1 /* Control flow graph manipulation code for GNU compiler.
2    Copyright (C) 1987-2019 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This file contains low level functions to manipulate the CFG and analyze it
21    that are aware of the RTL intermediate language.
22 
23    Available functionality:
24      - Basic CFG/RTL manipulation API documented in cfghooks.h
25      - CFG-aware instruction chain manipulation
26 	 delete_insn, delete_insn_chain
27      - Edge splitting and committing to edges
28 	 insert_insn_on_edge, commit_edge_insertions
29      - CFG updating after insn simplification
30 	 purge_dead_edges, purge_all_dead_edges
31      - CFG fixing after coarse manipulation
32 	fixup_abnormal_edges
33 
34    Functions not supposed for generic use:
35      - Infrastructure to determine quickly basic block for insn
36 	 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37      - Edge redirection with updating and optimizing of insn chain
38 	 block_label, tidy_fallthru_edge, force_nonfallthru  */
39 
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "backend.h"
44 #include "target.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "cfghooks.h"
48 #include "df.h"
49 #include "insn-config.h"
50 #include "memmodel.h"
51 #include "emit-rtl.h"
52 #include "cfgrtl.h"
53 #include "cfganal.h"
54 #include "cfgbuild.h"
55 #include "cfgcleanup.h"
56 #include "bb-reorder.h"
57 #include "rtl-error.h"
58 #include "insn-attr.h"
59 #include "dojump.h"
60 #include "expr.h"
61 #include "cfgloop.h"
62 #include "tree-pass.h"
63 #include "print-rtl.h"
64 
65 /* Holds the interesting leading and trailing notes for the function.
66    Only applicable if the CFG is in cfglayout mode.  */
67 static GTY(()) rtx_insn *cfg_layout_function_footer;
68 static GTY(()) rtx_insn *cfg_layout_function_header;
69 
70 static rtx_insn *skip_insns_after_block (basic_block);
71 static void record_effective_endpoints (void);
72 static void fixup_reorder_chain (void);
73 
74 void verify_insn_chain (void);
75 static void fixup_fallthru_exit_predecessor (void);
76 static int can_delete_note_p (const rtx_note *);
77 static int can_delete_label_p (const rtx_code_label *);
78 static basic_block rtl_split_edge (edge);
79 static bool rtl_move_block_after (basic_block, basic_block);
80 static int rtl_verify_flow_info (void);
81 static basic_block cfg_layout_split_block (basic_block, void *);
82 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
83 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
84 static void cfg_layout_delete_block (basic_block);
85 static void rtl_delete_block (basic_block);
86 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
87 static edge rtl_redirect_edge_and_branch (edge, basic_block);
88 static basic_block rtl_split_block (basic_block, void *);
89 static void rtl_dump_bb (FILE *, basic_block, int, dump_flags_t);
90 static int rtl_verify_flow_info_1 (void);
91 static void rtl_make_forwarder_block (edge);
92 
93 /* Return true if NOTE is not one of the ones that must be kept paired,
94    so that we may simply delete it.  */
95 
96 static int
can_delete_note_p(const rtx_note * note)97 can_delete_note_p (const rtx_note *note)
98 {
99   switch (NOTE_KIND (note))
100     {
101     case NOTE_INSN_DELETED:
102     case NOTE_INSN_BASIC_BLOCK:
103     case NOTE_INSN_EPILOGUE_BEG:
104       return true;
105 
106     default:
107       return false;
108     }
109 }
110 
111 /* True if a given label can be deleted.  */
112 
113 static int
can_delete_label_p(const rtx_code_label * label)114 can_delete_label_p (const rtx_code_label *label)
115 {
116   return (!LABEL_PRESERVE_P (label)
117 	  /* User declared labels must be preserved.  */
118 	  && LABEL_NAME (label) == 0
119 	  && !vec_safe_contains<rtx_insn *> (forced_labels,
120 					     const_cast<rtx_code_label *> (label)));
121 }
122 
123 /* Delete INSN by patching it out.  */
124 
125 void
delete_insn(rtx_insn * insn)126 delete_insn (rtx_insn *insn)
127 {
128   rtx note;
129   bool really_delete = true;
130 
131   if (LABEL_P (insn))
132     {
133       /* Some labels can't be directly removed from the INSN chain, as they
134 	 might be references via variables, constant pool etc.
135 	 Convert them to the special NOTE_INSN_DELETED_LABEL note.  */
136       if (! can_delete_label_p (as_a <rtx_code_label *> (insn)))
137 	{
138 	  const char *name = LABEL_NAME (insn);
139 	  basic_block bb = BLOCK_FOR_INSN (insn);
140 	  rtx_insn *bb_note = NEXT_INSN (insn);
141 
142 	  really_delete = false;
143 	  PUT_CODE (insn, NOTE);
144 	  NOTE_KIND (insn) = NOTE_INSN_DELETED_LABEL;
145 	  NOTE_DELETED_LABEL_NAME (insn) = name;
146 
147 	  /* If the note following the label starts a basic block, and the
148 	     label is a member of the same basic block, interchange the two.  */
149 	  if (bb_note != NULL_RTX
150 	      && NOTE_INSN_BASIC_BLOCK_P (bb_note)
151 	      && bb != NULL
152 	      && bb == BLOCK_FOR_INSN (bb_note))
153 	    {
154 	      reorder_insns_nobb (insn, insn, bb_note);
155 	      BB_HEAD (bb) = bb_note;
156 	      if (BB_END (bb) == bb_note)
157 		BB_END (bb) = insn;
158 	    }
159 	}
160 
161       remove_node_from_insn_list (insn, &nonlocal_goto_handler_labels);
162     }
163 
164   if (really_delete)
165     {
166       /* If this insn has already been deleted, something is very wrong.  */
167       gcc_assert (!insn->deleted ());
168       if (INSN_P (insn))
169 	df_insn_delete (insn);
170       remove_insn (insn);
171       insn->set_deleted ();
172     }
173 
174   /* If deleting a jump, decrement the use count of the label.  Deleting
175      the label itself should happen in the normal course of block merging.  */
176   if (JUMP_P (insn))
177     {
178       if (JUMP_LABEL (insn)
179 	  && LABEL_P (JUMP_LABEL (insn)))
180 	LABEL_NUSES (JUMP_LABEL (insn))--;
181 
182       /* If there are more targets, remove them too.  */
183       while ((note
184 	      = find_reg_note (insn, REG_LABEL_TARGET, NULL_RTX)) != NULL_RTX
185 	     && LABEL_P (XEXP (note, 0)))
186 	{
187 	  LABEL_NUSES (XEXP (note, 0))--;
188 	  remove_note (insn, note);
189 	}
190     }
191 
192   /* Also if deleting any insn that references a label as an operand.  */
193   while ((note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX)) != NULL_RTX
194 	 && LABEL_P (XEXP (note, 0)))
195     {
196       LABEL_NUSES (XEXP (note, 0))--;
197       remove_note (insn, note);
198     }
199 
200   if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
201     {
202       rtvec vec = table->get_labels ();
203       int len = GET_NUM_ELEM (vec);
204       int i;
205 
206       for (i = 0; i < len; i++)
207 	{
208 	  rtx label = XEXP (RTVEC_ELT (vec, i), 0);
209 
210 	  /* When deleting code in bulk (e.g. removing many unreachable
211 	     blocks) we can delete a label that's a target of the vector
212 	     before deleting the vector itself.  */
213 	  if (!NOTE_P (label))
214 	    LABEL_NUSES (label)--;
215 	}
216     }
217 }
218 
219 /* Like delete_insn but also purge dead edges from BB.
220    Return true if any edges are eliminated.  */
221 
222 bool
delete_insn_and_edges(rtx_insn * insn)223 delete_insn_and_edges (rtx_insn *insn)
224 {
225   bool purge = false;
226 
227   if (INSN_P (insn)
228       && BLOCK_FOR_INSN (insn)
229       && BB_END (BLOCK_FOR_INSN (insn)) == insn)
230     purge = true;
231   delete_insn (insn);
232   if (purge)
233     return purge_dead_edges (BLOCK_FOR_INSN (insn));
234   return false;
235 }
236 
237 /* Unlink a chain of insns between START and FINISH, leaving notes
238    that must be paired.  If CLEAR_BB is true, we set bb field for
239    insns that cannot be removed to NULL.  */
240 
241 void
delete_insn_chain(rtx start,rtx_insn * finish,bool clear_bb)242 delete_insn_chain (rtx start, rtx_insn *finish, bool clear_bb)
243 {
244   /* Unchain the insns one by one.  It would be quicker to delete all of these
245      with a single unchaining, rather than one at a time, but we need to keep
246      the NOTE's.  */
247   rtx_insn *current = finish;
248   while (1)
249     {
250       rtx_insn *prev = PREV_INSN (current);
251       if (NOTE_P (current) && !can_delete_note_p (as_a <rtx_note *> (current)))
252 	;
253       else
254 	delete_insn (current);
255 
256       if (clear_bb && !current->deleted ())
257 	set_block_for_insn (current, NULL);
258 
259       if (current == start)
260 	break;
261       current = prev;
262     }
263 }
264 
265 /* Create a new basic block consisting of the instructions between HEAD and END
266    inclusive.  This function is designed to allow fast BB construction - reuses
267    the note and basic block struct in BB_NOTE, if any and do not grow
268    BASIC_BLOCK chain and should be used directly only by CFG construction code.
269    END can be NULL in to create new empty basic block before HEAD.  Both END
270    and HEAD can be NULL to create basic block at the end of INSN chain.
271    AFTER is the basic block we should be put after.  */
272 
273 basic_block
create_basic_block_structure(rtx_insn * head,rtx_insn * end,rtx_note * bb_note,basic_block after)274 create_basic_block_structure (rtx_insn *head, rtx_insn *end, rtx_note *bb_note,
275 			      basic_block after)
276 {
277   basic_block bb;
278 
279   if (bb_note
280       && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
281       && bb->aux == NULL)
282     {
283       /* If we found an existing note, thread it back onto the chain.  */
284 
285       rtx_insn *after;
286 
287       if (LABEL_P (head))
288 	after = head;
289       else
290 	{
291 	  after = PREV_INSN (head);
292 	  head = bb_note;
293 	}
294 
295       if (after != bb_note && NEXT_INSN (after) != bb_note)
296 	reorder_insns_nobb (bb_note, bb_note, after);
297     }
298   else
299     {
300       /* Otherwise we must create a note and a basic block structure.  */
301 
302       bb = alloc_block ();
303 
304       init_rtl_bb_info (bb);
305       if (!head && !end)
306 	head = end = bb_note
307 	  = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
308       else if (LABEL_P (head) && end)
309 	{
310 	  bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
311 	  if (head == end)
312 	    end = bb_note;
313 	}
314       else
315 	{
316 	  bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
317 	  head = bb_note;
318 	  if (!end)
319 	    end = head;
320 	}
321 
322       NOTE_BASIC_BLOCK (bb_note) = bb;
323     }
324 
325   /* Always include the bb note in the block.  */
326   if (NEXT_INSN (end) == bb_note)
327     end = bb_note;
328 
329   BB_HEAD (bb) = head;
330   BB_END (bb) = end;
331   bb->index = last_basic_block_for_fn (cfun)++;
332   bb->flags = BB_NEW | BB_RTL;
333   link_block (bb, after);
334   SET_BASIC_BLOCK_FOR_FN (cfun, bb->index, bb);
335   df_bb_refs_record (bb->index, false);
336   update_bb_for_insn (bb);
337   BB_SET_PARTITION (bb, BB_UNPARTITIONED);
338 
339   /* Tag the block so that we know it has been used when considering
340      other basic block notes.  */
341   bb->aux = bb;
342 
343   return bb;
344 }
345 
346 /* Create new basic block consisting of instructions in between HEAD and END
347    and place it to the BB chain after block AFTER.  END can be NULL to
348    create a new empty basic block before HEAD.  Both END and HEAD can be
349    NULL to create basic block at the end of INSN chain.  */
350 
351 static basic_block
rtl_create_basic_block(void * headp,void * endp,basic_block after)352 rtl_create_basic_block (void *headp, void *endp, basic_block after)
353 {
354   rtx_insn *head = (rtx_insn *) headp;
355   rtx_insn *end = (rtx_insn *) endp;
356   basic_block bb;
357 
358   /* Grow the basic block array if needed.  */
359   if ((size_t) last_basic_block_for_fn (cfun)
360       >= basic_block_info_for_fn (cfun)->length ())
361     {
362       size_t new_size =
363 	(last_basic_block_for_fn (cfun)
364 	 + (last_basic_block_for_fn (cfun) + 3) / 4);
365       vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
366     }
367 
368   n_basic_blocks_for_fn (cfun)++;
369 
370   bb = create_basic_block_structure (head, end, NULL, after);
371   bb->aux = NULL;
372   return bb;
373 }
374 
375 static basic_block
cfg_layout_create_basic_block(void * head,void * end,basic_block after)376 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
377 {
378   basic_block newbb = rtl_create_basic_block (head, end, after);
379 
380   return newbb;
381 }
382 
383 /* Delete the insns in a (non-live) block.  We physically delete every
384    non-deleted-note insn, and update the flow graph appropriately.
385 
386    Return nonzero if we deleted an exception handler.  */
387 
388 /* ??? Preserving all such notes strikes me as wrong.  It would be nice
389    to post-process the stream to remove empty blocks, loops, ranges, etc.  */
390 
391 static void
rtl_delete_block(basic_block b)392 rtl_delete_block (basic_block b)
393 {
394   rtx_insn *insn, *end;
395 
396   /* If the head of this block is a CODE_LABEL, then it might be the
397      label for an exception handler which can't be reached.  We need
398      to remove the label from the exception_handler_label list.  */
399   insn = BB_HEAD (b);
400 
401   end = get_last_bb_insn (b);
402 
403   /* Selectively delete the entire chain.  */
404   BB_HEAD (b) = NULL;
405   delete_insn_chain (insn, end, true);
406 
407 
408   if (dump_file)
409     fprintf (dump_file, "deleting block %d\n", b->index);
410   df_bb_delete (b->index);
411 }
412 
413 /* Records the basic block struct in BLOCK_FOR_INSN for every insn.  */
414 
415 void
compute_bb_for_insn(void)416 compute_bb_for_insn (void)
417 {
418   basic_block bb;
419 
420   FOR_EACH_BB_FN (bb, cfun)
421     {
422       rtx_insn *end = BB_END (bb);
423       rtx_insn *insn;
424 
425       for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
426 	{
427 	  BLOCK_FOR_INSN (insn) = bb;
428 	  if (insn == end)
429 	    break;
430 	}
431     }
432 }
433 
434 /* Release the basic_block_for_insn array.  */
435 
436 unsigned int
free_bb_for_insn(void)437 free_bb_for_insn (void)
438 {
439   rtx_insn *insn;
440   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
441     if (!BARRIER_P (insn))
442       BLOCK_FOR_INSN (insn) = NULL;
443   return 0;
444 }
445 
446 namespace {
447 
448 const pass_data pass_data_free_cfg =
449 {
450   RTL_PASS, /* type */
451   "*free_cfg", /* name */
452   OPTGROUP_NONE, /* optinfo_flags */
453   TV_NONE, /* tv_id */
454   0, /* properties_required */
455   0, /* properties_provided */
456   PROP_cfg, /* properties_destroyed */
457   0, /* todo_flags_start */
458   0, /* todo_flags_finish */
459 };
460 
461 class pass_free_cfg : public rtl_opt_pass
462 {
463 public:
pass_free_cfg(gcc::context * ctxt)464   pass_free_cfg (gcc::context *ctxt)
465     : rtl_opt_pass (pass_data_free_cfg, ctxt)
466   {}
467 
468   /* opt_pass methods: */
469   virtual unsigned int execute (function *);
470 
471 }; // class pass_free_cfg
472 
473 unsigned int
execute(function *)474 pass_free_cfg::execute (function *)
475 {
476   /* The resource.c machinery uses DF but the CFG isn't guaranteed to be
477      valid at that point so it would be too late to call df_analyze.  */
478   if (DELAY_SLOTS && optimize > 0 && flag_delayed_branch)
479     {
480       df_note_add_problem ();
481       df_analyze ();
482     }
483 
484   if (crtl->has_bb_partition)
485     insert_section_boundary_note ();
486 
487   free_bb_for_insn ();
488   return 0;
489 }
490 
491 } // anon namespace
492 
493 rtl_opt_pass *
make_pass_free_cfg(gcc::context * ctxt)494 make_pass_free_cfg (gcc::context *ctxt)
495 {
496   return new pass_free_cfg (ctxt);
497 }
498 
499 /* Return RTX to emit after when we want to emit code on the entry of function.  */
500 rtx_insn *
entry_of_function(void)501 entry_of_function (void)
502 {
503   return (n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS ?
504 	  BB_HEAD (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb) : get_insns ());
505 }
506 
507 /* Emit INSN at the entry point of the function, ensuring that it is only
508    executed once per function.  */
509 void
emit_insn_at_entry(rtx insn)510 emit_insn_at_entry (rtx insn)
511 {
512   edge_iterator ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
513   edge e = ei_safe_edge (ei);
514   gcc_assert (e->flags & EDGE_FALLTHRU);
515 
516   insert_insn_on_edge (insn, e);
517   commit_edge_insertions ();
518 }
519 
520 /* Update BLOCK_FOR_INSN of insns between BEGIN and END
521    (or BARRIER if found) and notify df of the bb change.
