1 /* Data flow functions for trees.
2    Copyright (C) 2001-2019 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "tree-pretty-print.h"
31 #include "fold-const.h"
32 #include "stor-layout.h"
33 #include "langhooks.h"
34 #include "gimple-iterator.h"
35 #include "gimple-walk.h"
36 #include "tree-dfa.h"
37 
38 /* Build and maintain data flow information for trees.  */
39 
40 /* Counters used to display DFA and SSA statistics.  */
41 struct dfa_stats_d
42 {
43   long num_defs;
44   long num_uses;
45   long num_phis;
46   long num_phi_args;
47   size_t max_num_phi_args;
48   long num_vdefs;
49   long num_vuses;
50 };
51 
52 
53 /* Local functions.  */
54 static void collect_dfa_stats (struct dfa_stats_d *);
55 
56 
57 /*---------------------------------------------------------------------------
58 			Dataflow analysis (DFA) routines
59 ---------------------------------------------------------------------------*/
60 
61 /* Renumber all of the gimple stmt uids.  */
62 
63 void
renumber_gimple_stmt_uids(struct function * fun)64 renumber_gimple_stmt_uids (struct function *fun)
65 {
66   basic_block bb;
67 
68   set_gimple_stmt_max_uid (fun, 0);
69   FOR_ALL_BB_FN (bb, fun)
70     {
71       gimple_stmt_iterator bsi;
72       for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
73 	{
74 	  gimple *stmt = gsi_stmt (bsi);
75 	  gimple_set_uid (stmt, inc_gimple_stmt_max_uid (fun));
76 	}
77       for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
78 	{
79 	  gimple *stmt = gsi_stmt (bsi);
80 	  gimple_set_uid (stmt, inc_gimple_stmt_max_uid (fun));
81 	}
82     }
83 }
84 
85 /* Like renumber_gimple_stmt_uids, but only do work on the basic blocks
86    in BLOCKS, of which there are N_BLOCKS.  Also renumbers PHIs.  */
87 
88 void
renumber_gimple_stmt_uids_in_blocks(basic_block * blocks,int n_blocks)89 renumber_gimple_stmt_uids_in_blocks (basic_block *blocks, int n_blocks)
90 {
91   int i;
92 
93   set_gimple_stmt_max_uid (cfun, 0);
94   for (i = 0; i < n_blocks; i++)
95     {
96       basic_block bb = blocks[i];
97       gimple_stmt_iterator bsi;
98       for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
99 	{
100 	  gimple *stmt = gsi_stmt (bsi);
101 	  gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
102 	}
103       for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
104 	{
105 	  gimple *stmt = gsi_stmt (bsi);
106 	  gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
107 	}
108     }
109 }
110 
111 
112 
113 /*---------------------------------------------------------------------------
114 			      Debugging functions
115 ---------------------------------------------------------------------------*/
116 
117 /* Dump variable VAR and its may-aliases to FILE.  */
118 
119 void
dump_variable(FILE * file,tree var)120 dump_variable (FILE *file, tree var)
121 {
122   if (TREE_CODE (var) == SSA_NAME)
123     {
124       if (POINTER_TYPE_P (TREE_TYPE (var)))
125 	dump_points_to_info_for (file, var);
126       var = SSA_NAME_VAR (var);
127     }
128 
129   if (var == NULL_TREE)
130     {
131       fprintf (file, "<nil>");
132       return;
133     }
134 
135   print_generic_expr (file, var, dump_flags);
136 
137   fprintf (file, ", UID D.%u", (unsigned) DECL_UID (var));
138   if (DECL_PT_UID (var) != DECL_UID (var))
139     fprintf (file, ", PT-UID D.%u", (unsigned) DECL_PT_UID (var));
140 
141   fprintf (file, ", ");
142   print_generic_expr (file, TREE_TYPE (var), dump_flags);
143 
144   if (TREE_ADDRESSABLE (var))
145     fprintf (file, ", is addressable");
146 
147   if (is_global_var (var))
148     fprintf (file, ", is global");
149 
150   if (TREE_THIS_VOLATILE (var))
151     fprintf (file, ", is volatile");
152 
153   if (cfun && ssa_default_def (cfun, var))
154     {
155       fprintf (file, ", default def: ");
156       print_generic_expr (file, ssa_default_def (cfun, var), dump_flags);
157     }
158 
159   if (DECL_INITIAL (var))
160     {
161       fprintf (file, ", initial: ");
162       print_generic_expr (file, DECL_INITIAL (var), dump_flags);
163     }
164 
165   fprintf (file, "\n");
166 }
167 
168 
169 /* Dump variable VAR and its may-aliases to stderr.  */
170 
171 DEBUG_FUNCTION void
debug_variable(tree var)172 debug_variable (tree var)
