1 /****************************************************************************
2 * *
3 * GNAT COMPILER COMPONENTS *
4 * *
5 * M I S C *
6 * *
7 * C Implementation File *
8 * *
9 * Copyright (C) 1992-2019, Free Software Foundation, Inc. *
10 * *
11 * GNAT is free software; you can redistribute it and/or modify it under *
12 * terms of the GNU General Public License as published by the Free Soft- *
13 * ware Foundation; either version 3, or (at your option) any later ver- *
14 * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
15 * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
17 * for more details. You should have received a copy of the GNU General *
18 * Public License distributed with GNAT; see file COPYING3. If not see *
19 * <http://www.gnu.org/licenses/>. *
20 * *
21 * GNAT was originally developed by the GNAT team at New York University. *
22 * Extensive contributions were provided by Ada Core Technologies Inc. *
23 * *
24 ****************************************************************************/
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "target.h"
30 #include "tree.h"
31 #include "diagnostic.h"
32 #include "opts.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "print-tree.h"
37 #include "toplev.h"
38 #include "langhooks.h"
39 #include "langhooks-def.h"
40 #include "plugin.h"
41 #include "calls.h" /* For pass_by_reference. */
42 #include "dwarf2out.h"
43
44 #include "ada.h"
45 #include "adadecode.h"
46 #include "types.h"
47 #include "atree.h"
48 #include "namet.h"
49 #include "nlists.h"
50 #include "uintp.h"
51 #include "fe.h"
52 #include "sinfo.h"
53 #include "einfo.h"
54 #include "ada-tree.h"
55 #include "gigi.h"
56
57 /* This symbol needs to be defined for the front-end. */
58 void *callgraph_info_file = NULL;
59
60 /* Command-line argc and argv. These variables are global since they are
61 imported in back_end.adb. */
62 unsigned int save_argc;
63 const char **save_argv;
64
65 /* GNAT argc and argv generated by the binder for all Ada programs. */
66 extern int gnat_argc;
67 extern const char **gnat_argv;
68
69 /* Ada code requires variables for these settings rather than elements
70 of the global_options structure because they are imported. */
71 #undef gnat_encodings
72 enum dwarf_gnat_encodings gnat_encodings = DWARF_GNAT_ENCODINGS_DEFAULT;
73
74 #undef optimize
75 int optimize;
76
77 #undef optimize_size
78 int optimize_size;
79
80 #undef flag_short_enums
81 int flag_short_enums;
82
83 #undef flag_stack_check
84 enum stack_check_type flag_stack_check = NO_STACK_CHECK;
85
86 #ifdef __cplusplus
87 extern "C" {
88 #endif
89
90 /* Declare functions we use as part of startup. */
91 extern void __gnat_initialize (void *);
92 extern void __gnat_install_SEH_handler (void *);
93 extern void adainit (void);
94 extern void _ada_gnat1drv (void);
95
96 #ifdef __cplusplus
97 }
98 #endif
99
100 /* The parser for the language. For us, we process the GNAT tree. */
101
102 static void
gnat_parse_file(void)103 gnat_parse_file (void)
104 {
105 int seh[2];
106
107 /* Call the target specific initializations. */
108 __gnat_initialize (NULL);
109
110 /* ??? Call the SEH initialization routine. This is to workaround
111 a bootstrap path problem. The call below should be removed at some
112 point and the SEH pointer passed to __gnat_initialize above. */
113 __gnat_install_SEH_handler ((void *)seh);
114
115 /* Call the front-end elaboration procedures. */
116 adainit ();
117
118 /* Call the front end. */
119 _ada_gnat1drv ();
120
121 /* Write the global declarations. */
122 gnat_write_global_declarations ();
123 }
124
125 /* Return language mask for option processing. */
126
127 static unsigned int
gnat_option_lang_mask(void)128 gnat_option_lang_mask (void)
129 {
130 return CL_Ada;
131 }
132
133 /* Decode all the language specific options that cannot be decoded by GCC.
134 The option decoding phase of GCC calls this routine on the flags that
135 are marked as Ada-specific. Return true on success or false on failure. */
136
137 static bool
gnat_handle_option(size_t scode,const char * arg,HOST_WIDE_INT value,int kind,location_t loc,const struct cl_option_handlers * handlers)138 gnat_handle_option (size_t scode, const char *arg, HOST_WIDE_INT value,
139 int kind, location_t loc,
140 const struct cl_option_handlers *handlers)
141 {
142 enum opt_code code = (enum opt_code) scode;
143
144 switch (code)
145 {
146 case OPT_Wall:
147 handle_generated_option (&global_options, &global_options_set,
148 OPT_Wunused, NULL, value,
149 gnat_option_lang_mask (), kind, loc,
150 handlers, true, global_dc);
151 warn_uninitialized = value;
152 warn_maybe_uninitialized = value;
153 break;
154
155 case OPT_gant:
156 warning (0, "%<-gnat%> misspelled as %<-gant%>");
157
158 /* ... fall through ... */
159
160 case OPT_gnat:
161 case OPT_gnatO:
162 case OPT_fRTS_:
163 case OPT_I:
164 case OPT_nostdinc:
165 case OPT_nostdlib:
166 /* These are handled by the front-end. */
167 break;
168
169 case OPT_fopenacc:
170 case OPT_fshort_enums:
171 case OPT_fsigned_char:
172 case OPT_funsigned_char:
173 /* These are handled by the middle-end. */
174 break;
175
176 case OPT_fbuiltin_printf:
177 /* This is ignored in Ada but needs to be accepted so it can be
178 defaulted. */
179 break;
180
181 default:
182 gcc_unreachable ();
183 }
184
185 Ada_handle_option_auto (&global_options, &global_options_set,
186 scode, arg, value,
187 gnat_option_lang_mask (), kind, loc,
188 handlers, global_dc);
189 return true;
190 }
191
192 /* Initialize options structure OPTS. */
193
194 static void
gnat_init_options_struct(struct gcc_options * opts)195 gnat_init_options_struct (struct gcc_options *opts)
196 {
197 /* Uninitialized really means uninitialized in Ada. */
198 opts->x_flag_zero_initialized_in_bss = 0;
199
200 /* We don't care about errno in Ada and it causes __builtin_sqrt to
201 call the libm function rather than do it inline. */
202 opts->x_flag_errno_math = 0;
203 opts->frontend_set_flag_errno_math = true;
204 }
205
206 /* Initialize for option processing. */
207
208 static void
gnat_init_options(unsigned int decoded_options_count,struct cl_decoded_option * decoded_options)209 gnat_init_options (unsigned int decoded_options_count,
210 struct cl_decoded_option *decoded_options)
211 {
212 /* Reconstruct an argv array for use of back_end.adb.
213
214 ??? back_end.adb should not rely on this; instead, it should work with
215 decoded options without such reparsing, to ensure consistency in how
216 options are decoded. */
217 save_argv = XNEWVEC (const char *, 2 * decoded_options_count + 1);
218 save_argc = 0;
219 for (unsigned int i = 0; i < decoded_options_count; i++)
220 {
221 size_t num_elements = decoded_options[i].canonical_option_num_elements;
222
223 if (decoded_options[i].errors
224 || decoded_options[i].opt_index == OPT_SPECIAL_unknown
225 || num_elements == 0)
226 continue;
227
228 /* Deal with -I- specially since it must be a single switch. */
229 if (decoded_options[i].opt_index == OPT_I
230 && num_elements == 2
231 && decoded_options[i].canonical_option[1][0] == '-'
232 && decoded_options[i].canonical_option[1][1] == '\0')
233 save_argv[save_argc++] = "-I-";
234 else
235 {
236 gcc_assert (num_elements >= 1 && num_elements <= 2);
237 save_argv[save_argc++] = decoded_options[i].canonical_option[0];
238 if (num_elements >= 2)
239 save_argv[save_argc++] = decoded_options[i].canonical_option[1];
240 }
241 }
242 save_argv[save_argc] = NULL;
243
244 /* Pass just the name of the command through the regular channel. */
245 gnat_argv = (const char **) xmalloc (sizeof (char *));
246 gnat_argv[0] = xstrdup (save_argv[0]);
247 gnat_argc = 1;
248 }
249
250 /* Settings adjustments after switches processing by the back-end.
