1 //===-- sanitizer_win.cc --------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is shared between AddressSanitizer and ThreadSanitizer
9 // run-time libraries and implements windows-specific functions from
10 // sanitizer_libc.h.
11 //===----------------------------------------------------------------------===//
12 
13 #include "sanitizer_platform.h"
14 #if SANITIZER_WINDOWS
15 
16 #define WIN32_LEAN_AND_MEAN
17 #define NOGDI
18 #include <windows.h>
19 #include <io.h>
20 #include <psapi.h>
21 #include <stdlib.h>
22 
23 #include "sanitizer_common.h"
24 #include "sanitizer_file.h"
25 #include "sanitizer_libc.h"
26 #include "sanitizer_mutex.h"
27 #include "sanitizer_placement_new.h"
28 #include "sanitizer_win_defs.h"
29 
30 #if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
31 #pragma comment(lib, "psapi")
32 #endif
33 
34 // A macro to tell the compiler that this part of the code cannot be reached,
35 // if the compiler supports this feature. Since we're using this in
36 // code that is called when terminating the process, the expansion of the
37 // macro should not terminate the process to avoid infinite recursion.
38 #if defined(__clang__)
39 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
40 #elif defined(__GNUC__) && \
41     (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
42 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
43 #elif defined(_MSC_VER)
44 # define BUILTIN_UNREACHABLE() __assume(0)
45 #else
46 # define BUILTIN_UNREACHABLE()
47 #endif
48 
49 namespace __sanitizer {
50 
51 #include "sanitizer_syscall_generic.inc"
52 
53 // --------------------- sanitizer_common.h
GetPageSize()54 uptr GetPageSize() {
55   SYSTEM_INFO si;
56   GetSystemInfo(&si);
57   return si.dwPageSize;
58 }
59 
GetMmapGranularity()60 uptr GetMmapGranularity() {
61   SYSTEM_INFO si;
62   GetSystemInfo(&si);
63   return si.dwAllocationGranularity;
64 }
65 
GetMaxUserVirtualAddress()66 uptr GetMaxUserVirtualAddress() {
67   SYSTEM_INFO si;
68   GetSystemInfo(&si);
69   return (uptr)si.lpMaximumApplicationAddress;
70 }
71 
GetMaxVirtualAddress()72 uptr GetMaxVirtualAddress() {
73   return GetMaxUserVirtualAddress();
74 }
75 
FileExists(const char * filename)76 bool FileExists(const char *filename) {
77   return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
78 }
79 
internal_getpid()80 uptr internal_getpid() {
81   return GetProcessId(GetCurrentProcess());
82 }
83 
84 // In contrast to POSIX, on Windows GetCurrentThreadId()
85 // returns a system-unique identifier.
GetTid()86 tid_t GetTid() {
87   return GetCurrentThreadId();
88 }
89 
GetThreadSelf()90 uptr GetThreadSelf() {
91   return GetTid();
92 }
93 
94 #if !SANITIZER_GO
GetThreadStackTopAndBottom(bool at_initialization,uptr * stack_top,uptr * stack_bottom)95 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
96                                 uptr *stack_bottom) {
97   CHECK(stack_top);
98   CHECK(stack_bottom);
99   MEMORY_BASIC_INFORMATION mbi;
100   CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
101   // FIXME: is it possible for the stack to not be a single allocation?
102   // Are these values what ASan expects to get (reserved, not committed;
103   // including stack guard page) ?
104   *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
105   *stack_bottom = (uptr)mbi.AllocationBase;
106 }
107 #endif  // #if !SANITIZER_GO
108 
MmapOrDie(uptr size,const char * mem_type,bool raw_report)109 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
110   void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
111   if (rv == 0)
112     ReportMmapFailureAndDie(size, mem_type, "allocate",
113                             GetLastError(), raw_report);
114   return rv;
115 }
116 
UnmapOrDie(void * addr,uptr size)117 void UnmapOrDie(void *addr, uptr size) {
118   if (!size || !addr)
119     return;
120 
121   MEMORY_BASIC_INFORMATION mbi;
122   CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
123 
124   // MEM_RELEASE can only be used to unmap whole regions previously mapped with
125   // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
126   // fails try MEM_DECOMMIT.
127   if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
128     if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
129       Report("ERROR: %s failed to "
130              "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
131              SanitizerToolName, size, size, addr, GetLastError());
132       CHECK("unable to unmap" && 0);
133     }
134   }
135 }
136 
ReturnNullptrOnOOMOrDie(uptr size,const char * mem_type,const char * mmap_type)137 static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
138                                      const char *mmap_type) {
139   error_t last_error = GetLastError();
140   if (last_error == ERROR_NOT_ENOUGH_MEMORY)
141     return nullptr;
142   ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
143 }
144 
MmapOrDieOnFatalError(uptr size,const char * mem_type)145 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
146   void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
147   if (rv == 0)
148     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
149   return rv;
150 }
151 
152 // We want to map a chunk of address space aligned to 'alignment'.