173 {
174   dump_variable (stderr, var);
175 }
176 
177 
178 /* Dump various DFA statistics to FILE.  */
179 
180 void
dump_dfa_stats(FILE * file)181 dump_dfa_stats (FILE *file)
182 {
183   struct dfa_stats_d dfa_stats;
184 
185   unsigned long size, total = 0;
186   const char * const fmt_str   = "%-30s%-13s%12s\n";
187   const char * const fmt_str_1 = "%-30s%13lu" PRsa (11) "\n";
188   const char * const fmt_str_3 = "%-43s" PRsa (11) "\n";
189   const char *funcname
190     = lang_hooks.decl_printable_name (current_function_decl, 2);
191 
192   collect_dfa_stats (&dfa_stats);
193 
194   fprintf (file, "\nDFA Statistics for %s\n\n", funcname);
195 
196   fprintf (file, "---------------------------------------------------------\n");
197   fprintf (file, fmt_str, "", "  Number of  ", "Memory");
198   fprintf (file, fmt_str, "", "  instances  ", "used ");
199   fprintf (file, "---------------------------------------------------------\n");
200 
201   size = dfa_stats.num_uses * sizeof (tree *);
202   total += size;
203   fprintf (file, fmt_str_1, "USE operands", dfa_stats.num_uses,
204 	   SIZE_AMOUNT (size));
205 
206   size = dfa_stats.num_defs * sizeof (tree *);
207   total += size;
208   fprintf (file, fmt_str_1, "DEF operands", dfa_stats.num_defs,
209 	   SIZE_AMOUNT (size));
210 
211   size = dfa_stats.num_vuses * sizeof (tree *);
212   total += size;
213   fprintf (file, fmt_str_1, "VUSE operands", dfa_stats.num_vuses,
214 	   SIZE_AMOUNT (size));
215 
216   size = dfa_stats.num_vdefs * sizeof (tree *);
217   total += size;
218   fprintf (file, fmt_str_1, "VDEF operands", dfa_stats.num_vdefs,
219 	   SIZE_AMOUNT (size));
220 
221   size = dfa_stats.num_phis * sizeof (struct gphi);
222   total += size;
223   fprintf (file, fmt_str_1, "PHI nodes", dfa_stats.num_phis,
224 	   SIZE_AMOUNT (size));
225 
226   size = dfa_stats.num_phi_args * sizeof (struct phi_arg_d);
227   total += size;
228   fprintf (file, fmt_str_1, "PHI arguments", dfa_stats.num_phi_args,
229 	   SIZE_AMOUNT (size));
230 
231   fprintf (file, "---------------------------------------------------------\n");
232   fprintf (file, fmt_str_3, "Total memory used by DFA/SSA data",
233 	   SIZE_AMOUNT (total));
234   fprintf (file, "---------------------------------------------------------\n");
235   fprintf (file, "\n");
236 
237   if (dfa_stats.num_phis)
238     fprintf (file, "Average number of arguments per PHI node: %.1f (max: %ld)\n",
239 	     (float) dfa_stats.num_phi_args / (float) dfa_stats.num_phis,
240 	     (long) dfa_stats.max_num_phi_args);
241 
242   fprintf (file, "\n");
243 }
244 
245 
246 /* Dump DFA statistics on stderr.  */
247 
248 DEBUG_FUNCTION void
debug_dfa_stats(void)249 debug_dfa_stats (void)
250 {
251   dump_dfa_stats (stderr);
252 }
253 
254 
255 /* Collect DFA statistics and store them in the structure pointed to by
256    DFA_STATS_P.  */
257 
258 static void
collect_dfa_stats(struct dfa_stats_d * dfa_stats_p ATTRIBUTE_UNUSED)259 collect_dfa_stats (struct dfa_stats_d *dfa_stats_p ATTRIBUTE_UNUSED)
260 {
261   basic_block bb;
262 
263   gcc_assert (dfa_stats_p);
264 
265   memset ((void *)dfa_stats_p, 0, sizeof (struct dfa_stats_d));
266 
267   /* Walk all the statements in the function counting references.  */
268   FOR_EACH_BB_FN (bb, cfun)
269     {
270       for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
271 	   gsi_next (&si))
272 	{
273 	  gphi *phi = si.phi ();
274 	  dfa_stats_p->num_phis++;
275 	  dfa_stats_p->num_phi_args += gimple_phi_num_args (phi);
276 	  if (gimple_phi_num_args (phi) > dfa_stats_p->max_num_phi_args)
277 	    dfa_stats_p->max_num_phi_args = gimple_phi_num_args (phi);
278 	}
279 
280       for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
281 	   gsi_next (&si))
282 	{
283 	  gimple *stmt = gsi_stmt (si);
284 	  dfa_stats_p->num_defs += NUM_SSA_OPERANDS (stmt, SSA_OP_DEF);
285 	  dfa_stats_p->num_uses += NUM_SSA_OPERANDS (stmt, SSA_OP_USE);
286 	  dfa_stats_p->num_vdefs += gimple_vdef (stmt) ? 1 : 0;
287 	  dfa_stats_p->num_vuses += gimple_vuse (stmt) ? 1 : 0;
288 	}
289     }
290 }
291 
292 
293 /*---------------------------------------------------------------------------
294 			     Miscellaneous helpers