251 Note that the front-end switches processing (Scan_Compiler_Arguments)
252 has not been done yet at this point! */
253
254 static bool
gnat_post_options(const char ** pfilename ATTRIBUTE_UNUSED)255 gnat_post_options (const char **pfilename ATTRIBUTE_UNUSED)
256 {
257 /* Excess precision other than "fast" requires front-end support. */
258 if (flag_excess_precision_cmdline == EXCESS_PRECISION_STANDARD)
259 sorry ("%<-fexcess-precision=standard%> for Ada");
260 flag_excess_precision_cmdline = EXCESS_PRECISION_FAST;
261
262 /* No psABI change warnings for Ada. */
263 warn_psabi = 0;
264
265 /* No return type warnings for Ada. */
266 warn_return_type = 0;
267
268 /* No string overflow warnings for Ada. */
269 warn_stringop_overflow = 0;
270
271 /* No caret by default for Ada. */
272 if (!global_options_set.x_flag_diagnostics_show_caret)
273 global_dc->show_caret = false;
274
275 /* Warn only if STABS is not the default: we don't want to emit a warning if
276 the user did not use a -gstabs option. */
277 if (PREFERRED_DEBUGGING_TYPE != DBX_DEBUG && write_symbols == DBX_DEBUG)
278 warning (0, "STABS debugging information for Ada is obsolete and not "
279 "supported anymore");
280
281 /* Copy global settings to local versions. */
282 gnat_encodings = global_options.x_gnat_encodings;
283 optimize = global_options.x_optimize;
284 optimize_size = global_options.x_optimize_size;
285 flag_stack_check = global_options.x_flag_stack_check;
286 flag_short_enums = global_options.x_flag_short_enums;
287
288 /* Unfortunately the post_options hook is called before the value of
289 flag_short_enums is autodetected, if need be. Mimic the process
290 for our private flag_short_enums. */
291 if (flag_short_enums == 2)
292 flag_short_enums = targetm.default_short_enums ();
293
294 return false;
295 }
296
297 /* Here is the function to handle the compiler error processing in GCC. */
298
299 static void
internal_error_function(diagnostic_context * context,const char * msgid,va_list * ap)300 internal_error_function (diagnostic_context *context, const char *msgid,
301 va_list *ap)
302 {
303 text_info tinfo;
304 char *buffer, *p, *loc;
305 String_Template temp, temp_loc;
306 String_Pointer sp, sp_loc;
307 expanded_location xloc;
308
309 /* Warn if plugins present. */
310 warn_if_plugins ();
311
312 /* Reset the pretty-printer. */
313 pp_clear_output_area (context->printer);
314
315 /* Format the message into the pretty-printer. */
316 tinfo.format_spec = msgid;
317 tinfo.args_ptr = ap;
318 tinfo.err_no = errno;
319 pp_format_verbatim (context->printer, &tinfo);
320
321 /* Extract a (writable) pointer to the formatted text. */
322 buffer = xstrdup (pp_formatted_text (context->printer));
323
324 /* Go up to the first newline. */
325 for (p = buffer; *p; p++)
326 if (*p == '\n')
327 {
328 *p = '\0';
329 break;
330 }
331
332 temp.Low_Bound = 1;
333 temp.High_Bound = p - buffer;
334 sp.Bounds = &temp;
335 sp.Array = buffer;
336
337 xloc = expand_location (input_location);
338 if (context->show_column && xloc.column != 0)
339 loc = xasprintf ("%s:%d:%d", xloc.file, xloc.line, xloc.column);
340 else
341 loc = xasprintf ("%s:%d", xloc.file, xloc.line);
342 temp_loc.Low_Bound = 1;
343 temp_loc.High_Bound = strlen (loc);
344 sp_loc.Bounds = &temp_loc;
345 sp_loc.Array = loc;
346
347 Compiler_Abort (sp, sp_loc, true);
348 }
349
350 /* Perform all the initialization steps that are language-specific. */
351
352 static bool
gnat_init(void)353 gnat_init (void)
354 {
355 /* Do little here, most of the standard declarations are set up after the
356 front-end has been run. Use the same `char' as C for Interfaces.C. */
357 build_common_tree_nodes (flag_signed_char);
358
359 /* In Ada, we use an unsigned 8-bit type for the default boolean type. */
360 boolean_type_node = make_unsigned_type (8);
361 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
362 SET_TYPE_RM_MAX_VALUE (boolean_type_node,
363 build_int_cst (boolean_type_node, 1));
364 SET_TYPE_RM_SIZE (boolean_type_node, bitsize_int (1));
365 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
366 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
367
368 sbitsize_one_node = sbitsize_int (1);
369 sbitsize_unit_node = sbitsize_int (BITS_PER_UNIT);
370
371 /* Register our internal error function. */
372 global_dc->internal_error = &internal_error_function;
373
374 return true;
375 }
376
377 /* Initialize the GCC support for exception handling. */
378
379 void
gnat_init_gcc_eh(void)380 gnat_init_gcc_eh (void)
381 {
382 /* We shouldn't do anything if the No_Exceptions_Handler pragma is set,
383 though. This could for instance lead to the emission of tables with
384 references to symbols (such as the Ada eh personality routine) within
385 libraries we won't link against. */
386 if (No_Exception_Handlers_Set ())
387 return;
388
389 /* Tell GCC we are handling cleanup actions through exception propagation.
390 This opens possibilities that we don't take advantage of yet, but is
391 nonetheless necessary to ensure that fixup code gets assigned to the
392 right exception regions. */
393 using_eh_for_cleanups ();
394
395 /* Turn on -fexceptions, -fnon-call-exceptions and -fdelete-dead-exceptions.
396 The first one activates the support for exceptions in the compiler.
397 The second one is useful for two reasons: 1/ we map some asynchronous
398 signals like SEGV to exceptions, so we need to ensure that the insns
399 which can lead to such signals are correctly attached to the exception
400 region they pertain to, 2/ some calls to pure subprograms are handled as
401 libcall blocks and then marked as "cannot trap" if the flag is not set
402 (see emit_libcall_block). We should not let this be since it is possible
403 for such calls to actually raise in Ada.
404 The third one is an optimization that makes it possible to delete dead
405 instructions that may throw exceptions, most notably loads and stores,
406 as permitted in Ada.
407 Turn off -faggressive-loop-optimizations because it may optimize away
408 out-of-bound array accesses that we want to be able to catch.
