolean; 21674 Tag_Comp : Entity_Id; 21675 21676 begin 21677 -- These flags must be initialized before calling Process_Discriminants 21678 -- because this routine makes use of them. 21679 21680 Set_Ekind (T, E_Record_Type); 21681 Set_Etype (T, T); 21682 Init_Size_Align (T); 21683 Set_Interfaces (T, No_Elist); 21684 Set_Stored_Constraint (T, No_Elist); 21685 Set_Default_SSO (T); 21686 Set_No_Reordering (T, No_Component_Reordering); 21687 21688 -- Normal case 21689 21690 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then 21691 if Limited_Present (Def) then 21692 Check_SPARK_05_Restriction ("limited is not allowed", N); 21693 end if; 21694 21695 if Abstract_Present (Def) then 21696 Check_SPARK_05_Restriction ("abstract is not allowed", N); 21697 end if; 21698 21699 -- The flag Is_Tagged_Type might have already been set by 21700 -- Find_Type_Name if it detected an error for declaration T. This 21701 -- arises in the case of private tagged types where the full view 21702 -- omits the word tagged. 21703 21704 Is_Tagged := 21705 Tagged_Present (Def) 21706 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T)); 21707 21708 Set_Is_Limited_Record (T, Limited_Present (Def)); 21709 21710 if Is_Tagged then 21711 Set_Is_Tagged_Type (T, True); 21712 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams); 21713 end if; 21714 21715 -- Type is abstract if full declaration carries keyword, or if 21716 -- previous partial view did. 21717 21718 Set_Is_Abstract_Type (T, Is_Abstract_Type (T) 21719 or else Abstract_Present (Def)); 21720 21721 else 21722 Check_SPARK_05_Restriction ("interface is not allowed", N); 21723 21724 Is_Tagged := True; 21725 Analyze_Interface_Declaration (T, Def); 21726 21727 if Present (Discriminant_Specifications (N)) then 21728 Error_Msg_N 21729 ("interface types cannot have discriminants", 21730 Defining_Identifier 21731 (First (Discriminant_Specifications (N)))); 21732 end if; 21733 end if; 21734 21735 -- First pass: if there are self-referential access components, 21736 -- create the required anonymous access type declarations, and if 21737 -- need be an incomplete type declaration for T itself. 21738 21739 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def)); 21740 21741 if Ada_Version >= Ada_2005 21742 and then Present (Interface_List (Def)) 21743 then 21744 Check_Interfaces (N, Def); 21745 21746 declare 21747 Ifaces_List : Elist_Id; 21748 21749 begin 21750 -- Ada 2005 (AI-251): Collect the list of progenitors that are not 21751 -- already in the parents. 21752 21753 Collect_Interfaces 21754 (T => T, 21755 Ifaces_List => Ifaces_List, 21756 Exclude_Parents => True); 21757 21758 Set_Interfaces (T, Ifaces_List); 21759 end; 21760 end if; 21761 21762 -- Records constitute a scope for the component declarations within. 21763 -- The scope is created prior to the processing of these declarations. 21764 -- Discriminants are processed first, so that they are visible when 21765 -- processing the other components. The Ekind of the record type itself 21766 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype). 21767 21768 -- Enter record scope 21769 21770 Push_Scope (T); 21771 21772 -- If an incomplete or private type declaration was already given for 21773 -- the type, then this scope already exists, and the discriminants have 21774 -- been declared within. We must verify that the full declaration 21775 -- matches the incomplete one. 21776 21777 Check_Or_Process_Discriminants (N, T, Prev); 21778 21779 Set_Is_Constrained (T, not Has_Discriminants (T)); 21780 Set_Has_Delayed_Freeze (T, True); 21781 21782 -- For tagged types add a manually analyzed component corresponding 21783 -- to the component _tag, the corresponding piece of tree will be 21784 -- expanded as part of the freezing actions if it is not a CPP_Class. 