295 ---------------------------------------------------------------------------*/
296 
297 /* Lookup VAR UID in the default_defs hashtable and return the associated
298    variable.  */
299 
300 tree
ssa_default_def(struct function * fn,tree var)301 ssa_default_def (struct function *fn, tree var)
302 {
303   struct tree_decl_minimal ind;
304   struct tree_ssa_name in;
305   gcc_assert (VAR_P (var)
306 	      || TREE_CODE (var) == PARM_DECL
307 	      || TREE_CODE (var) == RESULT_DECL);
308 
309   /* Always NULL_TREE for rtl function dumps.  */
310   if (!fn->gimple_df)
311     return NULL_TREE;
312 
313   in.var = (tree)&ind;
314   ind.uid = DECL_UID (var);
315   return DEFAULT_DEFS (fn)->find_with_hash ((tree)&in, DECL_UID (var));
316 }
317 
318 /* Insert the pair VAR's UID, DEF into the default_defs hashtable
319    of function FN.  */
320 
321 void
set_ssa_default_def(struct function * fn,tree var,tree def)322 set_ssa_default_def (struct function *fn, tree var, tree def)
323 {
324   struct tree_decl_minimal ind;
325   struct tree_ssa_name in;
326 
327   gcc_assert (VAR_P (var)
328 	      || TREE_CODE (var) == PARM_DECL
329 	      || TREE_CODE (var) == RESULT_DECL);
330   in.var = (tree)&ind;
331   ind.uid = DECL_UID (var);
332   if (!def)
333     {
334       tree *loc = DEFAULT_DEFS (fn)->find_slot_with_hash ((tree)&in,
335 							  DECL_UID (var),
336 							  NO_INSERT);
337       if (loc)
338 	{
339 	  SSA_NAME_IS_DEFAULT_DEF (*(tree *)loc) = false;
340 	  DEFAULT_DEFS (fn)->clear_slot (loc);
341 	}
342       return;
343     }
344   gcc_assert (TREE_CODE (def) == SSA_NAME && SSA_NAME_VAR (def) == var);
345   tree *loc = DEFAULT_DEFS (fn)->find_slot_with_hash ((tree)&in,
346 						      DECL_UID (var), INSERT);
347 
348   /* Default definition might be changed by tail call optimization.  */
349   if (*loc)
350     SSA_NAME_IS_DEFAULT_DEF (*loc) = false;
351 
352    /* Mark DEF as the default definition for VAR.  */
353   *loc = def;
354   SSA_NAME_IS_DEFAULT_DEF (def) = true;
355 }
356 
357 /* Retrieve or create a default definition for VAR.  */
358 
359 tree
get_or_create_ssa_default_def(struct function * fn,tree var)360 get_or_create_ssa_default_def (struct function *fn, tree var)
361 {
362   tree ddef = ssa_default_def (fn, var);
363   if (ddef == NULL_TREE)
364     {
365       ddef = make_ssa_name_fn (fn, var, gimple_build_nop ());
366       set_ssa_default_def (fn, var, ddef);
367     }
368   return ddef;
369 }
370 
371 
372 /* If EXP is a handled component reference for a structure, return the
373    base variable.  The access range is delimited by bit positions *POFFSET and
374    *POFFSET + *PMAX_SIZE.  The access size is *PSIZE bits.  If either
375    *PSIZE or *PMAX_SIZE is -1, they could not be determined.  If *PSIZE
376    and *PMAX_SIZE are equal, the access is non-variable.  If *PREVERSE is
377    true, the storage order of the reference is reversed.  */
378 
379 tree
get_ref_base_and_extent(tree exp,poly_int64_pod * poffset,poly_int64_pod * psize,poly_int64_pod * pmax_size,bool * preverse)380 get_ref_base_and_extent (tree exp, poly_int64_pod *poffset,
381 			 poly_int64_pod *psize,
382 			 poly_int64_pod *pmax_size,
383 			 bool *preverse)
384 {
385   poly_offset_int bitsize = -1;
386   poly_offset_int maxsize;
387   tree size_tree = NULL_TREE;
388   poly_offset_int bit_offset = 0;
389   bool seen_variable_array_ref = false;
390 
391   /* First get the final access size and the storage order from just the
392      outermost expression.  */
393   if (TREE_CODE (exp) == COMPONENT_REF)
394     size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
395   else if (TREE_CODE (exp) == BIT_FIELD_REF)
396     size_tree = TREE_OPERAND (exp, 1);
397   else if (!VOID_TYPE_P (TREE_TYPE (exp)))
398     {
399       machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
400       if (mode == BLKmode)
401 	size_tree = TYPE_SIZE (TREE_TYPE (exp));
402       else
403 	bitsize = GET_MODE_BITSIZE (mode);
404     }
405   if (size_tree != NULL_TREE
406       && poly_int_tree_p (size_tree))
407     bitsize = wi::to_poly_offset (size_tree);
408 
409   *preverse = reverse_storage_order_for_component_p (exp);
410 
411   /* Initially, maxsize is the same as the accessed element size.