409 If checks are disabled, we use the same settings as the C++ compiler,
410 except for the runtime on platforms where S'Machine_Overflow is true
411 because the runtime depends on FP (hardware) checks being properly
412 handled despite being compiled in -gnatp mode. */
413 flag_exceptions = 1;
414 flag_delete_dead_exceptions = 1;
415 if (Suppress_Checks)
416 {
417 if (!global_options_set.x_flag_non_call_exceptions)
418 flag_non_call_exceptions = Machine_Overflows_On_Target && GNAT_Mode;
419 }
420 else
421 {
422 flag_non_call_exceptions = 1;
423 flag_aggressive_loop_optimizations = 0;
424 warn_aggressive_loop_optimizations = 0;
425 }
426
427 init_eh ();
428 }
429
430 /* Initialize the GCC support for floating-point operations. */
431
432 void
gnat_init_gcc_fp(void)433 gnat_init_gcc_fp (void)
434 {
435 /* Disable FP optimizations that ignore the signedness of zero if
436 S'Signed_Zeros is true, but don't override the user if not. */
437 if (Signed_Zeros_On_Target)
438 flag_signed_zeros = 1;
439 else if (!global_options_set.x_flag_signed_zeros)
440 flag_signed_zeros = 0;
441
442 /* Assume that FP operations can trap if S'Machine_Overflow is true,
443 but don't override the user if not. */
444 if (Machine_Overflows_On_Target)
445 flag_trapping_math = 1;
446 else if (!global_options_set.x_flag_trapping_math)
447 flag_trapping_math = 0;
448 }
449
450 /* Print language-specific items in declaration NODE. */
451
452 static void
gnat_print_decl(FILE * file,tree node,int indent)453 gnat_print_decl (FILE *file, tree node, int indent)
454 {
455 switch (TREE_CODE (node))
456 {
457 case CONST_DECL:
458 print_node (file, "corresponding var",
459 DECL_CONST_CORRESPONDING_VAR (node), indent + 4);
460 break;
461
462 case FIELD_DECL:
463 print_node (file, "original field", DECL_ORIGINAL_FIELD (node),
464 indent + 4);
465 break;
466
467 case VAR_DECL:
468 if (DECL_LOOP_PARM_P (node))
469 print_node (file, "induction var", DECL_INDUCTION_VAR (node),
470 indent + 4);
471 else
472 print_node (file, "renamed object", DECL_RENAMED_OBJECT (node),
473 indent + 4);
474 break;
475
476 default:
477 break;
478 }
479 }
480
481 /* Print language-specific items in type NODE. */
482
483 static void
gnat_print_type(FILE * file,tree node,int indent)484 gnat_print_type (FILE *file, tree node, int indent)
485 {
486 switch (TREE_CODE (node))
487 {
488 case FUNCTION_TYPE:
489 case METHOD_TYPE:
490 print_node (file, "ci/co list", TYPE_CI_CO_LIST (node), indent + 4);
491 break;
492
493 case INTEGER_TYPE:
494 if (TYPE_MODULAR_P (node))
495 print_node_brief (file, "modulus", TYPE_MODULUS (node), indent + 4);
496 else if (TYPE_FIXED_POINT_P (node))
497 print_node (file, "scale factor", TYPE_SCALE_FACTOR (node),
498 indent + 4);
499 else if (TYPE_HAS_ACTUAL_BOUNDS_P (node))
500 print_node (file, "actual bounds", TYPE_ACTUAL_BOUNDS (node),
501 indent + 4);
502 else
503 print_node (file, "index type", TYPE_INDEX_TYPE (node), indent + 4);
504
505 /* ... fall through ... */
506
507 case ENUMERAL_TYPE:
508 case BOOLEAN_TYPE:
509 print_node_brief (file, "RM size", TYPE_RM_SIZE (node), indent + 4);
510
511 /* ... fall through ... */
512
513 case REAL_TYPE:
514 print_node_brief (file, "RM min", TYPE_RM_MIN_VALUE (node), indent + 4);
515 print_node_brief (file, "RM max", TYPE_RM_MAX_VALUE (node), indent + 4);
516 break;
517
518 case ARRAY_TYPE:
519 print_node (file,"actual bounds", TYPE_ACTUAL_BOUNDS (node), indent + 4);
520 break;
521
522 case VECTOR_TYPE:
523 print_node (file,"representative array",
524 TYPE_REPRESENTATIVE_ARRAY (node), indent + 4);
525 break;
526
527 case RECORD_TYPE:
528 if (TYPE_FAT_POINTER_P (node) || TYPE_CONTAINS_TEMPLATE_P (node))
529 print_node (file, "unconstrained array",
530 TYPE_UNCONSTRAINED_ARRAY (node), indent + 4);
531 else
532 print_node (file, "Ada size", TYPE_ADA_SIZE (node), indent + 4);
533 break;
534
535 case UNION_TYPE:
536 case QUAL_UNION_TYPE:
537 print_node (file, "Ada size", TYPE_ADA_SIZE (node), indent + 4);
538 break;
539
540 default:
541 break;
542 }
543
544 if (TYPE_CAN_HAVE_DEBUG_TYPE_P (node) && TYPE_DEBUG_TYPE (node))
545 print_node_brief (file, "debug type", TYPE_DEBUG_TYPE (node), indent + 4);
546
547 if (TYPE_IMPL_PACKED_ARRAY_P (node) && TYPE_ORIGINAL_PACKED_ARRAY (node))
548 print_node_brief (file, "original packed array",
549 TYPE_ORIGINAL_PACKED_ARRAY (node), indent + 4);
550 }
551
552 /* Return the name to be printed for DECL. */
553
554 static const char *
gnat_printable_name(tree decl,int verbosity)555 gnat_printable_name (tree decl, int verbosity)
556 {
557 const char *coded_name = IDENTIFIER_POINTER (DECL_NAME (decl));
558 char *ada_name = (char *) ggc_alloc_atomic (strlen (coded_name) * 2 + 60);
559
560 __gnat_decode (coded_name, ada_name, 0);
561
562 if (verbosity == 2 && !DECL_IS_BUILTIN (decl))
563 {
564 Set_Identifier_Casing (ada_name, DECL_SOURCE_FILE (decl));
565 return ggc_strdup (Name_Buffer);
566 }
567
568 return ada_name;
569 }
570
571 /* Return the name to be used in DWARF debug info for DECL. */
572
573 static const char *
gnat_dwarf_name(tree decl,int verbosity ATTRIBUTE_UNUSED)574 gnat_dwarf_name (tree decl, int verbosity ATTRIBUTE_UNUSED)
575 {
576 gcc_assert (DECL_P (decl));
577 return (const char *) IDENTIFIER_POINTER (DECL_NAME (decl));
578 }
579
580 /* Return the descriptive type associated with TYPE, if any. */
581
582 static tree
gnat_descriptive_type(const_tree type)583 gnat_descriptive_type (const_tree type)
584 {
585 if (TYPE_STUB_DECL (type))
586 return DECL_PARALLEL_TYPE (TYPE_STUB_DECL (type));
587 else
588 return NULL_TREE;
589 }
590
591 /* Return the underlying base type of an enumeration type. */
592
593 static tree
gnat_enum_underlying_base_type(const_tree)594 gnat_enum_underlying_base_type (const_tree)
595 {
596 /* Enumeration types are base types in Ada. */
597 return void_type_node;
598 }
599
600 /* Return the type to be used for debugging information instead of TYPE or
601 NULL_TREE if TYPE is fine. */
602
603 static tree
gnat_get_debug_type(const_tree type)604 gnat_get_debug_type (const_tree type)
605 {