522    The insn chain range is inclusive
523    (i.e. both BEGIN and END will be updated. */
524 
525 static void
update_bb_for_insn_chain(rtx_insn * begin,rtx_insn * end,basic_block bb)526 update_bb_for_insn_chain (rtx_insn *begin, rtx_insn *end, basic_block bb)
527 {
528   rtx_insn *insn;
529 
530   end = NEXT_INSN (end);
531   for (insn = begin; insn != end; insn = NEXT_INSN (insn))
532     if (!BARRIER_P (insn))
533       df_insn_change_bb (insn, bb);
534 }
535 
536 /* Update BLOCK_FOR_INSN of insns in BB to BB,
537    and notify df of the change.  */
538 
539 void
update_bb_for_insn(basic_block bb)540 update_bb_for_insn (basic_block bb)
541 {
542   update_bb_for_insn_chain (BB_HEAD (bb), BB_END (bb), bb);
543 }
544 
545 
546 /* Like active_insn_p, except keep the return value clobber around
547    even after reload.  */
548 
549 static bool
flow_active_insn_p(const rtx_insn * insn)550 flow_active_insn_p (const rtx_insn *insn)
551 {
552   if (active_insn_p (insn))
553     return true;
554 
555   /* A clobber of the function return value exists for buggy
556      programs that fail to return a value.  Its effect is to
557      keep the return value from being live across the entire
558      function.  If we allow it to be skipped, we introduce the
559      possibility for register lifetime confusion.  */
560   if (GET_CODE (PATTERN (insn)) == CLOBBER
561       && REG_P (XEXP (PATTERN (insn), 0))
562       && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
563     return true;
564 
565   return false;
566 }
567 
568 /* Return true if the block has no effect and only forwards control flow to
569    its single destination.  */
570 
571 bool
contains_no_active_insn_p(const_basic_block bb)572 contains_no_active_insn_p (const_basic_block bb)
573 {
574   rtx_insn *insn;
575 
576   if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
577       || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
578       || !single_succ_p (bb)
579       || (single_succ_edge (bb)->flags & EDGE_FAKE) != 0)
580     return false;
581 
582   for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
583     if (INSN_P (insn) && flow_active_insn_p (insn))
584       return false;
585 
586   return (!INSN_P (insn)
587 	  || (JUMP_P (insn) && simplejump_p (insn))
588 	  || !flow_active_insn_p (insn));
589 }
590 
591 /* Likewise, but protect loop latches, headers and preheaders.  */
592 /* FIXME: Make this a cfg hook.  */
593 
594 bool
forwarder_block_p(const_basic_block bb)595 forwarder_block_p (const_basic_block bb)
596 {
597   if (!contains_no_active_insn_p (bb))
598     return false;
599 
600   /* Protect loop latches, headers and preheaders.  */
601   if (current_loops)
602     {
603       basic_block dest;
604       if (bb->loop_father->header == bb)
605 	return false;
606       dest = EDGE_SUCC (bb, 0)->dest;
607       if (dest->loop_father->header == dest)
608 	return false;
609     }
610 
611   return true;
612 }
613 
614 /* Return nonzero if we can reach target from src by falling through.  */
615 /* FIXME: Make this a cfg hook, the result is only valid in cfgrtl mode.  */
616 
617 bool
can_fallthru(basic_block src,basic_block target)618 can_fallthru (basic_block src, basic_block target)
619 {
620   rtx_insn *insn = BB_END (src);
621   rtx_insn *insn2;
622   edge e;
623   edge_iterator ei;
624 
625   if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
626     return true;
627   if (src->next_bb != target)
628     return false;
629 
630   /* ??? Later we may add code to move jump tables offline.  */
631   if (tablejump_p (insn, NULL, NULL))
632     return false;
633 
634   FOR_EACH_EDGE (e, ei, src->succs)
635     if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
636 	&& e->flags & EDGE_FALLTHRU)
637       return false;
638 
639   insn2 = BB_HEAD (target);
640   if (!active_insn_p (insn2))
641     insn2 = next_active_insn (insn2);
642 
643   return next_active_insn (insn) == insn2;
644 }
645 
646 /* Return nonzero if we could reach target from src by falling through,
647    if the target was made adjacent.  If we already have a fall-through
648    edge to the exit block, we can't do that.  */
649 static bool
could_fall_through(basic_block src,basic_block target)650 could_fall_through (basic_block src, basic_block target)
651 {
652   edge e;
653   edge_iterator ei;
654 
655   if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
656     return true;
657   FOR_EACH_EDGE (e, ei, src->succs)
658     if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
659 	&& e->flags & EDGE_FALLTHRU)
660       return 0;
661   return true;
662 }
663 
664 /* Return the NOTE_INSN_BASIC_BLOCK of BB.  */
665 rtx_note *
bb_note(basic_block bb)666 bb_note (basic_block bb)
667 {
668   rtx_insn *note;
669 
670   note = BB_HEAD (bb);
671   if (LABEL_P (note))
672     note = NEXT_INSN (note);
673 
674   gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
675   return as_a <rtx_note *> (note);
676 }
677 
678 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
679    note associated with the BLOCK.  */
680 
681 static rtx_insn *
first_insn_after_basic_block_note(basic_block block)682 first_insn_after_basic_block_note (basic_block block)
683 {
684   rtx_insn *insn;
685 
686   /* Get the first instruction in the block.  */
687   insn = BB_HEAD (block);
688 
689   if (insn == NULL_RTX)
690     return NULL;
691   if (LABEL_P (insn))
692     insn = NEXT_INSN (insn);
693   gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
694 
695   return NEXT_INSN (insn);
696 }
697 
698 /* Creates a new basic block just after basic block BB by splitting
699    everything after specified instruction INSNP.  */
700 
701 static basic_block
rtl_split_block(basic_block bb,void * insnp)702 rtl_split_block (basic_block bb, void *insnp)
703 {
704   basic_block new_bb;
705   rtx_insn *insn = (rtx_insn *) insnp;
706   edge e;
707   edge_iterator ei;
708 
709   if (!insn)
710     {
711       insn = first_insn_after_basic_block_note (bb);
712 
713       if (insn)
714 	{
715 	  rtx_insn *next = insn;
716 
717 	  insn = PREV_INSN (insn);
718 
719 	  /* If the block contains only debug insns, insn would have
720 	     been NULL in a non-debug compilation, and then we'd end
721 	     up emitting a DELETED note.  For -fcompare-debug
722 	     stability, emit the note too.  */
723 	  if (insn != BB_END (bb)
724 	      && DEBUG_INSN_P (next)
725 	      && DEBUG_INSN_P (BB_END (bb)))
726 	    {
727 	      while (next != BB_END (bb) && DEBUG_INSN_P (next))
728 		next = NEXT_INSN (next);
729 
730 	      if (next == BB_END (bb))
731 		emit_note_after (NOTE_INSN_DELETED, next);
732 	    }
733 	}
734       else
735 	insn = get_last_insn ();
736     }
737 
738   /* We probably should check type of the insn so that we do not create
739      inconsistent cfg.  It is checked in verify_flow_info anyway, so do not
740      bother.  */
741   if (insn == BB_END (bb))
742     emit_note_after (NOTE_INSN_DELETED, insn);
743 
744   /* Create the new basic block.  */
745   new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
746   BB_COPY_PARTITION (new_bb, bb);
747   BB_END (bb) = insn;
748 
749   /* Redirect the outgoing edges.  */
750   new_bb->succs = bb->succs;
751   bb->succs = NULL;
752   FOR_EACH_EDGE (e, ei, new_bb->succs)
753     e->src = new_bb;
754 
755   /* The new block starts off being dirty.  */
756   df_set_bb_dirty (bb);
757   return new_bb;
758 }
759 
760 /* Return true if the single edge between blocks A and B is the only place
761    in RTL which holds some unique locus.  */
762 
763 static bool
unique_locus_on_edge_between_p(basic_block a,basic_block b)764 unique_locus_on_edge_between_p (basic_block a, basic_block b)
765 {
766   const location_t goto_locus = EDGE_SUCC (a, 0)->goto_locus;
767   rtx_insn *insn, *end;
768 
769   if (LOCATION_LOCUS (goto_locus) == UNKNOWN_LOCATION)
770     return false;
771 
772   /* First scan block A backward.  */
773   insn = BB_END (a);
774   end = PREV_INSN (BB_HEAD (a));
775   while (insn != end && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
776     insn = PREV_INSN (insn);
777 
778   if (insn != end && INSN_LOCATION (insn) == goto_locus)
779     return false;
780 
781   /* Then scan block B forward.  */
782   insn = BB_HEAD (b);
783   if (insn)
784     {
785       end = NEXT_INSN (BB_END (b));
786       while (insn != end && !NONDEBUG_INSN_P (insn))
787 	insn = NEXT_INSN (insn);
788 
789       if (insn != end && INSN_HAS_LOCATION (insn)
790 	  && INSN_LOCATION (insn) == goto_locus)
791 	return false;
792     }
793 
794   return true;
795 }
796 
797 /* If the single edge between blocks A and B is the only place in RTL which
798    holds some unique locus, emit a nop with that locus between the blocks.  */
799 
800 static void
emit_nop_for_unique_locus_between(basic_block a,basic_block b)801 emit_nop_for_unique_locus_between (basic_block a, basic_block b)
802 {
803   if (!unique_locus_on_edge_between_p (a, b))
804     return;
805 
806   BB_END (a) = emit_insn_after_noloc (gen_nop (), BB_END (a), a);
807   INSN_LOCATION (BB_END (a)) = EDGE_SUCC (a, 0)->goto_locus;
808 }
809 
810 /* Blocks A and B are to be merged into a single block A.  The insns
811    are already contiguous.  */
812 
813 static void
rtl_merge_blocks(basic_block a,basic_block b)814 rtl_merge_blocks (basic_block a, basic_block b)
815 {
816   /* If B is a forwarder block whose outgoing edge has no location, we'll
817      propagate the locus of the edge between A and B onto it.  */
818   const bool forward_edge_locus
819     = (b->flags & BB_FORWARDER_BLOCK) != 0
820       && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION;
821   rtx_insn *b_head = BB_HEAD (b), *b_end = BB_END (b), *a_end = BB_END (a);
822   rtx_insn *del_first = NULL, *del_last = NULL;
823   rtx_insn *b_debug_start = b_end, *b_debug_end = b_end;
824   int b_empty = 0;
825 
826   if (dump_file)
827     fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
828 	     a->index);
829 
830   while (DEBUG_INSN_P (b_end))
831     b_end = PREV_INSN (b_debug_start = b_end);
832 
833   /* If there was a CODE_LABEL beginning B, delete it.  */
834   if (LABEL_P (b_head))
835     {
836       /* Detect basic blocks with nothing but a label.  This can happen
837 	 in particular at the end of a function.  */
838       if (b_head == b_end)
839 	b_empty = 1;
840 
841       del_first = del_last = b_head;
842       b_head = NEXT_INSN (b_head);
843     }
844 
845   /* Delete the basic block note and handle blocks containing just that
846      note.  */
847   if (NOTE_INSN_BASIC_BLOCK_P (b_head))
848     {
849       if (b_head == b_end)
850 	b_empty = 1;
851       if (! del_last)
852 	del_first = b_head;
853 
854       del_last = b_head;
855       b_head = NEXT_INSN (b_head);
856     }
857 
858   /* If there was a jump out of A, delete it.  */
859   if (JUMP_P (a_end))
860     {
861       rtx_insn *prev;
862 
863       for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
864 	if (!NOTE_P (prev)
865 	    || NOTE_INSN_BASIC_BLOCK_P (prev)
866 	    || prev == BB_HEAD (a))
867 	  break;
868 
869       del_first = a_end;
870 
871       /* If this was a conditional jump, we need to also delete
872 	 the insn that set cc0.  */
873       if (HAVE_cc0 && only_sets_cc0_p (prev))
874 	{
875 	  rtx_insn *tmp = prev;
876 
877 	  prev = prev_nonnote_insn (prev);
878 	  if (!prev)
879 	    prev = BB_HEAD (a);
880 	  del_first = tmp;
881 	}
882 
883       a_end = PREV_INSN (del_first);
884     }
885   else if (BARRIER_P (NEXT_INSN (a_end)))
886     del_first = NEXT_INSN (a_end);
887 
888   /* Delete everything marked above as well as crap that might be
889      hanging out between the two blocks.  */
890   BB_END (a) = a_end;
891   BB_HEAD (b) = b_empty ? NULL : b_head;
892   delete_insn_chain (del_first, del_last, true);
893 
894   /* If not optimizing, preserve the locus of the single edge between
895      blocks A and B if necessary by emitting a nop.  */
896   if (!optimize
897       && !forward_edge_locus
898       && !DECL_IGNORED_P (current_function_decl))
899     {
900       emit_nop_for_unique_locus_between (a, b);
901       a_end = BB_END (a);
902     }
903 
904   /* Reassociate the insns of B with A.  */
905   if (!b_empty)
906     {
907       update_bb_for_insn_chain (a_end, b_debug_end, a);
908 
909       BB_END (a) = b_debug_end;
910       BB_HEAD (b) = NULL;
911     }
912   else if (b_end != b_debug_end)
913     {
914       /* Move any deleted labels and other notes between the end of A
915 	 and the debug insns that make up B after the debug insns,
916 	 bringing the debug insns into A while keeping the notes after
917 	 the end of A.  */
918       if (NEXT_INSN (a_end) != b_debug_start)
919 	reorder_insns_nobb (NEXT_INSN (a_end), PREV_INSN (b_debug_start),
920 			    b_debug_end);
921       update_bb_for_insn_chain (b_debug_start, b_debug_end, a);
922       BB_END (a) = b_debug_end;
923     }
924 
925   df_bb_delete (b->index);
926 
927   if (forward_edge_locus)
928     EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
929 
930   if (dump_file)
931     fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
932 }
933 
934 
935 /* Return true when block A and B can be merged.  */
936 
937 static bool
rtl_can_merge_blocks(basic_block a,basic_block b)938 rtl_can_merge_blocks (basic_block a, basic_block b)
939 {
940   /* If we are partitioning hot/cold basic blocks, we don't want to
941      mess up unconditional or indirect jumps that cross between hot
942      and cold sections.
943 
944      Basic block partitioning may result in some jumps that appear to
945      be optimizable (or blocks that appear to be mergeable), but which really
946      must be left untouched (they are required to make it safely across
947      partition boundaries).  See  the comments at the top of
948      bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
949 
950   if (BB_PARTITION (a) != BB_PARTITION (b))
951     return false;
952 
953   /* Protect the loop latches.  */
954   if (current_loops && b->loop_father->latch == b)
955     return false;
956 
957   /* There must be exactly one edge in between the blocks.  */
958   return (single_succ_p (a)
959 	  && single_succ (a) == b
960 	  && single_pred_p (b)
961 	  && a != b
962 	  /* Must be simple edge.  */
963 	  && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
964 	  && a->next_bb == b
965 	  && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
966 	  && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
967 	  /* If the jump insn has side effects,
968 	     we can't kill the edge.  */
969 	  && (!JUMP_P (BB_END (a))
970 	      || (reload_completed
971 		  ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
972 }
973 
974 /* Return the label in the head of basic block BLOCK.  Create one if it doesn't
975    exist.  */
976 
977 rtx_code_label *
block_label(basic_block block)978 block_label (basic_block block)
979 {
980   if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
981     return NULL;
982 
983   if (!LABEL_P (BB_HEAD (block)))
984     {
985       BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
986     }
987 
988   return as_a <rtx_code_label *> (BB_HEAD (block));
989 }
990 
991 /* Remove all barriers from BB_FOOTER of a BB.  */
992 
993 static void
remove_barriers_from_footer(basic_block bb)994 remove_barriers_from_footer (basic_block bb)
995 {
996   rtx_insn *insn = BB_FOOTER (bb);
997 
998   /* Remove barriers but keep jumptables.  */
999   while (insn)
1000     {
1001       if (BARRIER_P (insn))
1002 	{
1003 	  if (PREV_INSN (insn))
1004 	    SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1005 	  else
1006 	    BB_FOOTER (bb) = NEXT_INSN (insn);
1007 	  if (NEXT_INSN (insn))
1008 	    SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1009 	}
1010       if (LABEL_P (insn))
1011 	return;
1012       insn = NEXT_INSN (insn);
1013     }
1014 }
1015 
1016 /* Attempt to perform edge redirection by replacing possibly complex jump
1017    instruction by unconditional jump or removing jump completely.  This can
1018    apply only if all edges now point to the same block.  The parameters and
1019    return values are equivalent to redirect_edge_and_branch.  */
1020 
1021 edge
try_redirect_by_replacing_jump(edge e,basic_block target,bool in_cfglayout)1022 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
1023 {
1024   basic_block src = e->src;
1025   rtx_insn *insn = BB_END (src), *kill_from;
1026   rtx set;
1027   int fallthru = 0;
1028 
1029   /* If we are partitioning hot/cold basic blocks, we don't want to
1030      mess up unconditional or indirect jumps that cross between hot
1031      and cold sections.
1032 
1033      Basic block partitioning may result in some jumps that appear to
1034      be optimizable (or blocks that appear to be mergeable), but which really
1035      must be left untouched (they are required to make it safely across
1036      partition boundaries).  See  the comments at the top of
1037      bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
1038 
1039   if (BB_PARTITION (src) != BB_PARTITION (target))
1040     return NULL;
1041 
1042   /* We can replace or remove a complex jump only when we have exactly
1043      two edges.  Also, if we have exactly one outgoing edge, we can
1044      redirect that.  */
1045   if (EDGE_COUNT (src->succs) >= 3
1046       /* Verify that all targets will be TARGET.  Specifically, the
1047 	 edge that is not E must also go to TARGET.  */
1048       || (EDGE_COUNT (src->succs) == 2
1049 	  && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
1050     return NULL;
1051 
1052   if (!onlyjump_p (insn))
1053     return NULL;
1054   if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
1055     return NULL;
1056 
1057   /* Avoid removing branch with side effects.  */
1058   set = single_set (insn);
1059   if (!set || side_effects_p (set))
1060     return NULL;
1061 
1062   /* In case we zap a conditional jump, we'll need to kill
1063      the cc0 setter too.  */
1064   kill_from = insn;
1065   if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn))
1066       && only_sets_cc0_p (PREV_INSN (insn)))
1067     kill_from = PREV_INSN (insn);
1068 
1069   /* See if we can create the fallthru edge.  */
1070   if (in_cfglayout || can_fallthru (src, target))
1071     {
1072       if (dump_file)
1073 	fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
1074       fallthru = 1;
1075 
1076       /* Selectively unlink whole insn chain.  */
1077       if (in_cfglayout)
1078 	{
1079 	  delete_insn_chain (kill_from, BB_END (src), false);
1080 	  remove_barriers_from_footer (src);
1081 	}
1082       else
1083 	delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)),
1084 			   false);
1085     }
1086 
1087   /* If this already is simplejump, redirect it.  */
1088   else if (simplejump_p (insn))
1089     {
1090       if (e->dest == target)
1091 	return NULL;
1092       if (dump_file)
1093 	fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
1094 		 INSN_UID (insn), e->dest->index, target->index);
1095       if (!redirect_jump (as_a <rtx_jump_insn *> (insn),
1096 			  block_label (target), 0))
1097 	{
1098 	  gcc_assert (target == EXIT_BLOCK_PTR_FOR_FN (cfun));
1099 	  return NULL;
1100 	}
1101     }
1102 
1103   /* Cannot do anything for target exit block.  */
1104   else if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1105     return NULL;
1106 
1107   /* Or replace possibly complicated jump insn by simple jump insn.  */
1108   else
1109     {
1110       rtx_code_label *target_label = block_label (target);
1111       rtx_insn *barrier;
1112       rtx_insn *label;
1113       rtx_jump_table_data *table;
1114 
1115       emit_jump_insn_after_noloc (targetm.gen_jump (target_label), insn);
1116       JUMP_LABEL (BB_END (src)) = target_label;
1117       LABEL_NUSES (target_label)++;
1118       if (dump_file)
1119 	fprintf (dump_file, "Replacing insn %i by jump %i\n",
1120 		 INSN_UID (insn), INSN_UID (BB_END (src)));
1121 
1122 
1123       delete_insn_chain (kill_from, insn, false);
1124 
1125       /* Recognize a tablejump that we are converting to a
1126 	 simple jump and remove its associated CODE_LABEL
1127 	 and ADDR_VEC or ADDR_DIFF_VEC.  */
1128       if (tablejump_p (insn, &label, &table))
1129 	delete_insn_chain (label, table, false);
1130 
1131       barrier = next_nonnote_nondebug_insn (BB_END (src));
1132       if (!barrier || !BARRIER_P (barrier))
1133 	emit_barrier_after (BB_END (src));
1134       else
1135 	{
1136 	  if (barrier != NEXT_INSN (BB_END (src)))
1137 	    {
1138 	      /* Move the jump before barrier so that the notes
1139 		 which originally were or were created before jump table are
1140 		 inside the basic block.  */
1141 	      rtx_insn *new_insn = BB_END (src);
1142 
1143 	      update_bb_for_insn_chain (NEXT_INSN (BB_END (src)),
1144 				        PREV_INSN (barrier), src);
1145 
1146 	      SET_NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
1147 	      SET_PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
1148 
1149 	      SET_NEXT_INSN (new_insn) = barrier;
1150 	      SET_NEXT_INSN (PREV_INSN (barrier)) = new_insn;
1151 
1152 	      SET_PREV_INSN (new_insn) = PREV_INSN (barrier);
1153 	      SET_PREV_INSN (barrier) = new_insn;
1154 	    }
1155 	}
1156     }
1157 
1158   /* Keep only one edge out and set proper flags.  */
1159   if (!single_succ_p (src))
1160     remove_edge (e);
1161   gcc_assert (single_succ_p (src));
1162 
1163   e = single_succ_edge (src);
1164   if (fallthru)
1165     e->flags = EDGE_FALLTHRU;
1166   else
1167     e->flags = 0;
1168 
1169   e->probability = profile_probability::always ();
1170 
1171   if (e->dest != target)
1172     redirect_edge_succ (e, target);
1173   return e;
1174 }
1175 
1176 /* Subroutine of redirect_branch_edge that tries to patch the jump
1177    instruction INSN so that it reaches block NEW.  Do this
1178    only when it originally reached block OLD.  Return true if this
1179    worked or the original target wasn't OLD, return false if redirection
1180    doesn't work.  */
1181 
1182 static bool
patch_jump_insn(rtx_insn * insn,rtx_insn * old_label,basic_block new_bb)1183 patch_jump_insn (rtx_insn *insn, rtx_insn *old_label, basic_block new_bb)
1184 {
1185   rtx_jump_table_data *table;
1186   rtx tmp;
1187   /* Recognize a tablejump and adjust all matching cases.  */
1188   if (tablejump_p (insn, NULL, &table))
1189     {
1190       rtvec vec;
1191       int j;
1192       rtx_code_label *new_label = block_label (new_bb);
1193 
1194       if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1195 	return false;
1196       vec = table->get_labels ();
1197 
1198       for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1199 	if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
1200 	  {
1201 	    RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
1202 	    --LABEL_NUSES (old_label);
1203 	    ++LABEL_NUSES (new_label);
1204 	  }
1205 
1206       /* Handle casesi dispatch insns.  */
1207       if ((tmp = single_set (insn)) != NULL
1208 	  && SET_DEST (tmp) == pc_rtx
1209 	  && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1210 	  && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
1211 	  && label_ref_label (XEXP (SET_SRC (tmp), 2)) == old_label)
1212 	{
1213 	  XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
1214 						       new_label);
1215 	  --LABEL_NUSES (old_label);
1216 	  ++LABEL_NUSES (new_label);
1217 	}
1218     }
1219   else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
1220     {
1221       int i, n = ASM_OPERANDS_LABEL_LENGTH (tmp);
1222       rtx note;
1223 
1224       if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1225 	return false;
1226       rtx_code_label *new_label = block_label (new_bb);
1227 
1228       for (i = 0; i < n; ++i)
1229 	{
1230 	  rtx old_ref = ASM_OPERANDS_LABEL (tmp, i);
1231 	  gcc_assert (GET_CODE (old_ref) == LABEL_REF);
1232 	  if (XEXP (old_ref, 0) == old_label)
1233 	    {
1234 	      ASM_OPERANDS_LABEL (tmp, i)
1235 		= gen_rtx_LABEL_REF (Pmode, new_label);
1236 	      --LABEL_NUSES (old_label);
1237 	      ++LABEL_NUSES (new_label);
1238 	    }
1239 	}
1240 
1241       if (JUMP_LABEL (insn) == old_label)
1242 	{
1243 	  JUMP_LABEL (insn) = new_label;
1244 	  note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1245 	  if (note)
1246 	    remove_note (insn, note);
1247 	}
1248       else
1249 	{
1250 	  note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1251 	  if (note)
1252 	    remove_note (insn, note);
1253 	  if (JUMP_LABEL (insn) != new_label
1254 	      && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1255 	    add_reg_note (insn, REG_LABEL_TARGET, new_label);
1256 	}
1257       while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1258 	     != NULL_RTX)
1259 	XEXP (note, 0) = new_label;
1260     }
1261   else
1262     {
1263       /* ?? We may play the games with moving the named labels from
1264 	 one basic block to the other in case only one computed_jump is
1265 	 available.  */
1266       if (computed_jump_p (insn)
1267 	  /* A return instruction can't be redirected.  */
1268 	  || returnjump_p (insn))
1269 	return false;
1270 
1271       if (!currently_expanding_to_rtl || JUMP_LABEL (insn) == old_label)
1272 	{
1273 	  /* If the insn doesn't go where we think, we're confused.  */
1274 	  gcc_assert (JUMP_LABEL (insn) == old_label);
1275 
1276 	  /* If the substitution doesn't succeed, die.  This can happen
1277 	     if the back end emitted unrecognizable instructions or if
1278 	     target is exit block on some arches.  Or for crossing
1279 	     jumps.  */
1280 	  if (!redirect_jump (as_a <rtx_jump_insn *> (insn),
1281 			      block_label (new_bb), 0))
1282 	    {
1283 	      gcc_assert (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
1284 			  || CROSSING_JUMP_P (insn));
1285 	      return false;
1286 	    }
1287 	}
1288     }
1289   return true;
1290 }
1291 
1292 
1293 /* Redirect edge representing branch of (un)conditional jump or tablejump,
1294    NULL on failure  */
1295 static edge
redirect_branch_edge(edge e,basic_block target)1296 redirect_branch_edge (edge e, basic_block target)
1297 {
1298   rtx_insn *old_label = BB_HEAD (e->dest);
1299   basic_block src = e->src;
1300   rtx_insn *insn = BB_END (src);
1301 
1302   /* We can only redirect non-fallthru edges of jump insn.  */
1303   if (e->flags & EDGE_FALLTHRU)
1304     return NULL;
1305   else if (!JUMP_P (insn) && !currently_expanding_to_rtl)
1306     return NULL;
1307 
1308   if (!currently_expanding_to_rtl)
1309     {
1310       if (!patch_jump_insn (as_a <rtx_jump_insn *> (insn), old_label, target))
1311 	return NULL;
1312     }
1313   else
1314     /* When expanding this BB might actually contain multiple
1315        jumps (i.e. not yet split by find_many_sub_basic_blocks).
1316        Redirect all of those that match our label.  */
1317     FOR_BB_INSNS (src, insn)
1318       if (JUMP_P (insn) && !patch_jump_insn (as_a <rtx_jump_insn *> (insn),
1319 					     old_label, target))
1320 	return NULL;
1321 
1322   if (dump_file)
1323     fprintf (dump_file, "Edge %i->%i redirected to %i\n",
1324 	     e->src->index, e->dest->index, target->index);
1325 
1326   if (e->dest != target)
1327     e = redirect_edge_succ_nodup (e, target);
1328 
1329   return e;
1330 }
1331 
1332 /* Called when edge E has been redirected to a new destination,
1333    in order to update the region crossing flag on the edge and
1334    jump.  */
1335 
1336 static void
fixup_partition_crossing(edge e)1337 fixup_partition_crossing (edge e)
1338 {
1339   if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun) || e->dest
1340       == EXIT_BLOCK_PTR_FOR_FN (cfun))
1341     return;
1342   /* If we redirected an existing edge, it may already be marked
1343      crossing, even though the new src is missing a reg crossing note.
