1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2    Copyright (C) 1987-2019 Free Software Foundation, Inc.
3    Contributed by Michael Tiemann (tiemann@cygnus.com).
4    64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5    at Cygnus Support.
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13 
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 #include "config/vxworks-dummy.h"
24 
25 /* Note that some other tm.h files include this one and then override
26    whatever definitions are necessary.  */
27 
28 #define TARGET_CPU_CPP_BUILTINS() sparc_target_macros ()
29 
30 /* Target CPU versions for D.  */
31 #define TARGET_D_CPU_VERSIONS sparc_d_target_versions
32 
33 /* Specify this in a cover file to provide bi-architecture (32/64) support.  */
34 /* #define SPARC_BI_ARCH */
35 
36 /* Macro used later in this file to determine default architecture.  */
37 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
38 
39 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
40    architectures to compile for.  We allow targets to choose compile time or
41    runtime selection.  */
42 #ifdef IN_LIBGCC2
43 #if defined(__sparcv9) || defined(__arch64__)
44 #define TARGET_ARCH32 0
45 #else
46 #define TARGET_ARCH32 1
47 #endif /* sparc64 */
48 #else
49 #ifdef SPARC_BI_ARCH
50 #define TARGET_ARCH32 (!TARGET_64BIT)
51 #else
52 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
53 #endif /* SPARC_BI_ARCH */
54 #endif /* IN_LIBGCC2 */
55 #define TARGET_ARCH64 (!TARGET_ARCH32)
56 
57 /* Code model selection in 64-bit environment.
58 
59    The machine mode used for addresses is 32-bit wide:
60 
61    TARGET_CM_32:     32-bit address space.
62                      It is the code model used when generating 32-bit code.
63 
64    The machine mode used for addresses is 64-bit wide:
65 
66    TARGET_CM_MEDLOW: 32-bit address space.
67                      The executable must be in the low 32 bits of memory.
68                      This avoids generating %uhi and %ulo terms.  Programs
69                      can be statically or dynamically linked.
70 
71    TARGET_CM_MEDMID: 44-bit address space.
72                      The executable must be in the low 44 bits of memory,
73                      and the %[hml]44 terms are used.  The text and data
74                      segments have a maximum size of 2GB (31-bit span).
75                      The maximum offset from any instruction to the label
76                      _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
77 
78    TARGET_CM_MEDANY: 64-bit address space.
79                      The text and data segments have a maximum size of 2GB
80                      (31-bit span) and may be located anywhere in memory.
81                      The maximum offset from any instruction to the label
82                      _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
83 
84    TARGET_CM_EMBMEDANY: 64-bit address space.
85                      The text and data segments have a maximum size of 2GB
86                      (31-bit span) and may be located anywhere in memory.
87                      The global register %g4 contains the start address of
88                      the data segment.  Programs are statically linked and
89                      PIC is not supported.
90 
91    Different code models are not supported in 32-bit environment.  */
92 
93 #define TARGET_CM_MEDLOW    (sparc_code_model == CM_MEDLOW)
94 #define TARGET_CM_MEDMID    (sparc_code_model == CM_MEDMID)
95 #define TARGET_CM_MEDANY    (sparc_code_model == CM_MEDANY)
96 #define TARGET_CM_EMBMEDANY (sparc_code_model == CM_EMBMEDANY)
97 
98 /* Default code model to be overridden in 64-bit environment.  */
99 #define SPARC_DEFAULT_CMODEL CM_32
100 
101 /* Do not use the .note.GNU-stack convention by default.  */
102 #define NEED_INDICATE_EXEC_STACK 0
103 
104 /* This is call-clobbered in the normal ABI, but is reserved in the
105    home grown (aka upward compatible) embedded ABI.  */
106 #define EMBMEDANY_BASE_REG "%g4"
107 
108 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
109    and specified by the user via --with-cpu=foo.
110    This specifies the cpu implementation, not the architecture size.  */
111 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
112    capable cpu's.  */
113 #define TARGET_CPU_sparc	0
114 #define TARGET_CPU_v7		0	/* alias */
115 #define TARGET_CPU_cypress	0       /* alias */
116 #define TARGET_CPU_v8		1	/* generic v8 implementation */
117 #define TARGET_CPU_supersparc	2
118 #define TARGET_CPU_hypersparc	3
119 #define TARGET_CPU_leon		4
120 #define TARGET_CPU_leon3	5
121 #define TARGET_CPU_leon3v7	6
122 #define TARGET_CPU_sparclite	7
123 #define TARGET_CPU_f930		7       /* alias */
124 #define TARGET_CPU_f934		7       /* alias */
125 #define TARGET_CPU_sparclite86x	8
126 #define TARGET_CPU_sparclet	9
127 #define TARGET_CPU_tsc701	9       /* alias */
128 #define TARGET_CPU_v9		10	/* generic v9 implementation */
129 #define TARGET_CPU_sparcv9	10	/* alias */
130 #define TARGET_CPU_sparc64	10	/* alias */
131 #define TARGET_CPU_ultrasparc	11
132 #define TARGET_CPU_ultrasparc3	12
133 #define TARGET_CPU_niagara	13
134 #define TARGET_CPU_niagara2	14
135 #define TARGET_CPU_niagara3	15
136 #define TARGET_CPU_niagara4	16
137 #define TARGET_CPU_niagara7	19
138 #define TARGET_CPU_m8		20
139 
140 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
141  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
142  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
143  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
144  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2 \
145  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara3 \
146  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara4 \
147  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara7 \
148  || TARGET_CPU_DEFAULT == TARGET_CPU_m8
149 
150 #define CPP_CPU32_DEFAULT_SPEC ""
151 #define ASM_CPU32_DEFAULT_SPEC ""
152 
153 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
154 /* ??? What does Sun's CC pass?  */
155 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
156 /* ??? It's not clear how other assemblers will handle this, so by default
157    use GAS.  Sun's Solaris assembler recognizes -xarch=v8plus, but this case
158    is handled in sol2.h.  */
159 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
160 #endif
161 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
162 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
163 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
164 #endif
165 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
166 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
167 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
168 #endif
169 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
170 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
171 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
172 #endif
173 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
174 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
175 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
176 #endif
177 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara3
178 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
179 #define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
180 #endif
181 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
182 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
183 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA4_FLAG
184 #endif
185 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara7
186 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
187 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA7_FLAG
188 #endif
189 #if TARGET_CPU_DEFAULT == TARGET_CPU_m8
190 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
191 #define ASM_CPU64_DEFAULT_SPEC AS_M8_FLAG
192 #endif
193 
194 #else
195 
196 #define CPP_CPU64_DEFAULT_SPEC ""
197 #define ASM_CPU64_DEFAULT_SPEC ""
198 
199 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
200  || TARGET_CPU_DEFAULT == TARGET_CPU_v8
201 #define CPP_CPU32_DEFAULT_SPEC ""
202 #define ASM_CPU32_DEFAULT_SPEC ""
203 #endif
204 
205 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
206 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
207 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
208 #endif
209 
210 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
211 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
212 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
213 #endif
214 
215 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
216 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
217 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
218 #endif
219 
220 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
221 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
222 #define ASM_CPU32_DEFAULT_SPEC ""
223 #endif
224 
225 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
226 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
227 #define ASM_CPU32_DEFAULT_SPEC ""
228 #endif
229 
230 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon \
231  || TARGET_CPU_DEFAULT == TARGET_CPU_leon3
232 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__ -D__sparc_v8__"
233 #define ASM_CPU32_DEFAULT_SPEC AS_LEON_FLAG
234 #endif
235 
236 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon3v7
237 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__"
238 #define ASM_CPU32_DEFAULT_SPEC AS_LEONV7_FLAG
239 #endif
240 
241 #endif
242 
243 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
244  #error Unrecognized value in TARGET_CPU_DEFAULT.