606 if (TYPE_CAN_HAVE_DEBUG_TYPE_P (type) && TYPE_DEBUG_TYPE (type))
607 {
608 type = TYPE_DEBUG_TYPE (type);
609
610 /* ??? The get_debug_type language hook is processed after the array
611 descriptor language hook, so if there is an array behind this type,
612 the latter is supposed to handle it. Still, we can get here with
613 a type we are not supposed to handle (e.g. when the DWARF back-end
614 processes the type of a variable), so keep this guard. */
615 if (type && TYPE_CAN_HAVE_DEBUG_TYPE_P (type))
616 return const_cast<tree> (type);
617 }
618
619 return NULL_TREE;
620 }
621
622 /* Provide information in INFO for debugging output about the TYPE fixed-point
623 type. Return whether TYPE is handled. */
624
625 static bool
gnat_get_fixed_point_type_info(const_tree type,struct fixed_point_type_info * info)626 gnat_get_fixed_point_type_info (const_tree type,
627 struct fixed_point_type_info *info)
628 {
629 tree scale_factor;
630
631 /* GDB cannot handle fixed-point types yet, so rely on GNAT encodings
632 instead for it. */
633 if (!TYPE_IS_FIXED_POINT_P (type)
634 || gnat_encodings != DWARF_GNAT_ENCODINGS_MINIMAL)
635 return false;
636
637 scale_factor = TYPE_SCALE_FACTOR (type);
638
639 /* We expect here only a finite set of pattern. See fixed-point types
640 handling in gnat_to_gnu_entity. */
641
642 /* Put invalid values when compiler internals cannot represent the scale
643 factor. */
644 if (scale_factor == integer_zero_node)
645 {
646 info->scale_factor_kind = fixed_point_scale_factor_arbitrary;
647 info->scale_factor.arbitrary.numerator = 0;
648 info->scale_factor.arbitrary.denominator = 0;
649 return true;
650 }
651
652 if (TREE_CODE (scale_factor) == RDIV_EXPR)
653 {
654 const tree num = TREE_OPERAND (scale_factor, 0);
655 const tree den = TREE_OPERAND (scale_factor, 1);
656
657 /* See if we have a binary or decimal scale. */
658 if (TREE_CODE (den) == POWER_EXPR)
659 {
660 const tree base = TREE_OPERAND (den, 0);
661 const tree exponent = TREE_OPERAND (den, 1);
662
663 /* We expect the scale factor to be 1 / 2 ** N or 1 / 10 ** N. */
664 gcc_assert (num == integer_one_node
665 && TREE_CODE (base) == INTEGER_CST
666 && TREE_CODE (exponent) == INTEGER_CST);
667
668 switch (tree_to_shwi (base))
669 {
670 case 2:
671 info->scale_factor_kind = fixed_point_scale_factor_binary;
672 info->scale_factor.binary = -tree_to_shwi (exponent);
673 return true;
674
675 case 10:
676 info->scale_factor_kind = fixed_point_scale_factor_decimal;
677 info->scale_factor.decimal = -tree_to_shwi (exponent);
678 return true;
679
680 default:
681 gcc_unreachable ();
682 }
683 }
684
685 /* If we reach this point, we are handling an arbitrary scale factor. We
686 expect N / D with constant operands. */
687 gcc_assert (TREE_CODE (num) == INTEGER_CST
688 && TREE_CODE (den) == INTEGER_CST);
689
690 info->scale_factor_kind = fixed_point_scale_factor_arbitrary;
691 info->scale_factor.arbitrary.numerator = tree_to_uhwi (num);
692 info->scale_factor.arbitrary.denominator = tree_to_shwi (den);
693 return true;
694 }
695
696 gcc_unreachable ();
697 }
698
699 /* Return true if types T1 and T2 are identical for type hashing purposes.
700 Called only after doing all language independent checks. At present,
701 this is only called when both types are FUNCTION_TYPE or METHOD_TYPE. */
702
703 static bool
gnat_type_hash_eq(const_tree t1,const_tree t2)704 gnat_type_hash_eq (const_tree t1, const_tree t2)
705 {
706 gcc_assert (FUNC_OR_METHOD_TYPE_P (t1) && TREE_CODE (t1) == TREE_CODE (t2));
707 return fntype_same_flags_p (t1, TYPE_CI_CO_LIST (t2),
708 TYPE_RETURN_UNCONSTRAINED_P (t2),
709 TYPE_RETURN_BY_DIRECT_REF_P (t2),
710 TREE_ADDRESSABLE (t2));
711 }
712
713 /* Do nothing (return the tree node passed). */
714
715 static tree
gnat_return_tree(tree t)716 gnat_return_tree (tree t)
717 {
718 return t;
719 }
720
721 /* Get the alias set corresponding to a type or expression. */
722
723 static alias_set_type
gnat_get_alias_set(tree type)724 gnat_get_alias_set (tree type)
725 {
726 /* If this is a padding type, use the type of the first field. */
727 if (TYPE_IS_PADDING_P (type))
728 return get_alias_set (TREE_TYPE (TYPE_FIELDS (type)));
729
730 /* If this is an extra subtype, use the base type. */
731 else if (TYPE_IS_EXTRA_SUBTYPE_P (type))
732 return get_alias_set (get_base_type (type));
733
734 /* If the type is an unconstrained array, use the type of the
735 self-referential array we make. */
736 else if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
737 return
738 get_alias_set (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type)))));
739
740 /* If the type can alias any other types, return the alias set 0. */
741 else if (TYPE_P (type)
742 && !TYPE_IS_DUMMY_P (type)
743 && TYPE_UNIVERSAL_ALIASING_P (type))
744 return 0;
745
746 return -1;
747 }
748
749 /* GNU_TYPE is a type. Return its maximum size in bytes, if known,
750 as a constant when possible. */
751
752 static tree
gnat_type_max_size(const_tree gnu_type)753 gnat_type_max_size (const_tree gnu_type)
754 {
755 /* First see what we can get from TYPE_SIZE_UNIT, which might not
756 be constant even for simple expressions if it has already been
757 elaborated and possibly replaced by a VAR_DECL. */
758 tree max_size_unit = max_size (TYPE_SIZE_UNIT (gnu_type), true);
759
760 /* If we don't have a constant, see what we can get from TYPE_ADA_SIZE,
761 which should stay untouched. */
762 if (!tree_fits_uhwi_p (max_size_unit)
763 && RECORD_OR_UNION_TYPE_P (gnu_type)
764 && !TYPE_FAT_POINTER_P (gnu_type)
765 && TYPE_ADA_SIZE (gnu_type))
766 {
767 tree max_ada_size = max_size (TYPE_ADA_SIZE (gnu_type), true);
768
769 /* If we have succeeded in finding a constant, round it up to the
770 type's alignment and return the result in units. */
771 if (tree_fits_uhwi_p (max_ada_size))
772 max_size_unit
773 = size_binop (CEIL_DIV_EXPR,
774 round_up (max_ada_size, TYPE_ALIGN (gnu_type)),
775 bitsize_unit_node);
776 }
777
778 return max_size_unit;
779 }
780
781 static tree get_array_bit_stride (tree);
782
783 /* Provide information in INFO for debug output about the TYPE array type.