1344      But make sure reg crossing note doesn't already exist before
1345      inserting.  */
1346   if (BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1347     {
1348       e->flags |= EDGE_CROSSING;
1349       if (JUMP_P (BB_END (e->src)))
1350 	CROSSING_JUMP_P (BB_END (e->src)) = 1;
1351     }
1352   else if (BB_PARTITION (e->src) == BB_PARTITION (e->dest))
1353     {
1354       e->flags &= ~EDGE_CROSSING;
1355       /* Remove the section crossing note from jump at end of
1356          src if it exists, and if no other successors are
1357          still crossing.  */
1358       if (JUMP_P (BB_END (e->src)) && CROSSING_JUMP_P (BB_END (e->src)))
1359         {
1360           bool has_crossing_succ = false;
1361           edge e2;
1362           edge_iterator ei;
1363           FOR_EACH_EDGE (e2, ei, e->src->succs)
1364             {
1365               has_crossing_succ |= (e2->flags & EDGE_CROSSING);
1366               if (has_crossing_succ)
1367                 break;
1368             }
1369           if (!has_crossing_succ)
1370 	    CROSSING_JUMP_P (BB_END (e->src)) = 0;
1371         }
1372     }
1373 }
1374 
1375 /* Called when block BB has been reassigned to the cold partition,
1376    because it is now dominated by another cold block,
1377    to ensure that the region crossing attributes are updated.  */
1378 
1379 static void
fixup_new_cold_bb(basic_block bb)1380 fixup_new_cold_bb (basic_block bb)
1381 {
1382   edge e;
1383   edge_iterator ei;
1384 
1385   /* This is called when a hot bb is found to now be dominated
1386      by a cold bb and therefore needs to become cold. Therefore,
1387      its preds will no longer be region crossing. Any non-dominating
1388      preds that were previously hot would also have become cold
1389      in the caller for the same region. Any preds that were previously
1390      region-crossing will be adjusted in fixup_partition_crossing.  */
1391   FOR_EACH_EDGE (e, ei, bb->preds)
1392     {
1393       fixup_partition_crossing (e);
1394     }
1395 
1396   /* Possibly need to make bb's successor edges region crossing,
1397      or remove stale region crossing.  */
1398   FOR_EACH_EDGE (e, ei, bb->succs)
1399     {
1400       /* We can't have fall-through edges across partition boundaries.
1401          Note that force_nonfallthru will do any necessary partition
1402          boundary fixup by calling fixup_partition_crossing itself.  */
1403       if ((e->flags & EDGE_FALLTHRU)
1404           && BB_PARTITION (bb) != BB_PARTITION (e->dest)
1405 	  && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1406         force_nonfallthru (e);
1407       else
1408         fixup_partition_crossing (e);
1409     }
1410 }
1411 
1412 /* Attempt to change code to redirect edge E to TARGET.  Don't do that on
1413    expense of adding new instructions or reordering basic blocks.
1414 
1415    Function can be also called with edge destination equivalent to the TARGET.
1416    Then it should try the simplifications and do nothing if none is possible.
1417 
1418    Return edge representing the branch if transformation succeeded.  Return NULL
1419    on failure.
1420    We still return NULL in case E already destinated TARGET and we didn't
1421    managed to simplify instruction stream.  */
1422 
1423 static edge
rtl_redirect_edge_and_branch(edge e,basic_block target)1424 rtl_redirect_edge_and_branch (edge e, basic_block target)
1425 {
1426   edge ret;
1427   basic_block src = e->src;
1428   basic_block dest = e->dest;
1429 
1430   if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1431     return NULL;
1432 
1433   if (dest == target)
1434     return e;
1435 
1436   if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
1437     {
1438       df_set_bb_dirty (src);
1439       fixup_partition_crossing (ret);
1440       return ret;
1441     }
1442 
1443   ret = redirect_branch_edge (e, target);
1444   if (!ret)
1445     return NULL;
1446 
1447   df_set_bb_dirty (src);
1448   fixup_partition_crossing (ret);
1449   return ret;
1450 }
1451 
1452 /* Emit a barrier after BB, into the footer if we are in CFGLAYOUT mode.  */
1453 
1454 void
emit_barrier_after_bb(basic_block bb)1455 emit_barrier_after_bb (basic_block bb)
1456 {
1457   rtx_barrier *barrier = emit_barrier_after (BB_END (bb));
1458   gcc_assert (current_ir_type () == IR_RTL_CFGRTL
1459               || current_ir_type () == IR_RTL_CFGLAYOUT);
1460   if (current_ir_type () == IR_RTL_CFGLAYOUT)
1461     {
1462       rtx_insn *insn = unlink_insn_chain (barrier, barrier);
1463 
1464       if (BB_FOOTER (bb))
1465 	{
1466           rtx_insn *footer_tail = BB_FOOTER (bb);
1467 
1468           while (NEXT_INSN (footer_tail))
1469             footer_tail = NEXT_INSN (footer_tail);
1470           if (!BARRIER_P (footer_tail))
1471             {
1472               SET_NEXT_INSN (footer_tail) = insn;
1473               SET_PREV_INSN (insn) = footer_tail;
1474             }
1475 	}
1476       else
1477         BB_FOOTER (bb) = insn;
1478     }
1479 }
1480 
1481 /* Like force_nonfallthru below, but additionally performs redirection
1482    Used by redirect_edge_and_branch_force.  JUMP_LABEL is used only
1483    when redirecting to the EXIT_BLOCK, it is either ret_rtx or
1484    simple_return_rtx, indicating which kind of returnjump to create.
1485    It should be NULL otherwise.  */
1486 
1487 basic_block
force_nonfallthru_and_redirect(edge e,basic_block target,rtx jump_label)1488 force_nonfallthru_and_redirect (edge e, basic_block target, rtx jump_label)
1489 {
1490   basic_block jump_block, new_bb = NULL, src = e->src;
1491   rtx note;
1492   edge new_edge;
1493   int abnormal_edge_flags = 0;
1494   bool asm_goto_edge = false;
1495   int loc;
1496 
1497   /* In the case the last instruction is conditional jump to the next
1498      instruction, first redirect the jump itself and then continue
1499      by creating a basic block afterwards to redirect fallthru edge.  */
1500   if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1501       && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1502       && any_condjump_p (BB_END (e->src))
1503       && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1504     {
1505       rtx note;
1506       edge b = unchecked_make_edge (e->src, target, 0);
1507       bool redirected;
1508 
1509       redirected = redirect_jump (as_a <rtx_jump_insn *> (BB_END (e->src)),
1510 				  block_label (target), 0);
1511       gcc_assert (redirected);
1512 
1513       note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1514       if (note)
1515 	{
1516 	  int prob = XINT (note, 0);
1517 
1518 	  b->probability = profile_probability::from_reg_br_prob_note (prob);
1519 	  e->probability -= e->probability;
1520 	}
1521     }
1522 
1523   if (e->flags & EDGE_ABNORMAL)
1524     {
1525       /* Irritating special case - fallthru edge to the same block as abnormal
1526 	 edge.
1527 	 We can't redirect abnormal edge, but we still can split the fallthru
1528 	 one and create separate abnormal edge to original destination.
1529 	 This allows bb-reorder to make such edge non-fallthru.  */
1530       gcc_assert (e->dest == target);
1531       abnormal_edge_flags = e->flags & ~EDGE_FALLTHRU;
1532       e->flags &= EDGE_FALLTHRU;
1533     }
1534   else
1535     {
1536       gcc_assert (e->flags & EDGE_FALLTHRU);
1537       if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1538 	{
1539 	  /* We can't redirect the entry block.  Create an empty block
1540 	     at the start of the function which we use to add the new
1541 	     jump.  */
1542 	  edge tmp;
1543 	  edge_iterator ei;
1544 	  bool found = false;
1545 
1546 	  basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL,
1547 					       ENTRY_BLOCK_PTR_FOR_FN (cfun));
1548 	  bb->count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
1549 
1550 	  /* Make sure new block ends up in correct hot/cold section.  */
1551 	  BB_COPY_PARTITION (bb, e->dest);
1552 
1553 	  /* Change the existing edge's source to be the new block, and add
1554 	     a new edge from the entry block to the new block.  */
1555 	  e->src = bb;
1556 	  for (ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
1557 	       (tmp = ei_safe_edge (ei)); )
1558 	    {
1559 	      if (tmp == e)
1560 		{
1561 		  ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs->unordered_remove (ei.index);
1562 		  found = true;
1563 		  break;
1564 		}
1565 	      else
1566 		ei_next (&ei);
1567 	    }
1568 
1569 	  gcc_assert (found);
1570 
1571 	  vec_safe_push (bb->succs, e);
1572 	  make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb,
1573 				 EDGE_FALLTHRU);
1574 	}
1575     }
1576 
1577   /* If e->src ends with asm goto, see if any of the ASM_OPERANDS_LABELs
1578      don't point to the target or fallthru label.  */
1579   if (JUMP_P (BB_END (e->src))
1580       && target != EXIT_BLOCK_PTR_FOR_FN (cfun)
1581       && (e->flags & EDGE_FALLTHRU)
1582       && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
1583     {
1584       int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
1585       bool adjust_jump_target = false;
1586 
1587       for (i = 0; i < n; ++i)
1588 	{
1589 	  if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (e->dest))
1590 	    {
1591 	      LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))--;
1592 	      XEXP (ASM_OPERANDS_LABEL (note, i), 0) = block_label (target);
1593 	      LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))++;
1594 	      adjust_jump_target = true;
1595 	    }
1596 	  if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (target))
1597 	    asm_goto_edge = true;
1598 	}
1599       if (adjust_jump_target)
1600 	{
1601 	  rtx_insn *insn = BB_END (e->src);
1602 	  rtx note;
1603 	  rtx_insn *old_label = BB_HEAD (e->dest);
1604 	  rtx_insn *new_label = BB_HEAD (target);
1605 
1606 	  if (JUMP_LABEL (insn) == old_label)
1607 	    {
1608 	      JUMP_LABEL (insn) = new_label;
1609 	      note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1610 	      if (note)
1611 		remove_note (insn, note);
1612 	    }
1613 	  else
1614 	    {
1615 	      note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1616 	      if (note)
1617 		remove_note (insn, note);
1618 	      if (JUMP_LABEL (insn) != new_label
1619 		  && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1620 		add_reg_note (insn, REG_LABEL_TARGET, new_label);
1621 	    }
1622 	  while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1623 		 != NULL_RTX)
1624 	    XEXP (note, 0) = new_label;
1625 	}
1626     }
1627 
1628   if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags || asm_goto_edge)
1629     {
1630       rtx_insn *new_head;
1631       profile_count count = e->count ();
1632       profile_probability probability = e->probability;
1633       /* Create the new structures.  */
1634 
1635       /* If the old block ended with a tablejump, skip its table
1636 	 by searching forward from there.  Otherwise start searching
1637 	 forward from the last instruction of the old block.  */
1638       rtx_jump_table_data *table;
1639       if (tablejump_p (BB_END (e->src), NULL, &table))
1640 	new_head = table;
1641       else
1642 	new_head = BB_END (e->src);
1643       new_head = NEXT_INSN (new_head);
1644 
1645       jump_block = create_basic_block (new_head, NULL, e->src);
1646       jump_block->count = count;
1647 
1648       /* Make sure new block ends up in correct hot/cold section.  */
1649 
1650       BB_COPY_PARTITION (jump_block, e->src);
1651 
1652       /* Wire edge in.  */
1653       new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1654       new_edge->probability = probability;
1655 
1656       /* Redirect old edge.  */
1657       redirect_edge_pred (e, jump_block);
1658       e->probability = profile_probability::always ();
1659 
1660       /* If e->src was previously region crossing, it no longer is
1661          and the reg crossing note should be removed.  */
1662       fixup_partition_crossing (new_edge);
1663 
1664       /* If asm goto has any label refs to target's label,
1665 	 add also edge from asm goto bb to target.  */
1666       if (asm_goto_edge)
1667 	{
1668 	  new_edge->probability = new_edge->probability.apply_scale (1, 2);
1669 	  jump_block->count = jump_block->count.apply_scale (1, 2);
1670 	  edge new_edge2 = make_edge (new_edge->src, target,
1671 				      e->flags & ~EDGE_FALLTHRU);
1672 	  new_edge2->probability = probability - new_edge->probability;
1673 	}
1674 
1675       new_bb = jump_block;
1676     }
1677   else
1678     jump_block = e->src;
1679 
1680   loc = e->goto_locus;
1681   e->flags &= ~EDGE_FALLTHRU;
1682   if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1683     {
1684       if (jump_label == ret_rtx)
1685 	emit_jump_insn_after_setloc (targetm.gen_return (),
1686 				     BB_END (jump_block), loc);
1687       else
1688 	{
1689 	  gcc_assert (jump_label == simple_return_rtx);
1690 	  emit_jump_insn_after_setloc (targetm.gen_simple_return (),
1691 				       BB_END (jump_block), loc);
1692 	}
1693       set_return_jump_label (BB_END (jump_block));
1694     }
1695   else
1696     {
1697       rtx_code_label *label = block_label (target);
1698       emit_jump_insn_after_setloc (targetm.gen_jump (label),
1699 				   BB_END (jump_block), loc);
1700       JUMP_LABEL (BB_END (jump_block)) = label;
1701       LABEL_NUSES (label)++;
1702     }
1703 
1704   /* We might be in cfg layout mode, and if so, the following routine will
1705      insert the barrier correctly.  */
1706   emit_barrier_after_bb (jump_block);
1707   redirect_edge_succ_nodup (e, target);
1708 
1709   if (abnormal_edge_flags)
1710     make_edge (src, target, abnormal_edge_flags);
1711 
1712   df_mark_solutions_dirty ();
1713   fixup_partition_crossing (e);
1714   return new_bb;
1715 }
1716 
1717 /* Edge E is assumed to be fallthru edge.  Emit needed jump instruction
1718    (and possibly create new basic block) to make edge non-fallthru.
1719    Return newly created BB or NULL if none.  */
1720 
1721 static basic_block
rtl_force_nonfallthru(edge e)1722 rtl_force_nonfallthru (edge e)
1723 {
1724   return force_nonfallthru_and_redirect (e, e->dest, NULL_RTX);
1725 }
1726 
1727 /* Redirect edge even at the expense of creating new jump insn or
1728    basic block.  Return new basic block if created, NULL otherwise.
1729    Conversion must be possible.  */
1730 
1731 static basic_block
rtl_redirect_edge_and_branch_force(edge e,basic_block target)1732 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1733 {
1734   if (redirect_edge_and_branch (e, target)
1735       || e->dest == target)
1736     return NULL;
1737 
1738   /* In case the edge redirection failed, try to force it to be non-fallthru
1739      and redirect newly created simplejump.  */
1740   df_set_bb_dirty (e->src);
1741   return force_nonfallthru_and_redirect (e, target, NULL_RTX);
1742 }
1743 
1744 /* The given edge should potentially be a fallthru edge.  If that is in
1745    fact true, delete the jump and barriers that are in the way.  */
1746 
1747 static void
rtl_tidy_fallthru_edge(edge e)1748 rtl_tidy_fallthru_edge (edge e)
1749 {
1750   rtx_insn *q;
1751   basic_block b = e->src, c = b->next_bb;
1752 
1753   /* ??? In a late-running flow pass, other folks may have deleted basic
1754      blocks by nopping out blocks, leaving multiple BARRIERs between here
1755      and the target label. They ought to be chastised and fixed.
1756 
1757      We can also wind up with a sequence of undeletable labels between
1758      one block and the next.
1759 
1760      So search through a sequence of barriers, labels, and notes for
1761      the head of block C and assert that we really do fall through.  */
1762 
1763   for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1764     if (NONDEBUG_INSN_P (q))
1765       return;
1766 
1767   /* Remove what will soon cease being the jump insn from the source block.
1768      If block B consisted only of this single jump, turn it into a deleted
1769      note.  */
1770   q = BB_END (b);
1771   if (JUMP_P (q)
1772       && onlyjump_p (q)
1773       && (any_uncondjump_p (q)
1774 	  || single_succ_p (b)))
1775     {
1776       rtx_insn *label;
1777       rtx_jump_table_data *table;
1778 
1779       if (tablejump_p (q, &label, &table))
1780 	{
1781 	  /* The label is likely mentioned in some instruction before
1782 	     the tablejump and might not be DCEd, so turn it into
1783 	     a note instead and move before the tablejump that is going to
1784 	     be deleted.  */
1785 	  const char *name = LABEL_NAME (label);
1786 	  PUT_CODE (label, NOTE);
1787 	  NOTE_KIND (label) = NOTE_INSN_DELETED_LABEL;
1788 	  NOTE_DELETED_LABEL_NAME (label) = name;
1789 	  reorder_insns (label, label, PREV_INSN (q));
1790 	  delete_insn (table);
1791 	}
1792 
1793       /* If this was a conditional jump, we need to also delete
1794 	 the insn that set cc0.  */
1795       if (HAVE_cc0 && any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1796 	q = PREV_INSN (q);
1797 
1798       q = PREV_INSN (q);
1799     }
1800   /* Unconditional jumps with side-effects (i.e. which we can't just delete
1801      together with the barrier) should never have a fallthru edge.  */
1802   else if (JUMP_P (q) && any_uncondjump_p (q))
1803     return;
1804 
1805   /* Selectively unlink the sequence.  */
1806   if (q != PREV_INSN (BB_HEAD (c)))
1807     delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)), false);
1808 
1809   e->flags |= EDGE_FALLTHRU;
1810 }
1811 
1812 /* Should move basic block BB after basic block AFTER.  NIY.  */
1813 
1814 static bool
rtl_move_block_after(basic_block bb ATTRIBUTE_UNUSED,basic_block after ATTRIBUTE_UNUSED)1815 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1816 		      basic_block after ATTRIBUTE_UNUSED)
1817 {
1818   return false;
1819 }
1820 
1821 /* Locate the last bb in the same partition as START_BB.  */
1822 
1823 static basic_block
last_bb_in_partition(basic_block start_bb)1824 last_bb_in_partition (basic_block start_bb)
1825 {
1826   basic_block bb;
1827   FOR_BB_BETWEEN (bb, start_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1828     {
1829       if (BB_PARTITION (start_bb) != BB_PARTITION (bb->next_bb))
1830         return bb;
1831     }
1832   /* Return bb before the exit block.  */
1833   return bb->prev_bb;
1834 }
1835 
1836 /* Split a (typically critical) edge.  Return the new block.
1837    The edge must not be abnormal.
1838 
1839    ??? The code generally expects to be called on critical edges.
1840    The case of a block ending in an unconditional jump to a
1841    block with multiple predecessors is not handled optimally.  */
1842 
1843 static basic_block
rtl_split_edge(edge edge_in)1844 rtl_split_edge (edge edge_in)
1845 {
1846   basic_block bb, new_bb;
1847   rtx_insn *before;
1848 
1849   /* Abnormal edges cannot be split.  */
1850   gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1851 
1852   /* We are going to place the new block in front of edge destination.
1853      Avoid existence of fallthru predecessors.  */
1854   if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1855     {
1856       edge e = find_fallthru_edge (edge_in->dest->preds);
1857 
1858       if (e)
1859 	force_nonfallthru (e);
1860     }
1861 
1862   /* Create the basic block note.  */
1863   if (edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1864     before = BB_HEAD (edge_in->dest);
1865   else
1866     before = NULL;
1867 
1868   /* If this is a fall through edge to the exit block, the blocks might be
1869      not adjacent, and the right place is after the source.  */
1870   if ((edge_in->flags & EDGE_FALLTHRU)
1871       && edge_in->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1872     {
1873       before = NEXT_INSN (BB_END (edge_in->src));
1874       bb = create_basic_block (before, NULL, edge_in->src);
1875       BB_COPY_PARTITION (bb, edge_in->src);
1876     }
1877   else
1878     {
1879       if (edge_in->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1880         {
1881           bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1882           BB_COPY_PARTITION (bb, edge_in->dest);
1883         }
1884       else
1885         {
1886           basic_block after = edge_in->dest->prev_bb;
1887           /* If this is post-bb reordering, and the edge crosses a partition
1888              boundary, the new block needs to be inserted in the bb chain
1889              at the end of the src partition (since we put the new bb into
1890              that partition, see below). Otherwise we may end up creating
1891              an extra partition crossing in the chain, which is illegal.
1892              It can't go after the src, because src may have a fall-through
1893              to a different block.  */
1894           if (crtl->bb_reorder_complete
1895               && (edge_in->flags & EDGE_CROSSING))
1896             {
1897               after = last_bb_in_partition (edge_in->src);
1898               before = get_last_bb_insn (after);
1899               /* The instruction following the last bb in partition should
1900                  be a barrier, since it cannot end in a fall-through.  */
1901               gcc_checking_assert (BARRIER_P (before));
1902               before = NEXT_INSN (before);
1903             }
1904           bb = create_basic_block (before, NULL, after);
1905           /* Put the split bb into the src partition, to avoid creating
1906              a situation where a cold bb dominates a hot bb, in the case
1907              where src is cold and dest is hot. The src will dominate
1908              the new bb (whereas it might not have dominated dest).  */
1909           BB_COPY_PARTITION (bb, edge_in->src);
1910         }
1911     }
1912 
1913   make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1914 
1915   /* Can't allow a region crossing edge to be fallthrough.  */
1916   if (BB_PARTITION (bb) != BB_PARTITION (edge_in->dest)
1917       && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1918     {
1919       new_bb = force_nonfallthru (single_succ_edge (bb));
1920       gcc_assert (!new_bb);
1921     }
1922 
1923   /* For non-fallthru edges, we must adjust the predecessor's
1924      jump instruction to target our new block.  */
1925   if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1926     {
1927       edge redirected = redirect_edge_and_branch (edge_in, bb);
1928       gcc_assert (redirected);
1929     }
1930   else
1931     {
1932       if (edge_in->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1933 	{
1934 	  /* For asm goto even splitting of fallthru edge might
1935 	     need insn patching, as other labels might point to the
1936 	     old label.  */
1937 	  rtx_insn *last = BB_END (edge_in->src);
1938 	  if (last
1939 	      && JUMP_P (last)
1940 	      && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1941 	      && (extract_asm_operands (PATTERN (last))
1942 		  || JUMP_LABEL (last) == before)
1943 	      && patch_jump_insn (last, before, bb))
1944 	    df_set_bb_dirty (edge_in->src);
1945 	}
1946       redirect_edge_succ (edge_in, bb);
1947     }
1948 
1949   return bb;
1950 }
1951 
1952 /* Queue instructions for insertion on an edge between two basic blocks.
1953    The new instructions and basic blocks (if any) will not appear in the
1954    CFG until commit_edge_insertions is called.  */
1955 
1956 void
insert_insn_on_edge(rtx pattern,edge e)1957 insert_insn_on_edge (rtx pattern, edge e)
1958 {
1959   /* We cannot insert instructions on an abnormal critical edge.
1960      It will be easier to find the culprit if we die now.  */
1961   gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1962 
1963   if (e->insns.r == NULL_RTX)
1964     start_sequence ();
1965   else
1966     push_to_sequence (e->insns.r);
1967 
1968   emit_insn (pattern);
1969 
1970   e->insns.r = get_insns ();
1971   end_sequence ();
1972 }
1973 
1974 /* Update the CFG for the instructions queued on edge E.  */
1975 
1976 void
commit_one_edge_insertion(edge e)1977 commit_one_edge_insertion (edge e)
1978 {
1979   rtx_insn *before = NULL, *after = NULL, *insns, *tmp, *last;
1980   basic_block bb;
1981 
1982   /* Pull the insns off the edge now since the edge might go away.  */
1983   insns = e->insns.r;
1984   e->insns.r = NULL;
1985 
1986   /* Figure out where to put these insns.  If the destination has
1987      one predecessor, insert there.  Except for the exit block.  */
1988   if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1989     {
1990       bb = e->dest;
1991 
1992       /* Get the location correct wrt a code label, and "nice" wrt
1993 	 a basic block note, and before everything else.  */
1994       tmp = BB_HEAD (bb);
1995       if (LABEL_P (tmp))
1996 	tmp = NEXT_INSN (tmp);
1997       if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1998 	tmp = NEXT_INSN (tmp);
1999       if (tmp == BB_HEAD (bb))
2000 	before = tmp;
2001       else if (tmp)
2002 	after = PREV_INSN (tmp);
2003       else
2004 	after = get_last_insn ();
2005     }
2006 
2007   /* If the source has one successor and the edge is not abnormal,
2008      insert there.  Except for the entry block.
