1 /****************************************************************************
2 * *
3 * GNAT COMPILER COMPONENTS *
4 * *
5 * M I S C *
6 * *
7 * C Implementation File *
8 * *
9 * Copyright (C) 1992-2019, Free Software Foundation, Inc. *
10 * *
11 * GNAT is free software; you can redistribute it and/or modify it under *
12 * terms of the GNU General Public License as published by the Free Soft- *
13 * ware Foundation; either version 3, or (at your option) any later ver- *
14 * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
15 * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
17 * for more details. You should have received a copy of the GNU General *
18 * Public License distributed with GNAT; see file COPYING3. If not see *
19 * <http://www.gnu.org/licenses/>. *
20 * *
21 * GNAT was originally developed by the GNAT team at New York University. *
22 * Extensive contributions were provided by Ada Core Technologies Inc. *
23 * *
24 ****************************************************************************/
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "target.h"
30 #include "tree.h"
31 #include "diagnostic.h"
32 #include "opts.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "print-tree.h"
37 #include "toplev.h"
38 #include "langhooks.h"
39 #include "langhooks-def.h"
40 #include "plugin.h"
41 #include "calls.h" /* For pass_by_reference. */
42 #include "dwarf2out.h"
43
44 #include "ada.h"
45 #include "adadecode.h"
46 #include "types.h"
47 #include "atree.h"
48 #include "namet.h"
49 #include "nlists.h"
50 #include "uintp.h"
51 #include "fe.h"
52 #include "sinfo.h"
53 #include "einfo.h"
54 #include "ada-tree.h"
55 #include "gigi.h"
56
57 /* This symbol needs to be defined for the front-end. */
58 void *callgraph_info_file = NULL;
59
60 /* Command-line argc and argv. These variables are global since they are
61 imported in back_end.adb. */
62 unsigned int save_argc;
63 const char **save_argv;
64
65 /* GNAT argc and argv generated by the binder for all Ada programs. */
66 extern int gnat_argc;
67 extern const char **gnat_argv;
68
69 /* Ada code requires variables for these settings rather than elements
70 of the global_options structure because they are imported. */
71 #undef gnat_encodings
72 enum dwarf_gnat_encodings gnat_encodings = DWARF_GNAT_ENCODINGS_DEFAULT;
73
74 #undef optimize
75 int optimize;
76
77 #undef optimize_size
78 int optimize_size;
79
80 #undef flag_short_enums
81 int flag_short_enums;
82
83 #undef flag_stack_check
84 enum stack_check_type flag_stack_check = NO_STACK_CHECK;
85
86 #ifdef __cplusplus
87 extern "C" {
88 #endif
89
90 /* Declare functions we use as part of startup. */
91 extern void __gnat_initialize (void *);
92 extern void __gnat_install_SEH_handler (void *);
93 extern void adainit (void);
94 extern void _ada_gnat1drv (void);
95
96 #ifdef __cplusplus
97 }
98 #endif
99
100 /* The parser for the language. For us, we process the GNAT tree. */
101
102 static void
gnat_parse_file(void)103 gnat_parse_file (void)
104 {
105 int seh[2];
106
107 /* Call the target specific initializations. */
108 __gnat_initialize (NULL);
109
110 /* ??? Call the SEH initialization routine. This is to workaround
111 a bootstrap path problem. The call below should be removed at some
112 point and the SEH pointer passed to __gnat_initialize above. */
113 __gnat_install_SEH_handler ((void *)seh);
114
115 /* Call the front-end elaboration procedures. */
116 adainit ();
117
118 /* Call the front end. */
119 _ada_gnat1drv ();
120
121 /* Write the global declarations. */
122 gnat_write_global_declarations ();
123 }
124
125 /* Return language mask for option processing. */
126
127 static unsigned int
gnat_option_lang_mask(void)128 gnat_option_lang_mask (void)
129 {
130 return CL_Ada;
131 }
132
133 /* Decode all the language specific options that cannot be decoded by GCC.
134 The option decoding phase of GCC calls this routine on the flags that
135 are marked as Ada-specific. Return true on success or false on failure. */
136
137 static bool
gnat_handle_option(size_t scode,const char * arg,HOST_WIDE_INT value,int kind,location_t loc,const struct cl_option_handlers * handlers)138 gnat_handle_option (size_t scode, const char *arg, HOST_WIDE_INT value,
139 int kind, location_t loc,
140 const struct cl_option_handlers *handlers)
141 {
142 enum opt_code code = (enum opt_code) scode;
143
144 switch (code)
145 {
146 case OPT_Wall:
147 handle_generated_option (&global_options, &global_options_set,
148 OPT_Wunused, NULL, value,
149 gnat_option_lang_mask (), kind, loc,
150 handlers, true, global_dc);
151 warn_uninitialized = value;
152 warn_maybe_uninitialized = value;
153 break;
154
155 case OPT_gant:
156 warning (0, "%<-gnat%> misspelled as %<-gant%>");
157
158 /* ... fall through ... */
159
160 case OPT_gnat:
161 case OPT_gnatO:
162 case OPT_fRTS_:
163 case OPT_I:
164 case OPT_nostdinc:
165 case OPT_nostdlib:
166 /* These are handled by the front-end. */
167 break;
168
169 case OPT_fopenacc:
170 case OPT_fshort_enums:
171 case OPT_fsigned_char:
172 case OPT_funsigned_char:
173 /* These are handled by the middle-end. */
174 break;
175
176 case OPT_fbuiltin_printf:
177 /* This is ignored in Ada but needs to be accepted so it can be
178 defaulted. */
179 break;
180
181 default:
182 gcc_unreachable ();
183 }
184
185 Ada_handle_option_auto (&global_options, &global_options_set,
186 scode, arg, value,
187 gnat_option_lang_mask (), kind, loc,
188 handlers, global_dc);
189 return true;
190 }
191
192 /* Initialize options structure OPTS. */
193
194 static void
gnat_init_options_struct(struct gcc_options * opts)195 gnat_init_options_struct (struct gcc_options *opts)
196 {
197 /* Uninitialized really means uninitialized in Ada. */
198 opts->x_flag_zero_initialized_in_bss = 0;
199
200 /* We don't care about errno in Ada and it causes __builtin_sqrt to
201 call the libm function rather than do it inline. */
202 opts->x_flag_errno_math = 0;
203 opts->frontend_set_flag_errno_math = true;
204 }
205
206 /* Initialize for option processing. */
207
208 static void
gnat_init_options(unsigned int decoded_options_count,struct cl_decoded_option * decoded_options)209 gnat_init_options (unsigned int decoded_options_count,
210 struct cl_decoded_option *decoded_options)
211 {
212 /* Reconstruct an argv array for use of back_end.adb.
213
214 ??? back_end.adb should not rely on this; instead, it should work with
215 decoded options without such reparsing, to ensure consistency in how
216 options are decoded. */
217 save_argv = XNEWVEC (const char *, 2 * decoded_options_count + 1);
218 save_argc = 0;
219 for (unsigned int i = 0; i < decoded_options_count; i++)
220 {
221 size_t num_elements = decoded_options[i].canonical_option_num_elements;
222
223 if (decoded_options[i].errors
224 || decoded_options[i].opt_index == OPT_SPECIAL_unknown
225 || num_elements == 0)
226 continue;
227
228 /* Deal with -I- specially since it must be a single switch. */
229 if (decoded_options[i].opt_index == OPT_I
230 && num_elements == 2
231 && decoded_options[i].canonical_option[1][0] == '-'
232 && decoded_options[i].canonical_option[1][1] == '\0')
233 save_argv[save_argc++] = "-I-";
234 else
235 {
236 gcc_assert (num_elements >= 1 && num_elements <= 2);
237 save_argv[save_argc++] = decoded_options[i].canonical_option[0];
238 if (num_elements >= 2)
239 save_argv[save_argc++] = decoded_options[i].canonical_option[1];
240 }
241 }
242 save_argv[save_argc] = NULL;
243
244 /* Pass just the name of the command through the regular channel. */
245 gnat_argv = (const char **) xmalloc (sizeof (char *));
246 gnat_argv[0] = xstrdup (save_argv[0]);
247 gnat_argc = 1;
248 }
249
250 /* Settings adjustments after switches processing by the back-end.