MmapAlignedOrDieOnFatalError(uptr size,uptr alignment,const char * mem_type)153 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
154                                    const char *mem_type) {
155   CHECK(IsPowerOfTwo(size));
156   CHECK(IsPowerOfTwo(alignment));
157 
158   // Windows will align our allocations to at least 64K.
159   alignment = Max(alignment, GetMmapGranularity());
160 
161   uptr mapped_addr =
162       (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
163   if (!mapped_addr)
164     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
165 
166   // If we got it right on the first try, return. Otherwise, unmap it and go to
167   // the slow path.
168   if (IsAligned(mapped_addr, alignment))
169     return (void*)mapped_addr;
170   if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
171     ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
172 
173   // If we didn't get an aligned address, overallocate, find an aligned address,
174   // unmap, and try to allocate at that aligned address.
175   int retries = 0;
176   const int kMaxRetries = 10;
177   for (; retries < kMaxRetries &&
178          (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
179        retries++) {
180     // Overallocate size + alignment bytes.
181     mapped_addr =
182         (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
183     if (!mapped_addr)
184       return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
185 
186     // Find the aligned address.
187     uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
188 
189     // Free the overallocation.
190     if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
191       ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
192 
193     // Attempt to allocate exactly the number of bytes we need at the aligned
194     // address. This may fail for a number of reasons, in which case we continue
195     // the loop.
196     mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
197                                      MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
198   }
199 
200   // Fail if we can't make this work quickly.
201   if (retries == kMaxRetries && mapped_addr == 0)
202     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
203 
204   return (void *)mapped_addr;
205 }
206 
MmapFixedNoReserve(uptr fixed_addr,uptr size,const char * name)207 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
208   // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
209   // but on Win64 it does.
210   (void)name;  // unsupported
211 #if !SANITIZER_GO && SANITIZER_WINDOWS64
212   // On asan/Windows64, use MEM_COMMIT would result in error
213   // 1455:ERROR_COMMITMENT_LIMIT.
214   // Asan uses exception handler to commit page on demand.
215   void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
216 #else
217   void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
218                          PAGE_READWRITE);
219 #endif
220   if (p == 0) {
221     Report("ERROR: %s failed to "
222            "allocate %p (%zd) bytes at %p (error code: %d)\n",
223            SanitizerToolName, size, size, fixed_addr, GetLastError());
224     return false;
225   }
226   return true;
227 }
228 
229 // Memory space mapped by 'MmapFixedOrDie' must have been reserved by
230 // 'MmapFixedNoAccess'.
MmapFixedOrDie(uptr fixed_addr,uptr size)231 void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
232   void *p = VirtualAlloc((LPVOID)fixed_addr, size,
233       MEM_COMMIT, PAGE_READWRITE);
234   if (p == 0) {
235     char mem_type[30];
236     internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
237                       fixed_addr);
238     ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
239   }
240   return p;
241 }
242 
243 // Uses fixed_addr for now.
244 // Will use offset instead once we've implemented this function for real.
Map(uptr fixed_addr,uptr size)245 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size) {
246   return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
247 }
248 
MapOrDie(uptr fixed_addr,uptr size)249 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size) {
250   return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
251 }
252 
Unmap(uptr addr,uptr size)253 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
254   // Only unmap if it covers the entire range.
255   CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
256   // We unmap the whole range, just null out the base.
257   base_ = nullptr;
258   size_ = 0;
259   UnmapOrDie(reinterpret_cast<void*>(addr), size);
260 }
261 
MmapFixedOrDieOnFatalError(uptr fixed_addr,uptr size)262 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size) {
263   void *p = VirtualAlloc((LPVOID)fixed_addr, size,
264       MEM_COMMIT, PAGE_READWRITE);
265   if (p == 0) {
266     char mem_type[30];
267     internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
268                       fixed_addr);
269     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
270   }
271   return p;
272 }
273 
MmapNoReserveOrDie(uptr size,const char * mem_type)274 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
275   // FIXME: make this really NoReserve?