2009      Don't do this if the predecessor ends in a jump other than
2010      unconditional simple jump.  E.g. for asm goto that points all
2011      its labels at the fallthru basic block, we can't insert instructions
2012      before the asm goto, as the asm goto can have various of side effects,
2013      and can't emit instructions after the asm goto, as it must end
2014      the basic block.  */
2015   else if ((e->flags & EDGE_ABNORMAL) == 0
2016 	   && single_succ_p (e->src)
2017 	   && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2018 	   && (!JUMP_P (BB_END (e->src))
2019 	       || simplejump_p (BB_END (e->src))))
2020     {
2021       bb = e->src;
2022 
2023       /* It is possible to have a non-simple jump here.  Consider a target
2024 	 where some forms of unconditional jumps clobber a register.  This
2025 	 happens on the fr30 for example.
2026 
2027 	 We know this block has a single successor, so we can just emit
2028 	 the queued insns before the jump.  */
2029       if (JUMP_P (BB_END (bb)))
2030 	before = BB_END (bb);
2031       else
2032 	{
2033 	  /* We'd better be fallthru, or we've lost track of what's what.  */
2034 	  gcc_assert (e->flags & EDGE_FALLTHRU);
2035 
2036 	  after = BB_END (bb);
2037 	}
2038     }
2039 
2040   /* Otherwise we must split the edge.  */
2041   else
2042     {
2043       bb = split_edge (e);
2044 
2045       /* If E crossed a partition boundary, we needed to make bb end in
2046          a region-crossing jump, even though it was originally fallthru.  */
2047       if (JUMP_P (BB_END (bb)))
2048 	before = BB_END (bb);
2049       else
2050         after = BB_END (bb);
2051     }
2052 
2053   /* Now that we've found the spot, do the insertion.  */
2054   if (before)
2055     {
2056       emit_insn_before_noloc (insns, before, bb);
2057       last = prev_nonnote_insn (before);
2058     }
2059   else
2060     last = emit_insn_after_noloc (insns, after, bb);
2061 
2062   if (returnjump_p (last))
2063     {
2064       /* ??? Remove all outgoing edges from BB and add one for EXIT.
2065 	 This is not currently a problem because this only happens
2066 	 for the (single) epilogue, which already has a fallthru edge
2067 	 to EXIT.  */
2068 
2069       e = single_succ_edge (bb);
2070       gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2071 		  && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
2072 
2073       e->flags &= ~EDGE_FALLTHRU;
2074       emit_barrier_after (last);
2075 
2076       if (before)
2077 	delete_insn (before);
2078     }
2079   else
2080     gcc_assert (!JUMP_P (last));
2081 }
2082 
2083 /* Update the CFG for all queued instructions.  */
2084 
2085 void
commit_edge_insertions(void)2086 commit_edge_insertions (void)
2087 {
2088   basic_block bb;
2089 
2090   /* Optimization passes that invoke this routine can cause hot blocks
2091      previously reached by both hot and cold blocks to become dominated only
2092      by cold blocks. This will cause the verification below to fail,
2093      and lead to now cold code in the hot section. In some cases this
2094      may only be visible after newly unreachable blocks are deleted,
2095      which will be done by fixup_partitions.  */
2096   fixup_partitions ();
2097 
2098   checking_verify_flow_info ();
2099 
2100   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
2101 		  EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
2102     {
2103       edge e;
2104       edge_iterator ei;
2105 
2106       FOR_EACH_EDGE (e, ei, bb->succs)
2107 	if (e->insns.r)
2108 	  commit_one_edge_insertion (e);
2109     }
2110 }
2111 
2112 
2113 /* Print out RTL-specific basic block information (live information
2114    at start and end with TDF_DETAILS).  FLAGS are the TDF_* masks
2115    documented in dumpfile.h.  */
2116 
2117 static void
rtl_dump_bb(FILE * outf,basic_block bb,int indent,dump_flags_t flags)2118 rtl_dump_bb (FILE *outf, basic_block bb, int indent, dump_flags_t flags)
2119 {
2120   char *s_indent;
2121 
2122   s_indent = (char *) alloca ((size_t) indent + 1);
2123   memset (s_indent, ' ', (size_t) indent);
2124   s_indent[indent] = '\0';
2125 
2126   if (df && (flags & TDF_DETAILS))
2127     {
2128       df_dump_top (bb, outf);
2129       putc ('\n', outf);
2130     }
2131 
2132   if (bb->index != ENTRY_BLOCK && bb->index != EXIT_BLOCK)
2133     {
2134       rtx_insn *last = BB_END (bb);
2135       if (last)
2136 	last = NEXT_INSN (last);
2137       for (rtx_insn *insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
2138 	{
2139 	  if (flags & TDF_DETAILS)
2140 	    df_dump_insn_top (insn, outf);
2141 	  if (! (flags & TDF_SLIM))
2142 	    print_rtl_single (outf, insn);
2143 	  else
2144 	    dump_insn_slim (outf, insn);
2145 	  if (flags & TDF_DETAILS)
2146 	    df_dump_insn_bottom (insn, outf);
2147 	}
2148     }
2149 
2150   if (df && (flags & TDF_DETAILS))
2151     {
2152       df_dump_bottom (bb, outf);
2153       putc ('\n', outf);
2154     }
2155 
2156 }
2157 
2158 /* Like dump_function_to_file, but for RTL.  Print out dataflow information
2159    for the start of each basic block.  FLAGS are the TDF_* masks documented
2160    in dumpfile.h.  */
2161 
2162 void
print_rtl_with_bb(FILE * outf,const rtx_insn * rtx_first,dump_flags_t flags)2163 print_rtl_with_bb (FILE *outf, const rtx_insn *rtx_first, dump_flags_t flags)
2164 {
2165   const rtx_insn *tmp_rtx;
2166   if (rtx_first == 0)
2167     fprintf (outf, "(nil)\n");
2168   else
2169     {
2170       enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
2171       int max_uid = get_max_uid ();
2172       basic_block *start = XCNEWVEC (basic_block, max_uid);
2173       basic_block *end = XCNEWVEC (basic_block, max_uid);
2174       enum bb_state *in_bb_p = XCNEWVEC (enum bb_state, max_uid);
2175       basic_block bb;
2176 
2177       /* After freeing the CFG, we still have BLOCK_FOR_INSN set on most
2178 	 insns, but the CFG is not maintained so the basic block info
2179 	 is not reliable.  Therefore it's omitted from the dumps.  */
2180       if (! (cfun->curr_properties & PROP_cfg))
2181         flags &= ~TDF_BLOCKS;
2182 
2183       if (df)
2184 	df_dump_start (outf);
2185 
2186       if (flags & TDF_BLOCKS)
2187 	{
2188 	  FOR_EACH_BB_REVERSE_FN (bb, cfun)
2189 	    {
2190 	      rtx_insn *x;
2191 
2192 	      start[INSN_UID (BB_HEAD (bb))] = bb;
2193 	      end[INSN_UID (BB_END (bb))] = bb;
2194 	      for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
2195 		{
2196 		  enum bb_state state = IN_MULTIPLE_BB;
2197 
2198 		  if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
2199 		    state = IN_ONE_BB;
2200 		  in_bb_p[INSN_UID (x)] = state;
2201 
2202 		  if (x == BB_END (bb))
2203 		    break;
2204 		}
2205 	    }
2206 	}
2207 
2208       for (tmp_rtx = rtx_first; tmp_rtx != NULL; tmp_rtx = NEXT_INSN (tmp_rtx))
2209 	{
2210 	  if (flags & TDF_BLOCKS)
2211 	    {
2212 	      bb = start[INSN_UID (tmp_rtx)];
2213 	      if (bb != NULL)
2214 		{
2215 		  dump_bb_info (outf, bb, 0, dump_flags, true, false);
2216 		  if (df && (flags & TDF_DETAILS))
2217 		    df_dump_top (bb, outf);
2218 		}
2219 
2220 	      if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
2221 		  && !NOTE_P (tmp_rtx)
2222 		  && !BARRIER_P (tmp_rtx))
2223 		fprintf (outf, ";; Insn is not within a basic block\n");
2224 	      else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
2225 		fprintf (outf, ";; Insn is in multiple basic blocks\n");
2226 	    }
2227 
2228 	  if (flags & TDF_DETAILS)
2229 	    df_dump_insn_top (tmp_rtx, outf);
2230 	  if (! (flags & TDF_SLIM))
2231 	    print_rtl_single (outf, tmp_rtx);
2232 	  else
2233 	    dump_insn_slim (outf, tmp_rtx);
2234 	  if (flags & TDF_DETAILS)
2235 	    df_dump_insn_bottom (tmp_rtx, outf);
2236 
2237 	  if (flags & TDF_BLOCKS)
2238 	    {
2239 	      bb = end[INSN_UID (tmp_rtx)];
2240 	      if (bb != NULL)
2241 		{
2242 		  dump_bb_info (outf, bb, 0, dump_flags, false, true);
2243 		  if (df && (flags & TDF_DETAILS))
2244 		    df_dump_bottom (bb, outf);
2245 		  putc ('\n', outf);
2246 		}
2247 	    }
2248 	}
2249 
2250       free (start);
2251       free (end);
2252       free (in_bb_p);
2253     }
2254 }
2255 
2256 /* Update the branch probability of BB if a REG_BR_PROB is present.  */
2257 
2258 void
update_br_prob_note(basic_block bb)2259 update_br_prob_note (basic_block bb)
2260 {
2261   rtx note;
2262   note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
2263   if (!JUMP_P (BB_END (bb)) || !BRANCH_EDGE (bb)->probability.initialized_p ())
2264     {
2265       if (note)
2266 	{
2267 	  rtx *note_link, this_rtx;
2268 
2269 	  note_link = &REG_NOTES (BB_END (bb));
2270 	  for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
2271 	    if (this_rtx == note)
2272 	      {
2273 		*note_link = XEXP (this_rtx, 1);
2274 		break;
2275 	      }
2276 	}
2277       return;
2278     }
2279   if (!note
2280       || XINT (note, 0) == BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ())
2281     return;
2282   XINT (note, 0) = BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ();
2283 }
2284 
2285 /* Get the last insn associated with block BB (that includes barriers and
2286    tablejumps after BB).  */
2287 rtx_insn *
get_last_bb_insn(basic_block bb)2288 get_last_bb_insn (basic_block bb)
2289 {
2290   rtx_jump_table_data *table;
2291   rtx_insn *tmp;
2292   rtx_insn *end = BB_END (bb);
2293 
2294   /* Include any jump table following the basic block.  */
2295   if (tablejump_p (end, NULL, &table))
2296     end = table;
2297 
2298   /* Include any barriers that may follow the basic block.  */
2299   tmp = next_nonnote_nondebug_insn_bb (end);
2300   while (tmp && BARRIER_P (tmp))
2301     {
2302       end = tmp;
2303       tmp = next_nonnote_nondebug_insn_bb (end);
2304     }
2305 
2306   return end;
2307 }
2308 
2309 /* Add all BBs reachable from entry via hot paths into the SET.  */
2310 
2311 void
find_bbs_reachable_by_hot_paths(hash_set<basic_block> * set)2312 find_bbs_reachable_by_hot_paths (hash_set<basic_block> *set)
2313 {
2314   auto_vec<basic_block, 64> worklist;
2315 
2316   set->add (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2317   worklist.safe_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2318 
2319   while (worklist.length () > 0)
2320     {
2321       basic_block bb = worklist.pop ();
2322       edge_iterator ei;
2323       edge e;
2324 
2325       FOR_EACH_EDGE (e, ei, bb->succs)
2326 	if (BB_PARTITION (e->dest) != BB_COLD_PARTITION
2327 	    && !set->add (e->dest))
2328 	  worklist.safe_push (e->dest);
2329     }
2330 }
2331 
2332 /* Sanity check partition hotness to ensure that basic blocks in
2333    the cold partition don't dominate basic blocks in the hot partition.
2334    If FLAG_ONLY is true, report violations as errors. Otherwise
2335    re-mark the dominated blocks as cold, since this is run after
2336    cfg optimizations that may make hot blocks previously reached
2337    by both hot and cold blocks now only reachable along cold paths.  */
2338 
2339 static vec<basic_block>
find_partition_fixes(bool flag_only)2340 find_partition_fixes (bool flag_only)
2341 {
2342   basic_block bb;
2343   vec<basic_block> bbs_in_cold_partition = vNULL;
2344   vec<basic_block> bbs_to_fix = vNULL;
2345   hash_set<basic_block> set;
2346 
2347   /* Callers check this.  */
2348   gcc_checking_assert (crtl->has_bb_partition);
2349 
2350   find_bbs_reachable_by_hot_paths (&set);
2351 
2352   FOR_EACH_BB_FN (bb, cfun)
2353     if (!set.contains (bb)
2354 	&& BB_PARTITION (bb) != BB_COLD_PARTITION)
2355       {
2356 	if (flag_only)
2357 	  error ("non-cold basic block %d reachable only "
2358 		 "by paths crossing the cold partition", bb->index);
2359 	else
2360 	  BB_SET_PARTITION (bb, BB_COLD_PARTITION);
2361 	bbs_to_fix.safe_push (bb);
2362 	bbs_in_cold_partition.safe_push (bb);
2363       }
2364 
2365   return bbs_to_fix;
2366 }
2367 
2368 /* Perform cleanup on the hot/cold bb partitioning after optimization
2369    passes that modify the cfg.  */
2370 
2371 void
fixup_partitions(void)2372 fixup_partitions (void)
2373 {
2374   basic_block bb;
2375 
2376   if (!crtl->has_bb_partition)
2377     return;
2378 
2379   /* Delete any blocks that became unreachable and weren't
2380      already cleaned up, for example during edge forwarding
2381      and convert_jumps_to_returns. This will expose more
2382      opportunities for fixing the partition boundaries here.
2383      Also, the calculation of the dominance graph during verification
2384      will assert if there are unreachable nodes.  */
2385   delete_unreachable_blocks ();
2386 
2387   /* If there are partitions, do a sanity check on them: A basic block in
2388      a cold partition cannot dominate a basic block in a hot partition.
2389      Fixup any that now violate this requirement, as a result of edge
2390      forwarding and unreachable block deletion.  */
2391   vec<basic_block> bbs_to_fix = find_partition_fixes (false);
2392 
2393   /* Do the partition fixup after all necessary blocks have been converted to
2394      cold, so that we only update the region crossings the minimum number of
2395      places, which can require forcing edges to be non fallthru.  */
2396   while (! bbs_to_fix.is_empty ())
2397     {
2398       bb = bbs_to_fix.pop ();
2399       fixup_new_cold_bb (bb);
2400     }
2401 }
2402 
2403 /* Verify, in the basic block chain, that there is at most one switch
2404    between hot/cold partitions. This condition will not be true until
2405    after reorder_basic_blocks is called.  */
2406 
2407 static int
verify_hot_cold_block_grouping(void)2408 verify_hot_cold_block_grouping (void)
2409 {
2410   basic_block bb;
2411   int err = 0;
2412   bool switched_sections = false;
2413   int current_partition = BB_UNPARTITIONED;
2414 
2415   /* Even after bb reordering is complete, we go into cfglayout mode
2416      again (in compgoto). Ensure we don't call this before going back
2417      into linearized RTL when any layout fixes would have been committed.  */
2418   if (!crtl->bb_reorder_complete
2419       || current_ir_type () != IR_RTL_CFGRTL)
2420     return err;
2421 
2422   FOR_EACH_BB_FN (bb, cfun)
2423     {
2424       if (current_partition != BB_UNPARTITIONED
2425           && BB_PARTITION (bb) != current_partition)
2426 	{
2427 	  if (switched_sections)
2428 	    {
2429 	      error ("multiple hot/cold transitions found (bb %i)",
2430 		     bb->index);
2431 	      err = 1;
2432 	    }
2433 	  else
2434             switched_sections = true;
2435 
2436           if (!crtl->has_bb_partition)
2437             error ("partition found but function partition flag not set");
2438 	}
2439       current_partition = BB_PARTITION (bb);
2440     }
2441 
2442   return err;
2443 }
2444 
2445 
2446 /* Perform several checks on the edges out of each block, such as
2447    the consistency of the branch probabilities, the correctness
2448    of hot/cold partition crossing edges, and the number of expected
2449    successor edges.  Also verify that the dominance relationship
2450    between hot/cold blocks is sane.  */
2451 
2452 static int
rtl_verify_edges(void)2453 rtl_verify_edges (void)
2454 {
2455   int err = 0;
2456   basic_block bb;
2457 
2458   FOR_EACH_BB_REVERSE_FN (bb, cfun)
2459     {
2460       int n_fallthru = 0, n_branch = 0, n_abnormal_call = 0, n_sibcall = 0;
2461       int n_eh = 0, n_abnormal = 0;
2462       edge e, fallthru = NULL;
2463       edge_iterator ei;
2464       rtx note;
2465       bool has_crossing_edge = false;
2466 
2467       if (JUMP_P (BB_END (bb))
2468 	  && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
2469 	  && EDGE_COUNT (bb->succs) >= 2
2470 	  && any_condjump_p (BB_END (bb)))
2471 	{
2472 	  if (!BRANCH_EDGE (bb)->probability.initialized_p ())
2473 	    {
2474 	      if (profile_status_for_fn (cfun) != PROFILE_ABSENT)
2475 		{
2476 		  error ("verify_flow_info: "
2477 			 "REG_BR_PROB is set but cfg probability is not");
2478 		  err = 1;
2479 		}
2480 	    }
2481 	  else if (XINT (note, 0)
2482 	           != BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ()
2483 	           && profile_status_for_fn (cfun) != PROFILE_ABSENT)
2484 	    {
2485 	      error ("verify_flow_info: REG_BR_PROB does not match cfg %i %i",
2486 		     XINT (note, 0),
2487 		     BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ());
2488 	      err = 1;
2489 	    }
2490 	}
2491 
2492       FOR_EACH_EDGE (e, ei, bb->succs)
2493 	{
2494 	  bool is_crossing;
2495 
2496 	  if (e->flags & EDGE_FALLTHRU)
2497 	    n_fallthru++, fallthru = e;
2498 
2499 	  is_crossing = (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
2500 			 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2501 			 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun));
2502           has_crossing_edge |= is_crossing;
2503 	  if (e->flags & EDGE_CROSSING)
2504 	    {
2505 	      if (!is_crossing)
2506 		{
2507 		  error ("EDGE_CROSSING incorrectly set across same section");
2508 		  err = 1;
2509 		}
2510 	      if (e->flags & EDGE_FALLTHRU)
2511 		{
2512 		  error ("fallthru edge crosses section boundary in bb %i",
2513 			 e->src->index);
2514 		  err = 1;
2515 		}
2516 	      if (e->flags & EDGE_EH)
2517 		{
2518 		  error ("EH edge crosses section boundary in bb %i",
2519 			 e->src->index);
2520 		  err = 1;
2521 		}
2522               if (JUMP_P (BB_END (bb)) && !CROSSING_JUMP_P (BB_END (bb)))
2523 		{
2524 		  error ("No region crossing jump at section boundary in bb %i",
2525 			 bb->index);
2526 		  err = 1;
2527 		}
2528 	    }
2529 	  else if (is_crossing)
2530 	    {
2531 	      error ("EDGE_CROSSING missing across section boundary");
2532 	      err = 1;
2533 	    }
2534 
2535 	  if ((e->flags & ~(EDGE_DFS_BACK
2536 			    | EDGE_CAN_FALLTHRU
2537 			    | EDGE_IRREDUCIBLE_LOOP
2538 			    | EDGE_LOOP_EXIT
2539 			    | EDGE_CROSSING
2540 			    | EDGE_PRESERVE)) == 0)
2541 	    n_branch++;
2542 
2543 	  if (e->flags & EDGE_ABNORMAL_CALL)
2544 	    n_abnormal_call++;
2545 
2546 	  if (e->flags & EDGE_SIBCALL)
2547 	    n_sibcall++;
2548 
2549 	  if (e->flags & EDGE_EH)
2550 	    n_eh++;
2551 
2552 	  if (e->flags & EDGE_ABNORMAL)
2553 	    n_abnormal++;
2554 	}
2555 
2556       if (!has_crossing_edge
2557 	  && JUMP_P (BB_END (bb))
2558 	  && CROSSING_JUMP_P (BB_END (bb)))
2559 	{
2560 	  print_rtl_with_bb (stderr, get_insns (), TDF_BLOCKS | TDF_DETAILS);
2561 	  error ("Region crossing jump across same section in bb %i",
2562 		 bb->index);
2563 	  err = 1;
2564 	}
2565 
2566       if (n_eh && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
2567 	{
2568 	  error ("missing REG_EH_REGION note at the end of bb %i", bb->index);
2569 	  err = 1;
2570 	}
2571       if (n_eh > 1)
2572 	{
2573 	  error ("too many exception handling edges in bb %i", bb->index);
2574 	  err = 1;
2575 	}
2576       if (n_branch
2577 	  && (!JUMP_P (BB_END (bb))
2578 	      || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
2579 				   || any_condjump_p (BB_END (bb))))))
2580 	{
2581 	  error ("too many outgoing branch edges from bb %i", bb->index);
2582 	  err = 1;
2583 	}
2584       if (n_fallthru && any_uncondjump_p (BB_END (bb)))
2585 	{
2586 	  error ("fallthru edge after unconditional jump in bb %i", bb->index);
2587 	  err = 1;
2588 	}
2589       if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
2590 	{
2591 	  error ("wrong number of branch edges after unconditional jump"
2592 		 " in bb %i", bb->index);
2593 	  err = 1;
2594 	}
2595       if (n_branch != 1 && any_condjump_p (BB_END (bb))
2596 	  && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
2597 	{
2598 	  error ("wrong amount of branch edges after conditional jump"
2599 		 " in bb %i", bb->index);
2600 	  err = 1;
2601 	}
2602       if (n_abnormal_call && !CALL_P (BB_END (bb)))
2603 	{
2604 	  error ("abnormal call edges for non-call insn in bb %i", bb->index);
2605 	  err = 1;
2606 	}
2607       if (n_sibcall && !CALL_P (BB_END (bb)))
2608 	{
2609 	  error ("sibcall edges for non-call insn in bb %i", bb->index);
2610 	  err = 1;
2611 	}
2612       if (n_abnormal > n_eh
2613 	  && !(CALL_P (BB_END (bb))
2614 	       && n_abnormal == n_abnormal_call + n_sibcall)
2615 	  && (!JUMP_P (BB_END (bb))
2616 	      || any_condjump_p (BB_END (bb))
2617 	      || any_uncondjump_p (BB_END (bb))))
2618 	{
2619 	  error ("abnormal edges for no purpose in bb %i", bb->index);
2620 	  err = 1;
2621 	}
2622 
2623       int has_eh = -1;
2624       FOR_EACH_EDGE (e, ei, bb->preds)
2625 	{
2626 	  if (has_eh == -1)
2627 	    has_eh = (e->flags & EDGE_EH);
2628 	  if ((e->flags & EDGE_EH) == has_eh)
2629 	    continue;
2630 	  error ("EH incoming edge mixed with non-EH incoming edges "
2631 		 "in bb %i", bb->index);
2632 	  err = 1;
2633 	  break;
2634 	}
2635     }
2636 
2637   /* If there are partitions, do a sanity check on them: A basic block in
2638      a cold partition cannot dominate a basic block in a hot partition.  */
2639   if (crtl->has_bb_partition && !err
2640       && current_ir_type () == IR_RTL_CFGLAYOUT)
2641     {
2642       vec<basic_block> bbs_to_fix = find_partition_fixes (true);
2643       err = !bbs_to_fix.is_empty ();
2644     }
2645 
2646   /* Clean up.  */
2647   return err;
2648 }
2649 
2650 /* Checks on the instructions within blocks. Currently checks that each
2651    block starts with a basic block note, and that basic block notes and
2652    control flow jumps are not found in the middle of the block.  */
2653 
2654 static int
rtl_verify_bb_insns(void)2655 rtl_verify_bb_insns (void)
2656 {
2657   rtx_insn *x;
2658   int err = 0;
2659   basic_block bb;
2660 
2661   FOR_EACH_BB_REVERSE_FN (bb, cfun)
2662     {
2663       /* Now check the header of basic
2664 	 block.  It ought to contain optional CODE_LABEL followed
2665 	 by NOTE_BASIC_BLOCK.  */
2666       x = BB_HEAD (bb);
2667       if (LABEL_P (x))
2668 	{
2669 	  if (BB_END (bb) == x)
2670 	    {
2671 	      error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2672 		     bb->index);
2673 	      err = 1;
2674 	    }
2675 
2676 	  x = NEXT_INSN (x);
2677 	}
2678 
2679       if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
2680 	{
2681 	  error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2682 		 bb->index);
2683 	  err = 1;
2684 	}
2685 
2686       if (BB_END (bb) == x)
2687 	/* Do checks for empty blocks here.  */
2688 	;
2689       else
2690 	for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
2691 	  {
2692 	    if (NOTE_INSN_BASIC_BLOCK_P (x))
2693 	      {
2694 		error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
2695 		       INSN_UID (x), bb->index);
2696 		err = 1;
2697 	      }
2698 
2699 	    if (x == BB_END (bb))
2700 	      break;
2701 
2702 	    if (control_flow_insn_p (x))
2703 	      {
2704 		error ("in basic block %d:", bb->index);
2705 		fatal_insn ("flow control insn inside a basic block", x);
2706 	      }
2707 	  }
2708     }
2709 
2710   /* Clean up.  */
2711   return err;
2712 }
2713 
2714 /* Verify that block pointers for instructions in basic blocks, headers and
2715    footers are set appropriately.  */
2716 
2717 static int
rtl_verify_bb_pointers(void)2718 rtl_verify_bb_pointers (void)
2719 {
2720   int err = 0;
2721   basic_block bb;
2722 
2723   /* Check the general integrity of the basic blocks.  */
2724   FOR_EACH_BB_REVERSE_FN (bb, cfun)
2725     {
2726       rtx_insn *insn;
2727 
2728       if (!(bb->flags & BB_RTL))
2729 	{
2730 	  error ("BB_RTL flag not set for block %d", bb->index);
2731 	  err = 1;
2732 	}
2733 
2734       FOR_BB_INSNS (bb, insn)
2735 	if (BLOCK_FOR_INSN (insn) != bb)
2736 	  {
2737 	    error ("insn %d basic block pointer is %d, should be %d",
2738 		   INSN_UID (insn),
2739 		   BLOCK_FOR_INSN (insn) ? BLOCK_FOR_INSN (insn)->index : 0,
2740 		   bb->index);
2741 	    err = 1;
2742 	  }
2743 
2744       for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
2745 	if (!BARRIER_P (insn)
2746 	    && BLOCK_FOR_INSN (insn) != NULL)
2747 	  {
2748 	    error ("insn %d in header of bb %d has non-NULL basic block",
2749 		   INSN_UID (insn), bb->index);
2750 	    err = 1;
2751 	  }
2752       for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2753 	if (!BARRIER_P (insn)
2754 	    && BLOCK_FOR_INSN (insn) != NULL)
2755 	  {
2756 	    error ("insn %d in footer of bb %d has non-NULL basic block",
2757 		   INSN_UID (insn), bb->index);
2758 	    err = 1;
2759 	  }
2760     }
2761 
2762   /* Clean up.  */
2763   return err;
2764 }
2765 
2766 /* Verify the CFG and RTL consistency common for both underlying RTL and
2767    cfglayout RTL.