412      In the following it will only grow (or become -1).  */
413   maxsize = bitsize;
414 
415   /* Compute cumulative bit-offset for nested component-refs and array-refs,
416      and find the ultimate containing object.  */
417   while (1)
418     {
419       switch (TREE_CODE (exp))
420 	{
421 	case BIT_FIELD_REF:
422 	  bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
423 	  break;
424 
425 	case COMPONENT_REF:
426 	  {
427 	    tree field = TREE_OPERAND (exp, 1);
428 	    tree this_offset = component_ref_field_offset (exp);
429 
430 	    if (this_offset && poly_int_tree_p (this_offset))
431 	      {
432 		poly_offset_int woffset = (wi::to_poly_offset (this_offset)
433 					   << LOG2_BITS_PER_UNIT);
434 		woffset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
435 		bit_offset += woffset;
436 
437 		/* If we had seen a variable array ref already and we just
438 		   referenced the last field of a struct or a union member
439 		   then we have to adjust maxsize by the padding at the end
440 		   of our field.  */
441 		if (seen_variable_array_ref)
442 		  {
443 		    tree stype = TREE_TYPE (TREE_OPERAND (exp, 0));
444 		    tree next = DECL_CHAIN (field);
445 		    while (next && TREE_CODE (next) != FIELD_DECL)
446 		      next = DECL_CHAIN (next);
447 		    if (!next
448 			|| TREE_CODE (stype) != RECORD_TYPE)
449 		      {
450 			tree fsize = DECL_SIZE_UNIT (field);
451 			tree ssize = TYPE_SIZE_UNIT (stype);
452 			if (fsize == NULL
453 			    || !poly_int_tree_p (fsize)
454 			    || ssize == NULL
455 			    || !poly_int_tree_p (ssize))
456 			  maxsize = -1;
457 			else if (known_size_p (maxsize))
458 			  {
459 			    poly_offset_int tem
460 			      = (wi::to_poly_offset (ssize)
461 				 - wi::to_poly_offset (fsize));
462 			    tem <<= LOG2_BITS_PER_UNIT;
463 			    tem -= woffset;
464 			    maxsize += tem;
465 			  }
466 		      }
467 		    /* An component ref with an adjacent field up in the
468 		       structure hierarchy constrains the size of any variable
469 		       array ref lower in the access hierarchy.  */
470 		    else
471 		      seen_variable_array_ref = false;
472 		  }
473 	      }
474 	    else
475 	      {
476 		tree csize = TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0)));
477 		/* We need to adjust maxsize to the whole structure bitsize.
478 		   But we can subtract any constant offset seen so far,
479 		   because that would get us out of the structure otherwise.  */
480 		if (known_size_p (maxsize)
481 		    && csize
482 		    && poly_int_tree_p (csize))
483 		  maxsize = wi::to_poly_offset (csize) - bit_offset;
484 		else
485 		  maxsize = -1;
486 	      }
487 	  }
488 	  break;
489 
490 	case ARRAY_REF:
491 	case ARRAY_RANGE_REF:
492 	  {
493 	    tree index = TREE_OPERAND (exp, 1);
494 	    tree low_bound, unit_size;
495 
496 	    /* If the resulting bit-offset is constant, track it.  */
497 	    if (poly_int_tree_p (index)
498 		&& (low_bound = array_ref_low_bound (exp),
499 		    poly_int_tree_p (low_bound))
500 		&& (unit_size = array_ref_element_size (exp),
501 		    TREE_CODE (unit_size) == INTEGER_CST))
502 	      {
503 		poly_offset_int woffset
504 		  = wi::sext (wi::to_poly_offset (index)
505 			      - wi::to_poly_offset (low_bound),
506 			      TYPE_PRECISION (TREE_TYPE (index)));
507 		woffset *= wi::to_offset (unit_size);
508 		woffset <<= LOG2_BITS_PER_UNIT;
509 		bit_offset += woffset;
510 
511 		/* An array ref with a constant index up in the structure
512 		   hierarchy will constrain the size of any variable array ref
513 		   lower in the access hierarchy.  */
514 		seen_variable_array_ref = false;
515 	      }
516 	    else
517 	      {
518 		tree asize = TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0)));
519 		/* We need to adjust maxsize to the whole array bitsize.