245 #endif
246 
247 #ifdef SPARC_BI_ARCH
248 
249 #define CPP_CPU_DEFAULT_SPEC \
250 (DEFAULT_ARCH32_P ? "\
251 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
252 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
253 " : "\
254 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
255 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
256 ")
257 #define ASM_CPU_DEFAULT_SPEC \
258 (DEFAULT_ARCH32_P ? "\
259 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
260 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
261 " : "\
262 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
263 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
264 ")
265 
266 #else /* !SPARC_BI_ARCH */
267 
268 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
269 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
270 
271 #endif /* !SPARC_BI_ARCH */
272 
273 /* Define macros to distinguish architectures.  */
274 
275 /* Common CPP definitions used by CPP_SPEC amongst the various targets
276    for handling -mcpu=xxx switches.  */
277 #define CPP_CPU_SPEC "\
278 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
279 %{mcpu=sparclite:-D__sparclite__} \
280 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
281 %{mcpu=sparclite86x:-D__sparclite86x__} \
282 %{mcpu=v8:-D__sparc_v8__} \
283 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
284 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
285 %{mcpu=leon:-D__leon__ -D__sparc_v8__} \
286 %{mcpu=leon3:-D__leon__ -D__sparc_v8__} \
287 %{mcpu=leon3v7:-D__leon__} \
288 %{mcpu=v9:-D__sparc_v9__} \
289 %{mcpu=ultrasparc:-D__sparc_v9__} \
290 %{mcpu=ultrasparc3:-D__sparc_v9__} \
291 %{mcpu=niagara:-D__sparc_v9__} \
292 %{mcpu=niagara2:-D__sparc_v9__} \
293 %{mcpu=niagara3:-D__sparc_v9__} \
294 %{mcpu=niagara4:-D__sparc_v9__} \
295 %{mcpu=niagara7:-D__sparc_v9__} \
296 %{mcpu=m8:-D__sparc_v9__} \
297 %{!mcpu*:%(cpp_cpu_default)} \
298 "
299 #define CPP_ARCH32_SPEC ""
300 #define CPP_ARCH64_SPEC "-D__arch64__"
301 
302 #define CPP_ARCH_DEFAULT_SPEC \
303 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
304 
305 #define CPP_ARCH_SPEC "\
306 %{m32:%(cpp_arch32)} \
307 %{m64:%(cpp_arch64)} \
308 %{!m32:%{!m64:%(cpp_arch_default)}} \
309 "
310 
311 /* Macros to distinguish the endianness, window model and FP support.  */
312 #define CPP_OTHER_SPEC "\
313 %{mflat:-D_FLAT} \
314 %{msoft-float:-D_SOFT_FLOAT} \
315 "
316 
317 /* Macros to distinguish the particular subtarget.  */
318 #define CPP_SUBTARGET_SPEC ""
319 
320 #define CPP_SPEC \
321   "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_other) %(cpp_subtarget)"
322 
323 /* This used to translate -dalign to -malign, but that is no good
324    because it can't turn off the usual meaning of making debugging dumps.  */
325 
326 #define CC1_SPEC ""
327 
328 /* Override in target specific files.  */
329 #define ASM_CPU_SPEC "\
330 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
331 %{mcpu=sparclite:-Asparclite} \
332 %{mcpu=sparclite86x:-Asparclite} \
333 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
334 %{mcpu=v8:-Av8} \
335 %{mcpu=supersparc:-Av8} \
336 %{mcpu=hypersparc:-Av8} \
337 %{mcpu=leon:" AS_LEON_FLAG "} \
338 %{mcpu=leon3:" AS_LEON_FLAG "} \
339 %{mcpu=leon3v7:" AS_LEONV7_FLAG "} \
340 %{mv8plus:-Av8plus} \
341 %{mcpu=v9:-Av9} \
342 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
343 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
344 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
345 %{mcpu=niagara2:%{!mv8plus:-Av9b}} \
346 %{mcpu=niagara3:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
347 %{mcpu=niagara4:%{!mv8plus:" AS_NIAGARA4_FLAG "}} \
348 %{mcpu=niagara7:%{!mv8plus:" AS_NIAGARA7_FLAG "}} \
349 %{mcpu=m8:%{!mv8plus:" AS_M8_FLAG "}} \
350 %{!mcpu*:%(asm_cpu_default)} \
351 "
352 
353 /* Word size selection, among other things.
354    This is what GAS uses.  Add %(asm_arch) to ASM_SPEC to enable.  */
355 
356 #define ASM_ARCH32_SPEC "-32"
357 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
358 #define ASM_ARCH_DEFAULT_SPEC \
359 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
360 
361 #define ASM_ARCH_SPEC "\
362 %{m32:%(asm_arch32)} \
363 %{m64:%(asm_arch64)} \
364 %{!m32:%{!m64:%(asm_arch_default)}} \
365 "
366 
367 #ifdef HAVE_AS_RELAX_OPTION
368 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
369 #else
370 #define ASM_RELAX_SPEC ""
371 #endif
372 
373 /* Special flags to the Sun-4 assembler when using pipe for input.  */
374 
375 #define ASM_SPEC "\
376 %{!pg:%{!p:%{" FPIE_OR_FPIC_SPEC ":-k}}} %{keep-local-as-symbols:-L} \
377 %(asm_cpu) %(asm_relax)"
378 
379 /* This macro defines names of additional specifications to put in the specs
380    that can be used in various specifications like CC1_SPEC.  Its definition
381    is an initializer with a subgrouping for each command option.
382 
383    Each subgrouping contains a string constant, that defines the
384    specification name, and a string constant that used by the GCC driver
385    program.