2768 
2769    Currently it does following checks:
2770 
2771    - overlapping of basic blocks
2772    - insns with wrong BLOCK_FOR_INSN pointers
2773    - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
2774    - tails of basic blocks (ensure that boundary is necessary)
2775    - scans body of the basic block for JUMP_INSN, CODE_LABEL
2776      and NOTE_INSN_BASIC_BLOCK
2777    - verify that no fall_thru edge crosses hot/cold partition boundaries
2778    - verify that there are no pending RTL branch predictions
2779    - verify that hot blocks are not dominated by cold blocks
2780 
2781    In future it can be extended check a lot of other stuff as well
2782    (reachability of basic blocks, life information, etc. etc.).  */
2783 
2784 static int
rtl_verify_flow_info_1(void)2785 rtl_verify_flow_info_1 (void)
2786 {
2787   int err = 0;
2788 
2789   err |= rtl_verify_bb_pointers ();
2790 
2791   err |= rtl_verify_bb_insns ();
2792 
2793   err |= rtl_verify_edges ();
2794 
2795   return err;
2796 }
2797 
2798 /* Walk the instruction chain and verify that bb head/end pointers
2799   are correct, and that instructions are in exactly one bb and have
2800   correct block pointers.  */
2801 
2802 static int
rtl_verify_bb_insn_chain(void)2803 rtl_verify_bb_insn_chain (void)
2804 {
2805   basic_block bb;
2806   int err = 0;
2807   rtx_insn *x;
2808   rtx_insn *last_head = get_last_insn ();
2809   basic_block *bb_info;
2810   const int max_uid = get_max_uid ();
2811 
2812   bb_info = XCNEWVEC (basic_block, max_uid);
2813 
2814   FOR_EACH_BB_REVERSE_FN (bb, cfun)
2815     {
2816       rtx_insn *head = BB_HEAD (bb);
2817       rtx_insn *end = BB_END (bb);
2818 
2819       for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2820 	{
2821 	  /* Verify the end of the basic block is in the INSN chain.  */
2822 	  if (x == end)
2823 	    break;
2824 
2825             /* And that the code outside of basic blocks has NULL bb field.  */
2826           if (!BARRIER_P (x)
2827               && BLOCK_FOR_INSN (x) != NULL)
2828             {
2829               error ("insn %d outside of basic blocks has non-NULL bb field",
2830                      INSN_UID (x));
2831               err = 1;
2832             }
2833 	}
2834 
2835       if (!x)
2836 	{
2837 	  error ("end insn %d for block %d not found in the insn stream",
2838 		 INSN_UID (end), bb->index);
2839 	  err = 1;
2840 	}
2841 
2842       /* Work backwards from the end to the head of the basic block
2843 	 to verify the head is in the RTL chain.  */
2844       for (; x != NULL_RTX; x = PREV_INSN (x))
2845 	{
2846 	  /* While walking over the insn chain, verify insns appear
2847 	     in only one basic block.  */
2848 	  if (bb_info[INSN_UID (x)] != NULL)
2849 	    {
2850 	      error ("insn %d is in multiple basic blocks (%d and %d)",
2851 		     INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
2852 	      err = 1;
2853 	    }
2854 
2855 	  bb_info[INSN_UID (x)] = bb;
2856 
2857 	  if (x == head)
2858 	    break;
2859 	}
2860       if (!x)
2861 	{
2862 	  error ("head insn %d for block %d not found in the insn stream",
2863 		 INSN_UID (head), bb->index);
2864 	  err = 1;
2865 	}
2866 
2867       last_head = PREV_INSN (x);
2868     }
2869 
2870   for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2871     {
2872       /* Check that the code before the first basic block has NULL
2873 	 bb field.  */
2874       if (!BARRIER_P (x)
2875 	  && BLOCK_FOR_INSN (x) != NULL)
2876 	{
2877 	  error ("insn %d outside of basic blocks has non-NULL bb field",
2878 		 INSN_UID (x));
2879 	  err = 1;
2880 	}
2881     }
2882   free (bb_info);
2883 
2884   return err;
2885 }
2886 
2887 /* Verify that fallthru edges point to adjacent blocks in layout order and
2888    that barriers exist after non-fallthru blocks.  */
2889 
2890 static int
rtl_verify_fallthru(void)2891 rtl_verify_fallthru (void)
2892 {
2893   basic_block bb;
2894   int err = 0;
2895 
2896   FOR_EACH_BB_REVERSE_FN (bb, cfun)
2897     {
2898       edge e;
2899 
2900       e = find_fallthru_edge (bb->succs);
2901       if (!e)
2902 	{
2903 	  rtx_insn *insn;
2904 
2905 	  /* Ensure existence of barrier in BB with no fallthru edges.  */
2906 	  for (insn = NEXT_INSN (BB_END (bb)); ; insn = NEXT_INSN (insn))
2907 	    {
2908 	      if (!insn || NOTE_INSN_BASIC_BLOCK_P (insn))
2909 		{
2910 		  error ("missing barrier after block %i", bb->index);
2911 		  err = 1;
2912 		  break;
2913 		}
2914 	      if (BARRIER_P (insn))
2915 		break;
2916 	    }
2917 	}
2918       else if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2919 	       && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2920 	{
2921 	  rtx_insn *insn;
2922 
2923 	  if (e->src->next_bb != e->dest)
2924 	    {
2925 	      error
2926 		("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2927 		 e->src->index, e->dest->index);
2928 	      err = 1;
2929 	    }
2930 	  else
2931 	    for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2932 		 insn = NEXT_INSN (insn))
2933 	      if (BARRIER_P (insn) || NONDEBUG_INSN_P (insn))
2934 		{
2935 		  error ("verify_flow_info: Incorrect fallthru %i->%i",
2936 			 e->src->index, e->dest->index);
2937 		  fatal_insn ("wrong insn in the fallthru edge", insn);
2938 		  err = 1;
2939 		}
2940 	}
2941     }
2942 
2943    return err;
2944 }
2945 
2946 /* Verify that blocks are laid out in consecutive order. While walking the
2947    instructions, verify that all expected instructions are inside the basic
2948    blocks, and that all returns are followed by barriers.  */
2949 
2950 static int
rtl_verify_bb_layout(void)2951 rtl_verify_bb_layout (void)
2952 {
2953   basic_block bb;
2954   int err = 0;
2955   rtx_insn *x, *y;
2956   int num_bb_notes;
2957   rtx_insn * const rtx_first = get_insns ();
2958   basic_block last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun), curr_bb = NULL;
2959 
2960   num_bb_notes = 0;
2961   last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun);
2962 
2963   for (x = rtx_first; x; x = NEXT_INSN (x))
2964     {
2965       if (NOTE_INSN_BASIC_BLOCK_P (x))
2966 	{
2967 	  bb = NOTE_BASIC_BLOCK (x);
2968 
2969 	  num_bb_notes++;
2970 	  if (bb != last_bb_seen->next_bb)
2971 	    internal_error ("basic blocks not laid down consecutively");
2972 
2973 	  curr_bb = last_bb_seen = bb;
2974 	}
2975 
2976       if (!curr_bb)
2977 	{
2978 	  switch (GET_CODE (x))
2979 	    {
2980 	    case BARRIER:
2981 	    case NOTE:
2982 	      break;
2983 
2984 	    case CODE_LABEL:
2985 	      /* An ADDR_VEC is placed outside any basic block.  */
2986 	      if (NEXT_INSN (x)
2987 		  && JUMP_TABLE_DATA_P (NEXT_INSN (x)))
2988 		x = NEXT_INSN (x);
2989 
2990 	      /* But in any case, non-deletable labels can appear anywhere.  */
2991 	      break;
2992 
2993 	    default:
2994 	      fatal_insn ("insn outside basic block", x);
2995 	    }
2996 	}
2997 
2998       if (JUMP_P (x)
2999 	  && returnjump_p (x) && ! condjump_p (x)
3000 	  && ! ((y = next_nonnote_nondebug_insn (x))
3001 		&& BARRIER_P (y)))
3002 	    fatal_insn ("return not followed by barrier", x);
3003 
3004       if (curr_bb && x == BB_END (curr_bb))
3005 	curr_bb = NULL;
3006     }
3007 
3008   if (num_bb_notes != n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS)
3009     internal_error
3010       ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
3011        num_bb_notes, n_basic_blocks_for_fn (cfun));
3012 
3013    return err;
3014 }
3015 
3016 /* Verify the CFG and RTL consistency common for both underlying RTL and
3017    cfglayout RTL, plus consistency checks specific to linearized RTL mode.
3018 
3019    Currently it does following checks:
3020    - all checks of rtl_verify_flow_info_1
3021    - test head/end pointers
3022    - check that blocks are laid out in consecutive order
3023    - check that all insns are in the basic blocks
3024      (except the switch handling code, barriers and notes)
3025    - check that all returns are followed by barriers
3026    - check that all fallthru edge points to the adjacent blocks
3027    - verify that there is a single hot/cold partition boundary after bbro  */
3028 
3029 static int
rtl_verify_flow_info(void)3030 rtl_verify_flow_info (void)
3031 {
3032   int err = 0;
3033 
3034   err |= rtl_verify_flow_info_1 ();
3035 
3036   err |= rtl_verify_bb_insn_chain ();
3037 
3038   err |= rtl_verify_fallthru ();
3039 
3040   err |= rtl_verify_bb_layout ();
3041 
3042   err |= verify_hot_cold_block_grouping ();
3043 
3044   return err;
3045 }
3046 
3047 /* Assume that the preceding pass has possibly eliminated jump instructions
3048    or converted the unconditional jumps.  Eliminate the edges from CFG.
3049    Return true if any edges are eliminated.  */
3050 
3051 bool
purge_dead_edges(basic_block bb)3052 purge_dead_edges (basic_block bb)
3053 {
3054   edge e;
3055   rtx_insn *insn = BB_END (bb);
3056   rtx note;
3057   bool purged = false;
3058   bool found;
3059   edge_iterator ei;
3060 
3061   if (DEBUG_INSN_P (insn) && insn != BB_HEAD (bb))
3062     do
3063       insn = PREV_INSN (insn);
3064     while ((DEBUG_INSN_P (insn) || NOTE_P (insn)) && insn != BB_HEAD (bb));
3065 
3066   /* If this instruction cannot trap, remove REG_EH_REGION notes.  */
3067   if (NONJUMP_INSN_P (insn)
3068       && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
3069     {
3070       rtx eqnote;
3071 
3072       if (! may_trap_p (PATTERN (insn))
3073 	  || ((eqnote = find_reg_equal_equiv_note (insn))
3074 	      && ! may_trap_p (XEXP (eqnote, 0))))
3075 	remove_note (insn, note);
3076     }
3077 
3078   /* Cleanup abnormal edges caused by exceptions or non-local gotos.  */
3079   for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3080     {
3081       bool remove = false;
3082 
3083       /* There are three types of edges we need to handle correctly here: EH
3084 	 edges, abnormal call EH edges, and abnormal call non-EH edges.  The
3085 	 latter can appear when nonlocal gotos are used.  */
3086       if (e->flags & EDGE_ABNORMAL_CALL)
3087 	{
3088 	  if (!CALL_P (insn))
3089 	    remove = true;
3090 	  else if (can_nonlocal_goto (insn))
3091 	    ;
3092 	  else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3093 	    ;
3094 	  else if (flag_tm && find_reg_note (insn, REG_TM, NULL))
3095 	    ;
3096 	  else
3097 	    remove = true;
3098 	}
3099       else if (e->flags & EDGE_EH)
3100 	remove = !can_throw_internal (insn);
3101 
3102       if (remove)
3103 	{
3104 	  remove_edge (e);
3105 	  df_set_bb_dirty (bb);
3106 	  purged = true;
3107 	}
3108       else
3109 	ei_next (&ei);
3110     }
3111 
3112   if (JUMP_P (insn))
3113     {
3114       rtx note;
3115       edge b,f;
3116       edge_iterator ei;
3117 
3118       /* We do care only about conditional jumps and simplejumps.  */
3119       if (!any_condjump_p (insn)
3120 	  && !returnjump_p (insn)
3121 	  && !simplejump_p (insn))
3122 	return purged;
3123 
3124       /* Branch probability/prediction notes are defined only for
3125 	 condjumps.  We've possibly turned condjump into simplejump.  */
3126       if (simplejump_p (insn))
3127 	{
3128 	  note = find_reg_note (insn, REG_BR_PROB, NULL);
3129 	  if (note)
3130 	    remove_note (insn, note);
3131 	  while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
3132 	    remove_note (insn, note);
3133 	}
3134 
3135       for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3136 	{
3137 	  /* Avoid abnormal flags to leak from computed jumps turned
3138 	     into simplejumps.  */
3139 
3140 	  e->flags &= ~EDGE_ABNORMAL;
3141 
3142 	  /* See if this edge is one we should keep.  */
3143 	  if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
3144 	    /* A conditional jump can fall through into the next
3145 	       block, so we should keep the edge.  */
3146 	    {
3147 	      ei_next (&ei);
3148 	      continue;
3149 	    }
3150 	  else if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
3151 		   && BB_HEAD (e->dest) == JUMP_LABEL (insn))
3152 	    /* If the destination block is the target of the jump,
3153 	       keep the edge.  */
3154 	    {
3155 	      ei_next (&ei);
3156 	      continue;
3157 	    }
3158 	  else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
3159 		   && returnjump_p (insn))
3160 	    /* If the destination block is the exit block, and this
3161 	       instruction is a return, then keep the edge.  */
3162 	    {
3163 	      ei_next (&ei);
3164 	      continue;
3165 	    }
3166 	  else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3167 	    /* Keep the edges that correspond to exceptions thrown by
3168 	       this instruction and rematerialize the EDGE_ABNORMAL
3169 	       flag we just cleared above.  */
3170 	    {
3171 	      e->flags |= EDGE_ABNORMAL;
3172 	      ei_next (&ei);
3173 	      continue;
3174 	    }
3175 
3176 	  /* We do not need this edge.  */
3177 	  df_set_bb_dirty (bb);
3178 	  purged = true;
3179 	  remove_edge (e);
3180 	}
3181 
3182       if (EDGE_COUNT (bb->succs) == 0 || !purged)
3183 	return purged;
3184 
3185       if (dump_file)
3186 	fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
3187 
3188       if (!optimize)
3189 	return purged;
3190 
3191       /* Redistribute probabilities.  */
3192       if (single_succ_p (bb))
3193 	{
3194 	  single_succ_edge (bb)->probability = profile_probability::always ();
3195 	}
3196       else
3197 	{
3198 	  note = find_reg_note (insn, REG_BR_PROB, NULL);
3199 	  if (!note)
3200 	    return purged;
3201 
3202 	  b = BRANCH_EDGE (bb);
3203 	  f = FALLTHRU_EDGE (bb);
3204 	  b->probability = profile_probability::from_reg_br_prob_note
3205 					 (XINT (note, 0));
3206 	  f->probability = b->probability.invert ();
3207 	}
3208 
3209       return purged;
3210     }
3211   else if (CALL_P (insn) && SIBLING_CALL_P (insn))
3212     {
3213       /* First, there should not be any EH or ABCALL edges resulting
3214 	 from non-local gotos and the like.  If there were, we shouldn't
3215 	 have created the sibcall in the first place.  Second, there
3216 	 should of course never have been a fallthru edge.  */
3217       gcc_assert (single_succ_p (bb));
3218       gcc_assert (single_succ_edge (bb)->flags
3219 		  == (EDGE_SIBCALL | EDGE_ABNORMAL));
3220 
3221       return 0;
3222     }
3223 
3224   /* If we don't see a jump insn, we don't know exactly why the block would
3225      have been broken at this point.  Look for a simple, non-fallthru edge,
3226      as these are only created by conditional branches.  If we find such an
3227      edge we know that there used to be a jump here and can then safely
3228      remove all non-fallthru edges.  */
3229   found = false;
3230   FOR_EACH_EDGE (e, ei, bb->succs)
3231     if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
3232       {
3233 	found = true;
3234 	break;
3235       }
3236 
3237   if (!found)
3238     return purged;
3239 
3240   /* Remove all but the fake and fallthru edges.  The fake edge may be
3241      the only successor for this block in the case of noreturn
3242      calls.  */
3243   for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3244     {
3245       if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
3246 	{
3247 	  df_set_bb_dirty (bb);
3248 	  remove_edge (e);
3249 	  purged = true;
3250 	}
3251       else
3252 	ei_next (&ei);
3253     }
3254 
3255   gcc_assert (single_succ_p (bb));
3256 
3257   single_succ_edge (bb)->probability = profile_probability::always ();
3258 
3259   if (dump_file)
3260     fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
3261 	     bb->index);
3262   return purged;
3263 }
3264 
3265 /* Search all basic blocks for potentially dead edges and purge them.  Return
3266    true if some edge has been eliminated.  */
3267 
3268 bool
purge_all_dead_edges(void)3269 purge_all_dead_edges (void)
3270 {
3271   int purged = false;
3272   basic_block bb;
3273 
3274   FOR_EACH_BB_FN (bb, cfun)
3275     {
3276       bool purged_here = purge_dead_edges (bb);
3277 
3278       purged |= purged_here;
3279     }
3280 
3281   return purged;
3282 }
3283 
3284 /* This is used by a few passes that emit some instructions after abnormal
3285    calls, moving the basic block's end, while they in fact do want to emit
3286    them on the fallthru edge.  Look for abnormal call edges, find backward
3287    the call in the block and insert the instructions on the edge instead.
3288 
3289    Similarly, handle instructions throwing exceptions internally.
3290 
3291    Return true when instructions have been found and inserted on edges.  */
3292 
3293 bool
fixup_abnormal_edges(void)3294 fixup_abnormal_edges (void)
3295 {
3296   bool inserted = false;
3297   basic_block bb;
3298 
3299   FOR_EACH_BB_FN (bb, cfun)
3300     {
3301       edge e;
3302       edge_iterator ei;
3303 
3304       /* Look for cases we are interested in - calls or instructions causing
3305          exceptions.  */
3306       FOR_EACH_EDGE (e, ei, bb->succs)
3307 	if ((e->flags & EDGE_ABNORMAL_CALL)
3308 	    || ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
3309 		== (EDGE_ABNORMAL | EDGE_EH)))
3310 	  break;
3311 
3312       if (e && !CALL_P (BB_END (bb)) && !can_throw_internal (BB_END (bb)))
3313 	{
3314 	  rtx_insn *insn;
3315 
3316 	  /* Get past the new insns generated.  Allow notes, as the insns
3317 	     may be already deleted.  */
3318 	  insn = BB_END (bb);
3319 	  while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
3320 		 && !can_throw_internal (insn)
3321 		 && insn != BB_HEAD (bb))
3322 	    insn = PREV_INSN (insn);
3323 
3324 	  if (CALL_P (insn) || can_throw_internal (insn))
3325 	    {
3326 	      rtx_insn *stop, *next;
3327 
3328 	      e = find_fallthru_edge (bb->succs);
3329 
3330 	      stop = NEXT_INSN (BB_END (bb));
3331 	      BB_END (bb) = insn;
3332 
3333 	      for (insn = NEXT_INSN (insn); insn != stop; insn = next)
3334 		{
3335 		  next = NEXT_INSN (insn);
3336 		  if (INSN_P (insn))
3337 		    {
3338 		      delete_insn (insn);
3339 
3340 		      /* Sometimes there's still the return value USE.