251 Note that the front-end switches processing (Scan_Compiler_Arguments)
252 has not been done yet at this point! */
253
254 static bool
gnat_post_options(const char ** pfilename ATTRIBUTE_UNUSED)255 gnat_post_options (const char **pfilename ATTRIBUTE_UNUSED)
256 {
257 /* Excess precision other than "fast" requires front-end support. */
258 if (flag_excess_precision_cmdline == EXCESS_PRECISION_STANDARD)
259 sorry ("%<-fexcess-precision=standard%> for Ada");
260 flag_excess_precision_cmdline = EXCESS_PRECISION_FAST;
261
262 /* No psABI change warnings for Ada. */
263 warn_psabi = 0;
264
265 /* No return type warnings for Ada. */
266 warn_return_type = 0;
267
268 /* No string overflow warnings for Ada. */
269 warn_stringop_overflow = 0;
270
271 /* No caret by default for Ada. */
272 if (!global_options_set.x_flag_diagnostics_show_caret)
273 global_dc->show_caret = false;
274
275 /* Warn only if STABS is not the default: we don't want to emit a warning if
276 the user did not use a -gstabs option. */
277 if (PREFERRED_DEBUGGING_TYPE != DBX_DEBUG && write_symbols == DBX_DEBUG)
278 warning (0, "STABS debugging information for Ada is obsolete and not "
279 "supported anymore");
280
281 /* Copy global settings to local versions. */
282 gnat_encodings = global_options.x_gnat_encodings;
283 optimize = global_options.x_optimize;
284 optimize_size = global_options.x_optimize_size;
285 flag_stack_check = global_options.x_flag_stack_check;
286 flag_short_enums = global_options.x_flag_short_enums;
287
288 /* Unfortunately the post_options hook is called before the value of
289 flag_short_enums is autodetected, if need be. Mimic the process
290 for our private flag_short_enums. */
291 if (flag_short_enums == 2)
292 flag_short_enums = targetm.default_short_enums ();
293
294 return false;
295 }
296
297 /* Here is the function to handle the compiler error processing in GCC. */
298
299 static void
internal_error_function(diagnostic_context * context,const char * msgid,va_list * ap)300 internal_error_function (diagnostic_context *context, const char *msgid,
301 va_list *ap)
302 {
303 text_info tinfo;
304 char *buffer, *p, *loc;
305 String_Template temp, temp_loc;
306 String_Pointer sp, sp_loc;
307 expanded_location xloc;
308
309 /* Warn if plugins present. */
310 warn_if_plugins ();
311
312 /* Reset the pretty-printer. */
313 pp_clear_output_area (context->printer);
314
315 /* Format the message into the pretty-printer. */
316 tinfo.format_spec = msgid;
317 tinfo.args_ptr = ap;
318 tinfo.err_no = errno;
319 pp_format_verbatim (context->printer, &tinfo);
320
321 /* Extract a (writable) pointer to the formatted text. */
322 buffer = xstrdup (pp_formatted_text (context->printer));
323
324 /* Go up to the first newline. */
325 for (p = buffer; *p; p++)
326 if (*p == '\n')
327 {
328 *p = '\0';
329 break;
330 }
331
332 temp.Low_Bound = 1;
333 temp.High_Bound = p - buffer;
334 sp.Bounds = &temp;
335 sp.Array = buffer;
336
337 xloc = expand_location (input_location);
338 if (context->show_column && xloc.column != 0)
339 loc = xasprintf ("%s:%d:%d", xloc.file, xloc.line, xloc.column);
340 else
341 loc = xasprintf ("%s:%d", xloc.file, xloc.line);
342 temp_loc.Low_Bound = 1;
343 temp_loc.High_Bound = strlen (loc);
344 sp_loc.Bounds = &temp_loc;
345 sp_loc.Array = loc;
346
347 Compiler_Abort (sp, sp_loc, true);
348 }
349
350 /* Perform all the initialization steps that are language-specific. */
351
352 static bool
gnat_init(void)353 gnat_init (void)
354 {
355 /* Do little here, most of the standard declarations are set up after the
356 front-end has been run. Use the same `char' as C for Interfaces.C. */
357 build_common_tree_nodes (flag_signed_char);
358
359 /* In Ada, we use an unsigned 8-bit type for the default boolean type. */
360 boolean_type_node = make_unsigned_type (8);
361 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
362 SET_TYPE_RM_MAX_VALUE (boolean_type_node,
363 build_int_cst (boolean_type_node, 1));
364 SET_TYPE_RM_SIZE (boolean_type_node, bitsize_int (1));
365 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
366 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
367
368 sbitsize_one_node = sbitsize_int (1);
369 sbitsize_unit_node = sbitsize_int (BITS_PER_UNIT);
370
371 /* In Ada, we do not use location ranges. */
372 line_table->default_range_bits = 0;
373
374 /* Register our internal error function. */
375 global_dc->internal_error = &internal_error_function;
376
377 return true;
378 }
379
380 /* Initialize the GCC support for exception handling. */
381
382 void
gnat_init_gcc_eh(void)383 gnat_init_gcc_eh (void)
384 {
385 /* We shouldn't do anything if the No_Exceptions_Handler pragma is set,
386 though. This could for instance lead to the emission of tables with
387 references to symbols (such as the Ada eh personality routine) within
388 libraries we won't link against. */
389 if (No_Exception_Handlers_Set ())
390 return;
391
392 /* Tell GCC we are handling cleanup actions through exception propagation.
393 This opens possibilities that we don't take advantage of yet, but is
394 nonetheless necessary to ensure that fixup code gets assigned to the
395 right exception regions. */
396 using_eh_for_cleanups ();
397
398 /* Turn on -fexceptions, -fnon-call-exceptions and -fdelete-dead-exceptions.
399 The first one activates the support for exceptions in the compiler.
400 The second one is useful for two reasons: 1/ we map some asynchronous
401 signals like SEGV to exceptions, so we need to ensure that the insns
402 which can lead to such signals are correctly attached to the exception
403 region they pertain to, 2/ some calls to pure subprograms are handled as
404 libcall blocks and then marked as "cannot trap" if the flag is not set
405 (see emit_libcall_block). We should not let this be since it is possible
406 for such calls to actually raise in Ada.
407 The third one is an optimization that makes it possible to delete dead
408 instructions that may throw exceptions, most notably loads and stores,
409 as permitted in Ada.
410 Turn off -faggressive-loop-optimizations because it may optimize away
411 out-of-bound array accesses that we want to be able to catch.
