1// Copyright 2010 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package cmplx 6 7import "math" 8 9// The original C code, the long comment, and the constants 10// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. 11// The go code is a simplified version of the original C. 12// 13// Cephes Math Library Release 2.8: June, 2000 14// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier 15// 16// The readme file at http://netlib.sandia.gov/cephes/ says: 17// Some software in this archive may be from the book _Methods and 18// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster 19// International, 1989) or from the Cephes Mathematical Library, a 20// commercial product. In either event, it is copyrighted by the author. 21// What you see here may be used freely but it comes with no support or 22// guarantee. 23// 24// The two known misprints in the book are repaired here in the 25// source listings for the gamma function and the incomplete beta 26// integral. 27// 28// Stephen L. Moshier 29// moshier@na-net.ornl.gov 30 31// Complex circular sine 32// 33// DESCRIPTION: 34// 35// If 36// z = x + iy, 37// 38// then 39// 40// w = sin x cosh y + i cos x sinh y. 41// 42// csin(z) = -i csinh(iz). 43// 44// ACCURACY: 45// 46// Relative error: 47// arithmetic domain # trials peak rms 48// DEC -10,+10 8400 5.3e-17 1.3e-17 49// IEEE -10,+10 30000 3.8e-16 1.0e-16 50// Also tested by csin(casin(z)) = z. 51 52// Sin returns the sine of x. 53func Sin(x complex128) complex128 { 54 s, c := math.Sincos(real(x)) 55 sh, ch := sinhcosh(imag(x)) 56 return complex(s*ch, c*sh) 57} 58 59// Complex hyperbolic sine 60// 61// DESCRIPTION: 62// 63// csinh z = (cexp(z) - cexp(-z))/2 64// = sinh x * cos y + i cosh x * sin y . 65// 66// ACCURACY: 67// 68// Relative error: 69// arithmetic domain # trials peak rms 70// IEEE -10,+10 30000 3.1e-16 8.2e-17 71 72// Sinh returns the hyperbolic sine of x. 73func Sinh(x complex128) complex128 { 74 s, c := math.Sincos(imag(x)) 75 sh, ch := sinhcosh(real(x)) 76 return complex(c*sh, s*ch) 77} 78 79// Complex circular cosine 80// 81// DESCRIPTION: 82// 83// If 84// z = x + iy, 85// 86// then 87// 88// w = cos x cosh y - i sin x sinh y. 89// 90// ACCURACY: 91// 92// Relative error: 93// arithmetic domain # trials peak rms 94// DEC -10,+10 8400 4.5e-17 1.3e-17 95// IEEE -10,+10 30000 3.8e-16 1.0e-16 96 97// Cos returns the cosine of x. 98func Cos(x complex128) complex128 { 99 s, c := math.Sincos(real(x)) 100 sh, ch := sinhcosh(imag(x)) 101 return complex(c*ch, -s*sh) 102} 103 104// Complex hyperbolic cosine 105// 106// DESCRIPTION: 107// 108// ccosh(z) = cosh x cos y + i sinh x sin y . 109// 110// ACCURACY: 111// 112// Relative error: 113// arithmetic domain # trials peak rms 114// IEEE -10,+10 30000 2.9e-16 8.1e-17 115 116// Cosh returns the hyperbolic cosine of x. 117func Cosh(x complex128) complex128 { 118 s, c := math.Sincos(imag(x)) 119 sh, ch := sinhcosh(real(x)) 120 return complex(c*ch, s*sh) 121} 122 123// calculate sinh and cosh 124func sinhcosh(x float64) (sh, ch float64) { 125 if math.Abs(x) <= 0.5 { 126 return math.Sinh(x), math.Cosh(x) 127 } 128 e := math.Exp(x) 129 ei := 0.5 / e 130 e *= 0.5 131 return e - ei, e + ei 132} 133