3341 			 If it's placed after a trapping call (i.e. that
3342 			 call is the last insn anyway), we have no fallthru
3343 			 edge.  Simply delete this use and don't try to insert
3344 			 on the non-existent edge.
3345 			 Similarly, sometimes a call that can throw is
3346 			 followed in the source with __builtin_unreachable (),
3347 			 meaning that there is UB if the call returns rather
3348 			 than throws.  If there weren't any instructions
3349 			 following such calls before, supposedly even the ones
3350 			 we've deleted aren't significant and can be
3351 			 removed.  */
3352 		      if (e)
3353 			{
3354 			  /* We're not deleting it, we're moving it.  */
3355 			  insn->set_undeleted ();
3356 			  SET_PREV_INSN (insn) = NULL_RTX;
3357 			  SET_NEXT_INSN (insn) = NULL_RTX;
3358 
3359 			  insert_insn_on_edge (insn, e);
3360 			  inserted = true;
3361 			}
3362 		    }
3363 		  else if (!BARRIER_P (insn))
3364 		    set_block_for_insn (insn, NULL);
3365 		}
3366 	    }
3367 
3368 	  /* It may be that we don't find any trapping insn.  In this
3369 	     case we discovered quite late that the insn that had been
3370 	     marked as can_throw_internal in fact couldn't trap at all.
3371 	     So we should in fact delete the EH edges out of the block.  */
3372 	  else
3373 	    purge_dead_edges (bb);
3374 	}
3375     }
3376 
3377   return inserted;
3378 }
3379 
3380 /* Cut the insns from FIRST to LAST out of the insns stream.  */
3381 
3382 rtx_insn *
unlink_insn_chain(rtx_insn * first,rtx_insn * last)3383 unlink_insn_chain (rtx_insn *first, rtx_insn *last)
3384 {
3385   rtx_insn *prevfirst = PREV_INSN (first);
3386   rtx_insn *nextlast = NEXT_INSN (last);
3387 
3388   SET_PREV_INSN (first) = NULL;
3389   SET_NEXT_INSN (last) = NULL;
3390   if (prevfirst)
3391     SET_NEXT_INSN (prevfirst) = nextlast;
3392   if (nextlast)
3393     SET_PREV_INSN (nextlast) = prevfirst;
3394   else
3395     set_last_insn (prevfirst);
3396   if (!prevfirst)
3397     set_first_insn (nextlast);
3398   return first;
3399 }
3400 
3401 /* Skip over inter-block insns occurring after BB which are typically
3402    associated with BB (e.g., barriers). If there are any such insns,
3403    we return the last one. Otherwise, we return the end of BB.  */
3404 
3405 static rtx_insn *
skip_insns_after_block(basic_block bb)3406 skip_insns_after_block (basic_block bb)
3407 {
3408   rtx_insn *insn, *last_insn, *next_head, *prev;
3409 
3410   next_head = NULL;
3411   if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3412     next_head = BB_HEAD (bb->next_bb);
3413 
3414   for (last_insn = insn = BB_END (bb); (insn = NEXT_INSN (insn)) != 0; )
3415     {
3416       if (insn == next_head)
3417 	break;
3418 
3419       switch (GET_CODE (insn))
3420 	{
3421 	case BARRIER:
3422 	  last_insn = insn;
3423 	  continue;
3424 
3425 	case NOTE:
3426 	  switch (NOTE_KIND (insn))
3427 	    {
3428 	    case NOTE_INSN_BLOCK_END:
3429 	      gcc_unreachable ();
3430 	      continue;
3431 	    default:
3432 	      continue;
3433 	      break;
3434 	    }
3435 	  break;
3436 
3437 	case CODE_LABEL:
3438 	  if (NEXT_INSN (insn)
3439 	      && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
3440 	    {
3441 	      insn = NEXT_INSN (insn);
3442 	      last_insn = insn;
3443 	      continue;
3444 	    }
3445 	  break;
3446 
3447 	default:
3448 	  break;
3449 	}
3450 
3451       break;
3452     }
3453 
3454   /* It is possible to hit contradictory sequence.  For instance:
3455 
3456      jump_insn
3457      NOTE_INSN_BLOCK_BEG
3458      barrier
3459 
3460      Where barrier belongs to jump_insn, but the note does not.  This can be
3461      created by removing the basic block originally following
3462      NOTE_INSN_BLOCK_BEG.  In such case reorder the notes.  */
3463 
3464   for (insn = last_insn; insn != BB_END (bb); insn = prev)
3465     {
3466       prev = PREV_INSN (insn);
3467       if (NOTE_P (insn))
3468 	switch (NOTE_KIND (insn))
3469 	  {
3470 	  case NOTE_INSN_BLOCK_END:
3471 	    gcc_unreachable ();
3472 	    break;
3473 	  case NOTE_INSN_DELETED:
3474 	  case NOTE_INSN_DELETED_LABEL:
3475 	  case NOTE_INSN_DELETED_DEBUG_LABEL:
3476 	    continue;
3477 	  default:
3478 	    reorder_insns (insn, insn, last_insn);
3479 	  }
3480     }
3481 
3482   return last_insn;
3483 }
3484 
3485 /* Locate or create a label for a given basic block.  */
3486 
3487 static rtx_insn *
label_for_bb(basic_block bb)3488 label_for_bb (basic_block bb)
3489 {
3490   rtx_insn *label = BB_HEAD (bb);
3491 
3492   if (!LABEL_P (label))
3493     {
3494       if (dump_file)
3495 	fprintf (dump_file, "Emitting label for block %d\n", bb->index);
3496 
3497       label = block_label (bb);
3498     }
3499 
3500   return label;
3501 }
3502 
3503 /* Locate the effective beginning and end of the insn chain for each
3504    block, as defined by skip_insns_after_block above.  */
3505 
3506 static void
record_effective_endpoints(void)3507 record_effective_endpoints (void)
3508 {
3509   rtx_insn *next_insn;
3510   basic_block bb;
3511   rtx_insn *insn;
3512 
3513   for (insn = get_insns ();
3514        insn
3515        && NOTE_P (insn)
3516        && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK;
3517        insn = NEXT_INSN (insn))
3518     continue;
3519   /* No basic blocks at all?  */
3520   gcc_assert (insn);
3521 
3522   if (PREV_INSN (insn))
3523     cfg_layout_function_header =
3524 	    unlink_insn_chain (get_insns (), PREV_INSN (insn));
3525   else
3526     cfg_layout_function_header = NULL;
3527 
3528   next_insn = get_insns ();
3529   FOR_EACH_BB_FN (bb, cfun)
3530     {
3531       rtx_insn *end;
3532 
3533       if (PREV_INSN (BB_HEAD (bb)) && next_insn != BB_HEAD (bb))
3534 	BB_HEADER (bb) = unlink_insn_chain (next_insn,
3535 						PREV_INSN (BB_HEAD (bb)));
3536       end = skip_insns_after_block (bb);
3537       if (NEXT_INSN (BB_END (bb)) && BB_END (bb) != end)
3538 	BB_FOOTER (bb) = unlink_insn_chain (NEXT_INSN (BB_END (bb)), end);
3539       next_insn = NEXT_INSN (BB_END (bb));
3540     }
3541 
3542   cfg_layout_function_footer = next_insn;
3543   if (cfg_layout_function_footer)
3544     cfg_layout_function_footer = unlink_insn_chain (cfg_layout_function_footer, get_last_insn ());
3545 }
3546 
3547 namespace {
3548 
3549 const pass_data pass_data_into_cfg_layout_mode =
3550 {
3551   RTL_PASS, /* type */
3552   "into_cfglayout", /* name */
3553   OPTGROUP_NONE, /* optinfo_flags */
3554   TV_CFG, /* tv_id */
3555   0, /* properties_required */
3556   PROP_cfglayout, /* properties_provided */
3557   0, /* properties_destroyed */
3558   0, /* todo_flags_start */
3559   0, /* todo_flags_finish */
3560 };
3561 
3562 class pass_into_cfg_layout_mode : public rtl_opt_pass
3563 {
3564 public:
pass_into_cfg_layout_mode(gcc::context * ctxt)3565   pass_into_cfg_layout_mode (gcc::context *ctxt)
3566     : rtl_opt_pass (pass_data_into_cfg_layout_mode, ctxt)
3567   {}
3568 
3569   /* opt_pass methods: */
execute(function *)3570   virtual unsigned int execute (function *)
3571     {
3572       cfg_layout_initialize (0);
3573       return 0;
3574     }
3575 
3576 }; // class pass_into_cfg_layout_mode
3577 
3578 } // anon namespace
3579 
3580 rtl_opt_pass *
make_pass_into_cfg_layout_mode(gcc::context * ctxt)3581 make_pass_into_cfg_layout_mode (gcc::context *ctxt)
3582 {
3583   return new pass_into_cfg_layout_mode (ctxt);
3584 }
3585 
3586 namespace {
3587 
3588 const pass_data pass_data_outof_cfg_layout_mode =
3589 {
3590   RTL_PASS, /* type */
3591   "outof_cfglayout", /* name */
3592   OPTGROUP_NONE, /* optinfo_flags */
3593   TV_CFG, /* tv_id */
3594   0, /* properties_required */
3595   0, /* properties_provided */
3596   PROP_cfglayout, /* properties_destroyed */
3597   0, /* todo_flags_start */
3598   0, /* todo_flags_finish */
3599 };
3600 
3601 class pass_outof_cfg_layout_mode : public rtl_opt_pass
3602 {
3603 public:
pass_outof_cfg_layout_mode(gcc::context * ctxt)3604   pass_outof_cfg_layout_mode (gcc::context *ctxt)
3605     : rtl_opt_pass (pass_data_outof_cfg_layout_mode, ctxt)
3606   {}
3607 
3608   /* opt_pass methods: */
3609   virtual unsigned int execute (function *);
3610 
3611 }; // class pass_outof_cfg_layout_mode
3612 
3613 unsigned int
execute(function * fun)3614 pass_outof_cfg_layout_mode::execute (function *fun)
3615 {
3616   basic_block bb;
3617 
3618   FOR_EACH_BB_FN (bb, fun)
3619     if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3620       bb->aux = bb->next_bb;
3621 
3622   cfg_layout_finalize ();
3623 
3624   return 0;
3625 }
3626 
3627 } // anon namespace
3628 
3629 rtl_opt_pass *
make_pass_outof_cfg_layout_mode(gcc::context * ctxt)3630 make_pass_outof_cfg_layout_mode (gcc::context *ctxt)
3631 {
3632   return new pass_outof_cfg_layout_mode (ctxt);
3633 }
3634 
3635 
3636 /* Link the basic blocks in the correct order, compacting the basic
3637    block queue while at it.  If STAY_IN_CFGLAYOUT_MODE is false, this
3638    function also clears the basic block header and footer fields.
3639 
3640    This function is usually called after a pass (e.g. tracer) finishes
3641    some transformations while in cfglayout mode.  The required sequence
3642    of the basic blocks is in a linked list along the bb->aux field.
3643    This functions re-links the basic block prev_bb and next_bb pointers
3644    accordingly, and it compacts and renumbers the blocks.
3645 
3646    FIXME: This currently works only for RTL, but the only RTL-specific
3647    bits are the STAY_IN_CFGLAYOUT_MODE bits.  The tracer pass was moved
3648    to GIMPLE a long time ago, but it doesn't relink the basic block
3649    chain.  It could do that (to give better initial RTL) if this function
3650    is made IR-agnostic (and moved to cfganal.c or cfg.c while at it).  */
3651 
3652 void
relink_block_chain(bool stay_in_cfglayout_mode)3653 relink_block_chain (bool stay_in_cfglayout_mode)
3654 {
3655   basic_block bb, prev_bb;
3656   int index;
3657 
3658   /* Maybe dump the re-ordered sequence.  */
3659   if (dump_file)
3660     {
3661       fprintf (dump_file, "Reordered sequence:\n");
3662       for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, index =
3663 	   NUM_FIXED_BLOCKS;
3664 	   bb;
3665 	   bb = (basic_block) bb->aux, index++)
3666 	{
3667 	  fprintf (dump_file, " %i ", index);
3668 	  if (get_bb_original (bb))
3669 	    fprintf (dump_file, "duplicate of %i ",
3670 		     get_bb_original (bb)->index);
3671 	  else if (forwarder_block_p (bb)
3672 		   && !LABEL_P (BB_HEAD (bb)))
3673 	    fprintf (dump_file, "compensation ");
3674 	  else
3675 	    fprintf (dump_file, "bb %i ", bb->index);
3676 	}
3677     }
3678 
3679   /* Now reorder the blocks.  */
3680   prev_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3681   bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
3682   for (; bb; prev_bb = bb, bb = (basic_block) bb->aux)
3683     {
3684       bb->prev_bb = prev_bb;
3685       prev_bb->next_bb = bb;
3686     }
3687   prev_bb->next_bb = EXIT_BLOCK_PTR_FOR_FN (cfun);
3688   EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb = prev_bb;
3689 
3690   /* Then, clean up the aux fields.  */
3691   FOR_ALL_BB_FN (bb, cfun)
3692     {
3693       bb->aux = NULL;
3694       if (!stay_in_cfglayout_mode)
3695 	BB_HEADER (bb) = BB_FOOTER (bb) = NULL;
3696     }
3697 
3698   /* Maybe reset the original copy tables, they are not valid anymore
3699      when we renumber the basic blocks in compact_blocks.  If we are
3700      are going out of cfglayout mode, don't re-allocate the tables.  */
3701   if (original_copy_tables_initialized_p ())
3702     free_original_copy_tables ();
3703   if (stay_in_cfglayout_mode)
3704     initialize_original_copy_tables ();
3705 
3706   /* Finally, put basic_block_info in the new order.  */
3707   compact_blocks ();
3708 }
3709 
3710 
3711 /* Given a reorder chain, rearrange the code to match.  */
3712 
3713 static void
fixup_reorder_chain(void)3714 fixup_reorder_chain (void)
3715 {
3716   basic_block bb;
3717   rtx_insn *insn = NULL;
3718 
3719   if (cfg_layout_function_header)
3720     {
3721       set_first_insn (cfg_layout_function_header);
3722       insn = cfg_layout_function_header;
3723       while (NEXT_INSN (insn))
3724 	insn = NEXT_INSN (insn);
3725     }
3726 
3727   /* First do the bulk reordering -- rechain the blocks without regard to
3728      the needed changes to jumps and labels.  */
3729 
3730   for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb; bb = (basic_block)
3731        bb->aux)
3732     {
3733       if (BB_HEADER (bb))
3734 	{
3735 	  if (insn)
3736 	    SET_NEXT_INSN (insn) = BB_HEADER (bb);
3737 	  else
3738 	    set_first_insn (BB_HEADER (bb));
3739 	  SET_PREV_INSN (BB_HEADER (bb)) = insn;
3740 	  insn = BB_HEADER (bb);
3741 	  while (NEXT_INSN (insn))
3742 	    insn = NEXT_INSN (insn);
3743 	}
3744       if (insn)
3745 	SET_NEXT_INSN (insn) = BB_HEAD (bb);
3746       else
3747 	set_first_insn (BB_HEAD (bb));
3748       SET_PREV_INSN (BB_HEAD (bb)) = insn;
3749       insn = BB_END (bb);
3750       if (BB_FOOTER (bb))
3751 	{
3752 	  SET_NEXT_INSN (insn) = BB_FOOTER (bb);
3753 	  SET_PREV_INSN (BB_FOOTER (bb)) = insn;
3754 	  while (NEXT_INSN (insn))
3755 	    insn = NEXT_INSN (insn);
3756 	}
3757     }
3758 
3759   SET_NEXT_INSN (insn) = cfg_layout_function_footer;
3760   if (cfg_layout_function_footer)
3761     SET_PREV_INSN (cfg_layout_function_footer) = insn;
3762 
3763   while (NEXT_INSN (insn))
3764     insn = NEXT_INSN (insn);
3765 
3766   set_last_insn (insn);
3767   if (flag_checking)
3768     verify_insn_chain ();
3769 
3770   /* Now add jumps and labels as needed to match the blocks new
3771      outgoing edges.  */
3772 
3773   for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb ; bb = (basic_block)
3774        bb->aux)
3775     {
3776       edge e_fall, e_taken, e;
3777       rtx_insn *bb_end_insn;
3778       rtx ret_label = NULL_RTX;
3779       basic_block nb;
3780       edge_iterator ei;
3781 
3782       if (EDGE_COUNT (bb->succs) == 0)
3783 	continue;
3784 
3785       /* Find the old fallthru edge, and another non-EH edge for
3786 	 a taken jump.  */
3787       e_taken = e_fall = NULL;
3788 
3789       FOR_EACH_EDGE (e, ei, bb->succs)
3790 	if (e->flags & EDGE_FALLTHRU)
3791 	  e_fall = e;
3792 	else if (! (e->flags & EDGE_EH))
3793 	  e_taken = e;
3794 
3795       bb_end_insn = BB_END (bb);
3796       if (rtx_jump_insn *bb_end_jump = dyn_cast <rtx_jump_insn *> (bb_end_insn))
3797 	{
3798 	  ret_label = JUMP_LABEL (bb_end_jump);
3799 	  if (any_condjump_p (bb_end_jump))
3800 	    {
3801 	      /* This might happen if the conditional jump has side
3802 		 effects and could therefore not be optimized away.
3803 		 Make the basic block to end with a barrier in order
3804 		 to prevent rtl_verify_flow_info from complaining.  */
3805 	      if (!e_fall)
3806 		{
3807 		  gcc_assert (!onlyjump_p (bb_end_jump)
3808 			      || returnjump_p (bb_end_jump)
3809                               || (e_taken->flags & EDGE_CROSSING));
3810 		  emit_barrier_after (bb_end_jump);
3811 		  continue;
3812 		}
3813 
3814 	      /* If the old fallthru is still next, nothing to do.  */
3815 	      if (bb->aux == e_fall->dest
3816 		  || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3817 		continue;
3818 
3819 	      /* The degenerated case of conditional jump jumping to the next
3820 		 instruction can happen for jumps with side effects.  We need
3821 		 to construct a forwarder block and this will be done just
3822 		 fine by force_nonfallthru below.  */
3823 	      if (!e_taken)
3824 		;
3825 
3826 	      /* There is another special case: if *neither* block is next,
3827 		 such as happens at the very end of a function, then we'll
3828 		 need to add a new unconditional jump.  Choose the taken
3829 		 edge based on known or assumed probability.  */
3830 	      else if (bb->aux != e_taken->dest)
3831 		{
3832 		  rtx note = find_reg_note (bb_end_jump, REG_BR_PROB, 0);
3833 
3834 		  if (note
3835 		      && profile_probability::from_reg_br_prob_note
3836 				 (XINT (note, 0)) < profile_probability::even ()
3837 		      && invert_jump (bb_end_jump,
3838 				      (e_fall->dest
3839 				       == EXIT_BLOCK_PTR_FOR_FN (cfun)
3840 				       ? NULL_RTX
3841 				       : label_for_bb (e_fall->dest)), 0))
3842 		    {
3843 		      e_fall->flags &= ~EDGE_FALLTHRU;
3844 		      gcc_checking_assert (could_fall_through
3845 					   (e_taken->src, e_taken->dest));
3846 		      e_taken->flags |= EDGE_FALLTHRU;
3847 		      update_br_prob_note (bb);
3848 		      e = e_fall, e_fall = e_taken, e_taken = e;
3849 		    }
3850 		}
3851 
3852 	      /* If the "jumping" edge is a crossing edge, and the fall
3853 		 through edge is non-crossing, leave things as they are.  */
3854 	      else if ((e_taken->flags & EDGE_CROSSING)
3855 		       && !(e_fall->flags & EDGE_CROSSING))
3856 		continue;
3857 
3858 	      /* Otherwise we can try to invert the jump.  This will
3859 		 basically never fail, however, keep up the pretense.  */
3860 	      else if (invert_jump (bb_end_jump,
3861 				    (e_fall->dest
3862 				     == EXIT_BLOCK_PTR_FOR_FN (cfun)
3863 				     ? NULL_RTX
3864 				     : label_for_bb (e_fall->dest)), 0))
3865 		{
3866 		  e_fall->flags &= ~EDGE_FALLTHRU;
3867 		  gcc_checking_assert (could_fall_through
3868 				       (e_taken->src, e_taken->dest));
3869 		  e_taken->flags |= EDGE_FALLTHRU;
3870 		  update_br_prob_note (bb);
3871 		  if (LABEL_NUSES (ret_label) == 0
3872 		      && single_pred_p (e_taken->dest))
3873 		    delete_insn (as_a<rtx_insn *> (ret_label));
3874 		  continue;
3875 		}
3876 	    }
3877 	  else if (extract_asm_operands (PATTERN (bb_end_insn)) != NULL)
3878 	    {
3879 	      /* If the old fallthru is still next or if
3880 		 asm goto doesn't have a fallthru (e.g. when followed by
3881 		 __builtin_unreachable ()), nothing to do.  */
3882 	      if (! e_fall
3883 		  || bb->aux == e_fall->dest
3884 		  || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3885 		continue;
3886 
3887 	      /* Otherwise we'll have to use the fallthru fixup below.  */
3888 	    }
3889 	  else
3890 	    {
3891 	      /* Otherwise we have some return, switch or computed
3892 		 jump.  In the 99% case, there should not have been a
3893 		 fallthru edge.  */
3894 	      gcc_assert (returnjump_p (bb_end_insn) || !e_fall);
3895 	      continue;
3896 	    }
3897 	}
3898       else
3899 	{
3900 	  /* No fallthru implies a noreturn function with EH edges, or
3901 	     something similarly bizarre.  In any case, we don't need to
3902 	     do anything.  */
3903 	  if (! e_fall)
3904 	    continue;
3905 
3906 	  /* If the fallthru block is still next, nothing to do.  */
3907 	  if (bb->aux == e_fall->dest)
3908 	    continue;
3909 
3910 	  /* A fallthru to exit block.  */
3911 	  if (e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3912 	    continue;
3913 	}
3914 
3915       /* We got here if we need to add a new jump insn.