520 		   But we can subtract any constant offset seen so far,
521 		   because that would get us outside of the array otherwise.  */
522 		if (known_size_p (maxsize)
523 		    && asize
524 		    && poly_int_tree_p (asize))
525 		  maxsize = wi::to_poly_offset (asize) - bit_offset;
526 		else
527 		  maxsize = -1;
528 
529 		/* Remember that we have seen an array ref with a variable
530 		   index.  */
531 		seen_variable_array_ref = true;
532 
533 		wide_int min, max;
534 		if (TREE_CODE (index) == SSA_NAME
535 		    && (low_bound = array_ref_low_bound (exp),
536 			poly_int_tree_p (low_bound))
537 		    && (unit_size = array_ref_element_size (exp),
538 			TREE_CODE (unit_size) == INTEGER_CST)
539 		    && get_range_info (index, &min, &max) == VR_RANGE)
540 		  {
541 		    poly_offset_int lbound = wi::to_poly_offset (low_bound);
542 		    /* Try to constrain maxsize with range information.  */
543 		    offset_int omax
544 		      = offset_int::from (max, TYPE_SIGN (TREE_TYPE (index)));
545 		    if (known_lt (lbound, omax))
546 		      {
547 			poly_offset_int rmaxsize;
548 			rmaxsize = (omax - lbound + 1)
549 			    * wi::to_offset (unit_size) << LOG2_BITS_PER_UNIT;
550 			if (!known_size_p (maxsize)
551 			    || known_lt (rmaxsize, maxsize))
552 			  {
553 			    /* If we know an upper bound below the declared
554 			       one this is no longer variable.  */
555 			    if (known_size_p (maxsize))
556 			      seen_variable_array_ref = false;
557 			    maxsize = rmaxsize;
558 			  }
559 		      }
560 		    /* Try to adjust bit_offset with range information.  */
561 		    offset_int omin
562 		      = offset_int::from (min, TYPE_SIGN (TREE_TYPE (index)));
563 		    if (known_le (lbound, omin))
564 		      {
565 			poly_offset_int woffset
566 			  = wi::sext (omin - lbound,
567 				      TYPE_PRECISION (TREE_TYPE (index)));
568 			woffset *= wi::to_offset (unit_size);
569 			woffset <<= LOG2_BITS_PER_UNIT;
570 			bit_offset += woffset;
571 			if (known_size_p (maxsize))
572 			  maxsize -= woffset;
573 		      }
574 		  }
575 	      }
576 	  }
577 	  break;
578 
579 	case REALPART_EXPR:
580 	  break;
581 
582 	case IMAGPART_EXPR:
583 	  bit_offset += bitsize;
584 	  break;
585 
586 	case VIEW_CONVERT_EXPR:
587 	  break;
588 
589 	case TARGET_MEM_REF:
590 	  /* Via the variable index or index2 we can reach the
591 	     whole object.  Still hand back the decl here.  */
592 	  if (TREE_CODE (TMR_BASE (exp)) == ADDR_EXPR
593 	      && (TMR_INDEX (exp) || TMR_INDEX2 (exp)))
594 	    {
595 	      exp = TREE_OPERAND (TMR_BASE (exp), 0);
596 	      bit_offset = 0;
597 	      maxsize = -1;
598 	      goto done;
599 	    }
600 	  /* Fallthru.  */
601 	case MEM_REF:
602 	  /* We need to deal with variable arrays ending structures such as
603 	     struct { int length; int a[1]; } x;           x.a[d]
604 	     struct { struct { int a; int b; } a[1]; } x;  x.a[d].a
605 	     struct { struct { int a[1]; } a[1]; } x;      x.a[0][d], x.a[d][0]
606 	     struct { int len; union { int a[1]; struct X x; } u; } x; x.u.a[d]
607 	     where we do not know maxsize for variable index accesses to
608 	     the array.  The simplest way to conservatively deal with this
609 	     is to punt in the case that offset + maxsize reaches the
610 	     base type boundary.  This needs to include possible trailing
611 	     padding that is there for alignment purposes.  */
612 	  if (seen_variable_array_ref
613 	      && known_size_p (maxsize)
614 	      && (TYPE_SIZE (TREE_TYPE (exp)) == NULL_TREE
615 		  || !poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
616 		  || (maybe_eq
617 		      (bit_offset + maxsize,
618 		       wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp)))))))
619 	    maxsize = -1;
620 
621 	  /* Hand back the decl for MEM[&decl, off].  */
622 	  if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
623 	    {
624 	      if (integer_zerop (TREE_OPERAND (exp, 1)))
625 		exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
626 	      else
627 		{
628 		  poly_offset_int off = mem_ref_offset (exp);