412 If checks are disabled, we use the same settings as the C++ compiler,
413 except for the runtime on platforms where S'Machine_Overflow is true
414 because the runtime depends on FP (hardware) checks being properly
415 handled despite being compiled in -gnatp mode. */
416 flag_exceptions = 1;
417 flag_delete_dead_exceptions = 1;
418 if (Suppress_Checks)
419 {
420 if (!global_options_set.x_flag_non_call_exceptions)
421 flag_non_call_exceptions = Machine_Overflows_On_Target && GNAT_Mode;
422 }
423 else
424 {
425 flag_non_call_exceptions = 1;
426 flag_aggressive_loop_optimizations = 0;
427 warn_aggressive_loop_optimizations = 0;
428 }
429
430 init_eh ();
431 }
432
433 /* Initialize the GCC support for floating-point operations. */
434
435 void
gnat_init_gcc_fp(void)436 gnat_init_gcc_fp (void)
437 {
438 /* Disable FP optimizations that ignore the signedness of zero if
439 S'Signed_Zeros is true, but don't override the user if not. */
440 if (Signed_Zeros_On_Target)
441 flag_signed_zeros = 1;
442 else if (!global_options_set.x_flag_signed_zeros)
443 flag_signed_zeros = 0;
444
445 /* Assume that FP operations can trap if S'Machine_Overflow is true,
446 but don't override the user if not. */
447 if (Machine_Overflows_On_Target)
448 flag_trapping_math = 1;
449 else if (!global_options_set.x_flag_trapping_math)
450 flag_trapping_math = 0;
451 }
452
453 /* Print language-specific items in declaration NODE. */
454
455 static void
gnat_print_decl(FILE * file,tree node,int indent)456 gnat_print_decl (FILE *file, tree node, int indent)
457 {
458 switch (TREE_CODE (node))
459 {
460 case CONST_DECL:
461 print_node (file, "corresponding var",
462 DECL_CONST_CORRESPONDING_VAR (node), indent + 4);
463 break;
464
465 case FIELD_DECL:
466 print_node (file, "original field", DECL_ORIGINAL_FIELD (node),
467 indent + 4);
468 break;
469
470 case VAR_DECL:
471 if (DECL_LOOP_PARM_P (node))
472 print_node (file, "induction var", DECL_INDUCTION_VAR (node),
473 indent + 4);
474 else
475 print_node (file, "renamed object", DECL_RENAMED_OBJECT (node),
476 indent + 4);
477 break;
478
479 default:
480 break;
481 }
482 }
483
484 /* Print language-specific items in type NODE. */
485
486 static void
gnat_print_type(FILE * file,tree node,int indent)487 gnat_print_type (FILE *file, tree node, int indent)
488 {
489 switch (TREE_CODE (node))
490 {
491 case FUNCTION_TYPE:
492 case METHOD_TYPE:
493 print_node (file, "ci/co list", TYPE_CI_CO_LIST (node), indent + 4);
494 break;
495
496 case INTEGER_TYPE:
497 if (TYPE_MODULAR_P (node))
498 print_node_brief (file, "modulus", TYPE_MODULUS (node), indent + 4);
499 else if (TYPE_FIXED_POINT_P (node))
500 print_node (file, "scale factor", TYPE_SCALE_FACTOR (node),
501 indent + 4);
502 else if (TYPE_HAS_ACTUAL_BOUNDS_P (node))
503 print_node (file, "actual bounds", TYPE_ACTUAL_BOUNDS (node),
504 indent + 4);
505 else
506 print_node (file, "index type", TYPE_INDEX_TYPE (node), indent + 4);
507
508 /* ... fall through ... */
509
510 case ENUMERAL_TYPE:
511 case BOOLEAN_TYPE:
512 print_node_brief (file, "RM size", TYPE_RM_SIZE (node), indent + 4);
513
514 /* ... fall through ... */
515
516 case REAL_TYPE:
517 print_node_brief (file, "RM min", TYPE_RM_MIN_VALUE (node), indent + 4);
518 print_node_brief (file, "RM max", TYPE_RM_MAX_VALUE (node), indent + 4);
519 break;
520
521 case ARRAY_TYPE:
522 print_node (file,"actual bounds", TYPE_ACTUAL_BOUNDS (node), indent + 4);
523 break;
524
525 case VECTOR_TYPE:
526 print_node (file,"representative array",
527 TYPE_REPRESENTATIVE_ARRAY (node), indent + 4);
528 break;
529
530 case RECORD_TYPE:
531 if (TYPE_FAT_POINTER_P (node) || TYPE_CONTAINS_TEMPLATE_P (node))
532 print_node (file, "unconstrained array",
533 TYPE_UNCONSTRAINED_ARRAY (node), indent + 4);
534 else
535 print_node (file, "Ada size", TYPE_ADA_SIZE (node), indent + 4);
536 break;
537
538 case UNION_TYPE:
539 case QUAL_UNION_TYPE:
540 print_node (file, "Ada size", TYPE_ADA_SIZE (node), indent + 4);
541 break;
542
543 default:
544 break;
545 }
546
547 if (TYPE_CAN_HAVE_DEBUG_TYPE_P (node) && TYPE_DEBUG_TYPE (node))
548 print_node_brief (file, "debug type", TYPE_DEBUG_TYPE (node), indent + 4);
549
550 if (TYPE_IMPL_PACKED_ARRAY_P (node) && TYPE_ORIGINAL_PACKED_ARRAY (node))
551 print_node_brief (file, "original packed array",
552 TYPE_ORIGINAL_PACKED_ARRAY (node), indent + 4);
553 }
554
555 /* Return the name to be printed for DECL. */
556
557 static const char *
gnat_printable_name(tree decl,int verbosity)558 gnat_printable_name (tree decl, int verbosity)
559 {
560 const char *coded_name = IDENTIFIER_POINTER (DECL_NAME (decl));
561 char *ada_name = (char *) ggc_alloc_atomic (strlen (coded_name) * 2 + 60);
562
563 __gnat_decode (coded_name, ada_name, 0);
564
565 if (verbosity == 2 && !DECL_IS_BUILTIN (decl))
566 {
567 Set_Identifier_Casing (ada_name, DECL_SOURCE_FILE (decl));
568 return ggc_strdup (Name_Buffer);
569 }
570
571 return ada_name;
572 }
573
574 /* Return the name to be used in DWARF debug info for DECL. */
575
576 static const char *
gnat_dwarf_name(tree decl,int verbosity ATTRIBUTE_UNUSED)577 gnat_dwarf_name (tree decl, int verbosity ATTRIBUTE_UNUSED)
578 {
579 gcc_assert (DECL_P (decl));
580 return (const char *) IDENTIFIER_POINTER (DECL_NAME (decl));
581 }
582
583 /* Return the descriptive type associated with TYPE, if any. */
584
585 static tree
gnat_descriptive_type(const_tree type)586 gnat_descriptive_type (const_tree type)
587 {
588 if (TYPE_STUB_DECL (type))
589 return DECL_PARALLEL_TYPE (TYPE_STUB_DECL (type));
590 else
591 return NULL_TREE;
592 }
593
594 /* Return the underlying base type of an enumeration type. */
595
596 static tree
gnat_enum_underlying_base_type(const_tree)597 gnat_enum_underlying_base_type (const_tree)
598 {
599 /* Enumeration types are base types in Ada. */
600 return void_type_node;
601 }
602
603 /* Return the type to be used for debugging information instead of TYPE or
604 NULL_TREE if TYPE is fine. */
605
606 static tree
gnat_get_debug_type(const_tree type)607 gnat_get_debug_type (const_tree type)
608 {
