1 /* Setting LOGICAL_OP_NON_SHORT_CIRCUIT to 0 inhibits the setcc
2 optimizations that expose the VRP opportunity. */
3 /* Skip on S/390. Lower values in BRANCH_COST lead to two conditional
4 jumps when evaluating an && condition. VRP is not able to optimize
5 this. */
6 /* { dg-do compile { target { ! { logical_op_short_circuit || { s390*-*-* mn10300-*-* hppa*-*-* m68k*-*-* } } } } } */
7 /* { dg-options "-O2 -fdump-tree-vrp1 -fdump-tree-dom2 -fdump-tree-vrp2" } */
8 /* { dg-additional-options "-march=i586" { target { { i?86-*-* x86_64-*-* } && ia32 } } } */
9
h(int x,int y)10 int h(int x, int y)
11 {
12 if ((x >= 0 && x <= 1) && (y >= 0 && y <= 1))
13 return x && y;
14 else
15 return -1;
16 }
17
g(int x,int y)18 int g(int x, int y)
19 {
20 if ((x >= 0 && x <= 1) && (y >= 0 && y <= 1))
21 return x || y;
22 else
23 return -1;
24 }
25
f(int x)26 int f(int x)
27 {
28 if (x != 0 && x != 1)
29 return -2;
30
31 else
32 return !x;
33 }
34
35 /* Test that x and y are never compared to 0 -- they're always known to be
36 0 or 1. */
37 /* { dg-final { scan-tree-dump-times "\[xy\]\[^ \]* !=" 0 "vrp1" } } */
38
39 /* These two are fully simplified by VRP1. */
40 /* { dg-final { scan-tree-dump-times "x\[^ \]* \[|\] y" 1 "vrp1" } } */
41 /* { dg-final { scan-tree-dump-times "x\[^ \]* \\^ 1" 1 "vrp1" } } */
42
43 /* VRP2 gets rid of the remaining & 1 operations, x and y are always
44 either 0 or 1. */
45 /* { dg-final { scan-tree-dump-times " & 1;" 0 "vrp2" } } */
46
47