629 		  off <<= LOG2_BITS_PER_UNIT;
630 		  off += bit_offset;
631 		  poly_int64 off_hwi;
632 		  if (off.to_shwi (&off_hwi))
633 		    {
634 		      bit_offset = off_hwi;
635 		      exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
636 		    }
637 		}
638 	    }
639 	  goto done;
640 
641 	default:
642 	  goto done;
643 	}
644 
645       exp = TREE_OPERAND (exp, 0);
646     }
647 
648  done:
649   if (!bitsize.to_shwi (psize) || maybe_lt (*psize, 0))
650     {
651       *poffset = 0;
652       *psize = -1;
653       *pmax_size = -1;
654 
655       return exp;
656     }
657 
658   /* ???  Due to negative offsets in ARRAY_REF we can end up with
659      negative bit_offset here.  We might want to store a zero offset
660      in this case.  */
661   if (!bit_offset.to_shwi (poffset))
662     {
663       *poffset = 0;
664       *pmax_size = -1;
665 
666       return exp;
667     }
668 
669   /* In case of a decl or constant base object we can do better.  */
670 
671   if (DECL_P (exp))
672     {
673       if (VAR_P (exp)
674 	  && ((flag_unconstrained_commons && DECL_COMMON (exp))
675 	      || (DECL_EXTERNAL (exp) && seen_variable_array_ref)))
676 	{
677 	  tree sz_tree = TYPE_SIZE (TREE_TYPE (exp));
678 	  /* If size is unknown, or we have read to the end, assume there
679 	     may be more to the structure than we are told.  */
680 	  if (TREE_CODE (TREE_TYPE (exp)) == ARRAY_TYPE
681 	      || (seen_variable_array_ref
682 		  && (sz_tree == NULL_TREE
683 		      || !poly_int_tree_p (sz_tree)
684 		      || maybe_eq (bit_offset + maxsize,
685 				   wi::to_poly_offset (sz_tree)))))
686 	    maxsize = -1;
687 	}
688       /* If maxsize is unknown adjust it according to the size of the
689          base decl.  */
690       else if (!known_size_p (maxsize)
691 	       && DECL_SIZE (exp)
692 	       && poly_int_tree_p (DECL_SIZE (exp)))
693 	maxsize = wi::to_poly_offset (DECL_SIZE (exp)) - bit_offset;
694     }
695   else if (CONSTANT_CLASS_P (exp))
696     {
697       /* If maxsize is unknown adjust it according to the size of the
698          base type constant.  */
699       if (!known_size_p (maxsize)
700 	  && TYPE_SIZE (TREE_TYPE (exp))
701 	  && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp))))
702 	maxsize = (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp)))
703 		   - bit_offset);
704     }
705 
706   if (!maxsize.to_shwi (pmax_size)
707       || maybe_lt (*pmax_size, 0)
708       || !endpoint_representable_p (*poffset, *pmax_size))
709     *pmax_size = -1;
710 
711   /* Punt if *POFFSET + *PSIZE overflows in HOST_WIDE_INT, the callers don't
712      check for such overflows individually and assume it works.  */
713   if (!endpoint_representable_p (*poffset, *psize))
714     {
715       *poffset = 0;
716       *psize = -1;
717       *pmax_size = -1;
718 
719       return exp;
720     }
721 
722   return exp;
723 }
724 
725 /* Like get_ref_base_and_extent, but for cases in which we only care
726    about constant-width accesses at constant offsets.  Return null
727    if the access is anything else.  */
728 
729 tree
get_ref_base_and_extent_hwi(tree exp,HOST_WIDE_INT * poffset,HOST_WIDE_INT * psize,bool * preverse)730 get_ref_base_and_extent_hwi (tree exp, HOST_WIDE_INT *poffset,
731 			     HOST_WIDE_INT *psize, bool *preverse)
732 {
733   poly_int64 offset, size, max_size;
734   HOST_WIDE_INT const_offset, const_size;
735   bool reverse;
736   tree decl = get_ref_base_and_extent (exp, &offset, &size, &max_size,
737 				       &reverse);
738   if (!offset.is_constant (&const_offset)
739       || !size.is_constant (&const_size)
740       || const_offset < 0
741       || !known_size_p (max_size)
742       || maybe_ne (max_size, const_size))
743     return NULL_TREE;
744 
745   *poffset = const_offset;
746   *psize = const_size;
747   *preverse = reverse;
748   return decl;
749 }
750 
751 /* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
752    denotes the starting address of the memory access EXP.
753    Returns NULL_TREE if the offset is not constant or any component
754    is not BITS_PER_UNIT-aligned.
