1 /* Generic dominator tree walker
2    Copyright (C) 2003-2019 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "cfganal.h"
26 #include "domwalk.h"
27 #include "dumpfile.h"
28 
29 /* This file implements a generic walker for dominator trees.
30 
31   To understand the dominator walker one must first have a grasp of dominators,
32   immediate dominators and the dominator tree.
33 
34   Dominators
35     A block B1 is said to dominate B2 if every path from the entry to B2 must
36     pass through B1.  Given the dominance relationship, we can proceed to
37     compute immediate dominators.  Note it is not important whether or not
38     our definition allows a block to dominate itself.
39 
40   Immediate Dominators:
41     Every block in the CFG has no more than one immediate dominator.  The
42     immediate dominator of block BB must dominate BB and must not dominate
43     any other dominator of BB and must not be BB itself.
44 
45   Dominator tree:
46     If we then construct a tree where each node is a basic block and there
47     is an edge from each block's immediate dominator to the block itself, then
48     we have a dominator tree.
49 
50 
51   [ Note this walker can also walk the post-dominator tree, which is
52     defined in a similar manner.  i.e., block B1 is said to post-dominate
53     block B2 if all paths from B2 to the exit block must pass through
54     B1.  ]
55 
56   For example, given the CFG
57 
58                    1
59                    |
60                    2
61                   / \
62                  3   4
63                     / \
64        +---------->5   6
65        |          / \ /
66        |    +--->8   7
67        |    |   /    |
68        |    +--9    11
69        |      /      |
70        +--- 10 ---> 12
71 
72 
73   We have a dominator tree which looks like
74 
75                    1
76                    |
77                    2
78                   / \
79                  /   \
80                 3     4
81                    / / \ \
82                    | | | |
83                    5 6 7 12
84                    |   |
85                    8   11
86                    |
87                    9
88                    |
89                   10
90 
91 
92 
93   The dominator tree is the basis for a number of analysis, transformation
94   and optimization algorithms that operate on a semi-global basis.
95 
96   The dominator walker is a generic routine which visits blocks in the CFG
97   via a depth first search of the dominator tree.  In the example above
98   the dominator walker might visit blocks in the following order
99   1, 2, 3, 4, 5, 8, 9, 10, 6, 7, 11, 12.
100 
101   The dominator walker has a number of callbacks to perform actions
102   during the walk of the dominator tree.  There are two callbacks
103   which walk statements, one before visiting the dominator children,
104   one after visiting the dominator children.  There is a callback
105   before and after each statement walk callback.  In addition, the
106   dominator walker manages allocation/deallocation of data structures
107   which are local to each block visited.
108 
109   The dominator walker is meant to provide a generic means to build a pass
110   which can analyze or transform/optimize a function based on walking
111   the dominator tree.  One simply fills in the dominator walker data
112   structure with the appropriate callbacks and calls the walker.
113 
114   We currently use the dominator walker to prune the set of variables
115   which might need PHI nodes (which can greatly improve compile-time
116   performance in some cases).
117 
118   We also use the dominator walker to rewrite the function into SSA form
119   which reduces code duplication since the rewriting phase is inherently
120   a walk of the dominator tree.
121 
122   And (of course), we use the dominator walker to drive our dominator
123   optimizer, which is a semi-global optimizer.