609 if (TYPE_CAN_HAVE_DEBUG_TYPE_P (type) && TYPE_DEBUG_TYPE (type))
610 {
611 type = TYPE_DEBUG_TYPE (type);
612
613 /* ??? The get_debug_type language hook is processed after the array
614 descriptor language hook, so if there is an array behind this type,
615 the latter is supposed to handle it. Still, we can get here with
616 a type we are not supposed to handle (e.g. when the DWARF back-end
617 processes the type of a variable), so keep this guard. */
618 if (type && TYPE_CAN_HAVE_DEBUG_TYPE_P (type))
619 return const_cast<tree> (type);
620 }
621
622 return NULL_TREE;
623 }
624
625 /* Provide information in INFO for debugging output about the TYPE fixed-point
626 type. Return whether TYPE is handled. */
627
628 static bool
gnat_get_fixed_point_type_info(const_tree type,struct fixed_point_type_info * info)629 gnat_get_fixed_point_type_info (const_tree type,
630 struct fixed_point_type_info *info)
631 {
632 tree scale_factor;
633
634 /* GDB cannot handle fixed-point types yet, so rely on GNAT encodings
635 instead for it. */
636 if (!TYPE_IS_FIXED_POINT_P (type)
637 || gnat_encodings != DWARF_GNAT_ENCODINGS_MINIMAL)
638 return false;
639
640 scale_factor = TYPE_SCALE_FACTOR (type);
641
642 /* We expect here only a finite set of pattern. See fixed-point types
643 handling in gnat_to_gnu_entity. */
644
645 /* Put invalid values when compiler internals cannot represent the scale
646 factor. */
647 if (scale_factor == integer_zero_node)
648 {
649 info->scale_factor_kind = fixed_point_scale_factor_arbitrary;
650 info->scale_factor.arbitrary.numerator = 0;
651 info->scale_factor.arbitrary.denominator = 0;
652 return true;
653 }
654
655 if (TREE_CODE (scale_factor) == RDIV_EXPR)
656 {
657 const tree num = TREE_OPERAND (scale_factor, 0);
658 const tree den = TREE_OPERAND (scale_factor, 1);
659
660 /* See if we have a binary or decimal scale. */
661 if (TREE_CODE (den) == POWER_EXPR)
662 {
663 const tree base = TREE_OPERAND (den, 0);
664 const tree exponent = TREE_OPERAND (den, 1);
665
666 /* We expect the scale factor to be 1 / 2 ** N or 1 / 10 ** N. */
667 gcc_assert (num == integer_one_node
668 && TREE_CODE (base) == INTEGER_CST
669 && TREE_CODE (exponent) == INTEGER_CST);
670
671 switch (tree_to_shwi (base))
672 {
673 case 2:
674 info->scale_factor_kind = fixed_point_scale_factor_binary;
675 info->scale_factor.binary = -tree_to_shwi (exponent);
676 return true;
677
678 case 10:
679 info->scale_factor_kind = fixed_point_scale_factor_decimal;
680 info->scale_factor.decimal = -tree_to_shwi (exponent);
681 return true;
682
683 default:
684 gcc_unreachable ();
685 }
686 }
687
688 /* If we reach this point, we are handling an arbitrary scale factor. We
689 expect N / D with constant operands. */
690 gcc_assert (TREE_CODE (num) == INTEGER_CST
691 && TREE_CODE (den) == INTEGER_CST);
692
693 info->scale_factor_kind = fixed_point_scale_factor_arbitrary;
694 info->scale_factor.arbitrary.numerator = tree_to_uhwi (num);
695 info->scale_factor.arbitrary.denominator = tree_to_shwi (den);
696 return true;
697 }
698
699 gcc_unreachable ();
700 }
701
702 /* Return true if types T1 and T2 are identical for type hashing purposes.
703 Called only after doing all language independent checks. At present,
704 this is only called when both types are FUNCTION_TYPE or METHOD_TYPE. */
705
706 static bool
gnat_type_hash_eq(const_tree t1,const_tree t2)707 gnat_type_hash_eq (const_tree t1, const_tree t2)
708 {
709 gcc_assert (FUNC_OR_METHOD_TYPE_P (t1) && TREE_CODE (t1) == TREE_CODE (t2));
710 return fntype_same_flags_p (t1, TYPE_CI_CO_LIST (t2),
711 TYPE_RETURN_UNCONSTRAINED_P (t2),
712 TYPE_RETURN_BY_DIRECT_REF_P (t2),
713 TREE_ADDRESSABLE (t2));
714 }
715
716 /* Do nothing (return the tree node passed). */
717
718 static tree
gnat_return_tree(tree t)719 gnat_return_tree (tree t)
720 {
721 return t;
722 }
723
724 /* Get the alias set corresponding to a type or expression. */
725
726 static alias_set_type
gnat_get_alias_set(tree type)727 gnat_get_alias_set (tree type)
728 {
729 /* If this is a padding type, use the type of the first field. */
730 if (TYPE_IS_PADDING_P (type))
731 return get_alias_set (TREE_TYPE (TYPE_FIELDS (type)));
732
733 /* If this is an extra subtype, use the base type. */
734 else if (TYPE_IS_EXTRA_SUBTYPE_P (type))
735 return get_alias_set (get_base_type (type));
736
737 /* If the type is an unconstrained array, use the type of the
738 self-referential array we make. */
739 else if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
740 return
741 get_alias_set (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type)))));
742
743 /* If the type can alias any other types, return the alias set 0. */
744 else if (TYPE_P (type)
745 && !TYPE_IS_DUMMY_P (type)
746 && TYPE_UNIVERSAL_ALIASING_P (type))
747 return 0;
748
749 return -1;
750 }
751
752 /* GNU_TYPE is a type. Return its maximum size in bytes, if known,
753 as a constant when possible. */
754
755 static tree
gnat_type_max_size(const_tree gnu_type)756 gnat_type_max_size (const_tree gnu_type)
757 {
758 /* First see what we can get from TYPE_SIZE_UNIT, which might not
759 be constant even for simple expressions if it has already been
760 elaborated and possibly replaced by a VAR_DECL. */
761 tree max_size_unit = max_size (TYPE_SIZE_UNIT (gnu_type), true);
762
763 /* If we don't have a constant, see what we can get from TYPE_ADA_SIZE,
764 which should stay untouched. */
765 if (!tree_fits_uhwi_p (max_size_unit)
766 && RECORD_OR_UNION_TYPE_P (gnu_type)
767 && !TYPE_FAT_POINTER_P (gnu_type)
768 && TYPE_ADA_SIZE (gnu_type))
769 {
770 tree max_ada_size = max_size (TYPE_ADA_SIZE (gnu_type), true);
771
772 /* If we have succeeded in finding a constant, round it up to the
773 type's alignment and return the result in units. */
774 if (tree_fits_uhwi_p (max_ada_size))
775 max_size_unit
776 = size_binop (CEIL_DIV_EXPR,
777 round_up (max_ada_size, TYPE_ALIGN (gnu_type)),
778 bitsize_unit_node);
779 }
780
781 return max_size_unit;
782 }
783
784 static tree get_array_bit_stride (tree);
785
786 /* Provide information in INFO for debug output about the TYPE array type.
