1 /* { dg-do run { target { powerpc*-*-* } } } */
2 /* { dg-require-effective-target p9vector_hw } */
3 /* { dg-options "-mdejagnu-cpu=power9" } */
4 
5 #include <altivec.h>
6 #include <stdbool.h>
7 #include <stdlib.h>
8 
9 bool
test_nan(__ieee128 * p)10 test_nan (__ieee128 *p)
11 {
12   __ieee128 source = *p;
13 
14   /*
15     0x40    Test for NaN
16     0x20    Test for +Infinity
17     0x10    Test for -Infinity
18     0x08    Test for +Zero
19     0x04    Test for -Zero
20     0x02    Test for +Denormal
21     0x01    Test for -Denormal
22   */
23   return scalar_test_data_class (source, 0x40);
24 }
25 
26 int
main()27 main ()
28 {
29   /* NaN is represented with the maximum biased exponent value and a
30    *  non-zero fraction value. The sign bit ignored.  If the
31    *  high-order bit of the fraction field is 0, then the NaN is a
32    *  Signaling NaN.  Otherwise, it is a Quiet NaN.  */
33   __int128 signal_significand = (__int128) 0xffffffff;
34   __int128 quiet_significand = (((__int128) 0x1) << 112) | 0xffffffff;
35   __int128 a_number_significand = (((__int128) 0x1) << 112);
36   unsigned long long int nan_exponent = 0x7fff;
37   unsigned long long int a_number_exponent = 16383;
38 
39   __ieee128 signaling_nan =
40     scalar_insert_exp (signal_significand, nan_exponent);
41   __ieee128 quiet_nan =
42     scalar_insert_exp (quiet_significand, nan_exponent);
43   __ieee128 a_number =
44     scalar_insert_exp (a_number_significand, a_number_exponent);
45 
46   if (!test_nan (&signaling_nan))
47     abort ();
48   if (!test_nan (&quiet_nan))
49     abort ();
50   if (test_nan (&a_number))
51     abort ();
52   return 0;
53 }
54