276   return MmapOrDie(size, mem_type);
277 }
278 
Init(uptr size,const char * name,uptr fixed_addr)279 uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
280   base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
281   size_ = size;
282   name_ = name;
283   (void)os_handle_;  // unsupported
284   return reinterpret_cast<uptr>(base_);
285 }
286 
287 
MmapFixedNoAccess(uptr fixed_addr,uptr size,const char * name)288 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
289   (void)name; // unsupported
290   void *res = VirtualAlloc((LPVOID)fixed_addr, size,
291                            MEM_RESERVE, PAGE_NOACCESS);
292   if (res == 0)
293     Report("WARNING: %s failed to "
294            "mprotect %p (%zd) bytes at %p (error code: %d)\n",
295            SanitizerToolName, size, size, fixed_addr, GetLastError());
296   return res;
297 }
298 
MmapNoAccess(uptr size)299 void *MmapNoAccess(uptr size) {
300   void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
301   if (res == 0)
302     Report("WARNING: %s failed to "
303            "mprotect %p (%zd) bytes (error code: %d)\n",
304            SanitizerToolName, size, size, GetLastError());
305   return res;
306 }
307 
MprotectNoAccess(uptr addr,uptr size)308 bool MprotectNoAccess(uptr addr, uptr size) {
309   DWORD old_protection;
310   return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
311 }
312 
ReleaseMemoryPagesToOS(uptr beg,uptr end)313 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
314   // This is almost useless on 32-bits.
315   // FIXME: add madvise-analog when we move to 64-bits.
316 }
317 
NoHugePagesInRegion(uptr addr,uptr size)318 bool NoHugePagesInRegion(uptr addr, uptr size) {
319   // FIXME: probably similar to ReleaseMemoryToOS.
320   return true;
321 }
322 
DontDumpShadowMemory(uptr addr,uptr length)323 bool DontDumpShadowMemory(uptr addr, uptr length) {
324   // This is almost useless on 32-bits.
325   // FIXME: add madvise-analog when we move to 64-bits.
326   return true;
327 }
328 
FindAvailableMemoryRange(uptr size,uptr alignment,uptr left_padding,uptr * largest_gap_found,uptr * max_occupied_addr)329 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
330                               uptr *largest_gap_found,
331                               uptr *max_occupied_addr) {
332   uptr address = 0;
333   while (true) {
334     MEMORY_BASIC_INFORMATION info;
335     if (!::VirtualQuery((void*)address, &info, sizeof(info)))
336       return 0;
337 
338     if (info.State == MEM_FREE) {
339       uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
340                                       alignment);
341       if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
342         return shadow_address;
343     }
344 
345     // Move to the next region.
346     address = (uptr)info.BaseAddress + info.RegionSize;
347   }
348   return 0;
349 }
350 
MemoryRangeIsAvailable(uptr range_start,uptr range_end)351 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
352   MEMORY_BASIC_INFORMATION mbi;
353   CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
354   return mbi.Protect == PAGE_NOACCESS &&
355          (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
356 }
357 
MapFileToMemory(const char * file_name,uptr * buff_size)358 void *MapFileToMemory(const char *file_name, uptr *buff_size) {
359   UNIMPLEMENTED();
360 }
361 
MapWritableFileToMemory(void * addr,uptr size,fd_t fd,OFF_T offset)362 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
363   UNIMPLEMENTED();
364 }
365 
366 static const int kMaxEnvNameLength = 128;
367 static const DWORD kMaxEnvValueLength = 32767;
368 
369 namespace {
370 
371 struct EnvVariable {
372   char name[kMaxEnvNameLength];
373   char value[kMaxEnvValueLength];
374 };
375 
376 }  // namespace
377 
378 static const int kEnvVariables = 5;
379 static EnvVariable env_vars[kEnvVariables];
380 static int num_env_vars;
381 
GetEnv(const char * name)382 const char *GetEnv(const char *name) {
383   // Note: this implementation caches the values of the environment variables
384   // and limits their quantity.