21785 21786 if Is_Tagged then 21787 21788 -- Do not add the tag unless we are in expansion mode 21789 21790 if Expander_Active then 21791 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag); 21792 Enter_Name (Tag_Comp); 21793 21794 Set_Ekind (Tag_Comp, E_Component); 21795 Set_Is_Tag (Tag_Comp); 21796 Set_Is_Aliased (Tag_Comp); 21797 Set_Etype (Tag_Comp, RTE (RE_Tag)); 21798 Set_DT_Entry_Count (Tag_Comp, No_Uint); 21799 Set_Original_Record_Component (Tag_Comp, Tag_Comp); 21800 Init_Component_Location (Tag_Comp); 21801 21802 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the 21803 -- implemented interfaces. 21804 21805 if Has_Interfaces (T) then 21806 Add_Interface_Tag_Components (N, T); 21807 end if; 21808 end if; 21809 21810 Make_Class_Wide_Type (T); 21811 Set_Direct_Primitive_Operations (T, New_Elmt_List); 21812 end if; 21813 21814 -- We must suppress range checks when processing record components in 21815 -- the presence of discriminants, since we don't want spurious checks to 21816 -- be generated during their analysis, but Suppress_Range_Checks flags 21817 -- must be reset the after processing the record definition. 21818 21819 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd, 21820 -- couldn't we just use the normal range check suppression method here. 21821 -- That would seem cleaner ??? 21822 21823 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then 21824 Set_Kill_Range_Checks (T, True); 21825 Record_Type_Definition (Def, Prev); 21826 Set_Kill_Range_Checks (T, False); 21827 else 21828 Record_Type_Definition (Def, Prev); 21829 end if; 21830 21831 -- Exit from record scope 21832 21833 End_Scope; 21834 21835 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all 21836 -- the implemented interfaces and associate them an aliased entity. 21837 21838 if Is_Tagged 21839 and then not Is_Empty_List (Interface_List (Def)) 21840 then 21841 Derive_Progenitor_Subprograms (T, T); 21842 end if; 21843 21844 Check_Function_Writable_Actuals (N); 21845 end Record_Type_Declaration; 21846 21847 ---------------------------- 21848 -- Record_Type_Definition -- 21849 ---------------------------- 21850 21851 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is 21852 Component : Entity_Id; 21853 Ctrl_Components : Boolean := False; 21854 Final_Storage_Only : Boolean; 21855 T : Entity_Id; 21856 21857 begin 21858 if Ekind (Prev_T) = E_Incomplete_Type then 21859 T := Full_View (Prev_T); 21860 else 21861 T := Prev_T; 21862 end if; 21863 21864 -- In SPARK, tagged types and type extensions may only be declared in 21865 -- the specification of library unit packages. 21866 21867 if Present (Def) and then Is_Tagged_Type (T) then 21868 declare 21869 Typ : Node_Id; 21870 Ctxt : Node_Id; 21871 21872 begin 21873 if Nkind (Parent (Def)) = N_Full_Type_Declaration then 21874 Typ := Parent (Def); 21875 else 21876 pragma Assert 21877 (Nkind (Parent (Def)) = N_Derived_Type_Definition); 21878 Typ := Parent (Parent (Def)); 21879 end if; 21880 21881 Ctxt := Parent (Typ); 21882 21883 if Nkind (Ctxt) = N_Package_Body 21884 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit 21885 then 21886 Check_SPARK_05_Restriction 21887 ("type should be defined in package specification", Typ); 21888 21889 elsif Nkind (Ctxt) /= N_Package_Specification 21890 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit 21891 then 21892 Check_SPARK_05_Restriction 21893 ("type should be defined in library unit package", Typ); 21894 end if; 21895 end; 21896 end if; 21897 21898 Final_Storage_Only := not Is_Controlled (T); 21899 21900 -- Ada 2005: Check whether an explicit Limited is present in a derived 21901 -- type declaration. 