787 Return whether TYPE is handled. */
788
789 static bool
gnat_get_array_descr_info(const_tree const_type,struct array_descr_info * info)790 gnat_get_array_descr_info (const_tree const_type,
791 struct array_descr_info *info)
792 {
793 bool convention_fortran_p;
794 bool is_array = false;
795 bool is_fat_ptr = false;
796 bool is_packed_array = false;
797 tree type = const_cast<tree> (const_type);
798 const_tree first_dimen = NULL_TREE;
799 const_tree last_dimen = NULL_TREE;
800 const_tree dimen;
801 int i;
802
803 /* Temporaries created in the first pass and used in the second one for thin
804 pointers. The first one is an expression that yields the template record
805 from the base address (i.e. the PLACEHOLDER_EXPR). The second one is just
806 a cursor through this record's fields. */
807 tree thinptr_template_expr = NULL_TREE;
808 tree thinptr_bound_field = NULL_TREE;
809
810 /* ??? See gnat_get_debug_type. */
811 type = maybe_debug_type (type);
812
813 /* If we have an implementation type for a packed array, get the orignial
814 array type. */
815 if (TYPE_IMPL_PACKED_ARRAY_P (type) && TYPE_ORIGINAL_PACKED_ARRAY (type))
816 {
817 type = TYPE_ORIGINAL_PACKED_ARRAY (type);
818 is_packed_array = true;
819 }
820
821 /* First pass: gather all information about this array except everything
822 related to dimensions. */
823
824 /* Only handle ARRAY_TYPE nodes that come from GNAT. */
825 if (TREE_CODE (type) == ARRAY_TYPE
826 && TYPE_DOMAIN (type)
827 && TYPE_INDEX_TYPE (TYPE_DOMAIN (type)))
828 {
829 is_array = true;
830 first_dimen = type;
831 info->data_location = NULL_TREE;
832 }
833
834 else if (TYPE_IS_FAT_POINTER_P (type)
835 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
836 {
837 const tree ua_type = TYPE_UNCONSTRAINED_ARRAY (type);
838
839 /* This will be our base object address. */
840 const tree placeholder_expr = build0 (PLACEHOLDER_EXPR, type);
841
842 /* We assume below that maybe_unconstrained_array returns an INDIRECT_REF
843 node. */
844 const tree ua_val
845 = maybe_unconstrained_array (build_unary_op (INDIRECT_REF,
846 ua_type,
847 placeholder_expr));
848
849 is_fat_ptr = true;
850 first_dimen = TREE_TYPE (ua_val);
851
852 /* Get the *address* of the array, not the array itself. */
853 info->data_location = TREE_OPERAND (ua_val, 0);
854 }
855
856 /* Unlike fat pointers (which appear for unconstrained arrays passed in
857 argument), thin pointers are used only for array access types, so we want
858 them to appear in the debug info as pointers to an array type. That's why
859 we match only the RECORD_TYPE here instead of the POINTER_TYPE with the
860 TYPE_IS_THIN_POINTER_P predicate. */
861 else if (TREE_CODE (type) == RECORD_TYPE
862 && TYPE_CONTAINS_TEMPLATE_P (type)
863 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
864 {
865 /* This will be our base object address. Note that we assume that
866 pointers to these will actually point to the array field (thin
867 pointers are shifted). */
868 const tree placeholder_expr = build0 (PLACEHOLDER_EXPR, type);
869 const tree placeholder_addr
870 = build_unary_op (ADDR_EXPR, NULL_TREE, placeholder_expr);
871
872 const tree bounds_field = TYPE_FIELDS (type);
873 const tree bounds_type = TREE_TYPE (bounds_field);
874 const tree array_field = DECL_CHAIN (bounds_field);
875 const tree array_type = TREE_TYPE (array_field);
876
877 /* Shift the thin pointer address to get the address of the template. */
878 const tree shift_amount
879 = fold_build1 (NEGATE_EXPR, sizetype, byte_position (array_field));
880 tree template_addr
881 = build_binary_op (POINTER_PLUS_EXPR, TREE_TYPE (placeholder_addr),
882 placeholder_addr, shift_amount);
883 template_addr
884 = fold_convert (TYPE_POINTER_TO (bounds_type), template_addr);
885
886 first_dimen = array_type;
887
888 /* The thin pointer is already the pointer to the array data, so there's
889 no need for a specific "data location" expression. */
890 info->data_location = NULL_TREE;
891
892 thinptr_template_expr = build_unary_op (INDIRECT_REF,
893 bounds_type,
894 template_addr);
895 thinptr_bound_field = TYPE_FIELDS (bounds_type);
896 }
897 else
898 return false;
899
900 /* Second pass: compute the remaining information: dimensions and
901 corresponding bounds. */
902
903 if (TYPE_PACKED (first_dimen))
904 is_packed_array = true;
905 /* If this array has fortran convention, it's arranged in column-major
906 order, so our view here has reversed dimensions. */
907 convention_fortran_p = TYPE_CONVENTION_FORTRAN_P (first_dimen);
908 /* ??? For row major ordering, we probably want to emit nothing and
909 instead specify it as the default in Dw_TAG_compile_unit. */
910 info->ordering = (convention_fortran_p
911 ? array_descr_ordering_column_major
912 : array_descr_ordering_row_major);
913
914 /* Count how many dimensions this array has. */
915 for (i = 0, dimen = first_dimen; ; ++i, dimen = TREE_TYPE (dimen))
916 {
917 if (i > 0
918 && (TREE_CODE (dimen) != ARRAY_TYPE
919 || !TYPE_MULTI_ARRAY_P (dimen)))
920 break;
921 last_dimen = dimen;
922 }
923
924 info->ndimensions = i;
925 info->rank = NULL_TREE;
926
927 /* Too many dimensions? Give up generating proper description: yield instead
928 nested arrays. Note that in this case, this hook is invoked once on each
929 intermediate array type: be consistent and output nested arrays for all
930 dimensions. */
931 if (info->ndimensions > DWARF2OUT_ARRAY_DESCR_INFO_MAX_DIMEN
932 || TYPE_MULTI_ARRAY_P (first_dimen))
933 {
934 info->ndimensions = 1;
935 last_dimen = first_dimen;
936 }
937
938 info->element_type = TREE_TYPE (last_dimen);
939
940 /* Now iterate over all dimensions in source-order and fill the info
941 structure. */
942 for (i = (convention_fortran_p ? info->ndimensions - 1 : 0),
943 dimen = first_dimen;
944 IN_RANGE (i, 0, info->ndimensions - 1);
945 i += (convention_fortran_p ? -1 : 1),
946 dimen = TREE_TYPE (dimen))
947 {
948 /* We are interested in the stored bounds for the debug info. */
949 tree index_type = TYPE_INDEX_TYPE (TYPE_DOMAIN (dimen));
950
951 if (is_array || is_fat_ptr)
952 {
953 /* GDB does not handle very well the self-referencial bound
954 expressions we are able to generate here for XUA types (they are
955 used only by XUP encodings) so avoid them in this case. Note that
956 there are two cases where we generate self-referencial bound
957 expressions: arrays that are constrained by record discriminants
958 and XUA types. */
959 if (TYPE_CONTEXT (first_dimen)
960 && TREE_CODE (TYPE_CONTEXT (first_dimen)) != RECORD_TYPE
961 && CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (index_type))
962 && gnat_encodings != DWARF_GNAT_ENCODINGS_MINIMAL)
963 {
964 info->dimen[i].lower_bound = NULL_TREE;
965 info->dimen[i].upper_bound = NULL_TREE;
966 }
967 else
968 {
969 info->dimen[i].lower_bound
970 = maybe_character_value (TYPE_MIN_VALUE (index_type));
971 info->dimen[i].upper_bound
972 = maybe_character_value (TYPE_MAX_VALUE (index_type));
973 }
974 }
975
976 /* This is a thin pointer. */
977 else
978 {
979 info->dimen[i].lower_bound
980 = build_component_ref (thinptr_template_expr, thinptr_bound_field,
981 false);
982 thinptr_bound_field = DECL_CHAIN (thinptr_bound_field);
983
984 info->dimen[i].upper_bound