386 
387    Do not define this macro if it does not need to do anything.  */
388 
389 #define EXTRA_SPECS \
390   { "cpp_cpu",		CPP_CPU_SPEC },		\
391   { "cpp_cpu_default",	CPP_CPU_DEFAULT_SPEC },	\
392   { "cpp_arch32",	CPP_ARCH32_SPEC },	\
393   { "cpp_arch64",	CPP_ARCH64_SPEC },	\
394   { "cpp_arch_default",	CPP_ARCH_DEFAULT_SPEC },\
395   { "cpp_arch",		CPP_ARCH_SPEC },	\
396   { "cpp_other",	CPP_OTHER_SPEC },	\
397   { "cpp_subtarget",	CPP_SUBTARGET_SPEC },	\
398   { "asm_cpu",		ASM_CPU_SPEC },		\
399   { "asm_cpu_default",	ASM_CPU_DEFAULT_SPEC },	\
400   { "asm_arch32",	ASM_ARCH32_SPEC },	\
401   { "asm_arch64",	ASM_ARCH64_SPEC },	\
402   { "asm_relax",	ASM_RELAX_SPEC },	\
403   { "asm_arch_default",	ASM_ARCH_DEFAULT_SPEC },\
404   { "asm_arch",		ASM_ARCH_SPEC },	\
405   SUBTARGET_EXTRA_SPECS
406 
407 #define SUBTARGET_EXTRA_SPECS
408 
409 /* Because libgcc can generate references back to libc (via .umul etc.) we have
410    to list libc again after the second libgcc.  */
411 #define LINK_GCC_C_SEQUENCE_SPEC "%G %{!nolibc:%L} %G %{!nolibc:%L}"
412 
413 
414 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
415 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
416 
417 /* ??? This should be 32 bits for v9 but what can we do?  */
418 #define WCHAR_TYPE "short unsigned int"
419 #define WCHAR_TYPE_SIZE 16
420 
421 /* Mask of all CPU selection flags.  */
422 #define MASK_ISA						\
423   (MASK_SPARCLITE + MASK_SPARCLET + MASK_LEON + MASK_LEON3	\
424    + MASK_V8 + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
425 
426 /* Mask of all CPU feature flags.  */
427 #define MASK_FEATURES						\
428   (MASK_FPU + MASK_HARD_QUAD + MASK_VIS + MASK_VIS2 + MASK_VIS3	\
429    + MASK_VIS4 + MASK_CBCOND + MASK_FMAF + MASK_FSMULD		\
430    + MASK_POPC + MASK_SUBXC)
431 
432 /* TARGET_HARD_MUL: Use 32-bit hardware multiply instructions but not %y.  */
433 #define TARGET_HARD_MUL				\
434   (TARGET_SPARCLITE || TARGET_SPARCLET		\
435    || TARGET_V8 || TARGET_DEPRECATED_V8_INSNS)
436 
437 /* TARGET_HARD_MUL32: Use 32-bit hardware multiply instructions with %y
438    to get high 32 bits.  False in 64-bit or V8+ because multiply stores
439    a 64-bit result in a register.  */
440 #define TARGET_HARD_MUL32 \
441   (TARGET_HARD_MUL && TARGET_ARCH32 && !TARGET_V8PLUS)
442 
443 /* MASK_APP_REGS must always be the default because that's what
444    FIXED_REGISTERS is set to and -ffixed- is processed before
445    TARGET_CONDITIONAL_REGISTER_USAGE is called (where we process
446    -mno-app-regs).  */
447 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
448 
449 /* Recast the cpu class to be the cpu attribute.
450    Every file includes us, but not every file includes insn-attr.h.  */
451 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
452 
453 /* Support for a compile-time default CPU, et cetera.  The rules are:
454    --with-cpu is ignored if -mcpu is specified.
455    --with-tune is ignored if -mtune is specified.
456    --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
457      are specified.  */
458 #define OPTION_DEFAULT_SPECS \
459   {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
460   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
461   {"float", "%{!msoft-float:%{!mhard-float:%{!mfpu:%{!mno-fpu:-m%(VALUE)-float}}}}" }
462 
463 /* target machine storage layout */
464 
465 /* Define this if most significant bit is lowest numbered
466    in instructions that operate on numbered bit-fields.  */
467 #define BITS_BIG_ENDIAN 1
468 
469 /* Define this if most significant byte of a word is the lowest numbered.  */
470 #define BYTES_BIG_ENDIAN 1
471 
472 /* Define this if most significant word of a multiword number is the lowest
473    numbered.  */
474 #define WORDS_BIG_ENDIAN 1
475 
476 #define MAX_BITS_PER_WORD	64
477 
478 /* Width of a word, in units (bytes).  */
479 #define UNITS_PER_WORD		(TARGET_ARCH64 ? 8 : 4)
480 #ifdef IN_LIBGCC2
481 #define MIN_UNITS_PER_WORD	UNITS_PER_WORD
482 #else
483 #define MIN_UNITS_PER_WORD	4
484 #endif
485 
486 /* Now define the sizes of the C data types.  */
487 #define SHORT_TYPE_SIZE		16
488 #define INT_TYPE_SIZE		32
489 #define LONG_TYPE_SIZE		(TARGET_ARCH64 ? 64 : 32)
490 #define LONG_LONG_TYPE_SIZE	64
491 #define FLOAT_TYPE_SIZE		32
492 #define DOUBLE_TYPE_SIZE	64
493 
494 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
495    SPARC ABI says that it is 128-bit wide.  */
496 /* #define LONG_DOUBLE_TYPE_SIZE	128 */
497 
498 /* The widest floating-point format really supported by the hardware.  */
499 #define WIDEST_HARDWARE_FP_SIZE 64
500 
501 /* Width in bits of a pointer.  This is the size of ptr_mode.  */
502 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
503 
504 /* This is the machine mode used for addresses.  */
505 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
506 
507 /* If we have to extend pointers (only when TARGET_ARCH64 and not
508    TARGET_PTR64), we want to do it unsigned.   This macro does nothing
509    if ptr_mode and Pmode are the same.  */
510 #define POINTERS_EXTEND_UNSIGNED 1
511 
512 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
513 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
514 
515 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
516 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
517    then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned.  */
518 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
519 
520 /* Temporary hack until the FIXME above is fixed.  */
521 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
522 
523 /* ALIGN FRAMES on double word boundaries */
524 #define SPARC_STACK_ALIGN(LOC) ROUND_UP ((LOC), UNITS_PER_WORD * 2)
525 
526 /* Allocation boundary (in *bits*) for the code of a function.  */
527 #define FUNCTION_BOUNDARY 32
528 
529 /* Alignment of field after `int : 0' in a structure.  */
530 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
531 
532 /* Every structure's size must be a multiple of this.  */
533 #define STRUCTURE_SIZE_BOUNDARY 8
534 
535 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
536 #define PCC_BITFIELD_TYPE_MATTERS 1
537 
538 /* No data type wants to be aligned rounder than this.  */
539 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
540 
541 /* The best alignment to use in cases where we have a choice.  */
542 #define FASTEST_ALIGNMENT 64
543 
544 /* Define this macro as an expression for the alignment of a structure
545    (given by STRUCT as a tree node) if the alignment computed in the
546    usual way is COMPUTED and the alignment explicitly specified was
547    SPECIFIED.
548 
549    The default is to use SPECIFIED if it is larger; otherwise, use
550    the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
551 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED)	\
552  (TARGET_FASTER_STRUCTS ?				\
553   ((TREE_CODE (STRUCT) == RECORD_TYPE			\
554     || TREE_CODE (STRUCT) == UNION_TYPE                 \
555     || TREE_CODE (STRUCT) == QUAL_UNION_TYPE)           \
556    && TYPE_FIELDS (STRUCT) != 0                         \
557      ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
558      : MAX ((COMPUTED), (SPECIFIED)))			\
559    :  MAX ((COMPUTED), (SPECIFIED)))
560 
561 /* An integer expression for the size in bits of the largest integer machine
562    mode that should actually be used.  We allow pairs of registers.  */
563 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_ARCH64 ? TImode : DImode)
564 
565 /* We need 2 words, so we can save the stack pointer and the return register
566    of the function containing a non-local goto target.  */
567 #define STACK_SAVEAREA_MODE(LEVEL) \
568   ((LEVEL) == SAVE_NONLOCAL ? (TARGET_ARCH64 ? TImode : DImode) : Pmode)
569 
570 /* Make arrays of chars word-aligned for the same reasons.  */
571 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
572   (TREE_CODE (TYPE) == ARRAY_TYPE		\
573    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
574    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
575 
576 /* Make local arrays of chars word-aligned for the same reasons.  */
577 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
578 
579 /* Set this nonzero if move instructions will actually fail to work
580    when given unaligned data.  */
581 #define STRICT_ALIGNMENT 1
582 
583 /* Things that must be doubleword aligned cannot go in the text section,
584    because the linker fails to align the text section enough!