385   for (int i = 0; i < num_env_vars; i++) {
386     if (0 == internal_strcmp(name, env_vars[i].name))
387       return env_vars[i].value;
388   }
389   CHECK_LT(num_env_vars, kEnvVariables);
390   DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
391                                      kMaxEnvValueLength);
392   if (rv > 0 && rv < kMaxEnvValueLength) {
393     CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
394     internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
395     num_env_vars++;
396     return env_vars[num_env_vars - 1].value;
397   }
398   return 0;
399 }
400 
GetPwd()401 const char *GetPwd() {
402   UNIMPLEMENTED();
403 }
404 
GetUid()405 u32 GetUid() {
406   UNIMPLEMENTED();
407 }
408 
409 namespace {
410 struct ModuleInfo {
411   const char *filepath;
412   uptr base_address;
413   uptr end_address;
414 };
415 
416 #if !SANITIZER_GO
CompareModulesBase(const void * pl,const void * pr)417 int CompareModulesBase(const void *pl, const void *pr) {
418   const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
419   if (l->base_address < r->base_address)
420     return -1;
421   return l->base_address > r->base_address;
422 }
423 #endif
424 }  // namespace
425 
426 #if !SANITIZER_GO
DumpProcessMap()427 void DumpProcessMap() {
428   Report("Dumping process modules:\n");
429   ListOfModules modules;
430   modules.init();
431   uptr num_modules = modules.size();
432 
433   InternalMmapVector<ModuleInfo> module_infos(num_modules);
434   for (size_t i = 0; i < num_modules; ++i) {
435     module_infos[i].filepath = modules[i].full_name();
436     module_infos[i].base_address = modules[i].ranges().front()->beg;
437     module_infos[i].end_address = modules[i].ranges().back()->end;
438   }
439   qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
440         CompareModulesBase);
441 
442   for (size_t i = 0; i < num_modules; ++i) {
443     const ModuleInfo &mi = module_infos[i];
444     if (mi.end_address != 0) {
445       Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
446              mi.filepath[0] ? mi.filepath : "[no name]");
447     } else if (mi.filepath[0]) {
448       Printf("\t??\?-??? %s\n", mi.filepath);
449     } else {
450       Printf("\t???\n");
451     }
452   }
453 }
454 #endif
455 
PrintModuleMap()456 void PrintModuleMap() { }
457 
DisableCoreDumperIfNecessary()458 void DisableCoreDumperIfNecessary() {
459   // Do nothing.
460 }
461 
ReExec()462 void ReExec() {
463   UNIMPLEMENTED();
464 }
465 
PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments * args)466 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
467 
StackSizeIsUnlimited()468 bool StackSizeIsUnlimited() {
469   UNIMPLEMENTED();
470 }
471 
SetStackSizeLimitInBytes(uptr limit)472 void SetStackSizeLimitInBytes(uptr limit) {
473   UNIMPLEMENTED();
474 }
475 
AddressSpaceIsUnlimited()476 bool AddressSpaceIsUnlimited() {
477   UNIMPLEMENTED();
478 }
479 
SetAddressSpaceUnlimited()480 void SetAddressSpaceUnlimited() {
481   UNIMPLEMENTED();
482 }
483 
IsPathSeparator(const char c)484 bool IsPathSeparator(const char c) {
485   return c == '\\' || c == '/';
486 }
487 
IsAbsolutePath(const char * path)488 bool IsAbsolutePath(const char *path) {
489   UNIMPLEMENTED();
490 }
491 
SleepForSeconds(int seconds)492 void SleepForSeconds(int seconds) {
493   Sleep(seconds * 1000);
494 }
495 
SleepForMillis(int millis)496 void SleepForMillis(int millis) {
497   Sleep(millis);
498 }
499 
NanoTime()500 u64 NanoTime() {
501   static LARGE_INTEGER frequency = {};
502   LARGE_INTEGER counter;
503   if (UNLIKELY(frequency.QuadPart == 0)) {
504     QueryPerformanceFrequency(&frequency);
505     CHECK_NE(frequency.QuadPart, 0);
506   }
507   QueryPerformanceCounter(&counter);
508   counter.QuadPart *= 1000ULL * 1000000ULL;
509   counter.QuadPart /= frequency.QuadPart;
510   return counter.QuadPart;
511 }
512 
MonotonicNanoTime()513 u64 MonotonicNanoTime() { return NanoTime(); }
514 
Abort()515 void Abort() {
516   internal__exit(3);
517 }
518 
519 #if !SANITIZER_GO
520 // Read the file to extract the ImageBase field from the PE header. If ASLR is
521 // disabled and this virtual address is available, the loader will typically
522 // load the image at this address. Therefore, we call it the preferred base. Any
523 // addresses in the DWARF typically assume that the object has been loaded at
524 // this address.
GetPreferredBase(const char * modname)525 static uptr GetPreferredBase(const char *modname) {
526   fd_t fd = OpenFile(modname, RdOnly, nullptr);
527   if (fd == kInvalidFd)
528     return 0;
529   FileCloser closer(fd);
530 
531   // Read just the DOS header.
532   IMAGE_DOS_HEADER dos_header;
533   uptr bytes_read;
534   if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
535       bytes_read != sizeof(dos_header))
536     return 0;
537 
538   // The file should start with the right signature.
539   if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
540     return 0;
541 
542   // The layout at e_lfanew is:
543   // "PE\0\0"
544   // IMAGE_FILE_HEADER
545   // IMAGE_OPTIONAL_HEADER
546   // Seek to e_lfanew and read all that data.