985 = build_component_ref (thinptr_template_expr, thinptr_bound_field,
986 false);
987 thinptr_bound_field = DECL_CHAIN (thinptr_bound_field);
988 }
989
990 /* The DWARF back-end will output BOUNDS_TYPE as the base type of
991 the array index, so get to the base type of INDEX_TYPE. */
992 while (TREE_TYPE (index_type))
993 index_type = TREE_TYPE (index_type);
994
995 info->dimen[i].bounds_type = maybe_debug_type (index_type);
996 info->dimen[i].stride = NULL_TREE;
997 }
998
999 /* These are Fortran-specific fields. They make no sense here. */
1000 info->allocated = NULL_TREE;
1001 info->associated = NULL_TREE;
1002
1003 if (gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
1004 {
1005 /* When arrays contain dynamically-sized elements, we usually wrap them
1006 in padding types, or we create constrained types for them. Then, if
1007 such types are stripped in the debugging information output, the
1008 debugger needs a way to know the size that is reserved for each
1009 element. This is why we emit a stride in such situations. */
1010 tree source_element_type = info->element_type;
1011
1012 while (true)
1013 {
1014 if (TYPE_DEBUG_TYPE (source_element_type))
1015 source_element_type = TYPE_DEBUG_TYPE (source_element_type);
1016 else if (TYPE_IS_PADDING_P (source_element_type))
1017 source_element_type
1018 = TREE_TYPE (TYPE_FIELDS (source_element_type));
1019 else
1020 break;
1021 }
1022
1023 if (TREE_CODE (TYPE_SIZE_UNIT (source_element_type)) != INTEGER_CST)
1024 {
1025 info->stride = TYPE_SIZE_UNIT (info->element_type);
1026 info->stride_in_bits = false;
1027 }
1028
1029 /* We need to specify a bit stride when it does not correspond to the
1030 natural size of the contained elements. ??? Note that we do not
1031 support packed records and nested packed arrays. */
1032 else if (is_packed_array)
1033 {
1034 info->stride = get_array_bit_stride (info->element_type);
1035 info->stride_in_bits = true;
1036 }
1037 }
1038
1039 return true;
1040 }
1041
1042 /* Given the component type COMP_TYPE of a packed array, return an expression
1043 that computes the bit stride of this packed array. Return NULL_TREE when
1044 unsuccessful. */
1045
1046 static tree
get_array_bit_stride(tree comp_type)1047 get_array_bit_stride (tree comp_type)
1048 {
1049 struct array_descr_info info;
1050 tree stride;
1051
1052 /* Simple case: the array contains an integral type: return its RM size. */
1053 if (INTEGRAL_TYPE_P (comp_type))
1054 return TYPE_RM_SIZE (comp_type);
1055
1056 /* Otherwise, see if this is an array we can analyze; if it's not, punt. */
1057 memset (&info, 0, sizeof (info));
1058 if (!gnat_get_array_descr_info (comp_type, &info) || !info.stride)
1059 return NULL_TREE;
1060
1061 /* Otherwise, the array stride is the inner array's stride multiplied by the
1062 number of elements it contains. Note that if the inner array is not
1063 packed, then the stride is "natural" and thus does not deserve an
1064 attribute. */
1065 stride = info.stride;
1066 if (!info.stride_in_bits)
1067 {
1068 stride = fold_convert (bitsizetype, stride);
1069 stride = build_binary_op (MULT_EXPR, bitsizetype,
1070 stride, build_int_cst (bitsizetype, 8));
1071 }
1072
1073 for (int i = 0; i < info.ndimensions; ++i)
1074 {
1075 tree count;
1076
1077 if (!info.dimen[i].lower_bound || !info.dimen[i].upper_bound)
1078 return NULL_TREE;
1079
1080 /* Put in count an expression that computes the length of this
1081 dimension. */
1082 count = build_binary_op (MINUS_EXPR, sbitsizetype,
1083 fold_convert (sbitsizetype,
1084 info.dimen[i].upper_bound),
1085 fold_convert (sbitsizetype,
1086 info.dimen[i].lower_bound)),
1087 count = build_binary_op (PLUS_EXPR, sbitsizetype,
1088 count, build_int_cst (sbitsizetype, 1));
1089 count = build_binary_op (MAX_EXPR, sbitsizetype,
1090 count,
1091 build_int_cst (sbitsizetype, 0));
1092 count = fold_convert (bitsizetype, count);
1093 stride = build_binary_op (MULT_EXPR, bitsizetype, stride, count);
1094 }
1095
1096 return stride;
1097 }
1098
1099 /* GNU_TYPE is a subtype of an integral type. Set LOWVAL to the low bound
1100 and HIGHVAL to the high bound, respectively. */
1101
1102 static void
gnat_get_subrange_bounds(const_tree gnu_type,tree * lowval,tree * highval)1103 gnat_get_subrange_bounds (const_tree gnu_type, tree *lowval, tree *highval)
1104 {
1105 *lowval = TYPE_MIN_VALUE (gnu_type);
1106 *highval = TYPE_MAX_VALUE (gnu_type);
1107 }
1108
1109 /* Return the bias of GNU_TYPE, if any. */
1110
1111 static tree
gnat_get_type_bias(const_tree gnu_type)1112 gnat_get_type_bias (const_tree gnu_type)
1113 {
1114 if (TREE_CODE (gnu_type) == INTEGER_TYPE
1115 && TYPE_BIASED_REPRESENTATION_P (gnu_type)
1116 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
1117 return TYPE_RM_MIN_VALUE (gnu_type);
1118
1119 return NULL_TREE;
1120 }
1121
1122 /* GNU_TYPE is the type of a subprogram parameter. Determine if it should be
1123 passed by reference by default. */
1124
1125 bool
default_pass_by_ref(tree gnu_type)1126 default_pass_by_ref (tree gnu_type)
1127 {
1128 /* We pass aggregates by reference if they are sufficiently large for
1129 their alignment. The ratio is somewhat arbitrary. We also pass by
1130 reference if the target machine would either pass or return by
1131 reference. Strictly speaking, we need only check the return if this
1132 is an In Out parameter, but it's probably best to err on the side of
1133 passing more things by reference. */
1134
1135 if (AGGREGATE_TYPE_P (gnu_type)
1136 && (!valid_constant_size_p (TYPE_SIZE_UNIT (gnu_type))
1137 || compare_tree_int (TYPE_SIZE_UNIT (gnu_type),
1138 TYPE_ALIGN (gnu_type)) > 0))
1139 return true;
1140
1141 if (pass_by_reference (NULL, TYPE_MODE (gnu_type), gnu_type, true))
1142 return true;
1143
1144 if (targetm.calls.return_in_memory (gnu_type, NULL_TREE))
1145 return true;
1146
1147 return false;
1148 }
1149
1150 /* GNU_TYPE is the type of a subprogram parameter. Determine if it must be
1151 passed by reference. */
1152
1153 bool
must_pass_by_ref(tree gnu_type)1154 must_pass_by_ref (tree gnu_type)
1155 {
1156 /* We pass only unconstrained objects, those required by the language
1157 to be passed by reference, and objects of variable size. The latter
1158 is more efficient, avoids problems with variable size temporaries,
1159 and does not produce compatibility problems with C, since C does
1160 not have such objects. */
1161 return (TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE
1162 || TYPE_IS_BY_REFERENCE_P (gnu_type)
1163 || (TYPE_SIZE_UNIT (gnu_type)
1164 && TREE_CODE (TYPE_SIZE_UNIT (gnu_type)) != INTEGER_CST));
1165 }
1166
1167 /* This function is called by the front-end to enumerate all the supported
1168 modes for the machine, as well as some predefined C types. F is a function
1169 which is called back with the parameters as listed below, first a string,
1170 then seven ints. The name is any arbitrary null-terminated string and has
1171 no particular significance, except for the case of predefined C types, where
1172 it should be the name of the C type. For integer types, only signed types
1173 should be listed, unsigned versions are assumed. The order of types should
1174 be in order of preference, with the smallest/cheapest types first.