585    Put them in the data section.  This macro is only used in this file.  */
586 #define MAX_TEXT_ALIGN 32
587 
588 /* Standard register usage.  */
589 
590 /* Number of actual hardware registers.
591    The hardware registers are assigned numbers for the compiler
592    from 0 to just below FIRST_PSEUDO_REGISTER.
593    All registers that the compiler knows about must be given numbers,
594    even those that are not normally considered general registers.
595 
596    SPARC has 32 integer registers and 32 floating point registers.
597    64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
598    accessible.  We still account for them to simplify register computations
599    (e.g.: in CLASS_MAX_NREGS).  There are also 4 fp condition code registers, so
600    32+32+32+4 == 100.
601    Register 100 is used as the integer condition code register.
602    Register 101 is used as the soft frame pointer register.
603    Register 102 is used as the general status register by VIS instructions.  */
604 
605 #define FIRST_PSEUDO_REGISTER 103
606 
607 #define SPARC_FIRST_INT_REG     0
608 #define SPARC_LAST_INT_REG     31
609 #define SPARC_FIRST_FP_REG     32
610 /* Additional V9 fp regs.  */
611 #define SPARC_FIRST_V9_FP_REG  64
612 #define SPARC_LAST_V9_FP_REG   95
613 /* V9 %fcc[0123].  V8 uses (figuratively) %fcc0.  */
614 #define SPARC_FIRST_V9_FCC_REG 96
615 #define SPARC_LAST_V9_FCC_REG  99
616 /* V8 fcc reg.  */
617 #define SPARC_FCC_REG 96
618 /* Integer CC reg.  We don't distinguish %icc from %xcc.  */
619 #define SPARC_ICC_REG 100
620 #define SPARC_GSR_REG 102
621 
622 /* Nonzero if REGNO is an fp reg.  */
623 #define SPARC_FP_REG_P(REGNO) \
624 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
625 
626 /* Nonzero if REGNO is an int reg.  */
627 #define SPARC_INT_REG_P(REGNO) \
628 (((unsigned) (REGNO)) <= SPARC_LAST_INT_REG)
629 
630 /* Argument passing regs.  */
631 #define SPARC_OUTGOING_INT_ARG_FIRST 8
632 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
633 #define SPARC_FP_ARG_FIRST           32
634 
635 /* 1 for registers that have pervasive standard uses
636    and are not available for the register allocator.
637 
638    On non-v9 systems:
639    g1 is free to use as temporary.
640    g2-g4 are reserved for applications.  Gcc normally uses them as
641    temporaries, but this can be disabled via the -mno-app-regs option.
642    g5 through g7 are reserved for the operating system.
643 
644    On v9 systems:
645    g1,g5 are free to use as temporaries, and are free to use between calls
646    if the call is to an external function via the PLT.
647    g4 is free to use as a temporary in the non-embedded case.
648    g4 is reserved in the embedded case.
649    g2-g3 are reserved for applications.  Gcc normally uses them as
650    temporaries, but this can be disabled via the -mno-app-regs option.
651    g6-g7 are reserved for the operating system (or application in
652    embedded case).
653    ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
654    currently be a fixed register until this pattern is rewritten.
655    Register 1 is also used when restoring call-preserved registers in large
656    stack frames.
657 
658    Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
659    TARGET_CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
660 */
661 
662 #define FIXED_REGISTERS  \
663  {1, 0, 2, 2, 2, 2, 1, 1,	\
664   0, 0, 0, 0, 0, 0, 1, 0,	\
665   0, 0, 0, 0, 0, 0, 0, 0,	\
666   0, 0, 0, 0, 0, 0, 0, 1,	\
667 				\
668   0, 0, 0, 0, 0, 0, 0, 0,	\
669   0, 0, 0, 0, 0, 0, 0, 0,	\
670   0, 0, 0, 0, 0, 0, 0, 0,	\
671   0, 0, 0, 0, 0, 0, 0, 0,	\
672 				\
673   0, 0, 0, 0, 0, 0, 0, 0,	\
674   0, 0, 0, 0, 0, 0, 0, 0,	\
675   0, 0, 0, 0, 0, 0, 0, 0,	\
676   0, 0, 0, 0, 0, 0, 0, 0,	\
677 				\
678   0, 0, 0, 0, 1, 1, 1}
679 
680 /* 1 for registers not available across function calls.
681    These must include the FIXED_REGISTERS and also any
682    registers that can be used without being saved.
683    The latter must include the registers where values are returned
684    and the register where structure-value addresses are passed.
685    Aside from that, you can include as many other registers as you like.  */
686 
687 #define CALL_USED_REGISTERS  \
688  {1, 1, 1, 1, 1, 1, 1, 1,	\
689   1, 1, 1, 1, 1, 1, 1, 1,	\
690   0, 0, 0, 0, 0, 0, 0, 0,	\
691   0, 0, 0, 0, 0, 0, 0, 1,	\
692 				\
693   1, 1, 1, 1, 1, 1, 1, 1,	\
694   1, 1, 1, 1, 1, 1, 1, 1,	\
695   1, 1, 1, 1, 1, 1, 1, 1,	\
696   1, 1, 1, 1, 1, 1, 1, 1,	\
697 				\
698   1, 1, 1, 1, 1, 1, 1, 1,	\
699   1, 1, 1, 1, 1, 1, 1, 1,	\
700   1, 1, 1, 1, 1, 1, 1, 1,	\
701   1, 1, 1, 1, 1, 1, 1, 1,	\
702 				\
703   1, 1, 1, 1, 1, 1, 1}
704 
705 /* 1 for registers not available across function calls.
706    Unlike the above, this need not include the FIXED_REGISTERS, but any
707    registers that can be used without being saved.
708    The latter must include the registers where values are returned
709    and the register where structure-value addresses are passed.
710    Aside from that, you can include as many other registers as you like.  */
711 
712 #define CALL_REALLY_USED_REGISTERS  \
713  {1, 1, 1, 1, 1, 1, 1, 1,	\
714   1, 1, 1, 1, 1, 1, 1, 1,	\
715   0, 0, 0, 0, 0, 0, 0, 0,	\
716   0, 0, 0, 0, 0, 0, 0, 0,	\
717 				\
718   1, 1, 1, 1, 1, 1, 1, 1,	\
719   1, 1, 1, 1, 1, 1, 1, 1,	\
720   1, 1, 1, 1, 1, 1, 1, 1,	\
721   1, 1, 1, 1, 1, 1, 1, 1,	\
722 				\
723   1, 1, 1, 1, 1, 1, 1, 1,	\
724   1, 1, 1, 1, 1, 1, 1, 1,	\
725   1, 1, 1, 1, 1, 1, 1, 1,	\
726   1, 1, 1, 1, 1, 1, 1, 1,	\
727 				\
728   1, 1, 1, 1, 1, 1, 1}
729 
730 /* Due to the ARCH64 discrepancy above we must override this next
731    macro too.  */
732 #define REGMODE_NATURAL_SIZE(MODE) sparc_regmode_natural_size (MODE)
733 
734 /* Value is 1 if it is OK to rename a hard register FROM to another hard
735    register TO.  We cannot rename %g1 as it may be used before the save
736    register window instruction in the prologue.  */
737 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
738 
739 /* Select a register mode required for caller save of hard regno REGNO.