784 Return whether TYPE is handled. */
785
786 static bool
gnat_get_array_descr_info(const_tree const_type,struct array_descr_info * info)787 gnat_get_array_descr_info (const_tree const_type,
788 struct array_descr_info *info)
789 {
790 bool convention_fortran_p;
791 bool is_array = false;
792 bool is_fat_ptr = false;
793 bool is_packed_array = false;
794 tree type = const_cast<tree> (const_type);
795 const_tree first_dimen = NULL_TREE;
796 const_tree last_dimen = NULL_TREE;
797 const_tree dimen;
798 int i;
799
800 /* Temporaries created in the first pass and used in the second one for thin
801 pointers. The first one is an expression that yields the template record
802 from the base address (i.e. the PLACEHOLDER_EXPR). The second one is just
803 a cursor through this record's fields. */
804 tree thinptr_template_expr = NULL_TREE;
805 tree thinptr_bound_field = NULL_TREE;
806
807 /* ??? See gnat_get_debug_type. */
808 type = maybe_debug_type (type);
809
810 /* If we have an implementation type for a packed array, get the orignial
811 array type. */
812 if (TYPE_IMPL_PACKED_ARRAY_P (type) && TYPE_ORIGINAL_PACKED_ARRAY (type))
813 {
814 type = TYPE_ORIGINAL_PACKED_ARRAY (type);
815 is_packed_array = true;
816 }
817
818 /* First pass: gather all information about this array except everything
819 related to dimensions. */
820
821 /* Only handle ARRAY_TYPE nodes that come from GNAT. */
822 if (TREE_CODE (type) == ARRAY_TYPE
823 && TYPE_DOMAIN (type)
824 && TYPE_INDEX_TYPE (TYPE_DOMAIN (type)))
825 {
826 is_array = true;
827 first_dimen = type;
828 info->data_location = NULL_TREE;
829 }
830
831 else if (TYPE_IS_FAT_POINTER_P (type)
832 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
833 {
834 const tree ua_type = TYPE_UNCONSTRAINED_ARRAY (type);
835
836 /* This will be our base object address. */
837 const tree placeholder_expr = build0 (PLACEHOLDER_EXPR, type);
838
839 /* We assume below that maybe_unconstrained_array returns an INDIRECT_REF
840 node. */
841 const tree ua_val
842 = maybe_unconstrained_array (build_unary_op (INDIRECT_REF,
843 ua_type,
844 placeholder_expr));
845
846 is_fat_ptr = true;
847 first_dimen = TREE_TYPE (ua_val);
848
849 /* Get the *address* of the array, not the array itself. */
850 info->data_location = TREE_OPERAND (ua_val, 0);
851 }
852
853 /* Unlike fat pointers (which appear for unconstrained arrays passed in
854 argument), thin pointers are used only for array access types, so we want
855 them to appear in the debug info as pointers to an array type. That's why
856 we match only the RECORD_TYPE here instead of the POINTER_TYPE with the
857 TYPE_IS_THIN_POINTER_P predicate. */
858 else if (TREE_CODE (type) == RECORD_TYPE
859 && TYPE_CONTAINS_TEMPLATE_P (type)
860 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
861 {
862 /* This will be our base object address. Note that we assume that
863 pointers to these will actually point to the array field (thin
864 pointers are shifted). */
865 const tree placeholder_expr = build0 (PLACEHOLDER_EXPR, type);
866 const tree placeholder_addr
867 = build_unary_op (ADDR_EXPR, NULL_TREE, placeholder_expr);
868
869 const tree bounds_field = TYPE_FIELDS (type);
870 const tree bounds_type = TREE_TYPE (bounds_field);
871 const tree array_field = DECL_CHAIN (bounds_field);
872 const tree array_type = TREE_TYPE (array_field);
873
874 /* Shift the thin pointer address to get the address of the template. */
875 const tree shift_amount
876 = fold_build1 (NEGATE_EXPR, sizetype, byte_position (array_field));
877 tree template_addr
878 = build_binary_op (POINTER_PLUS_EXPR, TREE_TYPE (placeholder_addr),
879 placeholder_addr, shift_amount);
880 template_addr
881 = fold_convert (TYPE_POINTER_TO (bounds_type), template_addr);
882
883 first_dimen = array_type;
884
885 /* The thin pointer is already the pointer to the array data, so there's
886 no need for a specific "data location" expression. */
887 info->data_location = NULL_TREE;
888
889 thinptr_template_expr = build_unary_op (INDIRECT_REF,
890 bounds_type,
891 template_addr);
892 thinptr_bound_field = TYPE_FIELDS (bounds_type);
893 }
894 else
895 return false;
896
897 /* Second pass: compute the remaining information: dimensions and
898 corresponding bounds. */
899
900 if (TYPE_PACKED (first_dimen))
901 is_packed_array = true;
902 /* If this array has fortran convention, it's arranged in column-major
903 order, so our view here has reversed dimensions. */
904 convention_fortran_p = TYPE_CONVENTION_FORTRAN_P (first_dimen);
905 /* ??? For row major ordering, we probably want to emit nothing and
906 instead specify it as the default in Dw_TAG_compile_unit. */
907 info->ordering = (convention_fortran_p
908 ? array_descr_ordering_column_major
909 : array_descr_ordering_row_major);
910
911 /* Count how many dimensions this array has. */
912 for (i = 0, dimen = first_dimen; ; ++i, dimen = TREE_TYPE (dimen))
913 {
914 if (i > 0
915 && (TREE_CODE (dimen) != ARRAY_TYPE
916 || !TYPE_MULTI_ARRAY_P (dimen)))
917 break;
918 last_dimen = dimen;
919 }
920
921 info->ndimensions = i;
922 info->rank = NULL_TREE;
923
924 /* Too many dimensions? Give up generating proper description: yield instead
925 nested arrays. Note that in this case, this hook is invoked once on each
926 intermediate array type: be consistent and output nested arrays for all
927 dimensions. */
928 if (info->ndimensions > DWARF2OUT_ARRAY_DESCR_INFO_MAX_DIMEN
929 || TYPE_MULTI_ARRAY_P (first_dimen))
930 {
931 info->ndimensions = 1;
932 last_dimen = first_dimen;
933 }
934
935 info->element_type = TREE_TYPE (last_dimen);
936
937 /* Now iterate over all dimensions in source-order and fill the info
938 structure. */
939 for (i = (convention_fortran_p ? info->ndimensions - 1 : 0),
940 dimen = first_dimen;
941 IN_RANGE (i, 0, info->ndimensions - 1);
942 i += (convention_fortran_p ? -1 : 1),
943 dimen = TREE_TYPE (dimen))
944 {
945 /* We are interested in the stored bounds for the debug info. */
946 tree index_type = TYPE_INDEX_TYPE (TYPE_DOMAIN (dimen));
947
948 if (is_array || is_fat_ptr)
949 {
950 /* GDB does not handle very well the self-referencial bound
951 expressions we are able to generate here for XUA types (they are
952 used only by XUP encodings) so avoid them in this case. Note that
953 there are two cases where we generate self-referencial bound
954 expressions: arrays that are constrained by record discriminants
955 and XUA types. */
956 if (TYPE_CONTEXT (first_dimen)
957 && TREE_CODE (TYPE_CONTEXT (first_dimen)) != RECORD_TYPE
958 && CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (index_type))
959 && gnat_encodings != DWARF_GNAT_ENCODINGS_MINIMAL)
960 {
961 info->dimen[i].lower_bound = NULL_TREE;
962 info->dimen[i].upper_bound = NULL_TREE;
963 }
964 else
965 {
966 info->dimen[i].lower_bound
967 = maybe_character_value (TYPE_MIN_VALUE (index_type));
968 info->dimen[i].upper_bound
969 = maybe_character_value (TYPE_MAX_VALUE (index_type));
970 }
971 }
972
973 /* This is a thin pointer. */
974 else
975 {
976 info->dimen[i].lower_bound
977 = build_component_ref (thinptr_template_expr, thinptr_bound_field,
978 false);
979 thinptr_bound_field = DECL_CHAIN (thinptr_bound_field);
980
981 info->dimen[i].upper_bound