1175
1176 In particular, C predefined types should be listed before other types,
1177 binary floating point types before decimal ones, and narrower/cheaper
1178 type versions before more expensive ones. In type selection the first
1179 matching variant will be used.
1180
1181 NAME pointer to first char of type name
1182 DIGS number of decimal digits for floating-point modes, else 0
1183 COMPLEX_P nonzero is this represents a complex mode
1184 COUNT count of number of items, nonzero for vector mode
1185 FLOAT_REP Float_Rep_Kind for FP, otherwise undefined
1186 PRECISION number of bits used to store data
1187 SIZE number of bits occupied by the mode
1188 ALIGN number of bits to which mode is aligned. */
1189
1190 void
enumerate_modes(void (* f)(const char *,int,int,int,int,int,int,int))1191 enumerate_modes (void (*f) (const char *, int, int, int, int, int, int, int))
1192 {
1193 const tree c_types[]
1194 = { float_type_node, double_type_node, long_double_type_node };
1195 const char *const c_names[]
1196 = { "float", "double", "long double" };
1197 int iloop;
1198
1199 /* We are going to compute it below. */
1200 fp_arith_may_widen = false;
1201
1202 for (iloop = 0; iloop < NUM_MACHINE_MODES; iloop++)
1203 {
1204 machine_mode i = (machine_mode) iloop;
1205 machine_mode inner_mode = i;
1206 bool float_p = false;
1207 bool complex_p = false;
1208 bool vector_p = false;
1209 bool skip_p = false;
1210 int digs = 0;
1211 unsigned int nameloop;
1212 Float_Rep_Kind float_rep = IEEE_Binary; /* Until proven otherwise */
1213
1214 switch (GET_MODE_CLASS (i))
1215 {
1216 case MODE_INT:
1217 break;
1218 case MODE_FLOAT:
1219 float_p = true;
1220 break;
1221 case MODE_COMPLEX_INT:
1222 complex_p = true;
1223 inner_mode = GET_MODE_INNER (i);
1224 break;
1225 case MODE_COMPLEX_FLOAT:
1226 float_p = true;
1227 complex_p = true;
1228 inner_mode = GET_MODE_INNER (i);
1229 break;
1230 case MODE_VECTOR_INT:
1231 vector_p = true;
1232 inner_mode = GET_MODE_INNER (i);
1233 break;
1234 case MODE_VECTOR_FLOAT:
1235 float_p = true;
1236 vector_p = true;
1237 inner_mode = GET_MODE_INNER (i);
1238 break;
1239 default:
1240 skip_p = true;
1241 }
1242
1243 if (float_p)
1244 {
1245 const struct real_format *fmt = REAL_MODE_FORMAT (inner_mode);
1246
1247 /* ??? Cope with the ghost XFmode of the ARM port. */
1248 if (!fmt)
1249 continue;
1250
1251 /* Be conservative and consider that floating-point arithmetics may
1252 use wider intermediate results as soon as there is an extended
1253 Motorola or Intel mode supported by the machine. */
1254 if (fmt == &ieee_extended_motorola_format
1255 || fmt == &ieee_extended_intel_96_format
1256 || fmt == &ieee_extended_intel_96_round_53_format
1257 || fmt == &ieee_extended_intel_128_format)
1258 {
1259 #ifdef TARGET_FPMATH_DEFAULT
1260 if (TARGET_FPMATH_DEFAULT == FPMATH_387)
1261 #endif
1262 fp_arith_may_widen = true;
1263 }
1264
1265 if (fmt->b == 2)
1266 digs = (fmt->p - 1) * 1233 / 4096; /* scale by log (2) */
1267
1268 else if (fmt->b == 10)
1269 digs = fmt->p;
1270
1271 else
1272 gcc_unreachable ();
1273 }
1274
1275 /* First register any C types for this mode that the front end
1276 may need to know about, unless the mode should be skipped. */
1277 if (!skip_p && !vector_p)
1278 for (nameloop = 0; nameloop < ARRAY_SIZE (c_types); nameloop++)
1279 {
1280 tree type = c_types[nameloop];
1281 const char *name = c_names[nameloop];
1282
1283 if (TYPE_MODE (type) == i)
1284 {
1285 f (name, digs, complex_p, 0, float_rep, TYPE_PRECISION (type),
1286 TREE_INT_CST_LOW (TYPE_SIZE (type)), TYPE_ALIGN (type));
1287 skip_p = true;
1288 }
1289 }
1290
1291 /* If no predefined C types were found, register the mode itself. */
1292 int nunits, precision, bitsize;
1293 if (!skip_p
1294 && GET_MODE_NUNITS (i).is_constant (&nunits)
1295 && GET_MODE_PRECISION (i).is_constant (&precision)
1296 && GET_MODE_BITSIZE (i).is_constant (&bitsize))
1297 f (GET_MODE_NAME (i), digs, complex_p,
1298 vector_p ? nunits : 0, float_rep,
1299 precision, bitsize, GET_MODE_ALIGNMENT (i));
1300 }
1301 }
1302
1303 /* Return the size of the FP mode with precision PREC. */
1304
1305 int
fp_prec_to_size(int prec)1306 fp_prec_to_size (int prec)
1307 {
1308 opt_scalar_float_mode opt_mode;
1309
1310 FOR_EACH_MODE_IN_CLASS (opt_mode, MODE_FLOAT)
1311 {
1312 scalar_float_mode mode = opt_mode.require ();
1313 if (GET_MODE_PRECISION (mode) == prec)
1314 return GET_MODE_BITSIZE (mode);
1315 }
1316
1317 gcc_unreachable ();
1318 }
1319
1320 /* Return the precision of the FP mode with size SIZE. */
1321
1322 int
fp_size_to_prec(int size)1323 fp_size_to_prec (int size)
1324 {
1325 opt_scalar_float_mode opt_mode;
1326
1327 FOR_EACH_MODE_IN_CLASS (opt_mode, MODE_FLOAT)
1328 {
1329 scalar_mode mode = opt_mode.require ();
1330 if (GET_MODE_BITSIZE (mode) == size)
1331 return GET_MODE_PRECISION (mode);
1332 }
1333
1334 gcc_unreachable ();
1335 }
1336
1337 static GTY(()) tree gnat_eh_personality_decl;
1338
1339 /* Return the GNAT personality function decl. */
1340
1341 static tree
gnat_eh_personality(void)1342 gnat_eh_personality (void)
1343 {
1344 if (!gnat_eh_personality_decl)
1345 gnat_eh_personality_decl = build_personality_function ("gnat");