547   char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)];
548   if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
549       INVALID_SET_FILE_POINTER)
550     return 0;
551   if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) ||
552       bytes_read != sizeof(buf))
553     return 0;
554 
555   // Check for "PE\0\0" before the PE header.
556   char *pe_sig = &buf[0];
557   if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
558     return 0;
559 
560   // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
561   IMAGE_OPTIONAL_HEADER *pe_header =
562       (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
563 
564   // Check for more magic in the PE header.
565   if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
566     return 0;
567 
568   // Finally, return the ImageBase.
569   return (uptr)pe_header->ImageBase;
570 }
571 
init()572 void ListOfModules::init() {
573   clearOrInit();
574   HANDLE cur_process = GetCurrentProcess();
575 
576   // Query the list of modules.  Start by assuming there are no more than 256
577   // modules and retry if that's not sufficient.
578   HMODULE *hmodules = 0;
579   uptr modules_buffer_size = sizeof(HMODULE) * 256;
580   DWORD bytes_required;
581   while (!hmodules) {
582     hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
583     CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
584                              &bytes_required));
585     if (bytes_required > modules_buffer_size) {
586       // Either there turned out to be more than 256 hmodules, or new hmodules
587       // could have loaded since the last try.  Retry.
588       UnmapOrDie(hmodules, modules_buffer_size);
589       hmodules = 0;
590       modules_buffer_size = bytes_required;
591     }
592   }
593 
594   // |num_modules| is the number of modules actually present,
595   size_t num_modules = bytes_required / sizeof(HMODULE);
596   for (size_t i = 0; i < num_modules; ++i) {
597     HMODULE handle = hmodules[i];
598     MODULEINFO mi;
599     if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
600       continue;
601 
602     // Get the UTF-16 path and convert to UTF-8.
603     wchar_t modname_utf16[kMaxPathLength];
604     int modname_utf16_len =
605         GetModuleFileNameW(handle, modname_utf16, kMaxPathLength);
606     if (modname_utf16_len == 0)
607       modname_utf16[0] = '\0';
608     char module_name[kMaxPathLength];
609     int module_name_len =
610         ::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1,
611                               &module_name[0], kMaxPathLength, NULL, NULL);
612     module_name[module_name_len] = '\0';
613 
614     uptr base_address = (uptr)mi.lpBaseOfDll;
615     uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
616 
617     // Adjust the base address of the module so that we get a VA instead of an
618     // RVA when computing the module offset. This helps llvm-symbolizer find the
619     // right DWARF CU. In the common case that the image is loaded at it's
620     // preferred address, we will now print normal virtual addresses.
621     uptr preferred_base = GetPreferredBase(&module_name[0]);
622     uptr adjusted_base = base_address - preferred_base;
623 
624     LoadedModule cur_module;
625     cur_module.set(module_name, adjusted_base);
626     // We add the whole module as one single address range.
627     cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
628                                /*writable*/ true);
629     modules_.push_back(cur_module);
630   }
631   UnmapOrDie(hmodules, modules_buffer_size);
632 }
633 
fallbackInit()634 void ListOfModules::fallbackInit() { clear(); }
635 
636 // We can't use atexit() directly at __asan_init time as the CRT is not fully
637 // initialized at this point.  Place the functions into a vector and use
638 // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
639 InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
640 
Atexit(void (* function)(void))641 int Atexit(void (*function)(void)) {
642   atexit_functions.push_back(function);
643   return 0;
644 }
645 
RunAtexit()646 static int RunAtexit() {
647   int ret = 0;
648   for (uptr i = 0; i < atexit_functions.size(); ++i) {
649     ret |= atexit(atexit_functions[i]);
650   }
651   return ret;
652 }
653 
654 #pragma section(".CRT$XID", long, read)  // NOLINT
655 __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
656 #endif
657 
658 // ------------------ sanitizer_libc.h
OpenFile(const char * filename,FileAccessMode mode,error_t * last_error)659 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
660   // FIXME: Use the wide variants to handle Unicode filenames.
661   fd_t res;
662   if (mode == RdOnly) {
663     res = CreateFileA(filename, GENERIC_READ,
664                       FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
665                       nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
666   } else if (mode == WrOnly) {
667     res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
668                       FILE_ATTRIBUTE_NORMAL, nullptr);
669   } else {
670     UNIMPLEMENTED();
671   }
672   CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
673   CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
674   if (res == kInvalidFd && last_error)
675     *last_error = GetLastError();
676   return res;
677 }
678 
CloseFile(fd_t fd)679 void CloseFile(fd_t fd) {
680   CloseHandle(fd);
681 }
682 
ReadFromFile(fd_t fd,void * buff,uptr buff_size,uptr * bytes_read,error_t * error_p)683 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
684                   error_t *error_p) {
685   CHECK(fd != kInvalidFd);
686 
687   // bytes_read can't be passed directly to ReadFile:
688   // uptr is unsigned long long on 64-bit Windows.