21902 21903 if Nkind (Parent (Def)) = N_Derived_Type_Definition 21904 and then Limited_Present (Parent (Def)) 21905 then 21906 Set_Is_Limited_Record (T); 21907 end if; 21908 21909 -- If the component list of a record type is defined by the reserved 21910 -- word null and there is no discriminant part, then the record type has 21911 -- no components and all records of the type are null records (RM 3.7) 21912 -- This procedure is also called to process the extension part of a 21913 -- record extension, in which case the current scope may have inherited 21914 -- components. 21915 21916 if No (Def) 21917 or else No (Component_List (Def)) 21918 or else Null_Present (Component_List (Def)) 21919 then 21920 if not Is_Tagged_Type (T) then 21921 Check_SPARK_05_Restriction ("untagged record cannot be null", Def); 21922 end if; 21923 21924 else 21925 Analyze_Declarations (Component_Items (Component_List (Def))); 21926 21927 if Present (Variant_Part (Component_List (Def))) then 21928 Check_SPARK_05_Restriction ("variant part is not allowed", Def); 21929 Analyze (Variant_Part (Component_List (Def))); 21930 end if; 21931 end if; 21932 21933 -- After completing the semantic analysis of the record definition, 21934 -- record components, both new and inherited, are accessible. Set their 21935 -- kind accordingly. Exclude malformed itypes from illegal declarations, 21936 -- whose Ekind may be void. 21937 21938 Component := First_Entity (Current_Scope); 21939 while Present (Component) loop 21940 if Ekind (Component) = E_Void 21941 and then not Is_Itype (Component) 21942 then 21943 Set_Ekind (Component, E_Component); 21944 Init_Component_Location (Component); 21945 end if; 21946 21947 Propagate_Concurrent_Flags (T, Etype (Component)); 21948 21949 if Ekind (Component) /= E_Component then 21950 null; 21951 21952 -- Do not set Has_Controlled_Component on a class-wide equivalent 21953 -- type. See Make_CW_Equivalent_Type. 21954 21955 elsif not Is_Class_Wide_Equivalent_Type (T) 21956 and then (Has_Controlled_Component (Etype (Component)) 21957 or else (Chars (Component) /= Name_uParent 21958 and then Is_Controlled (Etype (Component)))) 21959 then 21960 Set_Has_Controlled_Component (T, True); 21961 Final_Storage_Only := 21962 Final_Storage_Only 21963 and then Finalize_Storage_Only (Etype (Component)); 21964 Ctrl_Components := True; 21965 end if; 21966 21967 Next_Entity (Component); 21968 end loop; 21969 21970 -- A Type is Finalize_Storage_Only only if all its controlled components 21971 -- are also. 21972 21973 if Ctrl_Components then 21974 Set_Finalize_Storage_Only (T, Final_Storage_Only); 21975 end if; 21976 21977 -- Place reference to end record on the proper entity, which may 21978 -- be a partial view. 21979 21980 if Present (Def) then 21981 Process_End_Label (Def, 'e', Prev_T); 21982 end if; 21983 end Record_Type_Definition; 21984 21985 ------------------------ 21986 -- Replace_Components -- 21987 ------------------------ 21988 21989 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is 21990 function Process (N : Node_Id) return Traverse_Result; 21991 21992 ------------- 21993 -- Process -- 21994 ------------- 21995 21996 function Process (N : Node_Id) return Traverse_Result is 21997 Comp : Entity_Id; 21998 21999 begin 22000 if Nkind (N) = N_Discriminant_Specification then 22001 Comp := First_Discriminant (Typ); 22002 while Present (Comp) loop 22003 if Chars (Comp) = Chars (Defining_Identifier (N)) then 22004 Set_Defining_Identifier (N, Comp); 22005 exit; 22006 end if; 22007 22008 Next_Discriminant (Comp); 22009 end loop; 22010 22011 elsif Nkind (N) = N_Variant_Part then 22012 Comp := First_Discriminant (Typ); 22013 while Present (Comp) loop 22014 if Chars (Comp) = Chars (Name (N)) then 