982 = build_component_ref (thinptr_template_expr, thinptr_bound_field,
983 false);
984 thinptr_bound_field = DECL_CHAIN (thinptr_bound_field);
985 }
986
987 /* The DWARF back-end will output BOUNDS_TYPE as the base type of
988 the array index, so get to the base type of INDEX_TYPE. */
989 while (TREE_TYPE (index_type))
990 index_type = TREE_TYPE (index_type);
991
992 info->dimen[i].bounds_type = maybe_debug_type (index_type);
993 info->dimen[i].stride = NULL_TREE;
994 }
995
996 /* These are Fortran-specific fields. They make no sense here. */
997 info->allocated = NULL_TREE;
998 info->associated = NULL_TREE;
999
1000 if (gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
1001 {
1002 /* When arrays contain dynamically-sized elements, we usually wrap them
1003 in padding types, or we create constrained types for them. Then, if
1004 such types are stripped in the debugging information output, the
1005 debugger needs a way to know the size that is reserved for each
1006 element. This is why we emit a stride in such situations. */
1007 tree source_element_type = info->element_type;
1008
1009 while (true)
1010 {
1011 if (TYPE_DEBUG_TYPE (source_element_type))
1012 source_element_type = TYPE_DEBUG_TYPE (source_element_type);
1013 else if (TYPE_IS_PADDING_P (source_element_type))
1014 source_element_type
1015 = TREE_TYPE (TYPE_FIELDS (source_element_type));
1016 else
1017 break;
1018 }
1019
1020 if (TREE_CODE (TYPE_SIZE_UNIT (source_element_type)) != INTEGER_CST)
1021 {
1022 info->stride = TYPE_SIZE_UNIT (info->element_type);
1023 info->stride_in_bits = false;
1024 }
1025
1026 /* We need to specify a bit stride when it does not correspond to the
1027 natural size of the contained elements. ??? Note that we do not
1028 support packed records and nested packed arrays. */
1029 else if (is_packed_array)
1030 {
1031 info->stride = get_array_bit_stride (info->element_type);
1032 info->stride_in_bits = true;
1033 }
1034 }
1035
1036 return true;
1037 }
1038
1039 /* Given the component type COMP_TYPE of a packed array, return an expression
1040 that computes the bit stride of this packed array. Return NULL_TREE when
1041 unsuccessful. */
1042
1043 static tree
get_array_bit_stride(tree comp_type)1044 get_array_bit_stride (tree comp_type)
1045 {
1046 struct array_descr_info info;
1047 tree stride;
1048
1049 /* Simple case: the array contains an integral type: return its RM size. */
1050 if (INTEGRAL_TYPE_P (comp_type))
1051 return TYPE_RM_SIZE (comp_type);
1052
1053 /* Otherwise, see if this is an array we can analyze; if it's not, punt. */
1054 memset (&info, 0, sizeof (info));
1055 if (!gnat_get_array_descr_info (comp_type, &info) || !info.stride)
1056 return NULL_TREE;
1057
1058 /* Otherwise, the array stride is the inner array's stride multiplied by the
1059 number of elements it contains. Note that if the inner array is not
1060 packed, then the stride is "natural" and thus does not deserve an
1061 attribute. */
1062 stride = info.stride;
1063 if (!info.stride_in_bits)
1064 {
1065 stride = fold_convert (bitsizetype, stride);
1066 stride = build_binary_op (MULT_EXPR, bitsizetype,
1067 stride, build_int_cst (bitsizetype, 8));
1068 }
1069
1070 for (int i = 0; i < info.ndimensions; ++i)
1071 {
1072 tree count;
1073
1074 if (!info.dimen[i].lower_bound || !info.dimen[i].upper_bound)
1075 return NULL_TREE;
1076
1077 /* Put in count an expression that computes the length of this
1078 dimension. */
1079 count = build_binary_op (MINUS_EXPR, sbitsizetype,
1080 fold_convert (sbitsizetype,
1081 info.dimen[i].upper_bound),
1082 fold_convert (sbitsizetype,
1083 info.dimen[i].lower_bound)),
1084 count = build_binary_op (PLUS_EXPR, sbitsizetype,
1085 count, build_int_cst (sbitsizetype, 1));
1086 count = build_binary_op (MAX_EXPR, sbitsizetype,
1087 count,
1088 build_int_cst (sbitsizetype, 0));
1089 count = fold_convert (bitsizetype, count);
1090 stride = build_binary_op (MULT_EXPR, bitsizetype, stride, count);
1091 }
1092
1093 return stride;
1094 }
1095
1096 /* GNU_TYPE is a subtype of an integral type. Set LOWVAL to the low bound
1097 and HIGHVAL to the high bound, respectively. */
1098
1099 static void
gnat_get_subrange_bounds(const_tree gnu_type,tree * lowval,tree * highval)1100 gnat_get_subrange_bounds (const_tree gnu_type, tree *lowval, tree *highval)
1101 {
1102 *lowval = TYPE_MIN_VALUE (gnu_type);
1103 *highval = TYPE_MAX_VALUE (gnu_type);
1104 }
1105
1106 /* Return the bias of GNU_TYPE, if any. */
1107
1108 static tree
gnat_get_type_bias(const_tree gnu_type)1109 gnat_get_type_bias (const_tree gnu_type)
1110 {
1111 if (TREE_CODE (gnu_type) == INTEGER_TYPE
1112 && TYPE_BIASED_REPRESENTATION_P (gnu_type)
1113 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
1114 return TYPE_RM_MIN_VALUE (gnu_type);
1115
1116 return NULL_TREE;
1117 }
1118
1119 /* GNU_TYPE is the type of a subprogram parameter. Determine if it should be
1120 passed by reference by default. */
1121
1122 bool
default_pass_by_ref(tree gnu_type)1123 default_pass_by_ref (tree gnu_type)
1124 {
1125 /* We pass aggregates by reference if they are sufficiently large for
1126 their alignment. The ratio is somewhat arbitrary. We also pass by
1127 reference if the target machine would either pass or return by
1128 reference. Strictly speaking, we need only check the return if this
1129 is an In Out parameter, but it's probably best to err on the side of
1130 passing more things by reference. */
1131
1132 if (AGGREGATE_TYPE_P (gnu_type)
1133 && (!valid_constant_size_p (TYPE_SIZE_UNIT (gnu_type))
1134 || compare_tree_int (TYPE_SIZE_UNIT (gnu_type),
1135 TYPE_ALIGN (gnu_type)) > 0))
1136 return true;
1137
1138 if (pass_by_reference (NULL, TYPE_MODE (gnu_type), gnu_type, true))
1139 return true;
1140
1141 if (targetm.calls.return_in_memory (gnu_type, NULL_TREE))
1142 return true;
1143
1144 return false;
1145 }
1146
1147 /* GNU_TYPE is the type of a subprogram parameter. Determine if it must be
1148 passed by reference. */
1149
1150 bool
must_pass_by_ref(tree gnu_type)1151 must_pass_by_ref (tree gnu_type)
1152 {
1153 /* We pass only unconstrained objects, those required by the language
1154 to be passed by reference, and objects of variable size. The latter
1155 is more efficient, avoids problems with variable size temporaries,
1156 and does not produce compatibility problems with C, since C does
1157 not have such objects. */
1158 return (TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE
1159 || TYPE_IS_BY_REFERENCE_P (gnu_type)
1160 || (TYPE_SIZE_UNIT (gnu_type)
1161 && TREE_CODE (TYPE_SIZE_UNIT (gnu_type)) != INTEGER_CST));
1162 }
1163
1164 /* This function is called by the front-end to enumerate all the supported
1165 modes for the machine, as well as some predefined C types. F is a function
1166 which is called back with the parameters as listed below, first a string,
1167 then seven ints. The name is any arbitrary null-terminated string and has
1168 no particular significance, except for the case of predefined C types, where
1169 it should be the name of the C type. For integer types, only signed types
1170 should be listed, unsigned versions are assumed. The order of types should
1171 be in order of preference, with the smallest/cheapest types first.