689   unsigned long num_read_long;
690 
691   bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
692   if (!success && error_p)
693     *error_p = GetLastError();
694   if (bytes_read)
695     *bytes_read = num_read_long;
696   return success;
697 }
698 
SupportsColoredOutput(fd_t fd)699 bool SupportsColoredOutput(fd_t fd) {
700   // FIXME: support colored output.
701   return false;
702 }
703 
WriteToFile(fd_t fd,const void * buff,uptr buff_size,uptr * bytes_written,error_t * error_p)704 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
705                  error_t *error_p) {
706   CHECK(fd != kInvalidFd);
707 
708   // Handle null optional parameters.
709   error_t dummy_error;
710   error_p = error_p ? error_p : &dummy_error;
711   uptr dummy_bytes_written;
712   bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
713 
714   // Initialize output parameters in case we fail.
715   *error_p = 0;
716   *bytes_written = 0;
717 
718   // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
719   // closed, in which case this will fail.
720   if (fd == kStdoutFd || fd == kStderrFd) {
721     fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
722     if (fd == 0) {
723       *error_p = ERROR_INVALID_HANDLE;
724       return false;
725     }
726   }
727 
728   DWORD bytes_written_32;
729   if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
730     *error_p = GetLastError();
731     return false;
732   } else {
733     *bytes_written = bytes_written_32;
734     return true;
735   }
736 }
737 
RenameFile(const char * oldpath,const char * newpath,error_t * error_p)738 bool RenameFile(const char *oldpath, const char *newpath, error_t *error_p) {
739   UNIMPLEMENTED();
740 }
741 
internal_sched_yield()742 uptr internal_sched_yield() {
743   Sleep(0);
744   return 0;
745 }
746 
internal__exit(int exitcode)747 void internal__exit(int exitcode) {
748   // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
749   // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
750   // so add our own breakpoint here.
751   if (::IsDebuggerPresent())
752     __debugbreak();
753   TerminateProcess(GetCurrentProcess(), exitcode);
754   BUILTIN_UNREACHABLE();
755 }
756 
internal_ftruncate(fd_t fd,uptr size)757 uptr internal_ftruncate(fd_t fd, uptr size) {
758   UNIMPLEMENTED();
759 }
760 
GetRSS()761 uptr GetRSS() {
762   PROCESS_MEMORY_COUNTERS counters;
763   if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
764     return 0;
765   return counters.WorkingSetSize;
766 }
767 
internal_start_thread(void (* func)(void * arg),void * arg)768 void *internal_start_thread(void (*func)(void *arg), void *arg) { return 0; }
internal_join_thread(void * th)769 void internal_join_thread(void *th) { }
770 
771 // ---------------------- BlockingMutex ---------------- {{{1
772 
BlockingMutex()773 BlockingMutex::BlockingMutex() {
774   CHECK(sizeof(SRWLOCK) <= sizeof(opaque_storage_));
775   internal_memset(this, 0, sizeof(*this));
776 }
777 
Lock()778 void BlockingMutex::Lock() {
779   AcquireSRWLockExclusive((PSRWLOCK)opaque_storage_);
780   CHECK_EQ(owner_, 0);
781   owner_ = GetThreadSelf();
782 }
783 
Unlock()784 void BlockingMutex::Unlock() {
785   CheckLocked();
786   owner_ = 0;
787   ReleaseSRWLockExclusive((PSRWLOCK)opaque_storage_);
788 }
789 
CheckLocked()790 void BlockingMutex::CheckLocked() {
791   CHECK_EQ(owner_, GetThreadSelf());
792 }
793 
GetTlsSize()794 uptr GetTlsSize() {
795   return 0;
796 }
797 
InitTlsSize()798 void InitTlsSize() {
799 }
800 
GetThreadStackAndTls(bool main,uptr * stk_addr,uptr * stk_size,uptr * tls_addr,uptr * tls_size)801 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
802                           uptr *tls_addr, uptr *tls_size) {
803 #if SANITIZER_GO
804   *stk_addr = 0;
805   *stk_size = 0;
806   *tls_addr = 0;
807   *tls_size = 0;
808 #else
809   uptr stack_top, stack_bottom;
810   GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
811   *stk_addr = stack_bottom;
812   *stk_size = stack_top - stack_bottom;
813   *tls_addr = 0;
814   *tls_size = 0;
815 #endif
816 }
817 
Write(const char * buffer,uptr length)818 void ReportFile::Write(const char *buffer, uptr length) {
819   SpinMutexLock l(mu);
820   ReopenIfNecessary();
821   if (!WriteToFile(fd, buffer, length)) {
822     // stderr may be closed, but we may be able to print to the debugger
823     // instead.  This is the case when launching a program from Visual Studio,
824     // and the following routine should write to its console.