3916 	 Note force_nonfallthru can delete E_FALL and thus we have to
3917 	 save E_FALL->src prior to the call to force_nonfallthru.  */
3918       nb = force_nonfallthru_and_redirect (e_fall, e_fall->dest, ret_label);
3919       if (nb)
3920 	{
3921 	  nb->aux = bb->aux;
3922 	  bb->aux = nb;
3923 	  /* Don't process this new block.  */
3924 	  bb = nb;
3925 	}
3926     }
3927 
3928   relink_block_chain (/*stay_in_cfglayout_mode=*/false);
3929 
3930   /* Annoying special case - jump around dead jumptables left in the code.  */
3931   FOR_EACH_BB_FN (bb, cfun)
3932     {
3933       edge e = find_fallthru_edge (bb->succs);
3934 
3935       if (e && !can_fallthru (e->src, e->dest))
3936 	force_nonfallthru (e);
3937     }
3938 
3939   /* Ensure goto_locus from edges has some instructions with that locus in RTL
3940      when not optimizing.  */
3941   if (!optimize && !DECL_IGNORED_P (current_function_decl))
3942     FOR_EACH_BB_FN (bb, cfun)
3943       {
3944         edge e;
3945         edge_iterator ei;
3946 
3947         FOR_EACH_EDGE (e, ei, bb->succs)
3948 	  if (LOCATION_LOCUS (e->goto_locus) != UNKNOWN_LOCATION
3949 	      && !(e->flags & EDGE_ABNORMAL))
3950 	    {
3951 	      edge e2;
3952 	      edge_iterator ei2;
3953 	      basic_block dest, nb;
3954 	      rtx_insn *end;
3955 
3956 	      insn = BB_END (e->src);
3957 	      end = PREV_INSN (BB_HEAD (e->src));
3958 	      while (insn != end
3959 		     && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
3960 		insn = PREV_INSN (insn);
3961 	      if (insn != end
3962 		  && INSN_LOCATION (insn) == e->goto_locus)
3963 		continue;
3964 	      if (simplejump_p (BB_END (e->src))
3965 		  && !INSN_HAS_LOCATION (BB_END (e->src)))
3966 		{
3967 		  INSN_LOCATION (BB_END (e->src)) = e->goto_locus;
3968 		  continue;
3969 		}
3970 	      dest = e->dest;
3971 	      if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3972 		{
3973 		  /* Non-fallthru edges to the exit block cannot be split.  */
3974 		  if (!(e->flags & EDGE_FALLTHRU))
3975 		    continue;
3976 		}
3977 	      else
3978 		{
3979 		  insn = BB_HEAD (dest);
3980 		  end = NEXT_INSN (BB_END (dest));
3981 		  while (insn != end && !NONDEBUG_INSN_P (insn))
3982 		    insn = NEXT_INSN (insn);
3983 		  if (insn != end && INSN_HAS_LOCATION (insn)
3984 		      && INSN_LOCATION (insn) == e->goto_locus)
3985 		    continue;
3986 		}
3987 	      nb = split_edge (e);
3988 	      if (!INSN_P (BB_END (nb)))
3989 		BB_END (nb) = emit_insn_after_noloc (gen_nop (), BB_END (nb),
3990 							 nb);
3991 	      INSN_LOCATION (BB_END (nb)) = e->goto_locus;
3992 
3993 	      /* If there are other incoming edges to the destination block
3994 		 with the same goto locus, redirect them to the new block as
3995 		 well, this can prevent other such blocks from being created
3996 		 in subsequent iterations of the loop.  */
3997 	      for (ei2 = ei_start (dest->preds); (e2 = ei_safe_edge (ei2)); )
3998 		if (LOCATION_LOCUS (e2->goto_locus) != UNKNOWN_LOCATION
3999 		    && !(e2->flags & (EDGE_ABNORMAL | EDGE_FALLTHRU))
4000 		    && e->goto_locus == e2->goto_locus)
4001 		  redirect_edge_and_branch (e2, nb);
4002 		else
4003 		  ei_next (&ei2);
4004 	    }
4005       }
4006 }
4007 
4008 /* Perform sanity checks on the insn chain.
4009    1. Check that next/prev pointers are consistent in both the forward and
4010       reverse direction.
4011    2. Count insns in chain, going both directions, and check if equal.
4012    3. Check that get_last_insn () returns the actual end of chain.  */
4013 
4014 DEBUG_FUNCTION void
verify_insn_chain(void)4015 verify_insn_chain (void)
4016 {
4017   rtx_insn *x, *prevx, *nextx;
4018   int insn_cnt1, insn_cnt2;
4019 
4020   for (prevx = NULL, insn_cnt1 = 1, x = get_insns ();
4021        x != 0;
4022        prevx = x, insn_cnt1++, x = NEXT_INSN (x))
4023     gcc_assert (PREV_INSN (x) == prevx);
4024 
4025   gcc_assert (prevx == get_last_insn ());
4026 
4027   for (nextx = NULL, insn_cnt2 = 1, x = get_last_insn ();
4028        x != 0;
4029        nextx = x, insn_cnt2++, x = PREV_INSN (x))
4030     gcc_assert (NEXT_INSN (x) == nextx);
4031 
4032   gcc_assert (insn_cnt1 == insn_cnt2);
4033 }
4034 
4035 /* If we have assembler epilogues, the block falling through to exit must
4036    be the last one in the reordered chain when we reach final.  Ensure
4037    that this condition is met.  */
4038 static void
fixup_fallthru_exit_predecessor(void)4039 fixup_fallthru_exit_predecessor (void)
4040 {
4041   edge e;
4042   basic_block bb = NULL;
4043 
4044   /* This transformation is not valid before reload, because we might
4045      separate a call from the instruction that copies the return
4046      value.  */
4047   gcc_assert (reload_completed);
4048 
4049   e = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
4050   if (e)
4051     bb = e->src;
4052 
4053   if (bb && bb->aux)
4054     {
4055       basic_block c = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
4056 
4057       /* If the very first block is the one with the fall-through exit
4058 	 edge, we have to split that block.  */
4059       if (c == bb)
4060 	{
4061 	  bb = split_block_after_labels (bb)->dest;
4062 	  bb->aux = c->aux;
4063 	  c->aux = bb;
4064 	  BB_FOOTER (bb) = BB_FOOTER (c);
4065 	  BB_FOOTER (c) = NULL;
4066 	}
4067 
4068       while (c->aux != bb)
4069 	c = (basic_block) c->aux;
4070 
4071       c->aux = bb->aux;
4072       while (c->aux)
4073 	c = (basic_block) c->aux;
4074 
4075       c->aux = bb;
4076       bb->aux = NULL;
4077     }
4078 }
4079 
4080 /* In case there are more than one fallthru predecessors of exit, force that
4081    there is only one.  */
4082 
4083 static void
force_one_exit_fallthru(void)4084 force_one_exit_fallthru (void)
4085 {
4086   edge e, predecessor = NULL;
4087   bool more = false;
4088   edge_iterator ei;
4089   basic_block forwarder, bb;
4090 
4091   FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4092     if (e->flags & EDGE_FALLTHRU)
4093       {
4094 	if (predecessor == NULL)
4095 	  predecessor = e;
4096 	else
4097 	  {
4098 	    more = true;
4099 	    break;
4100 	  }
4101       }
4102 
4103   if (!more)
4104     return;
4105 
4106   /* Exit has several fallthru predecessors.  Create a forwarder block for
4107      them.  */
4108   forwarder = split_edge (predecessor);
4109   for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
4110        (e = ei_safe_edge (ei)); )
4111     {
4112       if (e->src == forwarder
4113 	  || !(e->flags & EDGE_FALLTHRU))
4114 	ei_next (&ei);
4115       else
4116 	redirect_edge_and_branch_force (e, forwarder);
4117     }
4118 
4119   /* Fix up the chain of blocks -- make FORWARDER immediately precede the
4120      exit block.  */
4121   FOR_EACH_BB_FN (bb, cfun)
4122     {
4123       if (bb->aux == NULL && bb != forwarder)
4124 	{
4125 	  bb->aux = forwarder;
4126 	  break;
4127 	}
4128     }
4129 }
4130 
4131 /* Return true in case it is possible to duplicate the basic block BB.  */
4132 
4133 static bool
cfg_layout_can_duplicate_bb_p(const_basic_block bb)4134 cfg_layout_can_duplicate_bb_p (const_basic_block bb)
4135 {
4136   /* Do not attempt to duplicate tablejumps, as we need to unshare
4137      the dispatch table.  This is difficult to do, as the instructions
4138      computing jump destination may be hoisted outside the basic block.  */
4139   if (tablejump_p (BB_END (bb), NULL, NULL))
4140     return false;
4141 
4142   /* Do not duplicate blocks containing insns that can't be copied.  */
4143   if (targetm.cannot_copy_insn_p)
4144     {
4145       rtx_insn *insn = BB_HEAD (bb);
4146       while (1)
4147 	{
4148 	  if (INSN_P (insn) && targetm.cannot_copy_insn_p (insn))
4149 	    return false;
4150 	  if (insn == BB_END (bb))
4151 	    break;
4152 	  insn = NEXT_INSN (insn);
4153 	}
4154     }
4155 
4156   return true;
4157 }
4158 
4159 rtx_insn *
duplicate_insn_chain(rtx_insn * from,rtx_insn * to)4160 duplicate_insn_chain (rtx_insn *from, rtx_insn *to)
4161 {
4162   rtx_insn *insn, *next, *copy;
4163   rtx_note *last;
4164 
4165   /* Avoid updating of boundaries of previous basic block.  The
4166      note will get removed from insn stream in fixup.  */
4167   last = emit_note (NOTE_INSN_DELETED);
4168 
4169   /* Create copy at the end of INSN chain.  The chain will
4170      be reordered later.  */
4171   for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
4172     {
4173       switch (GET_CODE (insn))
4174 	{
4175 	case DEBUG_INSN:
4176 	  /* Don't duplicate label debug insns.  */
4177 	  if (DEBUG_BIND_INSN_P (insn)
4178 	      && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL)
4179 	    break;
4180 	  /* FALLTHRU */
4181 	case INSN:
4182 	case CALL_INSN:
4183 	case JUMP_INSN:
4184 	  copy = emit_copy_of_insn_after (insn, get_last_insn ());
4185 	  if (JUMP_P (insn) && JUMP_LABEL (insn) != NULL_RTX
4186 	      && ANY_RETURN_P (JUMP_LABEL (insn)))
4187 	    JUMP_LABEL (copy) = JUMP_LABEL (insn);
4188           maybe_copy_prologue_epilogue_insn (insn, copy);
4189 	  break;
4190 
4191 	case JUMP_TABLE_DATA:
4192 	  /* Avoid copying of dispatch tables.  We never duplicate
4193 	     tablejumps, so this can hit only in case the table got
4194 	     moved far from original jump.
4195 	     Avoid copying following barrier as well if any
4196 	     (and debug insns in between).  */
4197 	  for (next = NEXT_INSN (insn);
4198 	       next != NEXT_INSN (to);
4199 	       next = NEXT_INSN (next))
4200 	    if (!DEBUG_INSN_P (next))
4201 	      break;
4202 	  if (next != NEXT_INSN (to) && BARRIER_P (next))
4203 	    insn = next;
4204 	  break;
4205 
4206 	case CODE_LABEL:
4207 	  break;
4208 
4209 	case BARRIER:
4210 	  emit_barrier ();
4211 	  break;
4212 
4213 	case NOTE:
4214 	  switch (NOTE_KIND (insn))
4215 	    {
4216 	      /* In case prologue is empty and function contain label
4217 		 in first BB, we may want to copy the block.  */
4218 	    case NOTE_INSN_PROLOGUE_END:
4219 
4220 	    case NOTE_INSN_DELETED:
4221 	    case NOTE_INSN_DELETED_LABEL:
4222 	    case NOTE_INSN_DELETED_DEBUG_LABEL:
4223 	      /* No problem to strip these.  */
4224 	    case NOTE_INSN_FUNCTION_BEG:
4225 	      /* There is always just single entry to function.  */
4226 	    case NOTE_INSN_BASIC_BLOCK:
4227               /* We should only switch text sections once.  */
4228 	    case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4229 	      break;
4230 
4231 	    case NOTE_INSN_EPILOGUE_BEG:
4232 	    case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
4233 	      emit_note_copy (as_a <rtx_note *> (insn));
4234 	      break;
4235 
4236 	    default:
4237 	      /* All other notes should have already been eliminated.  */
4238 	      gcc_unreachable ();
4239 	    }
4240 	  break;
4241 	default:
4242 	  gcc_unreachable ();
4243 	}
4244     }
4245   insn = NEXT_INSN (last);
4246   delete_insn (last);
4247   return insn;
4248 }
4249 
4250 /* Create a duplicate of the basic block BB.  */
4251 
4252 static basic_block
cfg_layout_duplicate_bb(basic_block bb,copy_bb_data *)4253 cfg_layout_duplicate_bb (basic_block bb, copy_bb_data *)
4254 {
4255   rtx_insn *insn;
4256   basic_block new_bb;
4257 
4258   insn = duplicate_insn_chain (BB_HEAD (bb), BB_END (bb));
4259   new_bb = create_basic_block (insn,
4260 			       insn ? get_last_insn () : NULL,
4261 			       EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
4262 
4263   BB_COPY_PARTITION (new_bb, bb);
4264   if (BB_HEADER (bb))
4265     {
4266       insn = BB_HEADER (bb);
4267       while (NEXT_INSN (insn))
4268 	insn = NEXT_INSN (insn);
4269       insn = duplicate_insn_chain (BB_HEADER (bb), insn);
4270       if (insn)
4271 	BB_HEADER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4272     }
4273 
4274   if (BB_FOOTER (bb))
4275     {
4276       insn = BB_FOOTER (bb);
4277       while (NEXT_INSN (insn))
4278 	insn = NEXT_INSN (insn);
4279       insn = duplicate_insn_chain (BB_FOOTER (bb), insn);
4280       if (insn)
4281 	BB_FOOTER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4282     }
4283 
4284   return new_bb;
4285 }
4286 
4287 
4288 /* Main entry point to this module - initialize the datastructures for
4289    CFG layout changes.  It keeps LOOPS up-to-date if not null.
4290 
4291    FLAGS is a set of additional flags to pass to cleanup_cfg().  */
4292 
4293 void
cfg_layout_initialize(int flags)4294 cfg_layout_initialize (int flags)
4295 {
4296   rtx_insn_list *x;
4297   basic_block bb;
4298 
4299   /* Once bb partitioning is complete, cfg layout mode should not be
4300      re-entered.  Entering cfg layout mode may require fixups.  As an
4301      example, if edge forwarding performed when optimizing the cfg
4302      layout required moving a block from the hot to the cold
4303      section. This would create an illegal partitioning unless some
4304      manual fixup was performed.  */
4305   gcc_assert (!crtl->bb_reorder_complete || !crtl->has_bb_partition);
4306 
4307   initialize_original_copy_tables ();
4308 
4309   cfg_layout_rtl_register_cfg_hooks ();
4310 
4311   record_effective_endpoints ();
4312 
4313   /* Make sure that the targets of non local gotos are marked.  */
4314   for (x = nonlocal_goto_handler_labels; x; x = x->next ())
4315     {
4316       bb = BLOCK_FOR_INSN (x->insn ());
4317       bb->flags |= BB_NON_LOCAL_GOTO_TARGET;
4318     }
4319 
4320   cleanup_cfg (CLEANUP_CFGLAYOUT | flags);
4321 }
4322 
4323 /* Splits superblocks.  */
4324 void
break_superblocks(void)4325 break_superblocks (void)
4326 {
4327   bool need = false;
4328   basic_block bb;
4329 
4330   auto_sbitmap superblocks (last_basic_block_for_fn (cfun));
4331   bitmap_clear (superblocks);
4332 
4333   FOR_EACH_BB_FN (bb, cfun)
4334     if (bb->flags & BB_SUPERBLOCK)
4335       {
4336 	bb->flags &= ~BB_SUPERBLOCK;
4337 	bitmap_set_bit (superblocks, bb->index);
4338 	need = true;
4339       }
4340 
4341   if (need)
4342     {
4343       rebuild_jump_labels (get_insns ());
4344       find_many_sub_basic_blocks (superblocks);
4345     }
4346 }
4347 
4348 /* Finalize the changes: reorder insn list according to the sequence specified
4349    by aux pointers, enter compensation code, rebuild scope forest.  */
4350 
4351 void
cfg_layout_finalize(void)4352 cfg_layout_finalize (void)
4353 {
4354   free_dominance_info (CDI_DOMINATORS);
4355   force_one_exit_fallthru ();
4356   rtl_register_cfg_hooks ();
4357   if (reload_completed && !targetm.have_epilogue ())
4358     fixup_fallthru_exit_predecessor ();
4359   fixup_reorder_chain ();
4360 
4361   rebuild_jump_labels (get_insns ());
4362   delete_dead_jumptables ();
4363 
4364   if (flag_checking)
4365     verify_insn_chain ();
4366   checking_verify_flow_info ();
4367 }
4368 
4369 
4370 /* Same as split_block but update cfg_layout structures.  */
4371 
4372 static basic_block
cfg_layout_split_block(basic_block bb,void * insnp)4373 cfg_layout_split_block (basic_block bb, void *insnp)
4374 {
4375   rtx insn = (rtx) insnp;
4376   basic_block new_bb = rtl_split_block (bb, insn);
4377 
4378   BB_FOOTER (new_bb) = BB_FOOTER (bb);
4379   BB_FOOTER (bb) = NULL;
4380 
4381   return new_bb;
4382 }
4383 
4384 /* Redirect Edge to DEST.  */
4385 static edge
cfg_layout_redirect_edge_and_branch(edge e,basic_block dest)4386 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
4387 {
4388   basic_block src = e->src;
4389   edge ret;
4390 
4391   if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
4392     return NULL;
4393 
4394   if (e->dest == dest)
4395     return e;
4396 
4397   if (e->flags & EDGE_CROSSING
4398       && BB_PARTITION (e->src) == BB_PARTITION (dest)
4399       && simplejump_p (BB_END (src)))
4400     {
4401       if (dump_file)
4402 	fprintf (dump_file,
4403 	  	 "Removing crossing jump while redirecting edge form %i to %i\n",
4404 		 e->src->index, dest->index);
4405       delete_insn (BB_END (src));
4406       remove_barriers_from_footer (src);
4407       e->flags |= EDGE_FALLTHRU;
4408     }
4409 
4410   if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4411       && (ret = try_redirect_by_replacing_jump (e, dest, true)))
4412     {
4413       df_set_bb_dirty (src);
4414       return ret;
4415     }
4416 
4417   if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4418       && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
4419     {
4420       if (dump_file)
4421 	fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
4422 		 e->src->index, dest->index);
4423 
4424       df_set_bb_dirty (e->src);
4425       redirect_edge_succ (e, dest);
4426       return e;
4427     }
4428 
4429   /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
4430      in the case the basic block appears to be in sequence.  Avoid this
4431      transformation.  */
4432 
4433   if (e->flags & EDGE_FALLTHRU)
4434     {
4435       /* Redirect any branch edges unified with the fallthru one.  */
4436       if (JUMP_P (BB_END (src))
4437 	  && label_is_jump_target_p (BB_HEAD (e->dest),
4438 				     BB_END (src)))
4439 	{
4440 	  edge redirected;
4441 
4442 	  if (dump_file)
4443 	    fprintf (dump_file, "Fallthru edge unified with branch "
4444 		     "%i->%i redirected to %i\n",
4445 		     e->src->index, e->dest->index, dest->index);
4446 	  e->flags &= ~EDGE_FALLTHRU;
4447 	  redirected = redirect_branch_edge (e, dest);
4448 	  gcc_assert (redirected);
4449 	  redirected->flags |= EDGE_FALLTHRU;
4450 	  df_set_bb_dirty (redirected->src);
4451 	  return redirected;
4452 	}
4453       /* In case we are redirecting fallthru edge to the branch edge
4454 	 of conditional jump, remove it.  */
4455       if (EDGE_COUNT (src->succs) == 2)
4456 	{
4457 	  /* Find the edge that is different from E.  */
4458 	  edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
4459 
4460 	  if (s->dest == dest
4461 	      && any_condjump_p (BB_END (src))
4462 	      && onlyjump_p (BB_END (src)))
4463 	    delete_insn (BB_END (src));
4464 	}
4465       if (dump_file)
4466 	fprintf (dump_file, "Redirecting fallthru edge %i->%i to %i\n",
4467 		 e->src->index, e->dest->index, dest->index);
4468       ret = redirect_edge_succ_nodup (e, dest);
4469     }
4470   else
4471     ret = redirect_branch_edge (e, dest);
4472 
4473   if (!ret)
4474     return NULL;
4475 
4476   fixup_partition_crossing (ret);
4477   /* We don't want simplejumps in the insn stream during cfglayout.  */
4478   gcc_assert (!simplejump_p (BB_END (src)) || CROSSING_JUMP_P (BB_END (src)));
4479 
4480   df_set_bb_dirty (src);
4481   return ret;
4482 }
4483 
4484 /* Simple wrapper as we always can redirect fallthru edges.  */
4485 static basic_block
cfg_layout_redirect_edge_and_branch_force(edge e,basic_block dest)4486 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
4487 {
4488   edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
4489 
4490   gcc_assert (redirected);
4491   return NULL;
4492 }
4493 
4494 /* Same as delete_basic_block but update cfg_layout structures.  */
4495 
4496 static void
cfg_layout_delete_block(basic_block bb)4497 cfg_layout_delete_block (basic_block bb)
4498 {
4499   rtx_insn *insn, *next, *prev = PREV_INSN (BB_HEAD (bb)), *remaints;
4500   rtx_insn **to;
4501 
4502   if (BB_HEADER (bb))
4503     {
4504       next = BB_HEAD (bb);
4505       if (prev)
4506 	SET_NEXT_INSN (prev) = BB_HEADER (bb);
4507       else
4508 	set_first_insn (BB_HEADER (bb));
4509       SET_PREV_INSN (BB_HEADER (bb)) = prev;
4510       insn = BB_HEADER (bb);
4511       while (NEXT_INSN (insn))
4512 	insn = NEXT_INSN (insn);
4513       SET_NEXT_INSN (insn) = next;
4514       SET_PREV_INSN (next) = insn;
4515     }
4516   next = NEXT_INSN (BB_END (bb));
4517   if (BB_FOOTER (bb))
4518     {
4519       insn = BB_FOOTER (bb);
4520       while (insn)
4521 	{
4522 	  if (BARRIER_P (insn))
4523 	    {
4524 	      if (PREV_INSN (insn))
4525 		SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
4526 	      else
4527 		BB_FOOTER (bb) = NEXT_INSN (insn);
4528 	      if (NEXT_INSN (insn))
4529 		SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
4530 	    }
4531 	  if (LABEL_P (insn))
4532 	    break;
4533 	  insn = NEXT_INSN (insn);
4534 	}
4535       if (BB_FOOTER (bb))
4536 	{
4537 	  insn = BB_END (bb);
4538 	  SET_NEXT_INSN (insn) = BB_FOOTER (bb);
4539 	  SET_PREV_INSN (BB_FOOTER (bb)) = insn;
4540 	  while (NEXT_INSN (insn))
4541 	    insn = NEXT_INSN (insn);
4542 	  SET_NEXT_INSN (insn) = next;
4543 	  if (next)
4544 	    SET_PREV_INSN (next) = insn;
4545 	  else
4546 	    set_last_insn (insn);
4547 	}
4548     }
4549   if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4550     to = &BB_HEADER (bb->next_bb);
4551   else
4552     to = &cfg_layout_function_footer;
4553 
4554   rtl_delete_block (bb);
4555 
4556   if (prev)
4557     prev = NEXT_INSN (prev);
4558   else
4559     prev = get_insns ();
4560   if (next)
4561     next = PREV_INSN (next);
4562   else
4563     next = get_last_insn ();
4564 
4565   if (next && NEXT_INSN (next) != prev)
4566     {
4567       remaints = unlink_insn_chain (prev, next);
4568       insn = remaints;
4569       while (NEXT_INSN (insn))
4570 	insn = NEXT_INSN (insn);
4571       SET_NEXT_INSN (insn) = *to;
4572       if (*to)
4573 	SET_PREV_INSN (*to) = insn;
4574       *to = remaints;
4575     }
4576 }
4577 
4578 /* Return true when blocks A and B can be safely merged.  */
4579 
4580 static bool
cfg_layout_can_merge_blocks_p(basic_block a,basic_block b)4581 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
4582 {
4583   /* If we are partitioning hot/cold basic blocks, we don't want to
4584      mess up unconditional or indirect jumps that cross between hot
4585      and cold sections.