740    Contrary to what is documented, the default is not the smallest suitable
741    mode but the largest suitable mode for the given (REGNO, NREGS) pair and
742    it quickly creates paradoxical subregs that can be problematic.  */
743 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
744   ((MODE) == VOIDmode ? choose_hard_reg_mode (REGNO, NREGS, false) : (MODE))
745 
746 /* Specify the registers used for certain standard purposes.
747    The values of these macros are register numbers.  */
748 
749 /* Register to use for pushing function arguments.  */
750 #define STACK_POINTER_REGNUM 14
751 
752 /* The stack bias (amount by which the hardware register is offset by).  */
753 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
754 
755 /* Actual top-of-stack address is 92/176 greater than the contents of the
756    stack pointer register for !v9/v9.  That is:
757    - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
758      address, and 6*4 bytes for the 6 register parameters.
759    - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
760      parameter regs.  */
761 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
762 
763 /* Base register for access to local variables of the function.  */
764 #define HARD_FRAME_POINTER_REGNUM 30
765 
766 /* The soft frame pointer does not have the stack bias applied.  */
767 #define FRAME_POINTER_REGNUM 101
768 
769 #define INIT_EXPANDERS							 \
770   do {									 \
771     if (crtl->emit.regno_pointer_align)					 \
772       {									 \
773 	/* The biased stack pointer is only aligned on BITS_PER_UNIT.  */\
774 	if (SPARC_STACK_BIAS)						 \
775 	  {								 \
776 	    REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM)			 \
777 	      = BITS_PER_UNIT;	 					 \
778 	    REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM)		 \
779 	      = BITS_PER_UNIT;						 \
780 	  }								 \
781 									 \
782 	/* In 32-bit mode, not everything is double-word aligned.  */	 \
783 	if (TARGET_ARCH32)						 \
784 	  {								 \
785 	    REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM)		 \
786 	      = BITS_PER_WORD;						 \
787 	    REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM)		 \
788 	      = BITS_PER_WORD;						 \
789 	    REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM)		 \
790 	      = BITS_PER_WORD;						 \
791 	  }								 \
792       }									 \
793   } while (0)
794 
795 /* Base register for access to arguments of the function.  */
796 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
797 
798 /* Register in which static-chain is passed to a function.  This must
799    not be a register used by the prologue.  */
800 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
801 
802 /* Register which holds the global offset table, if any.  */
803 #define GLOBAL_OFFSET_TABLE_REGNUM 23
804 
805 /* Register which holds offset table for position-independent data references.
806    The original SPARC ABI imposes no requirement on the choice of the register
807    so we use a pseudo-register to make sure it is properly saved and restored
808    around calls to setjmp.  Now the ABI of VxWorks RTP makes it live on entry
809    to PLT entries so we use the canonical GOT register in this case.  */
810 #define PIC_OFFSET_TABLE_REGNUM \
811   (TARGET_VXWORKS_RTP && flag_pic ? GLOBAL_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
812 
813 /* Pick a default value we can notice from override_options:
814    !v9: Default is on.
815    v9: Default is off.
816    Originally it was -1, but later on the container of options changed to
817    unsigned byte, so we decided to pick 127 as default value, which does
818    reflect an undefined default value in case of 0/1.  */
819 #define DEFAULT_PCC_STRUCT_RETURN 127
820 
821 /* Functions which return large structures get the address
822    to place the wanted value at offset 64 from the frame.
823    Must reserve 64 bytes for the in and local registers.
824    v9: Functions which return large structures get the address to place the
825    wanted value from an invisible first argument.  */
826 #define STRUCT_VALUE_OFFSET 64
827 
828 /* Define the classes of registers for register constraints in the
829    machine description.  Also define ranges of constants.
830 
831    One of the classes must always be named ALL_REGS and include all hard regs.
832    If there is more than one class, another class must be named NO_REGS
833    and contain no registers.
834 
835    The name GENERAL_REGS must be the name of a class (or an alias for
836    another name such as ALL_REGS).  This is the class of registers
837    that is allowed by "g" or "r" in a register constraint.
838    Also, registers outside this class are allocated only when
839    instructions express preferences for them.
840 
841    The classes must be numbered in nondecreasing order; that is,
842    a larger-numbered class must never be contained completely
843    in a smaller-numbered class.
844 
845    For any two classes, it is very desirable that there be another
846    class that represents their union.  */
847 
848 /* The SPARC has various kinds of registers: general, floating point,
849    and condition codes [well, it has others as well, but none that we
850    care directly about].
851 
852    For v9 we must distinguish between the upper and lower floating point
853    registers because the upper ones can't hold SFmode values.
854    TARGET_HARD_REGNO_MODE_OK won't help here because reload assumes that
855    register(s) satisfying a group need for a class will also satisfy a
856    single need for that class.  EXTRA_FP_REGS is a bit of a misnomer as
857    it covers all 64 fp regs.
858 
859    It is important that one class contains all the general and all the standard
860    fp regs.  Otherwise find_reg() won't properly allocate int regs for moves,
861    because reg_class_record() will bias the selection in favor of fp regs,
862    because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
863    because FP_REGS > GENERAL_REGS.
864 
865    It is also important that one class contain all the general and all
866    the fp regs.  Otherwise when spilling a DFmode reg, it may be from
867    EXTRA_FP_REGS but find_reloads() may use class
868    GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
869    because the compiler thinks it doesn't have a spill reg when in
870    fact it does.
871 
872    v9 also has 4 floating point condition code registers.  Since we don't
873    have a class that is the union of FPCC_REGS with either of the others,
874    it is important that it appear first.  Otherwise the compiler will die
875    trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
876    constraints.  */
877 
878 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
879 		 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
880 		 ALL_REGS, LIM_REG_CLASSES };
881 
882 #define N_REG_CLASSES (int) LIM_REG_CLASSES
883 
884 /* Give names of register classes as strings for dump file.  */
885 
886 #define REG_CLASS_NAMES \
887   { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS",	\
888      "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS",	\
889      "ALL_REGS" }
890 
891 /* Define which registers fit in which classes.
892    This is an initializer for a vector of HARD_REG_SET
893    of length N_REG_CLASSES.  */
894 
895 #define REG_CLASS_CONTENTS				\
896   {{0, 0, 0, 0},	/* NO_REGS */			\
897    {0, 0, 0, 0xf},	/* FPCC_REGS */			\
898    {0xffff, 0, 0, 0},	/* I64_REGS */			\
899    {-1, 0, 0, 0x20},	/* GENERAL_REGS */		\
900    {0, -1, 0, 0},	/* FP_REGS */			\
901    {0, -1, -1, 0},	/* EXTRA_FP_REGS */		\
902    {-1, -1, 0, 0x20},	/* GENERAL_OR_FP_REGS */	\
903    {-1, -1, -1, 0x20},	/* GENERAL_OR_EXTRA_FP_REGS */	\
904    {-1, -1, -1, 0x7f}}	/* ALL_REGS */
905 
906 /* The same information, inverted:
907    Return the class number of the smallest class containing
908    reg number REGNO.  This could be a conditional expression
909    or could index an array.  */
910 
911 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
912 
913 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
914 
915 /* This is the order in which to allocate registers normally.