825     OutputDebugStringA(buffer);
826   }
827 }
828 
SetAlternateSignalStack()829 void SetAlternateSignalStack() {
830   // FIXME: Decide what to do on Windows.
831 }
832 
UnsetAlternateSignalStack()833 void UnsetAlternateSignalStack() {
834   // FIXME: Decide what to do on Windows.
835 }
836 
InstallDeadlySignalHandlers(SignalHandlerType handler)837 void InstallDeadlySignalHandlers(SignalHandlerType handler) {
838   (void)handler;
839   // FIXME: Decide what to do on Windows.
840 }
841 
GetHandleSignalMode(int signum)842 HandleSignalMode GetHandleSignalMode(int signum) {
843   // FIXME: Decide what to do on Windows.
844   return kHandleSignalNo;
845 }
846 
847 // Check based on flags if we should handle this exception.
IsHandledDeadlyException(DWORD exceptionCode)848 bool IsHandledDeadlyException(DWORD exceptionCode) {
849   switch (exceptionCode) {
850     case EXCEPTION_ACCESS_VIOLATION:
851     case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
852     case EXCEPTION_STACK_OVERFLOW:
853     case EXCEPTION_DATATYPE_MISALIGNMENT:
854     case EXCEPTION_IN_PAGE_ERROR:
855       return common_flags()->handle_segv;
856     case EXCEPTION_ILLEGAL_INSTRUCTION:
857     case EXCEPTION_PRIV_INSTRUCTION:
858     case EXCEPTION_BREAKPOINT:
859       return common_flags()->handle_sigill;
860     case EXCEPTION_FLT_DENORMAL_OPERAND:
861     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
862     case EXCEPTION_FLT_INEXACT_RESULT:
863     case EXCEPTION_FLT_INVALID_OPERATION:
864     case EXCEPTION_FLT_OVERFLOW:
865     case EXCEPTION_FLT_STACK_CHECK:
866     case EXCEPTION_FLT_UNDERFLOW:
867     case EXCEPTION_INT_DIVIDE_BY_ZERO:
868     case EXCEPTION_INT_OVERFLOW:
869       return common_flags()->handle_sigfpe;
870   }
871   return false;
872 }
873 
IsAccessibleMemoryRange(uptr beg,uptr size)874 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
875   SYSTEM_INFO si;
876   GetNativeSystemInfo(&si);
877   uptr page_size = si.dwPageSize;
878   uptr page_mask = ~(page_size - 1);
879 
880   for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
881        page <= end;) {
882     MEMORY_BASIC_INFORMATION info;
883     if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
884       return false;
885 
886     if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
887         info.Protect == PAGE_EXECUTE)
888       return false;
889 
890     if (info.RegionSize == 0)
891       return false;
892 
893     page += info.RegionSize;
894   }
895 
896   return true;
897 }
898 
IsStackOverflow() const899 bool SignalContext::IsStackOverflow() const {
900   return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
901 }
902 
InitPcSpBp()903 void SignalContext::InitPcSpBp() {
904   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
905   CONTEXT *context_record = (CONTEXT *)context;
906 
907   pc = (uptr)exception_record->ExceptionAddress;
908 #ifdef _WIN64
909   bp = (uptr)context_record->Rbp;
910   sp = (uptr)context_record->Rsp;
911 #else
912   bp = (uptr)context_record->Ebp;
913   sp = (uptr)context_record->Esp;
914 #endif
915 }
916 
GetAddress() const917 uptr SignalContext::GetAddress() const {
918   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
919   return exception_record->ExceptionInformation[1];
920 }
921 
IsMemoryAccess() const922 bool SignalContext::IsMemoryAccess() const {
923   return GetWriteFlag() != SignalContext::UNKNOWN;
924 }
925 
GetWriteFlag() const926 SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
927   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
928   // The contents of this array are documented at
929   // https://msdn.microsoft.com/en-us/library/windows/desktop/aa363082(v=vs.85).aspx
930   // The first element indicates read as 0, write as 1, or execute as 8.  The
931   // second element is the faulting address.
932   switch (exception_record->ExceptionInformation[0]) {
933     case 0:
934       return SignalContext::READ;
935     case 1:
936       return SignalContext::WRITE;
937     case 8:
938       return SignalContext::UNKNOWN;
939   }
940   return SignalContext::UNKNOWN;
941 }
942 
DumpAllRegisters(void * context)943 void SignalContext::DumpAllRegisters(void *context) {
944   // FIXME: Implement this.