22015 Set_Entity (Name (N), Comp); 22016 exit; 22017 end if; 22018 22019 Next_Discriminant (Comp); 22020 end loop; 22021 22022 elsif Nkind (N) = N_Component_Declaration then 22023 Comp := First_Component (Typ); 22024 while Present (Comp) loop 22025 if Chars (Comp) = Chars (Defining_Identifier (N)) then 22026 Set_Defining_Identifier (N, Comp); 22027 exit; 22028 end if; 22029 22030 Next_Component (Comp); 22031 end loop; 22032 end if; 22033 22034 return OK; 22035 end Process; 22036 22037 procedure Replace is new Traverse_Proc (Process); 22038 22039 -- Start of processing for Replace_Components 22040 22041 begin 22042 Replace (Decl); 22043 end Replace_Components; 22044 22045 ------------------------------- 22046 -- Set_Completion_Referenced -- 22047 ------------------------------- 22048 22049 procedure Set_Completion_Referenced (E : Entity_Id) is 22050 begin 22051 -- If in main unit, mark entity that is a completion as referenced, 22052 -- warnings go on the partial view when needed. 22053 22054 if In_Extended_Main_Source_Unit (E) then 22055 Set_Referenced (E); 22056 end if; 22057 end Set_Completion_Referenced; 22058 22059 --------------------- 22060 -- Set_Default_SSO -- 22061 --------------------- 22062 22063 procedure Set_Default_SSO (T : Entity_Id) is 22064 begin 22065 case Opt.Default_SSO is 22066 when ' ' => 22067 null; 22068 when 'L' => 22069 Set_SSO_Set_Low_By_Default (T, True); 22070 when 'H' => 22071 Set_SSO_Set_High_By_Default (T, True); 22072 when others => 22073 raise Program_Error; 22074 end case; 22075 end Set_Default_SSO; 22076 22077 --------------------- 22078 -- Set_Fixed_Range -- 22079 --------------------- 22080 22081 -- The range for fixed-point types is complicated by the fact that we 22082 -- do not know the exact end points at the time of the declaration. This 22083 -- is true for three reasons: 22084 22085 -- A size clause may affect the fudging of the end-points. 22086 -- A small clause may affect the values of the end-points. 22087 -- We try to include the end-points if it does not affect the size. 22088 22089 -- This means that the actual end-points must be established at the 22090 -- point when the type is frozen. Meanwhile, we first narrow the range 22091 -- as permitted (so that it will fit if necessary in a small specified 22092 -- size), and then build a range subtree with these narrowed bounds. 22093 -- Set_Fixed_Range constructs the range from real literal values, and 22094 -- sets the range as the Scalar_Range of the given fixed-point type entity. 22095 22096 -- The parent of this range is set to point to the entity so that it is 22097 -- properly hooked into the tree (unlike normal Scalar_Range entries for 22098 -- other scalar types, which are just pointers to the range in the 22099 -- original tree, this would otherwise be an orphan). 22100 22101 -- The tree is left unanalyzed. When the type is frozen, the processing 22102 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not 22103 -- analyzed, and uses this as an indication that it should complete 22104 -- work on the range (it will know the final small and size values). 22105 22106 procedure Set_Fixed_Range 22107 (E : Entity_Id; 22108 Loc : Source_Ptr; 22109 Lo : Ureal; 22110 Hi : Ureal) 22111 is 22112 S : constant Node_Id := 22113 Make_Range (Loc, 22114 Low_Bound => Make_Real_Literal (Loc, Lo), 22115 High_Bound => Make_Real_Literal (Loc, Hi)); 22116 begin 22117 Set_Scalar_Range (E, S); 22118 Set_Parent (S, E); 22119 22120 -- Before the freeze point, the bounds of a fixed point are universal 22121 -- and carry the corresponding type. 22122 22123 Set_Etype (Low_Bound (S), Universal_Real); 22124 Set_Etype (High_Bound (S), Universal_Real); 22125 end Set_Fixed_Range; 22126 