916 
917    We put %f0-%f7 last among the float registers, so as to make it more
918    likely that a pseudo-register which dies in the float return register
919    area will get allocated to the float return register, thus saving a move
920    instruction at the end of the function.
921 
922    Similarly for integer return value registers.
923 
924    We know in this case that we will not end up with a leaf function.
925 
926    The register allocator is given the global and out registers first
927    because these registers are call clobbered and thus less useful to
928    global register allocation.
929 
930    Next we list the local and in registers.  They are not call clobbered
931    and thus very useful for global register allocation.  We list the input
932    registers before the locals so that it is more likely the incoming
933    arguments received in those registers can just stay there and not be
934    reloaded.  */
935 
936 #define REG_ALLOC_ORDER \
937 { 1, 2, 3, 4, 5, 6, 7,			/* %g1-%g7 */	\
938   13, 12, 11, 10, 9, 8, 		/* %o5-%o0 */	\
939   15,					/* %o7 */	\
940   16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */ 	\
941   29, 28, 27, 26, 25, 24, 31,		/* %i5-%i0,%i7 */\
942   40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */  \
943   48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */ \
944   56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */ \
945   64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */ \
946   72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */ \
947   80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */ \
948   88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */ \
949   39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */   \
950   96, 97, 98, 99,			/* %fcc0-3 */   \
951   100, 0, 14, 30, 101, 102 }		/* %icc, %g0, %o6, %i6, %sfp, %gsr */
952 
953 /* This is the order in which to allocate registers for
954    leaf functions.  If all registers can fit in the global and
955    output registers, then we have the possibility of having a leaf
956    function.
957 
958    The macro actually mentioned the input registers first,
959    because they get renumbered into the output registers once
960    we know really do have a leaf function.
961 
962    To be more precise, this register allocation order is used
963    when %o7 is found to not be clobbered right before register
964    allocation.  Normally, the reason %o7 would be clobbered is
965    due to a call which could not be transformed into a sibling
966    call.
967 
968    As a consequence, it is possible to use the leaf register
969    allocation order and not end up with a leaf function.  We will
970    not get suboptimal register allocation in that case because by
971    definition of being potentially leaf, there were no function
972    calls.  Therefore, allocation order within the local register
973    window is not critical like it is when we do have function calls.  */
974 
975 #define REG_LEAF_ALLOC_ORDER \
976 { 1, 2, 3, 4, 5, 6, 7, 			/* %g1-%g7 */	\
977   29, 28, 27, 26, 25, 24,		/* %i5-%i0 */	\
978   15,					/* %o7 */	\
979   13, 12, 11, 10, 9, 8,			/* %o5-%o0 */	\
980   16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */	\
981   40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */	\
982   48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */	\
983   56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */	\
984   64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */	\
985   72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */	\
986   80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */	\
987   88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */	\
988   39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */	\
989   96, 97, 98, 99,			/* %fcc0-3 */	\
990   100, 0, 14, 30, 31, 101, 102 }	/* %icc, %g0, %o6, %i6, %i7, %sfp, %gsr */
991 
992 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
993 
994 extern char sparc_leaf_regs[];
995 #define LEAF_REGISTERS sparc_leaf_regs
996 
997 extern char leaf_reg_remap[];
998 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
999 
1000 /* The class value for index registers, and the one for base regs.  */
1001 #define INDEX_REG_CLASS GENERAL_REGS
1002 #define BASE_REG_CLASS GENERAL_REGS
1003 
1004 /* Local macro to handle the two v9 classes of FP regs.  */
1005 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1006 
1007 /* Predicate for 2-bit and 5-bit unsigned constants.  */
1008 #define SPARC_IMM2_P(X) (((unsigned HOST_WIDE_INT) (X) & ~0x3) == 0)
1009 #define SPARC_IMM5_P(X) (((unsigned HOST_WIDE_INT) (X) & ~0x1F)	== 0)
1010 
1011 /* Predicates for 5-bit, 10-bit, 11-bit and 13-bit signed constants.  */
1012 #define SPARC_SIMM5_P(X)  ((unsigned HOST_WIDE_INT) (X) + 0x10 < 0x20)
1013 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1014 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1015 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1016 
1017 /* 10- and 11-bit immediates are only used for a few specific insns.
1018    SMALL_INT is used throughout the port so we continue to use it.  */
1019 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1020 
1021 /* Predicate for constants that can be loaded with a sethi instruction.
1022    This is the general, 64-bit aware, bitwise version that ensures that
1023    only constants whose representation fits in the mask
1024 
1025      0x00000000fffffc00
1026 
1027    are accepted.  It will reject, for example, negative SImode constants
1028    on 64-bit hosts, so correct handling is to mask the value beforehand
1029    according to the mode of the instruction.  */
1030 #define SPARC_SETHI_P(X) \
1031   (((unsigned HOST_WIDE_INT) (X) \
1032     & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1033 
1034 /* Version of the above predicate for SImode constants and below.  */
1035 #define SPARC_SETHI32_P(X) \
1036   (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1037 
1038 /* Return the maximum number of consecutive registers
1039    needed to represent mode MODE in a register of class CLASS.  */
1040 /* On SPARC, this is the size of MODE in words.  */
1041 #define CLASS_MAX_NREGS(CLASS, MODE)	\
1042   (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1043    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1044 
1045 /* Stack layout; function entry, exit and calling.  */
1046 
1047 /* Define this if pushing a word on the stack
1048    makes the stack pointer a smaller address.  */
1049 #define STACK_GROWS_DOWNWARD 1
1050 
1051 /* Define this to nonzero if the nominal address of the stack frame
1052    is at the high-address end of the local variables;
1053    that is, each additional local variable allocated
1054    goes at a more negative offset in the frame.  */
1055 #define FRAME_GROWS_DOWNWARD 1
1056 
1057 /* Offset of first parameter from the argument pointer register value.
1058    !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1059    even if this function isn't going to use it.
1060    v9: This is 128 for the ins and locals.  */
1061 #define FIRST_PARM_OFFSET(FNDECL) \
1062   (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1063 
1064 /* Offset from the argument pointer register value to the CFA.
1065    This is different from FIRST_PARM_OFFSET because the register window
1066    comes between the CFA and the arguments.  */
1067 #define ARG_POINTER_CFA_OFFSET(FNDECL)  0
1068 
1069 /* When a parameter is passed in a register, stack space is still
1070    allocated for it.
1071    !v9: All 6 possible integer registers have backing store allocated.
1072    v9: Only space for the arguments passed is allocated.  */
1073 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1074    meaning to the backend.  Further, we need to be able to detect if a
1075    varargs/unprototyped function is called, as they may want to spill more
1076    registers than we've provided space.  Ugly, ugly.  So for now we retain
1077    all 6 slots even for v9.  */
1078 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1079 
1080 /* Definitions for register elimination.  */
1081 
1082 #define ELIMINABLE_REGS \
1083   {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1084    { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1085 
1086 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) 		\
1087   do								\
1088     {								\
1089       (OFFSET) = sparc_initial_elimination_offset ((TO));	\
1090     }								\
1091   while (0)
1092 
1093 /* Keep the stack pointer constant throughout the function.