755    VALUEIZE if non-NULL is used to valueize SSA names.  It should return
756    its argument or a constant if the argument is known to be constant.  */
757 
758 tree
get_addr_base_and_unit_offset_1(tree exp,poly_int64_pod * poffset,tree (* valueize)(tree))759 get_addr_base_and_unit_offset_1 (tree exp, poly_int64_pod *poffset,
760 				 tree (*valueize) (tree))
761 {
762   poly_int64 byte_offset = 0;
763 
764   /* Compute cumulative byte-offset for nested component-refs and array-refs,
765      and find the ultimate containing object.  */
766   while (1)
767     {
768       switch (TREE_CODE (exp))
769 	{
770 	case BIT_FIELD_REF:
771 	  {
772 	    poly_int64 this_byte_offset;
773 	    poly_uint64 this_bit_offset;
774 	    if (!poly_int_tree_p (TREE_OPERAND (exp, 2), &this_bit_offset)
775 		|| !multiple_p (this_bit_offset, BITS_PER_UNIT,
776 				&this_byte_offset))
777 	      return NULL_TREE;
778 	    byte_offset += this_byte_offset;
779 	  }
780 	  break;
781 
782 	case COMPONENT_REF:
783 	  {
784 	    tree field = TREE_OPERAND (exp, 1);
785 	    tree this_offset = component_ref_field_offset (exp);
786 	    poly_int64 hthis_offset;
787 
788 	    if (!this_offset
789 		|| !poly_int_tree_p (this_offset, &hthis_offset)
790 		|| (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
791 		    % BITS_PER_UNIT))
792 	      return NULL_TREE;
793 
794 	    hthis_offset += (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
795 			     / BITS_PER_UNIT);
796 	    byte_offset += hthis_offset;
797 	  }
798 	  break;
799 
800 	case ARRAY_REF:
801 	case ARRAY_RANGE_REF:
802 	  {
803 	    tree index = TREE_OPERAND (exp, 1);
804 	    tree low_bound, unit_size;
805 
806 	    if (valueize
807 		&& TREE_CODE (index) == SSA_NAME)
808 	      index = (*valueize) (index);
809 
810 	    /* If the resulting bit-offset is constant, track it.  */
811 	    if (poly_int_tree_p (index)
812 		&& (low_bound = array_ref_low_bound (exp),
813 		    poly_int_tree_p (low_bound))
814 		&& (unit_size = array_ref_element_size (exp),
815 		    TREE_CODE (unit_size) == INTEGER_CST))
816 	      {
817 		poly_offset_int woffset
818 		  = wi::sext (wi::to_poly_offset (index)
819 			      - wi::to_poly_offset (low_bound),
820 			      TYPE_PRECISION (TREE_TYPE (index)));
821 		woffset *= wi::to_offset (unit_size);
822 		byte_offset += woffset.force_shwi ();
823 	      }
824 	    else
825 	      return NULL_TREE;
826 	  }
827 	  break;
828 
829 	case REALPART_EXPR:
830 	  break;
831 
832 	case IMAGPART_EXPR:
833 	  byte_offset += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (exp)));
834 	  break;
835 
836 	case VIEW_CONVERT_EXPR:
837 	  break;
838 
839 	case MEM_REF:
840 	  {
841 	    tree base = TREE_OPERAND (exp, 0);
842 	    if (valueize
843 		&& TREE_CODE (base) == SSA_NAME)
844 	      base = (*valueize) (base);
845 
846 	    /* Hand back the decl for MEM[&decl, off].  */
847 	    if (TREE_CODE (base) == ADDR_EXPR)
848 	      {
849 		if (!integer_zerop (TREE_OPERAND (exp, 1)))
850 		  {
851 		    poly_offset_int off = mem_ref_offset (exp);
852 		    byte_offset += off.force_shwi ();
853 		  }
854 		exp = TREE_OPERAND (base, 0);
855 	      }
856 	    goto done;
857 	  }
858 
859 	case TARGET_MEM_REF:
860 	  {
861 	    tree base = TREE_OPERAND (exp, 0);
862 	    if (valueize
863 		&& TREE_CODE (base) == SSA_NAME)
864 	      base = (*valueize) (base);
865 
866 	    /* Hand back the decl for MEM[&decl, off].  */
867 	    if (TREE_CODE (base) == ADDR_EXPR)
868 	      {
869 		if (TMR_INDEX (exp) || TMR_INDEX2 (exp))
870 		  return NULL_TREE;
871 		if (!integer_zerop (TMR_OFFSET (exp)))
872 		  {
873 		    poly_offset_int off = mem_ref_offset (exp);
874 		    byte_offset += off.force_shwi ();
875 		  }
876 		exp = TREE_OPERAND (base, 0);
877 	      }
878 	    goto done;
879 	  }
880 
881 	default:
882 	  goto done;
883 	}
884 
885       exp = TREE_OPERAND (exp, 0);
886     }
887 done:
888 
889   *poffset = byte_offset;
890   return exp;
891 }
892 
893 /* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
894    denotes the starting address of the memory access EXP.