1346 return gnat_eh_personality_decl;
1347 }
1348
1349 /* Initialize language-specific bits of tree_contains_struct. */
1350
1351 static void
gnat_init_ts(void)1352 gnat_init_ts (void)
1353 {
1354 MARK_TS_COMMON (UNCONSTRAINED_ARRAY_TYPE);
1355
1356 MARK_TS_TYPED (UNCONSTRAINED_ARRAY_REF);
1357 MARK_TS_TYPED (NULL_EXPR);
1358 MARK_TS_TYPED (PLUS_NOMOD_EXPR);
1359 MARK_TS_TYPED (MINUS_NOMOD_EXPR);
1360 MARK_TS_TYPED (POWER_EXPR);
1361 MARK_TS_TYPED (ATTR_ADDR_EXPR);
1362 MARK_TS_TYPED (STMT_STMT);
1363 MARK_TS_TYPED (LOOP_STMT);
1364 MARK_TS_TYPED (EXIT_STMT);
1365 }
1366
1367 /* Return the size of a tree with CODE, which is a language-specific tree code
1368 in category tcc_constant, tcc_exceptional or tcc_type. The default expects
1369 never to be called. */
1370
1371 static size_t
gnat_tree_size(enum tree_code code)1372 gnat_tree_size (enum tree_code code)
1373 {
1374 gcc_checking_assert (code >= NUM_TREE_CODES);
1375 switch (code)
1376 {
1377 case UNCONSTRAINED_ARRAY_TYPE:
1378 return sizeof (tree_type_non_common);
1379 default:
1380 gcc_unreachable ();
1381 }
1382 }
1383
1384 /* Return the lang specific structure attached to NODE. Allocate it (cleared)
1385 if needed. */
1386
1387 struct lang_type *
get_lang_specific(tree node)1388 get_lang_specific (tree node)
1389 {
1390 if (!TYPE_LANG_SPECIFIC (node))
1391 TYPE_LANG_SPECIFIC (node) = ggc_cleared_alloc<struct lang_type> ();
1392 return TYPE_LANG_SPECIFIC (node);
1393 }
1394
1395 /* Definitions for our language-specific hooks. */
1396
1397 #undef LANG_HOOKS_NAME
1398 #define LANG_HOOKS_NAME "GNU Ada"
1399 #undef LANG_HOOKS_IDENTIFIER_SIZE
1400 #define LANG_HOOKS_IDENTIFIER_SIZE sizeof (struct tree_identifier)
1401 #undef LANG_HOOKS_TREE_SIZE
1402 #define LANG_HOOKS_TREE_SIZE gnat_tree_size
1403 #undef LANG_HOOKS_INIT
1404 #define LANG_HOOKS_INIT gnat_init
1405 #undef LANG_HOOKS_OPTION_LANG_MASK
1406 #define LANG_HOOKS_OPTION_LANG_MASK gnat_option_lang_mask
1407 #undef LANG_HOOKS_INIT_OPTIONS_STRUCT
1408 #define LANG_HOOKS_INIT_OPTIONS_STRUCT gnat_init_options_struct
1409 #undef LANG_HOOKS_INIT_OPTIONS
1410 #define LANG_HOOKS_INIT_OPTIONS gnat_init_options
1411 #undef LANG_HOOKS_HANDLE_OPTION
1412 #define LANG_HOOKS_HANDLE_OPTION gnat_handle_option
1413 #undef LANG_HOOKS_POST_OPTIONS
1414 #define LANG_HOOKS_POST_OPTIONS gnat_post_options
1415 #undef LANG_HOOKS_PARSE_FILE
1416 #define LANG_HOOKS_PARSE_FILE gnat_parse_file
1417 #undef LANG_HOOKS_TYPE_HASH_EQ
1418 #define LANG_HOOKS_TYPE_HASH_EQ gnat_type_hash_eq
1419 #undef LANG_HOOKS_GETDECLS
1420 #define LANG_HOOKS_GETDECLS hook_tree_void_null
1421 #undef LANG_HOOKS_PUSHDECL
1422 #define LANG_HOOKS_PUSHDECL gnat_return_tree
1423 #undef LANG_HOOKS_WARN_UNUSED_GLOBAL_DECL
1424 #define LANG_HOOKS_WARN_UNUSED_GLOBAL_DECL hook_bool_const_tree_false
1425 #undef LANG_HOOKS_GET_ALIAS_SET
1426 #define LANG_HOOKS_GET_ALIAS_SET gnat_get_alias_set
1427 #undef LANG_HOOKS_PRINT_DECL
1428 #define LANG_HOOKS_PRINT_DECL gnat_print_decl
1429 #undef LANG_HOOKS_PRINT_TYPE
1430 #define LANG_HOOKS_PRINT_TYPE gnat_print_type
1431 #undef LANG_HOOKS_TYPE_MAX_SIZE
1432 #define LANG_HOOKS_TYPE_MAX_SIZE gnat_type_max_size
1433 #undef LANG_HOOKS_DECL_PRINTABLE_NAME
1434 #define LANG_HOOKS_DECL_PRINTABLE_NAME gnat_printable_name
1435 #undef LANG_HOOKS_DWARF_NAME
1436 #define LANG_HOOKS_DWARF_NAME gnat_dwarf_name
1437 #undef LANG_HOOKS_GIMPLIFY_EXPR
1438 #define LANG_HOOKS_GIMPLIFY_EXPR gnat_gimplify_expr
1439 #undef LANG_HOOKS_TYPE_FOR_MODE
1440 #define LANG_HOOKS_TYPE_FOR_MODE gnat_type_for_mode
1441 #undef LANG_HOOKS_TYPE_FOR_SIZE
1442 #define LANG_HOOKS_TYPE_FOR_SIZE gnat_type_for_size
1443 #undef LANG_HOOKS_TYPES_COMPATIBLE_P
1444 #define LANG_HOOKS_TYPES_COMPATIBLE_P gnat_types_compatible_p
1445 #undef LANG_HOOKS_GET_ARRAY_DESCR_INFO
1446 #define LANG_HOOKS_GET_ARRAY_DESCR_INFO gnat_get_array_descr_info
1447 #undef LANG_HOOKS_GET_SUBRANGE_BOUNDS
1448 #define LANG_HOOKS_GET_SUBRANGE_BOUNDS gnat_get_subrange_bounds
1449 #undef LANG_HOOKS_GET_TYPE_BIAS
1450 #define LANG_HOOKS_GET_TYPE_BIAS gnat_get_type_bias
1451 #undef LANG_HOOKS_DESCRIPTIVE_TYPE
1452 #define LANG_HOOKS_DESCRIPTIVE_TYPE gnat_descriptive_type
1453 #undef LANG_HOOKS_ENUM_UNDERLYING_BASE_TYPE
1454 #define LANG_HOOKS_ENUM_UNDERLYING_BASE_TYPE gnat_enum_underlying_base_type
1455 #undef LANG_HOOKS_GET_DEBUG_TYPE
1456 #define LANG_HOOKS_GET_DEBUG_TYPE gnat_get_debug_type
1457 #undef LANG_HOOKS_GET_FIXED_POINT_TYPE_INFO
1458 #define LANG_HOOKS_GET_FIXED_POINT_TYPE_INFO gnat_get_fixed_point_type_info
1459 #undef LANG_HOOKS_ATTRIBUTE_TABLE
1460 #define LANG_HOOKS_ATTRIBUTE_TABLE gnat_internal_attribute_table
1461 #undef LANG_HOOKS_BUILTIN_FUNCTION
1462 #define LANG_HOOKS_BUILTIN_FUNCTION gnat_builtin_function
1463 #undef LANG_HOOKS_INIT_TS
1464 #define LANG_HOOKS_INIT_TS gnat_init_ts
1465 #undef LANG_HOOKS_EH_PERSONALITY
1466 #define LANG_HOOKS_EH_PERSONALITY gnat_eh_personality
1467 #undef LANG_HOOKS_DEEP_UNSHARING
1468 #define LANG_HOOKS_DEEP_UNSHARING true
1469 #undef LANG_HOOKS_CUSTOM_FUNCTION_DESCRIPTORS
1470 #define LANG_HOOKS_CUSTOM_FUNCTION_DESCRIPTORS true
1471
1472 struct lang_hooks lang_hooks = LANG_HOOKS_INITIALIZER;
1473
1474 #include "gt-ada-misc.h"
1475