22127 ---------------------------------- 22128 -- Set_Scalar_Range_For_Subtype -- 22129 ---------------------------------- 22130 22131 procedure Set_Scalar_Range_For_Subtype 22132 (Def_Id : Entity_Id; 22133 R : Node_Id; 22134 Subt : Entity_Id) 22135 is 22136 Kind : constant Entity_Kind := Ekind (Def_Id); 22137 22138 begin 22139 -- Defend against previous error 22140 22141 if Nkind (R) = N_Error then 22142 return; 22143 end if; 22144 22145 Set_Scalar_Range (Def_Id, R); 22146 22147 -- We need to link the range into the tree before resolving it so 22148 -- that types that are referenced, including importantly the subtype 22149 -- itself, are properly frozen (Freeze_Expression requires that the 22150 -- expression be properly linked into the tree). Of course if it is 22151 -- already linked in, then we do not disturb the current link. 22152 22153 if No (Parent (R)) then 22154 Set_Parent (R, Def_Id); 22155 end if; 22156 22157 -- Reset the kind of the subtype during analysis of the range, to 22158 -- catch possible premature use in the bounds themselves. 22159 22160 Set_Ekind (Def_Id, E_Void); 22161 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id); 22162 Set_Ekind (Def_Id, Kind); 22163 end Set_Scalar_Range_For_Subtype; 22164 22165 -------------------------------------------------------- 22166 -- Set_Stored_Constraint_From_Discriminant_Constraint -- 22167 -------------------------------------------------------- 22168 22169 procedure Set_Stored_Constraint_From_Discriminant_Constraint 22170 (E : Entity_Id) 22171 is 22172 begin 22173 -- Make sure set if encountered during Expand_To_Stored_Constraint 22174 22175 Set_Stored_Constraint (E, No_Elist); 22176 22177 -- Give it the right value 22178 22179 if Is_Constrained (E) and then Has_Discriminants (E) then 22180 Set_Stored_Constraint (E, 22181 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E))); 22182 end if; 22183 end Set_Stored_Constraint_From_Discriminant_Constraint; 22184 22185 ------------------------------------- 22186 -- Signed_Integer_Type_Declaration -- 22187 ------------------------------------- 22188 22189 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is 22190 Implicit_Base : Entity_Id; 22191 Base_Typ : Entity_Id; 22192 Lo_Val : Uint; 22193 Hi_Val : Uint; 22194 Errs : Boolean := False; 22195 Lo : Node_Id; 22196 Hi : Node_Id; 22197 22198 function Can_Derive_From (E : Entity_Id) return Boolean; 22199 -- Determine whether given bounds allow derivation from specified type 22200 22201 procedure Check_Bound (Expr : Node_Id); 22202 -- Check bound to make sure it is integral and static. If not, post 22203 -- appropriate error message and set Errs flag 22204 22205 --------------------- 22206 -- Can_Derive_From -- 22207 --------------------- 22208 22209 -- Note we check both bounds against both end values, to deal with 22210 -- strange types like ones with a range of 0 .. -12341234. 22211 22212 function Can_Derive_From (E : Entity_Id) return Boolean is 22213 Lo : constant Uint := Expr_Value (Type_Low_Bound (E)); 22214 Hi : constant Uint := Expr_Value (Type_High_Bound (E)); 22215 begin 22216 return Lo <= Lo_Val and then Lo_Val <= Hi 22217 and then 22218 Lo <= Hi_Val and then Hi_Val <= Hi; 22219 end Can_Derive_From; 22220 22221 ----------------- 22222 -- Check_Bound -- 22223 ----------------- 22224 22225 procedure Check_Bound (Expr : Node_Id) is 22226 begin 22227 -- If a range constraint is used as an integer type definition, each 22228 -- bound of the range must be defined by a static expression of some 22229 -- integer type, but the two bounds need not have the same integer 22230 -- type (Negative bounds are allowed.) (RM 3.5.4) 22231 22232 if not Is_Integer_Type (Etype (Expr)) then 22233 Error_Msg_N 