4586 
4587      Basic block partitioning may result in some jumps that appear to
4588      be optimizable (or blocks that appear to be mergeable), but which really
4589      must be left untouched (they are required to make it safely across
4590      partition boundaries).  See  the comments at the top of
4591      bb-reorder.c:partition_hot_cold_basic_blocks for complete details.  */
4592 
4593   if (BB_PARTITION (a) != BB_PARTITION (b))
4594     return false;
4595 
4596   /* Protect the loop latches.  */
4597   if (current_loops && b->loop_father->latch == b)
4598     return false;
4599 
4600   /* If we would end up moving B's instructions, make sure it doesn't fall
4601      through into the exit block, since we cannot recover from a fallthrough
4602      edge into the exit block occurring in the middle of a function.  */
4603   if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4604     {
4605       edge e = find_fallthru_edge (b->succs);
4606       if (e && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4607 	return false;
4608     }
4609 
4610   /* There must be exactly one edge in between the blocks.  */
4611   return (single_succ_p (a)
4612 	  && single_succ (a) == b
4613 	  && single_pred_p (b) == 1
4614 	  && a != b
4615 	  /* Must be simple edge.  */
4616 	  && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
4617 	  && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4618 	  && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
4619 	  /* If the jump insn has side effects, we can't kill the edge.
4620 	     When not optimizing, try_redirect_by_replacing_jump will
4621 	     not allow us to redirect an edge by replacing a table jump.  */
4622 	  && (!JUMP_P (BB_END (a))
4623 	      || ((!optimize || reload_completed)
4624 		  ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
4625 }
4626 
4627 /* Merge block A and B.  The blocks must be mergeable.  */
4628 
4629 static void
cfg_layout_merge_blocks(basic_block a,basic_block b)4630 cfg_layout_merge_blocks (basic_block a, basic_block b)
4631 {
4632   /* If B is a forwarder block whose outgoing edge has no location, we'll
4633      propagate the locus of the edge between A and B onto it.  */
4634   const bool forward_edge_locus
4635     = (b->flags & BB_FORWARDER_BLOCK) != 0
4636       && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION;
4637   rtx_insn *insn;
4638 
4639   gcc_checking_assert (cfg_layout_can_merge_blocks_p (a, b));
4640 
4641   if (dump_file)
4642     fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
4643 			 a->index);
4644 
4645   /* If there was a CODE_LABEL beginning B, delete it.  */
4646   if (LABEL_P (BB_HEAD (b)))
4647     {
4648       delete_insn (BB_HEAD (b));
4649     }
4650 
4651   /* We should have fallthru edge in a, or we can do dummy redirection to get
4652      it cleaned up.  */
4653   if (JUMP_P (BB_END (a)))
4654     try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
4655   gcc_assert (!JUMP_P (BB_END (a)));
4656 
4657   /* If not optimizing, preserve the locus of the single edge between
4658      blocks A and B if necessary by emitting a nop.  */
4659   if (!optimize
4660       && !forward_edge_locus
4661       && !DECL_IGNORED_P (current_function_decl))
4662     emit_nop_for_unique_locus_between (a, b);
4663 
4664   /* Move things from b->footer after a->footer.  */
4665   if (BB_FOOTER (b))
4666     {
4667       if (!BB_FOOTER (a))
4668 	BB_FOOTER (a) = BB_FOOTER (b);
4669       else
4670 	{
4671 	  rtx_insn *last = BB_FOOTER (a);
4672 
4673 	  while (NEXT_INSN (last))
4674 	    last = NEXT_INSN (last);
4675 	  SET_NEXT_INSN (last) = BB_FOOTER (b);
4676 	  SET_PREV_INSN (BB_FOOTER (b)) = last;
4677 	}
4678       BB_FOOTER (b) = NULL;
4679     }
4680 
4681   /* Move things from b->header before a->footer.
4682      Note that this may include dead tablejump data, but we don't clean
4683      those up until we go out of cfglayout mode.  */
4684    if (BB_HEADER (b))
4685      {
4686       if (! BB_FOOTER (a))
4687 	BB_FOOTER (a) = BB_HEADER (b);
4688       else
4689 	{
4690 	  rtx_insn *last = BB_HEADER (b);
4691 
4692 	  while (NEXT_INSN (last))
4693 	    last = NEXT_INSN (last);
4694 	  SET_NEXT_INSN (last) = BB_FOOTER (a);
4695 	  SET_PREV_INSN (BB_FOOTER (a)) = last;
4696 	  BB_FOOTER (a) = BB_HEADER (b);
4697 	}
4698       BB_HEADER (b) = NULL;
4699     }
4700 
4701   /* In the case basic blocks are not adjacent, move them around.  */
4702   if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4703     {
4704       insn = unlink_insn_chain (BB_HEAD (b), BB_END (b));
4705 
4706       emit_insn_after_noloc (insn, BB_END (a), a);
4707     }
4708   /* Otherwise just re-associate the instructions.  */
4709   else
4710     {
4711       insn = BB_HEAD (b);
4712       BB_END (a) = BB_END (b);
4713     }
4714 
4715   /* emit_insn_after_noloc doesn't call df_insn_change_bb.
4716      We need to explicitly call. */
4717   update_bb_for_insn_chain (insn, BB_END (b), a);
4718 
4719   /* Skip possible DELETED_LABEL insn.  */
4720   if (!NOTE_INSN_BASIC_BLOCK_P (insn))
4721     insn = NEXT_INSN (insn);
4722   gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
4723   BB_HEAD (b) = BB_END (b) = NULL;
4724   delete_insn (insn);
4725 
4726   df_bb_delete (b->index);
4727 
4728   if (forward_edge_locus)
4729     EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
4730 
4731   if (dump_file)
4732     fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
4733 }
4734 
4735 /* Split edge E.  */
4736 
4737 static basic_block
cfg_layout_split_edge(edge e)4738 cfg_layout_split_edge (edge e)
4739 {
4740   basic_block new_bb =
4741     create_basic_block (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4742 			? NEXT_INSN (BB_END (e->src)) : get_insns (),
4743 			NULL_RTX, e->src);
4744 
4745   if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4746     BB_COPY_PARTITION (new_bb, e->src);
4747   else
4748     BB_COPY_PARTITION (new_bb, e->dest);
4749   make_edge (new_bb, e->dest, EDGE_FALLTHRU);
4750   redirect_edge_and_branch_force (e, new_bb);
4751 
4752   return new_bb;
4753 }
4754 
4755 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU.  */
4756 
4757 static void
rtl_make_forwarder_block(edge fallthru ATTRIBUTE_UNUSED)4758 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
4759 {
4760 }
4761 
4762 /* Return true if BB contains only labels or non-executable
4763    instructions.  */
4764 
4765 static bool
rtl_block_empty_p(basic_block bb)4766 rtl_block_empty_p (basic_block bb)
4767 {
4768   rtx_insn *insn;
4769 
4770   if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4771       || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4772     return true;
4773 
4774   FOR_BB_INSNS (bb, insn)
4775     if (NONDEBUG_INSN_P (insn) && !any_uncondjump_p (insn))
4776       return false;
4777 
4778   return true;
4779 }
4780 
4781 /* Split a basic block if it ends with a conditional branch and if
4782    the other part of the block is not empty.  */
4783 
4784 static basic_block
rtl_split_block_before_cond_jump(basic_block bb)4785 rtl_split_block_before_cond_jump (basic_block bb)
4786 {
4787   rtx_insn *insn;
4788   rtx_insn *split_point = NULL;
4789   rtx_insn *last = NULL;
4790   bool found_code = false;
4791 
4792   FOR_BB_INSNS (bb, insn)
4793     {
4794       if (any_condjump_p (insn))
4795 	split_point = last;
4796       else if (NONDEBUG_INSN_P (insn))
4797 	found_code = true;
4798       last = insn;
4799     }
4800 
4801   /* Did not find everything.  */
4802   if (found_code && split_point)
4803     return split_block (bb, split_point)->dest;
4804   else
4805     return NULL;
4806 }
4807 
4808 /* Return 1 if BB ends with a call, possibly followed by some
4809    instructions that must stay with the call, 0 otherwise.  */
4810 
4811 static bool
rtl_block_ends_with_call_p(basic_block bb)4812 rtl_block_ends_with_call_p (basic_block bb)
4813 {
4814   rtx_insn *insn = BB_END (bb);
4815 
4816   while (!CALL_P (insn)
4817 	 && insn != BB_HEAD (bb)
4818 	 && (keep_with_call_p (insn)
4819 	     || NOTE_P (insn)
4820 	     || DEBUG_INSN_P (insn)))
4821     insn = PREV_INSN (insn);
4822   return (CALL_P (insn));
4823 }
4824 
4825 /* Return 1 if BB ends with a conditional branch, 0 otherwise.  */
4826 
4827 static bool
rtl_block_ends_with_condjump_p(const_basic_block bb)4828 rtl_block_ends_with_condjump_p (const_basic_block bb)
4829 {
4830   return any_condjump_p (BB_END (bb));
4831 }
4832 
4833 /* Return true if we need to add fake edge to exit.
4834    Helper function for rtl_flow_call_edges_add.  */
4835 
4836 static bool
need_fake_edge_p(const rtx_insn * insn)4837 need_fake_edge_p (const rtx_insn *insn)
4838 {
4839   if (!INSN_P (insn))
4840     return false;
4841 
4842   if ((CALL_P (insn)
4843        && !SIBLING_CALL_P (insn)
4844        && !find_reg_note (insn, REG_NORETURN, NULL)
4845        && !(RTL_CONST_OR_PURE_CALL_P (insn))))
4846     return true;
4847 
4848   return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
4849 	   && MEM_VOLATILE_P (PATTERN (insn)))
4850 	  || (GET_CODE (PATTERN (insn)) == PARALLEL
4851 	      && asm_noperands (insn) != -1
4852 	      && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
4853 	  || GET_CODE (PATTERN (insn)) == ASM_INPUT);
4854 }
4855 
4856 /* Add fake edges to the function exit for any non constant and non noreturn
4857    calls, volatile inline assembly in the bitmap of blocks specified by
4858    BLOCKS or to the whole CFG if BLOCKS is zero.  Return the number of blocks
4859    that were split.
4860 
4861    The goal is to expose cases in which entering a basic block does not imply
4862    that all subsequent instructions must be executed.  */
4863 
4864 static int
rtl_flow_call_edges_add(sbitmap blocks)4865 rtl_flow_call_edges_add (sbitmap blocks)
4866 {
4867   int i;
4868   int blocks_split = 0;
4869   int last_bb = last_basic_block_for_fn (cfun);
4870   bool check_last_block = false;
4871 
4872   if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
4873     return 0;
4874 
4875   if (! blocks)
4876     check_last_block = true;
4877   else
4878     check_last_block = bitmap_bit_p (blocks,
4879 				     EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
4880 
4881   /* In the last basic block, before epilogue generation, there will be
4882      a fallthru edge to EXIT.  Special care is required if the last insn
4883      of the last basic block is a call because make_edge folds duplicate
4884      edges, which would result in the fallthru edge also being marked
4885      fake, which would result in the fallthru edge being removed by
4886      remove_fake_edges, which would result in an invalid CFG.
4887 
4888      Moreover, we can't elide the outgoing fake edge, since the block
4889      profiler needs to take this into account in order to solve the minimal
4890      spanning tree in the case that the call doesn't return.
4891 
4892      Handle this by adding a dummy instruction in a new last basic block.  */
4893   if (check_last_block)
4894     {
4895       basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
4896       rtx_insn *insn = BB_END (bb);
4897 
4898       /* Back up past insns that must be kept in the same block as a call.  */
4899       while (insn != BB_HEAD (bb)
4900 	     && keep_with_call_p (insn))
4901 	insn = PREV_INSN (insn);
4902 
4903       if (need_fake_edge_p (insn))
4904 	{
4905 	  edge e;
4906 
4907 	  e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4908 	  if (e)
4909 	    {
4910 	      insert_insn_on_edge (gen_use (const0_rtx), e);
4911 	      commit_edge_insertions ();
4912 	    }
4913 	}
4914     }
4915 
4916   /* Now add fake edges to the function exit for any non constant
4917      calls since there is no way that we can determine if they will
4918      return or not...  */
4919 
4920   for (i = NUM_FIXED_BLOCKS; i < last_bb; i++)
4921     {
4922       basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
4923       rtx_insn *insn;
4924       rtx_insn *prev_insn;
4925 
4926       if (!bb)
4927 	continue;
4928 
4929       if (blocks && !bitmap_bit_p (blocks, i))
4930 	continue;
4931 
4932       for (insn = BB_END (bb); ; insn = prev_insn)
4933 	{
4934 	  prev_insn = PREV_INSN (insn);
4935 	  if (need_fake_edge_p (insn))
4936 	    {
4937 	      edge e;
4938 	      rtx_insn *split_at_insn = insn;
4939 
4940 	      /* Don't split the block between a call and an insn that should
4941 		 remain in the same block as the call.  */
4942 	      if (CALL_P (insn))
4943 		while (split_at_insn != BB_END (bb)
4944 		       && keep_with_call_p (NEXT_INSN (split_at_insn)))
4945 		  split_at_insn = NEXT_INSN (split_at_insn);
4946 
4947 	      /* The handling above of the final block before the epilogue
4948 		 should be enough to verify that there is no edge to the exit
4949 		 block in CFG already.  Calling make_edge in such case would
4950 		 cause us to mark that edge as fake and remove it later.  */
4951 
4952 	      if (flag_checking && split_at_insn == BB_END (bb))
4953 		{
4954 		  e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4955 		  gcc_assert (e == NULL);
4956 		}
4957 
4958 	      /* Note that the following may create a new basic block
4959 		 and renumber the existing basic blocks.  */
4960 	      if (split_at_insn != BB_END (bb))
4961 		{
4962 		  e = split_block (bb, split_at_insn);
4963 		  if (e)
4964 		    blocks_split++;
4965 		}
4966 
4967 	      edge ne = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
4968 	      ne->probability = profile_probability::guessed_never ();
4969 	    }
4970 
4971 	  if (insn == BB_HEAD (bb))
4972 	    break;
4973 	}
4974     }
4975 
4976   if (blocks_split)
4977     verify_flow_info ();
4978 
4979   return blocks_split;
4980 }
4981 
4982 /* Add COMP_RTX as a condition at end of COND_BB.  FIRST_HEAD is
4983    the conditional branch target, SECOND_HEAD should be the fall-thru
4984    there is no need to handle this here the loop versioning code handles
4985    this.  the reason for SECON_HEAD is that it is needed for condition
4986    in trees, and this should be of the same type since it is a hook.  */
4987 static void
rtl_lv_add_condition_to_bb(basic_block first_head,basic_block second_head ATTRIBUTE_UNUSED,basic_block cond_bb,void * comp_rtx)4988 rtl_lv_add_condition_to_bb (basic_block first_head ,
4989 			    basic_block second_head ATTRIBUTE_UNUSED,
4990 			    basic_block cond_bb, void *comp_rtx)
4991 {
4992   rtx_code_label *label;
4993   rtx_insn *seq, *jump;
4994   rtx op0 = XEXP ((rtx)comp_rtx, 0);
4995   rtx op1 = XEXP ((rtx)comp_rtx, 1);
4996   enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
4997   machine_mode mode;
4998 
4999 
5000   label = block_label (first_head);
5001   mode = GET_MODE (op0);
5002   if (mode == VOIDmode)
5003     mode = GET_MODE (op1);
5004 
5005   start_sequence ();
5006   op0 = force_operand (op0, NULL_RTX);
5007   op1 = force_operand (op1, NULL_RTX);
5008   do_compare_rtx_and_jump (op0, op1, comp, 0, mode, NULL_RTX, NULL, label,
5009 			   profile_probability::uninitialized ());
5010   jump = get_last_insn ();
5011   JUMP_LABEL (jump) = label;
5012   LABEL_NUSES (label)++;
5013   seq = get_insns ();
5014   end_sequence ();
5015 
5016   /* Add the new cond, in the new head.  */
5017   emit_insn_after (seq, BB_END (cond_bb));
5018 }
5019 
5020 
5021 /* Given a block B with unconditional branch at its end, get the
5022    store the return the branch edge and the fall-thru edge in
5023    BRANCH_EDGE and FALLTHRU_EDGE respectively.  */
5024 static void
rtl_extract_cond_bb_edges(basic_block b,edge * branch_edge,edge * fallthru_edge)5025 rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
5026 			   edge *fallthru_edge)
5027 {
5028   edge e = EDGE_SUCC (b, 0);
5029 
5030   if (e->flags & EDGE_FALLTHRU)
5031     {
5032       *fallthru_edge = e;
5033       *branch_edge = EDGE_SUCC (b, 1);
5034     }
5035   else
5036     {
5037       *branch_edge = e;
5038       *fallthru_edge = EDGE_SUCC (b, 1);
5039     }
5040 }
5041 
5042 void
init_rtl_bb_info(basic_block bb)5043 init_rtl_bb_info (basic_block bb)
5044 {
5045   gcc_assert (!bb->il.x.rtl);
5046   bb->il.x.head_ = NULL;
5047   bb->il.x.rtl = ggc_cleared_alloc<rtl_bb_info> ();
5048 }
5049 
5050 /* Returns true if it is possible to remove edge E by redirecting
5051    it to the destination of the other edge from E->src.  */
5052 
5053 static bool
rtl_can_remove_branch_p(const_edge e)5054 rtl_can_remove_branch_p (const_edge e)
5055 {
5056   const_basic_block src = e->src;
5057   const_basic_block target = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest;
5058   const rtx_insn *insn = BB_END (src);
5059   rtx set;
5060 
5061   /* The conditions are taken from try_redirect_by_replacing_jump.  */
5062   if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
5063     return false;
5064 
5065   if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
5066     return false;
5067 
5068   if (BB_PARTITION (src) != BB_PARTITION (target))
5069     return false;
5070 
5071   if (!onlyjump_p (insn)
5072       || tablejump_p (insn, NULL, NULL))
5073     return false;
5074 
5075   set = single_set (insn);
5076   if (!set || side_effects_p (set))
5077     return false;
5078 
5079   return true;
5080 }
5081 
5082 static basic_block
rtl_duplicate_bb(basic_block bb,copy_bb_data * id)5083 rtl_duplicate_bb (basic_block bb, copy_bb_data *id)
5084 {
5085   bb = cfg_layout_duplicate_bb (bb, id);
5086   bb->aux = NULL;
5087   return bb;
5088 }
5089 
5090 /* Do book-keeping of basic block BB for the profile consistency checker.
5091    Store the counting in RECORD.  */
5092 static void
rtl_account_profile_record(basic_block bb,struct profile_record * record)5093 rtl_account_profile_record (basic_block bb, struct profile_record *record)
5094 {
5095   rtx_insn *insn;
5096   FOR_BB_INSNS (bb, insn)
5097     if (INSN_P (insn))
5098       {
5099 	record->size += insn_cost (insn, false);
5100 	if (bb->count.initialized_p ())
5101 	  record->time
5102 	    += insn_cost (insn, true) * bb->count.to_gcov_type ();
5103 	else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
5104 	  record->time
5105 	    += insn_cost (insn, true) * bb->count.to_frequency (cfun);
5106       }
5107 }
5108 
5109 /* Implementation of CFG manipulation for linearized RTL.  */
5110 struct cfg_hooks rtl_cfg_hooks = {
5111   "rtl",
5112   rtl_verify_flow_info,
5113   rtl_dump_bb,
5114   rtl_dump_bb_for_graph,
5115   rtl_create_basic_block,
5116   rtl_redirect_edge_and_branch,
5117   rtl_redirect_edge_and_branch_force,
5118   rtl_can_remove_branch_p,
5119   rtl_delete_block,
5120   rtl_split_block,
5121   rtl_move_block_after,
5122   rtl_can_merge_blocks,  /* can_merge_blocks_p */
5123   rtl_merge_blocks,
5124   rtl_predict_edge,
5125   rtl_predicted_by_p,
5126   cfg_layout_can_duplicate_bb_p,
5127   rtl_duplicate_bb,
5128   rtl_split_edge,
5129   rtl_make_forwarder_block,
5130   rtl_tidy_fallthru_edge,
5131   rtl_force_nonfallthru,
5132   rtl_block_ends_with_call_p,
5133   rtl_block_ends_with_condjump_p,
5134   rtl_flow_call_edges_add,
5135   NULL, /* execute_on_growing_pred */
5136   NULL, /* execute_on_shrinking_pred */
5137   NULL, /* duplicate loop for trees */
5138   NULL, /* lv_add_condition_to_bb */
5139   NULL, /* lv_adjust_loop_header_phi*/
5140   NULL, /* extract_cond_bb_edges */
5141   NULL, /* flush_pending_stmts */
5142   rtl_block_empty_p, /* block_empty_p */
5143   rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5144   rtl_account_profile_record,
5145 };
5146 
5147 /* Implementation of CFG manipulation for cfg layout RTL, where
5148    basic block connected via fallthru edges does not have to be adjacent.
5149    This representation will hopefully become the default one in future
5150    version of the compiler.  */
5151 
5152 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
5153   "cfglayout mode",
5154   rtl_verify_flow_info_1,
5155   rtl_dump_bb,
5156   rtl_dump_bb_for_graph,
5157   cfg_layout_create_basic_block,
5158   cfg_layout_redirect_edge_and_branch,
5159   cfg_layout_redirect_edge_and_branch_force,
5160   rtl_can_remove_branch_p,
5161   cfg_layout_delete_block,
5162   cfg_layout_split_block,
5163   rtl_move_block_after,
5164   cfg_layout_can_merge_blocks_p,
5165   cfg_layout_merge_blocks,
5166   rtl_predict_edge,
5167   rtl_predicted_by_p,
5168   cfg_layout_can_duplicate_bb_p,
5169   cfg_layout_duplicate_bb,
5170   cfg_layout_split_edge,
5171   rtl_make_forwarder_block,
5172   NULL, /* tidy_fallthru_edge */
5173   rtl_force_nonfallthru,
5174   rtl_block_ends_with_call_p,
5175   rtl_block_ends_with_condjump_p,
5176   rtl_flow_call_edges_add,
5177   NULL, /* execute_on_growing_pred */
5178   NULL, /* execute_on_shrinking_pred */
5179   duplicate_loop_to_header_edge, /* duplicate loop for trees */
5180   rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
5181   NULL, /* lv_adjust_loop_header_phi*/
5182   rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
5183   NULL, /* flush_pending_stmts */
5184   rtl_block_empty_p, /* block_empty_p */
5185   rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5186   rtl_account_profile_record,
5187 };
5188 
5189 #include "gt-cfgrtl.h"
5190