1094    This is both an optimization and a necessity: longjmp
1095    doesn't behave itself when the stack pointer moves within
1096    the function!  */
1097 #define ACCUMULATE_OUTGOING_ARGS 1
1098 
1099 /* Define this macro if the target machine has "register windows".  This
1100    C expression returns the register number as seen by the called function
1101    corresponding to register number OUT as seen by the calling function.
1102    Return OUT if register number OUT is not an outbound register.  */
1103 
1104 #define INCOMING_REGNO(OUT) \
1105  ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1106 
1107 /* Define this macro if the target machine has "register windows".  This
1108    C expression returns the register number as seen by the calling function
1109    corresponding to register number IN as seen by the called function.
1110    Return IN if register number IN is not an inbound register.  */
1111 
1112 #define OUTGOING_REGNO(IN) \
1113  ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1114 
1115 /* Define this macro if the target machine has register windows.  This
1116    C expression returns true if the register is call-saved but is in the
1117    register window.  */
1118 
1119 #define LOCAL_REGNO(REGNO) \
1120   (!TARGET_FLAT && (REGNO) >= 16 && (REGNO) <= 31)
1121 
1122 /* Define the size of space to allocate for the return value of an
1123    untyped_call.  */
1124 
1125 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1126 
1127 /* 1 if N is a possible register number for function argument passing.
1128    On SPARC, these are the "output" registers.  v9 also uses %f0-%f31.  */
1129 
1130 #define FUNCTION_ARG_REGNO_P(N) \
1131   (((N) >= 8 && (N) <= 13)	\
1132    || (TARGET_ARCH64 && TARGET_FPU && (N) >= 32 && (N) <= 63))
1133 
1134 /* Define a data type for recording info about an argument list
1135    during the scan of that argument list.  This data type should
1136    hold all necessary information about the function itself
1137    and about the args processed so far, enough to enable macros
1138    such as FUNCTION_ARG to determine where the next arg should go.
1139 
1140    On SPARC (!v9), this is a single integer, which is a number of words
1141    of arguments scanned so far (including the invisible argument,
1142    if any, which holds the structure-value-address).
1143    Thus 7 or more means all following args should go on the stack.
1144 
1145    For v9, we also need to know whether a prototype is present.  */
1146 
1147 struct sparc_args {
1148   int words;       /* number of words passed so far */
1149   int prototype_p; /* nonzero if a prototype is present */
1150   int libcall_p;   /* nonzero if a library call */
1151 };
1152 #define CUMULATIVE_ARGS struct sparc_args
1153 
1154 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1155    for a call to a function whose data type is FNTYPE.
1156    For a library call, FNTYPE is 0.  */
1157 
1158 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1159 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1160 
1161 
1162 /* Generate the special assembly code needed to tell the assembler whatever
1163    it might need to know about the return value of a function.
1164 
1165    For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1166    information to the assembler relating to peephole optimization (done in
1167    the assembler).  */
1168 
1169 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1170   fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1171 
1172 /* Output the special assembly code needed to tell the assembler some
1173    register is used as global register variable.
1174 
1175    SPARC 64bit psABI declares registers %g2 and %g3 as application
1176    registers and %g6 and %g7 as OS registers.  Any object using them
1177    should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1178    and how they are used (scratch or some global variable).
1179    Linker will then refuse to link together objects which use those
1180    registers incompatibly.
1181 
1182    Unless the registers are used for scratch, two different global
1183    registers cannot be declared to the same name, so in the unlikely
1184    case of a global register variable occupying more than one register
1185    we prefix the second and following registers with .gnu.part1. etc.  */
1186 
1187 extern GTY(()) char sparc_hard_reg_printed[8];
1188 
1189 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME)		\
1190 do {									\
1191   if (TARGET_ARCH64)							\
1192     {									\
1193       int end = end_hard_regno (DECL_MODE (decl), REGNO);		\
1194       int reg;								\
1195       for (reg = (REGNO); reg < 8 && reg < end; reg++)			\
1196 	if ((reg & ~1) == 2 || (reg & ~1) == 6)				\
1197 	  {								\
1198 	    if (reg == (REGNO))						\
1199 	      fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1200 	    else							\
1201 	      fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n",	\
1202 		       reg, reg - (REGNO), (NAME));			\
1203 	    sparc_hard_reg_printed[reg] = 1;				\
1204 	  }								\
1205     }									\
1206 } while (0)
1207 
1208 /* Emit rtl for profiling.  */
1209 #define PROFILE_HOOK(LABEL)   sparc_profile_hook (LABEL)
1210 
1211 /* All the work done in PROFILE_HOOK, but still required.  */
1212 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1213 
1214 /* Set the name of the mcount function for the system.  */
1215 #define MCOUNT_FUNCTION "*mcount"
1216 
1217 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1218    the stack pointer does not matter.  The value is tested only in
1219    functions that have frame pointers.  */
1220 #define EXIT_IGNORE_STACK 1
1221 
1222 /* Length in units of the trampoline for entering a nested function.  */
1223 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1224 
1225 /* Alignment required for trampolines, in bits.  */
1226 #define TRAMPOLINE_ALIGNMENT 128
1227 
1228 /* Generate RTL to flush the register windows so as to make arbitrary frames
1229    available.  */
1230 #define SETUP_FRAME_ADDRESSES()			\
1231   do {						\
1232     if (!TARGET_FLAT)				\
1233       emit_insn (gen_flush_register_windows ());\
1234   } while (0)
1235 
1236 /* Given an rtx for the address of a frame,
1237    return an rtx for the address of the word in the frame
1238    that holds the dynamic chain--the previous frame's address.  */
1239 #define DYNAMIC_CHAIN_ADDRESS(frame)	\
1240   plus_constant (Pmode, frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1241 
1242 /* Given an rtx for the frame pointer,
1243    return an rtx for the address of the frame.  */
1244 #define FRAME_ADDR_RTX(frame) plus_constant (Pmode, frame, SPARC_STACK_BIAS)
1245 
1246 /* The return address isn't on the stack, it is in a register, so we can't
1247    access it from the current frame pointer.  We can access it from the
1248    previous frame pointer though by reading a value from the register window
1249    save area.  */
1250 #define RETURN_ADDR_IN_PREVIOUS_FRAME 1
1251 
1252 /* This is the offset of the return address to the true next instruction to be
1253    executed for the current function.  */
1254 #define RETURN_ADDR_OFFSET \
1255   (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1256 
1257 /* The current return address is in %i7.  The return address of anything
1258    farther back is in the register window save area at [%fp+60].  */
1259 /* ??? This ignores the fact that the actual return address is +8 for normal
1260    returns, and +12 for structure returns.  */
1261 #define RETURN_ADDR_REGNUM 31
1262 #define RETURN_ADDR_RTX(count, frame)		\
1263   ((count == -1)				\
1264    ? gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)			\
1265    : gen_rtx_MEM (Pmode,			\
1266 		  memory_address (Pmode, plus_constant (Pmode, frame, \
1267 							15 * UNITS_PER_WORD \
1268 							+ SPARC_STACK_BIAS))))
1269 
1270 /* Before the prologue, the return address is %o7 + 8.  OK, sometimes it's
1271    +12, but always using +8 is close enough for frame unwind purposes.