1172
1173 In particular, C predefined types should be listed before other types,
1174 binary floating point types before decimal ones, and narrower/cheaper
1175 type versions before more expensive ones. In type selection the first
1176 matching variant will be used.
1177
1178 NAME pointer to first char of type name
1179 DIGS number of decimal digits for floating-point modes, else 0
1180 COMPLEX_P nonzero is this represents a complex mode
1181 COUNT count of number of items, nonzero for vector mode
1182 FLOAT_REP Float_Rep_Kind for FP, otherwise undefined
1183 PRECISION number of bits used to store data
1184 SIZE number of bits occupied by the mode
1185 ALIGN number of bits to which mode is aligned. */
1186
1187 void
enumerate_modes(void (* f)(const char *,int,int,int,int,int,int,int))1188 enumerate_modes (void (*f) (const char *, int, int, int, int, int, int, int))
1189 {
1190 const tree c_types[]
1191 = { float_type_node, double_type_node, long_double_type_node };
1192 const char *const c_names[]
1193 = { "float", "double", "long double" };
1194 int iloop;
1195
1196 /* We are going to compute it below. */
1197 fp_arith_may_widen = false;
1198
1199 for (iloop = 0; iloop < NUM_MACHINE_MODES; iloop++)
1200 {
1201 machine_mode i = (machine_mode) iloop;
1202 machine_mode inner_mode = i;
1203 bool float_p = false;
1204 bool complex_p = false;
1205 bool vector_p = false;
1206 bool skip_p = false;
1207 int digs = 0;
1208 unsigned int nameloop;
1209 Float_Rep_Kind float_rep = IEEE_Binary; /* Until proven otherwise */
1210
1211 switch (GET_MODE_CLASS (i))
1212 {
1213 case MODE_INT:
1214 break;
1215 case MODE_FLOAT:
1216 float_p = true;
1217 break;
1218 case MODE_COMPLEX_INT:
1219 complex_p = true;
1220 inner_mode = GET_MODE_INNER (i);
1221 break;
1222 case MODE_COMPLEX_FLOAT:
1223 float_p = true;
1224 complex_p = true;
1225 inner_mode = GET_MODE_INNER (i);
1226 break;
1227 case MODE_VECTOR_INT:
1228 vector_p = true;
1229 inner_mode = GET_MODE_INNER (i);
1230 break;
1231 case MODE_VECTOR_FLOAT:
1232 float_p = true;
1233 vector_p = true;
1234 inner_mode = GET_MODE_INNER (i);
1235 break;
1236 default:
1237 skip_p = true;
1238 }
1239
1240 if (float_p)
1241 {
1242 const struct real_format *fmt = REAL_MODE_FORMAT (inner_mode);
1243
1244 /* ??? Cope with the ghost XFmode of the ARM port. */
1245 if (!fmt)
1246 continue;
1247
1248 /* Be conservative and consider that floating-point arithmetics may
1249 use wider intermediate results as soon as there is an extended
1250 Motorola or Intel mode supported by the machine. */
1251 if (fmt == &ieee_extended_motorola_format
1252 || fmt == &ieee_extended_intel_96_format
1253 || fmt == &ieee_extended_intel_96_round_53_format
1254 || fmt == &ieee_extended_intel_128_format)
1255 {
1256 #ifdef TARGET_FPMATH_DEFAULT
1257 if (TARGET_FPMATH_DEFAULT == FPMATH_387)
1258 #endif
1259 fp_arith_may_widen = true;
1260 }
1261
1262 if (fmt->b == 2)
1263 digs = (fmt->p - 1) * 1233 / 4096; /* scale by log (2) */
1264
1265 else if (fmt->b == 10)
1266 digs = fmt->p;
1267
1268 else
1269 gcc_unreachable ();
1270 }
1271
1272 /* First register any C types for this mode that the front end
1273 may need to know about, unless the mode should be skipped. */
1274 if (!skip_p && !vector_p)
1275 for (nameloop = 0; nameloop < ARRAY_SIZE (c_types); nameloop++)
1276 {
1277 tree type = c_types[nameloop];
1278 const char *name = c_names[nameloop];
1279
1280 if (TYPE_MODE (type) == i)
1281 {
1282 f (name, digs, complex_p, 0, float_rep, TYPE_PRECISION (type),
1283 TREE_INT_CST_LOW (TYPE_SIZE (type)), TYPE_ALIGN (type));
1284 skip_p = true;
1285 }
1286 }
1287
1288 /* If no predefined C types were found, register the mode itself. */
1289 int nunits, precision, bitsize;
1290 if (!skip_p
1291 && GET_MODE_NUNITS (i).is_constant (&nunits)
1292 && GET_MODE_PRECISION (i).is_constant (&precision)
1293 && GET_MODE_BITSIZE (i).is_constant (&bitsize))
1294 f (GET_MODE_NAME (i), digs, complex_p,
1295 vector_p ? nunits : 0, float_rep,
1296 precision, bitsize, GET_MODE_ALIGNMENT (i));
1297 }
1298 }
1299
1300 /* Return the size of the FP mode with precision PREC. */
1301
1302 int
fp_prec_to_size(int prec)1303 fp_prec_to_size (int prec)
1304 {
1305 opt_scalar_float_mode opt_mode;
1306
1307 FOR_EACH_MODE_IN_CLASS (opt_mode, MODE_FLOAT)
1308 {
1309 scalar_float_mode mode = opt_mode.require ();
1310 if (GET_MODE_PRECISION (mode) == prec)
1311 return GET_MODE_BITSIZE (mode);
1312 }
1313
1314 gcc_unreachable ();
1315 }
1316
1317 /* Return the precision of the FP mode with size SIZE. */
1318
1319 int
fp_size_to_prec(int size)1320 fp_size_to_prec (int size)
1321 {
1322 opt_scalar_float_mode opt_mode;
1323
1324 FOR_EACH_MODE_IN_CLASS (opt_mode, MODE_FLOAT)
1325 {
1326 scalar_mode mode = opt_mode.require ();
1327 if (GET_MODE_BITSIZE (mode) == size)
1328 return GET_MODE_PRECISION (mode);
1329 }
1330
1331 gcc_unreachable ();
1332 }
1333
1334 static GTY(()) tree gnat_eh_personality_decl;
1335
1336 /* Return the GNAT personality function decl. */
1337
1338 static tree
gnat_eh_personality(void)1339 gnat_eh_personality (void)
1340 {
1341 if (!gnat_eh_personality_decl)
1342 gnat_eh_personality_decl = build_personality_function ("gnat");