895    Returns NULL_TREE if the offset is not constant or any component
896    is not BITS_PER_UNIT-aligned.  */
897 
898 tree
get_addr_base_and_unit_offset(tree exp,poly_int64_pod * poffset)899 get_addr_base_and_unit_offset (tree exp, poly_int64_pod *poffset)
900 {
901   return get_addr_base_and_unit_offset_1 (exp, poffset, NULL);
902 }
903 
904 /* Returns true if STMT references an SSA_NAME that has
905    SSA_NAME_OCCURS_IN_ABNORMAL_PHI set, otherwise false.  */
906 
907 bool
stmt_references_abnormal_ssa_name(gimple * stmt)908 stmt_references_abnormal_ssa_name (gimple *stmt)
909 {
910   ssa_op_iter oi;
911   use_operand_p use_p;
912 
913   FOR_EACH_SSA_USE_OPERAND (use_p, stmt, oi, SSA_OP_USE)
914     {
915       if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (use_p)))
916 	return true;
917     }
918 
919   return false;
920 }
921 
922 /* If STMT takes any abnormal PHI values as input, replace them with
923    local copies.  */
924 
925 void
replace_abnormal_ssa_names(gimple * stmt)926 replace_abnormal_ssa_names (gimple *stmt)
927 {
928   ssa_op_iter oi;
929   use_operand_p use_p;
930 
931   FOR_EACH_SSA_USE_OPERAND (use_p, stmt, oi, SSA_OP_USE)
932     {
933       tree op = USE_FROM_PTR (use_p);
934       if (TREE_CODE (op) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
935 	{
936 	  gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
937 	  tree new_name = make_ssa_name (TREE_TYPE (op));
938 	  gassign *assign = gimple_build_assign (new_name, op);
939 	  gsi_insert_before (&gsi, assign, GSI_SAME_STMT);
940 	  SET_USE (use_p, new_name);
941 	}
942     }
943 }
944 
945 /* Pair of tree and a sorting index, for dump_enumerated_decls.  */
946 struct GTY(()) numbered_tree
947 {
948   tree t;
949   int num;
950 };
951 
952 
953 /* Compare two declarations references by their DECL_UID / sequence number.
954    Called via qsort.  */
955 
956 static int
compare_decls_by_uid(const void * pa,const void * pb)957 compare_decls_by_uid (const void *pa, const void *pb)
958 {
959   const numbered_tree *nt_a = ((const numbered_tree *)pa);
960   const numbered_tree *nt_b = ((const numbered_tree *)pb);
961 
962   if (DECL_UID (nt_a->t) != DECL_UID (nt_b->t))
963     return  DECL_UID (nt_a->t) - DECL_UID (nt_b->t);
964   return nt_a->num - nt_b->num;
965 }
966 
967 /* Called via walk_gimple_stmt / walk_gimple_op by dump_enumerated_decls.  */
968 static tree
dump_enumerated_decls_push(tree * tp,int * walk_subtrees,void * data)969 dump_enumerated_decls_push (tree *tp, int *walk_subtrees, void *data)
970 {
971   struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
972   vec<numbered_tree> *list = (vec<numbered_tree> *) wi->info;
973   numbered_tree nt;
974 
975   if (!DECL_P (*tp))
976     return NULL_TREE;
977   nt.t = *tp;
978   nt.num = list->length ();
979   list->safe_push (nt);
980   *walk_subtrees = 0;
981   return NULL_TREE;
982 }
983 
984 /* Find all the declarations used by the current function, sort them by uid,
985    and emit the sorted list.  Each declaration is tagged with a sequence
986    number indicating when it was found during statement / tree walking,
987    so that TDF_NOUID comparisons of anonymous declarations are still
988    meaningful.  Where a declaration was encountered more than once, we
989    emit only the sequence number of the first encounter.
990    FILE is the dump file where to output the list and FLAGS is as in
991    print_generic_expr.  */
992 void
dump_enumerated_decls(FILE * file,dump_flags_t flags)993 dump_enumerated_decls (FILE *file, dump_flags_t flags)
994 {
995   if (!cfun->cfg)
996     return;
997 
998   basic_block bb;
999   struct walk_stmt_info wi;
1000   auto_vec<numbered_tree, 40> decl_list;
1001 
1002   memset (&wi, '\0', sizeof (wi));
1003   wi.info = (void *) &decl_list;
1004   FOR_EACH_BB_FN (bb, cfun)
1005     {
1006       gimple_stmt_iterator gsi;
1007 
1008       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1009 	if (!is_gimple_debug (gsi_stmt (gsi)))
1010 	  walk_gimple_stmt (&gsi, NULL, dump_enumerated_decls_push, &wi);
1011     }
1012   decl_list.qsort (compare_decls_by_uid);
1013   if (decl_list.length ())
1014     {
1015       unsigned ix;
1016       numbered_tree *ntp;
1017       tree last = NULL_TREE;
1018 
1019       fprintf (file, "Declarations used by %s, sorted by DECL_UID:\n",
1020 	       current_function_name ());
1021       FOR_EACH_VEC_ELT (decl_list, ix, ntp)
1022 	{
1023 	  if (ntp->t == last)
1024 	    continue;
1025 	  fprintf (file, "%d: ", ntp->num);
1026 	  print_generic_decl (file, ntp->t, flags);
1027 	  fprintf (file, "\n");
1028 	  last = ntp->t;
1029 	}
1030     }
1031 }
1032