945 }
946 
GetType() const947 int SignalContext::GetType() const {
948   return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
949 }
950 
Describe() const951 const char *SignalContext::Describe() const {
952   unsigned code = GetType();
953   // Get the string description of the exception if this is a known deadly
954   // exception.
955   switch (code) {
956     case EXCEPTION_ACCESS_VIOLATION:
957       return "access-violation";
958     case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
959       return "array-bounds-exceeded";
960     case EXCEPTION_STACK_OVERFLOW:
961       return "stack-overflow";
962     case EXCEPTION_DATATYPE_MISALIGNMENT:
963       return "datatype-misalignment";
964     case EXCEPTION_IN_PAGE_ERROR:
965       return "in-page-error";
966     case EXCEPTION_ILLEGAL_INSTRUCTION:
967       return "illegal-instruction";
968     case EXCEPTION_PRIV_INSTRUCTION:
969       return "priv-instruction";
970     case EXCEPTION_BREAKPOINT:
971       return "breakpoint";
972     case EXCEPTION_FLT_DENORMAL_OPERAND:
973       return "flt-denormal-operand";
974     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
975       return "flt-divide-by-zero";
976     case EXCEPTION_FLT_INEXACT_RESULT:
977       return "flt-inexact-result";
978     case EXCEPTION_FLT_INVALID_OPERATION:
979       return "flt-invalid-operation";
980     case EXCEPTION_FLT_OVERFLOW:
981       return "flt-overflow";
982     case EXCEPTION_FLT_STACK_CHECK:
983       return "flt-stack-check";
984     case EXCEPTION_FLT_UNDERFLOW:
985       return "flt-underflow";
986     case EXCEPTION_INT_DIVIDE_BY_ZERO:
987       return "int-divide-by-zero";
988     case EXCEPTION_INT_OVERFLOW:
989       return "int-overflow";
990   }
991   return "unknown exception";
992 }
993 
ReadBinaryName(char * buf,uptr buf_len)994 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
995   // FIXME: Actually implement this function.
996   CHECK_GT(buf_len, 0);
997   buf[0] = 0;
998   return 0;
999 }
1000 
ReadLongProcessName(char * buf,uptr buf_len)1001 uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
1002   return ReadBinaryName(buf, buf_len);
1003 }
1004 
CheckVMASize()1005 void CheckVMASize() {
1006   // Do nothing.
1007 }
1008 
MaybeReexec()1009 void MaybeReexec() {
1010   // No need to re-exec on Windows.
1011 }
1012 
CheckASLR()1013 void CheckASLR() {
1014   // Do nothing
1015 }
1016 
GetArgv()1017 char **GetArgv() {
1018   // FIXME: Actually implement this function.
1019   return 0;
1020 }
1021 
StartSubprocess(const char * program,const char * const argv[],fd_t stdin_fd,fd_t stdout_fd,fd_t stderr_fd)1022 pid_t StartSubprocess(const char *program, const char *const argv[],
1023                       fd_t stdin_fd, fd_t stdout_fd, fd_t stderr_fd) {
1024   // FIXME: implement on this platform
1025   // Should be implemented based on
1026   // SymbolizerProcess::StarAtSymbolizerSubprocess
1027   // from lib/sanitizer_common/sanitizer_symbolizer_win.cc.
1028   return -1;
1029 }
1030 
IsProcessRunning(pid_t pid)1031 bool IsProcessRunning(pid_t pid) {
1032   // FIXME: implement on this platform.
1033   return false;
1034 }
1035 
WaitForProcess(pid_t pid)1036 int WaitForProcess(pid_t pid) { return -1; }
1037 
1038 // FIXME implement on this platform.
GetMemoryProfile(fill_profile_f cb,uptr * stats,uptr stats_size)1039 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { }
1040 
CheckNoDeepBind(const char * filename,int flag)1041 void CheckNoDeepBind(const char *filename, int flag) {
1042   // Do nothing.
1043 }
1044 
1045 // FIXME: implement on this platform.
GetRandom(void * buffer,uptr length,bool blocking)1046 bool GetRandom(void *buffer, uptr length, bool blocking) {
1047   UNIMPLEMENTED();
1048 }
1049 
GetNumberOfCPUs()1050 u32 GetNumberOfCPUs() {
1051   SYSTEM_INFO sysinfo = {};
1052   GetNativeSystemInfo(&sysinfo);
1053   return sysinfo.dwNumberOfProcessors;
1054 }
1055 
1056 }  // namespace __sanitizer
1057 
1058 #endif  // _WIN32
1059