1343 return gnat_eh_personality_decl;
1344 }
1345
1346 /* Initialize language-specific bits of tree_contains_struct. */
1347
1348 static void
gnat_init_ts(void)1349 gnat_init_ts (void)
1350 {
1351 MARK_TS_COMMON (UNCONSTRAINED_ARRAY_TYPE);
1352
1353 MARK_TS_TYPED (UNCONSTRAINED_ARRAY_REF);
1354 MARK_TS_TYPED (NULL_EXPR);
1355 MARK_TS_TYPED (PLUS_NOMOD_EXPR);
1356 MARK_TS_TYPED (MINUS_NOMOD_EXPR);
1357 MARK_TS_TYPED (POWER_EXPR);
1358 MARK_TS_TYPED (ATTR_ADDR_EXPR);
1359 MARK_TS_TYPED (STMT_STMT);
1360 MARK_TS_TYPED (LOOP_STMT);
1361 MARK_TS_TYPED (EXIT_STMT);
1362 }
1363
1364 /* Return the size of a tree with CODE, which is a language-specific tree code
1365 in category tcc_constant, tcc_exceptional or tcc_type. The default expects
1366 never to be called. */
1367
1368 static size_t
gnat_tree_size(enum tree_code code)1369 gnat_tree_size (enum tree_code code)
1370 {
1371 gcc_checking_assert (code >= NUM_TREE_CODES);
1372 switch (code)
1373 {
1374 case UNCONSTRAINED_ARRAY_TYPE:
1375 return sizeof (tree_type_non_common);
1376 default:
1377 gcc_unreachable ();
1378 }
1379 }
1380
1381 /* Return the lang specific structure attached to NODE. Allocate it (cleared)
1382 if needed. */
1383
1384 struct lang_type *
get_lang_specific(tree node)1385 get_lang_specific (tree node)
1386 {
1387 if (!TYPE_LANG_SPECIFIC (node))
1388 TYPE_LANG_SPECIFIC (node) = ggc_cleared_alloc<struct lang_type> ();
1389 return TYPE_LANG_SPECIFIC (node);
1390 }
1391
1392 /* Definitions for our language-specific hooks. */
1393
1394 #undef LANG_HOOKS_NAME
1395 #define LANG_HOOKS_NAME "GNU Ada"
1396 #undef LANG_HOOKS_IDENTIFIER_SIZE
1397 #define LANG_HOOKS_IDENTIFIER_SIZE sizeof (struct tree_identifier)
1398 #undef LANG_HOOKS_TREE_SIZE
1399 #define LANG_HOOKS_TREE_SIZE gnat_tree_size
1400 #undef LANG_HOOKS_INIT
1401 #define LANG_HOOKS_INIT gnat_init
1402 #undef LANG_HOOKS_OPTION_LANG_MASK
1403 #define LANG_HOOKS_OPTION_LANG_MASK gnat_option_lang_mask
1404 #undef LANG_HOOKS_INIT_OPTIONS_STRUCT
1405 #define LANG_HOOKS_INIT_OPTIONS_STRUCT gnat_init_options_struct
1406 #undef LANG_HOOKS_INIT_OPTIONS
1407 #define LANG_HOOKS_INIT_OPTIONS gnat_init_options
1408 #undef LANG_HOOKS_HANDLE_OPTION
1409 #define LANG_HOOKS_HANDLE_OPTION gnat_handle_option
1410 #undef LANG_HOOKS_POST_OPTIONS
1411 #define LANG_HOOKS_POST_OPTIONS gnat_post_options
1412 #undef LANG_HOOKS_PARSE_FILE
1413 #define LANG_HOOKS_PARSE_FILE gnat_parse_file
1414 #undef LANG_HOOKS_TYPE_HASH_EQ
1415 #define LANG_HOOKS_TYPE_HASH_EQ gnat_type_hash_eq
1416 #undef LANG_HOOKS_GETDECLS
1417 #define LANG_HOOKS_GETDECLS hook_tree_void_null
1418 #undef LANG_HOOKS_PUSHDECL
1419 #define LANG_HOOKS_PUSHDECL gnat_return_tree
1420 #undef LANG_HOOKS_WARN_UNUSED_GLOBAL_DECL
1421 #define LANG_HOOKS_WARN_UNUSED_GLOBAL_DECL hook_bool_const_tree_false
1422 #undef LANG_HOOKS_GET_ALIAS_SET
1423 #define LANG_HOOKS_GET_ALIAS_SET gnat_get_alias_set
1424 #undef LANG_HOOKS_PRINT_DECL
1425 #define LANG_HOOKS_PRINT_DECL gnat_print_decl
1426 #undef LANG_HOOKS_PRINT_TYPE
1427 #define LANG_HOOKS_PRINT_TYPE gnat_print_type
1428 #undef LANG_HOOKS_TYPE_MAX_SIZE
1429 #define LANG_HOOKS_TYPE_MAX_SIZE gnat_type_max_size
1430 #undef LANG_HOOKS_DECL_PRINTABLE_NAME
1431 #define LANG_HOOKS_DECL_PRINTABLE_NAME gnat_printable_name
1432 #undef LANG_HOOKS_DWARF_NAME
1433 #define LANG_HOOKS_DWARF_NAME gnat_dwarf_name
1434 #undef LANG_HOOKS_GIMPLIFY_EXPR
1435 #define LANG_HOOKS_GIMPLIFY_EXPR gnat_gimplify_expr
1436 #undef LANG_HOOKS_TYPE_FOR_MODE
1437 #define LANG_HOOKS_TYPE_FOR_MODE gnat_type_for_mode
1438 #undef LANG_HOOKS_TYPE_FOR_SIZE
1439 #define LANG_HOOKS_TYPE_FOR_SIZE gnat_type_for_size
1440 #undef LANG_HOOKS_TYPES_COMPATIBLE_P
1441 #define LANG_HOOKS_TYPES_COMPATIBLE_P gnat_types_compatible_p
1442 #undef LANG_HOOKS_GET_ARRAY_DESCR_INFO
1443 #define LANG_HOOKS_GET_ARRAY_DESCR_INFO gnat_get_array_descr_info
1444 #undef LANG_HOOKS_GET_SUBRANGE_BOUNDS
1445 #define LANG_HOOKS_GET_SUBRANGE_BOUNDS gnat_get_subrange_bounds
1446 #undef LANG_HOOKS_GET_TYPE_BIAS
1447 #define LANG_HOOKS_GET_TYPE_BIAS gnat_get_type_bias
1448 #undef LANG_HOOKS_DESCRIPTIVE_TYPE
1449 #define LANG_HOOKS_DESCRIPTIVE_TYPE gnat_descriptive_type
1450 #undef LANG_HOOKS_ENUM_UNDERLYING_BASE_TYPE
1451 #define LANG_HOOKS_ENUM_UNDERLYING_BASE_TYPE gnat_enum_underlying_base_type
1452 #undef LANG_HOOKS_GET_DEBUG_TYPE
1453 #define LANG_HOOKS_GET_DEBUG_TYPE gnat_get_debug_type
1454 #undef LANG_HOOKS_GET_FIXED_POINT_TYPE_INFO
1455 #define LANG_HOOKS_GET_FIXED_POINT_TYPE_INFO gnat_get_fixed_point_type_info
1456 #undef LANG_HOOKS_ATTRIBUTE_TABLE
1457 #define LANG_HOOKS_ATTRIBUTE_TABLE gnat_internal_attribute_table
1458 #undef LANG_HOOKS_BUILTIN_FUNCTION
1459 #define LANG_HOOKS_BUILTIN_FUNCTION gnat_builtin_function
1460 #undef LANG_HOOKS_INIT_TS
1461 #define LANG_HOOKS_INIT_TS gnat_init_ts
1462 #undef LANG_HOOKS_EH_PERSONALITY
1463 #define LANG_HOOKS_EH_PERSONALITY gnat_eh_personality
1464 #undef LANG_HOOKS_DEEP_UNSHARING
1465 #define LANG_HOOKS_DEEP_UNSHARING true
1466 #undef LANG_HOOKS_CUSTOM_FUNCTION_DESCRIPTORS
1467 #define LANG_HOOKS_CUSTOM_FUNCTION_DESCRIPTORS true
1468
1469 struct lang_hooks lang_hooks = LANG_HOOKS_INITIALIZER;
1470
1471 #include "gt-ada-misc.h"
1472