22234 ("integer type definition bounds must be of integer type", Expr); 22235 Errs := True; 22236 22237 elsif not Is_OK_Static_Expression (Expr) then 22238 Flag_Non_Static_Expr 22239 ("non-static expression used for integer type bound!", Expr); 22240 Errs := True; 22241 22242 -- The bounds are folded into literals, and we set their type to be 22243 -- universal, to avoid typing difficulties: we cannot set the type 22244 -- of the literal to the new type, because this would be a forward 22245 -- reference for the back end, and if the original type is user- 22246 -- defined this can lead to spurious semantic errors (e.g. 2928-003). 22247 22248 else 22249 if Is_Entity_Name (Expr) then 22250 Fold_Uint (Expr, Expr_Value (Expr), True); 22251 end if; 22252 22253 Set_Etype (Expr, Universal_Integer); 22254 end if; 22255 end Check_Bound; 22256 22257 -- Start of processing for Signed_Integer_Type_Declaration 22258 22259 begin 22260 -- Create an anonymous base type 22261 22262 Implicit_Base := 22263 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B'); 22264 22265 -- Analyze and check the bounds, they can be of any integer type 22266 22267 Lo := Low_Bound (Def); 22268 Hi := High_Bound (Def); 22269 22270 -- Arbitrarily use Integer as the type if either bound had an error 22271 22272 if Hi = Error or else Lo = Error then 22273 Base_Typ := Any_Integer; 22274 Set_Error_Posted (T, True); 22275 22276 -- Here both bounds are OK expressions 22277 22278 else 22279 Analyze_And_Resolve (Lo, Any_Integer); 22280 Analyze_And_Resolve (Hi, Any_Integer); 22281 22282 Check_Bound (Lo); 22283 Check_Bound (Hi); 22284 22285 if Errs then 22286 Hi := Type_High_Bound (Standard_Long_Long_Integer); 22287 Lo := Type_Low_Bound (Standard_Long_Long_Integer); 22288 end if; 22289 22290 -- Find type to derive from 22291 22292 Lo_Val := Expr_Value (Lo); 22293 Hi_Val := Expr_Value (Hi); 22294 22295 if Can_Derive_From (Standard_Short_Short_Integer) then 22296 Base_Typ := Base_Type (Standard_Short_Short_Integer); 22297 22298 elsif Can_Derive_From (Standard_Short_Integer) then 22299 Base_Typ := Base_Type (Standard_Short_Integer); 22300 22301 elsif Can_Derive_From (Standard_Integer) then 22302 Base_Typ := Base_Type (Standard_Integer); 22303 22304 elsif Can_Derive_From (Standard_Long_Integer) then 22305 Base_Typ := Base_Type (Standard_Long_Integer); 22306 22307 elsif Can_Derive_From (Standard_Long_Long_Integer) then 22308 Check_Restriction (No_Long_Long_Integers, Def); 22309 Base_Typ := Base_Type (Standard_Long_Long_Integer); 22310 22311 else 22312 Base_Typ := Base_Type (Standard_Long_Long_Integer); 22313 Error_Msg_N ("integer type definition bounds out of range", Def); 22314 Hi := Type_High_Bound (Standard_Long_Long_Integer); 22315 Lo := Type_Low_Bound (Standard_Long_Long_Integer); 22316 end if; 22317 end if; 22318 22319 -- Complete both implicit base and declared first subtype entities. The 22320 -- inheritance of the rep item chain ensures that SPARK-related pragmas 22321 -- are not clobbered when the signed integer type acts as a full view of 22322 -- a private type. 22323 22324 Set_Etype (Implicit_Base, Base_Typ); 22325 Set_Size_Info (Implicit_Base, Base_Typ); 22326 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ)); 22327 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ)); 22328 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ)); 22329 22330 Set_Ekind (T, E_Signed_Integer_Subtype); 22331 Set_Etype (T, Implicit_Base); 22332 Set_Size_Info (T, Implicit_Base); 22333 Inherit_Rep_Item_Chain (T, Implicit_Base); 22334 Set_Scalar_Range (T, Def); 22335 Set_RM_Size (T, UI_From_Int (Minimum_Size (T))); 22336 Set_Is_Constrained (T); 22337 end Signed_Integer_Type_Declaration; 22338 22339end Sem_Ch3; 22340