124 
125   TODO:
126 
127     Walking statements is based on the block statement iterator abstraction,
128     which is currently an abstraction over walking tree statements.  Thus
129     the dominator walker is currently only useful for trees.  */
130 
131 /* Reverse postorder index of each basic block.  */
132 static int *bb_postorder;
133 
134 static int
cmp_bb_postorder(const void * a,const void * b)135 cmp_bb_postorder (const void *a, const void *b)
136 {
137   basic_block bb1 = *(const basic_block *)(a);
138   basic_block bb2 = *(const basic_block *)(b);
139   /* Place higher completion number first (pop off lower number first).  */
140   return bb_postorder[bb2->index] - bb_postorder[bb1->index];
141 }
142 
143 /* Permute array BBS of N basic blocks in postorder,
144    i.e. by descending number in BB_POSTORDER array.  */
145 
146 static void
sort_bbs_postorder(basic_block * bbs,int n)147 sort_bbs_postorder (basic_block *bbs, int n)
148 {
149   if (__builtin_expect (n == 2, true))
150     {
151       basic_block bb0 = bbs[0], bb1 = bbs[1];
152       if (bb_postorder[bb0->index] < bb_postorder[bb1->index])
153 	bbs[0] = bb1, bbs[1] = bb0;
154     }
155   else if (__builtin_expect (n == 3, true))
156     {
157       basic_block bb0 = bbs[0], bb1 = bbs[1], bb2 = bbs[2];
158       if (bb_postorder[bb0->index] < bb_postorder[bb1->index])
159 	std::swap (bb0, bb1);
160       if (bb_postorder[bb1->index] < bb_postorder[bb2->index])
161 	{
162 	  std::swap (bb1, bb2);
163 	  if (bb_postorder[bb0->index] < bb_postorder[bb1->index])
164 	    std::swap (bb0, bb1);
165 	}
166       bbs[0] = bb0, bbs[1] = bb1, bbs[2] = bb2;
167     }
168   else
169     qsort (bbs, n, sizeof *bbs, cmp_bb_postorder);
170 }
171 
172 /* Set EDGE_EXECUTABLE on every edge within FN's CFG.  */
173 
174 void
set_all_edges_as_executable(function * fn)175 set_all_edges_as_executable (function *fn)
176 {
177   basic_block bb;
178   FOR_ALL_BB_FN (bb, fn)
179     {
180       edge_iterator ei;
181       edge e;
182       FOR_EACH_EDGE (e, ei, bb->succs)
183 	e->flags |= EDGE_EXECUTABLE;
184     }
185 }
186 
187 /* Constructor for a dom walker.  */
188 
dom_walker(cdi_direction direction,enum reachability reachability,int * bb_index_to_rpo)189 dom_walker::dom_walker (cdi_direction direction,
190 			enum reachability reachability,
191 			int *bb_index_to_rpo)
192   : m_dom_direction (direction),
193     m_reachability (reachability),
194     m_user_bb_to_rpo (bb_index_to_rpo != NULL),
195     m_unreachable_dom (NULL),
196     m_bb_to_rpo (bb_index_to_rpo)
197 {
198 }
199 
200 /* Destructor.  */
201 
~dom_walker()202 dom_walker::~dom_walker ()
203 {
204   if (! m_user_bb_to_rpo)
205     free (m_bb_to_rpo);
206 }
207 
208 /* Return TRUE if BB is reachable, false otherwise.  */
209 
210 bool
bb_reachable(struct function * fun,basic_block bb)211 dom_walker::bb_reachable (struct function *fun, basic_block bb)
212 {
213   /* If we're not skipping unreachable blocks, then assume everything
214      is reachable.  */
215   if (m_reachability == ALL_BLOCKS)
216     return true;
217 
218   /* If any of the predecessor edges that do not come from blocks dominated
219      by us are still marked as possibly executable consider this block
220      reachable.  */
221   bool reachable = false;
222   if (!m_unreachable_dom)
223     {
224       reachable = bb == ENTRY_BLOCK_PTR_FOR_FN (fun);
225       edge_iterator ei;
226       edge e;
227       FOR_EACH_EDGE (e, ei, bb->preds)
228 	if (!dominated_by_p (CDI_DOMINATORS, e->src, bb))
229 	  reachable |= (e->flags & EDGE_EXECUTABLE);
230     }
231 
232   return reachable;
233 }
234 
235 /* BB has been determined to be unreachable.  Propagate that property
236    to incoming and outgoing edges of BB as appropriate.  */
237 
238 void
propagate_unreachable_to_edges(basic_block bb,FILE * dump_file,dump_flags_t dump_flags)239 dom_walker::propagate_unreachable_to_edges (basic_block bb,
240 					    FILE *dump_file,
241 					    dump_flags_t dump_flags)
242 {
243   if (dump_file && (dump_flags & TDF_DETAILS))
244     fprintf (dump_file, "Marking all outgoing edges of unreachable "
245 	     "BB %d as not executable\n", bb->index);
246 
247   edge_iterator ei;
248   edge e;
249   FOR_EACH_EDGE (e, ei, bb->succs)
250     e->flags &= ~EDGE_EXECUTABLE;
251 
252   FOR_EACH_EDGE (e, ei, bb->preds)
253     {
254       if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
255 	{
256 	  if (dump_file && (dump_flags & TDF_DETAILS))
257 	    fprintf (dump_file, "Marking backedge from BB %d into "
258 		     "unreachable BB %d as not executable\n",
259 		     e->src->index, bb->index);
260 	  e->flags &= ~EDGE_EXECUTABLE;
261 	}
262     }
263 
264   if (!m_unreachable_dom)
265     m_unreachable_dom = bb;
266 }
267 
268 const edge dom_walker::STOP = (edge)-1;
269 
270 /* Recursively walk the dominator tree.
271    BB is the basic block we are currently visiting.  */
272 
273 void
walk(basic_block bb)274 dom_walker::walk (basic_block bb)
275 {
276   /* Compute the basic-block index to RPO mapping lazily.  */
277   if (!m_bb_to_rpo
278       && m_dom_direction == CDI_DOMINATORS)
279     {
280       int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
281       int postorder_num = pre_and_rev_post_order_compute (NULL, postorder,
282 							  true);
283       m_bb_to_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
284       for (int i = 0; i < postorder_num; ++i)
285 	m_bb_to_rpo[postorder[i]] = i;
286       free (postorder);
287     }
288 
289   /* Set up edge flags if need be.  */
290   if (m_reachability == REACHABLE_BLOCKS)
291     set_all_edges_as_executable (cfun);
292 
293   basic_block dest;
294   basic_block *worklist = XNEWVEC (basic_block,
295 				   n_basic_blocks_for_fn (cfun) * 2);
296   int sp = 0;
297   bb_postorder = m_bb_to_rpo;
298 
299   while (true)
300     {
301       /* Don't worry about unreachable blocks.  */
302       if (EDGE_COUNT (bb->preds) > 0
303 	  || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
304 	  || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
305 	{
306 	  edge taken_edge = NULL;
307 
308 	  /* Callback for subclasses to do custom things before we have walked
309 	     the dominator children, but before we walk statements.  */
310 	  if (this->bb_reachable (cfun, bb))
311 	    {
312 	      taken_edge = before_dom_children (bb);
313 	      if (taken_edge && taken_edge != STOP)
314 		{
315 		  edge_iterator ei;
316 		  edge e;
317 		  FOR_EACH_EDGE (e, ei, bb->succs)
318 		    if (e != taken_edge)
319 		      e->flags &= ~EDGE_EXECUTABLE;
320 		}
321 	    }
322 	  else
323 	    propagate_unreachable_to_edges (bb, dump_file, dump_flags);
324 
325 	  /* Mark the current BB to be popped out of the recursion stack
326 	     once children are processed.  */
327 	  worklist[sp++] = bb;
328 	  worklist[sp++] = NULL;
329 
330 	  /* If the callback returned NONE then we are supposed to
331 	     stop and not even propagate EDGE_EXECUTABLE further.  */
332 	  if (taken_edge != STOP)
333 	    {
334 	      int saved_sp = sp;
335 	      for (dest = first_dom_son (m_dom_direction, bb);
336 		   dest; dest = next_dom_son (m_dom_direction, dest))
337 		worklist[sp++] = dest;
338 	      /* Sort worklist after RPO order if requested.  */
339 	      if (sp - saved_sp > 1
340 		  && m_dom_direction == CDI_DOMINATORS
341 		  && m_bb_to_rpo)
342 		sort_bbs_postorder (&worklist[saved_sp], sp - saved_sp);
343 	    }
344 	}
345       /* NULL is used to mark pop operations in the recursion stack.  */
346       while (sp > 0 && !worklist[sp - 1])
347 	{
348 	  --sp;
349 	  bb = worklist[--sp];
350 
351 	  /* Callback allowing subclasses to do custom things after we have
352 	     walked dominator children, but before we walk statements.  */
353 	  if (bb_reachable (cfun, bb))
354 	    after_dom_children (bb);
355 	  else if (m_unreachable_dom == bb)
356 	    m_unreachable_dom = NULL;
357 	}
358       if (sp)
359 	bb = worklist[--sp];
360       else
361 	break;
362     }
363   bb_postorder = NULL;
364   free (worklist);
365 }
366