1272    Actually, just using %o7 is close enough for unwinding, but %o7+8
1273    is something you can return to.  */
1274 #define INCOMING_RETURN_ADDR_REGNUM 15
1275 #define INCOMING_RETURN_ADDR_RTX \
1276   plus_constant (word_mode, \
1277 		 gen_rtx_REG (word_mode, INCOMING_RETURN_ADDR_REGNUM), 8)
1278 #define DWARF_FRAME_RETURN_COLUMN \
1279   DWARF_FRAME_REGNUM (INCOMING_RETURN_ADDR_REGNUM)
1280 
1281 /* The offset from the incoming value of %sp to the top of the stack frame
1282    for the current function.  On sparc64, we have to account for the stack
1283    bias if present.  */
1284 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1285 
1286 /* Describe how we implement __builtin_eh_return.  */
1287 #define EH_RETURN_REGNUM 1
1288 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1289 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, EH_RETURN_REGNUM)
1290 
1291 /* Define registers used by the epilogue and return instruction.  */
1292 #define EPILOGUE_USES(REGNO)					\
1293   ((REGNO) == RETURN_ADDR_REGNUM				\
1294    || (TARGET_FLAT						\
1295        && epilogue_completed					\
1296        && (REGNO) == INCOMING_RETURN_ADDR_REGNUM)		\
1297    || (crtl->calls_eh_return && (REGNO) == EH_RETURN_REGNUM))
1298 
1299 /* Select a format to encode pointers in exception handling data.  CODE
1300    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1301    true if the symbol may be affected by dynamic relocations.
1302 
1303    If assembler and linker properly support .uaword %r_disp32(foo),
1304    then use PC relative 32-bit relocations instead of absolute relocs
1305    for shared libraries.  On sparc64, use pc relative 32-bit relocs even
1306    for binaries, to save memory.
1307 
1308    binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1309    symbol %r_disp32() is against was not local, but .hidden.  In that
1310    case, we have to use DW_EH_PE_absptr for pic personality.  */
1311 #ifdef HAVE_AS_SPARC_UA_PCREL
1312 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1313 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
1314   (flag_pic								\
1315    ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1316    : ((TARGET_ARCH64 && ! GLOBAL)					\
1317       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
1318       : DW_EH_PE_absptr))
1319 #else
1320 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
1321   (flag_pic								\
1322    ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4))	\
1323    : ((TARGET_ARCH64 && ! GLOBAL)					\
1324       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
1325       : DW_EH_PE_absptr))
1326 #endif
1327 
1328 /* Emit a PC-relative relocation.  */
1329 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)	\
1330   do {							\
1331     fputs (integer_asm_op (SIZE, FALSE), FILE);		\
1332     fprintf (FILE, "%%r_disp%d(", SIZE * 8);		\
1333     assemble_name (FILE, LABEL);			\
1334     fputc (')', FILE);					\
1335   } while (0)
1336 #endif
1337 
1338 /* Addressing modes, and classification of registers for them.  */
1339 
1340 /* Macros to check register numbers against specific register classes.  */
1341 
1342 /* These assume that REGNO is a hard or pseudo reg number.
1343    They give nonzero only if REGNO is a hard reg of the suitable class
1344    or a pseudo reg currently allocated to a suitable hard reg.
1345    Since they use reg_renumber, they are safe only once reg_renumber
1346    has been allocated, which happens in reginfo.c during register
1347    allocation.  */
1348 
1349 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1350 (SPARC_INT_REG_P (REGNO) || SPARC_INT_REG_P (reg_renumber[REGNO]) \
1351  || (REGNO) == FRAME_POINTER_REGNUM				  \
1352  || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1353 
1354 #define REGNO_OK_FOR_BASE_P(REGNO)  REGNO_OK_FOR_INDEX_P (REGNO)
1355 
1356 #define REGNO_OK_FOR_FP_P(REGNO) \
1357   (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1358    || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1359 
1360 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1361  (TARGET_V9 \
1362   && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1363       || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1364 
1365 /* Maximum number of registers that can appear in a valid memory address.  */
1366 
1367 #define MAX_REGS_PER_ADDRESS 2
1368 
1369 /* Recognize any constant value that is a valid address.
1370    When PIC, we do not accept an address that would require a scratch reg
1371    to load into a register.  */
1372 
1373 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1374 
1375 /* Define this, so that when PIC, reload won't try to reload invalid
1376    addresses which require two reload registers.  */
1377 
1378 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1379 
1380 /* Should gcc use [%reg+%lo(xx)+offset] addresses?  */
1381 
1382 #ifdef HAVE_AS_OFFSETABLE_LO10
1383 #define USE_AS_OFFSETABLE_LO10 1
1384 #else
1385 #define USE_AS_OFFSETABLE_LO10 0
1386 #endif
1387 
1388 /* Try a machine-dependent way of reloading an illegitimate address
1389    operand.  If we find one, push the reload and jump to WIN.  This
1390    macro is used in only one place: `find_reloads_address' in reload.c.  */
1391 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	   \
1392 do {									   \
1393   int win;								   \
1394   (X) = sparc_legitimize_reload_address ((X), (MODE), (OPNUM),		   \
1395 					 (int)(TYPE), (IND_LEVELS), &win); \
1396   if (win)								   \
1397     goto WIN;								   \
1398 } while (0)
1399 
1400 /* Specify the machine mode that this machine uses
1401    for the index in the tablejump instruction.  */
1402 /* If we ever implement any of the full models (such as CM_FULLANY),
1403    this has to be DImode in that case */
1404 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1405 #define CASE_VECTOR_MODE \
1406 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1407 #else
1408 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1409    we have to sign extend which slows things down.  */
1410 #define CASE_VECTOR_MODE \
1411 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1412 #endif
1413 
1414 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1415 #define DEFAULT_SIGNED_CHAR 1
1416 
1417 /* Max number of bytes we can move from memory to memory
1418    in one reasonably fast instruction.  */
1419 #define MOVE_MAX 8
1420 
1421 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1422    move-instruction pairs, we will do a movmem or libcall instead.  */
1423 
1424 #define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1425 
1426 /* Define if operations between registers always perform the operation
1427    on the full register even if a narrower mode is specified.  */
1428 #define WORD_REGISTER_OPERATIONS 1
1429 
1430 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1431    will either zero-extend or sign-extend.  The value of this macro should
1432    be the code that says which one of the two operations is implicitly
1433    done, UNKNOWN if none.  */
1434 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1435 
1436 /* Nonzero if access to memory by bytes is slow and undesirable.
1437    For RISC chips, it means that access to memory by bytes is no
1438    better than access by words when possible, so grab a whole word
1439    and maybe make use of that.  */
1440 #define SLOW_BYTE_ACCESS 1
1441 
1442 /* Define this to be nonzero if shift instructions ignore all but the low-order
1443    few bits.  */
1444 #define SHIFT_COUNT_TRUNCATED 1
1445 
1446 /* For SImode, we make sure the top 32-bits of the register are clear and
1447    then we subtract 32 from the lzd instruction result.  */
1448 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1449   ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1450 
1451 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1452    return the mode to be used for the comparison.  For floating-point,
1453    CCFP[E]mode is used.  CCNZmode should be used when the first operand
1454    is a PLUS, MINUS, NEG, or ASHIFT.  CCmode should be used when no special
1455    processing is needed.  */
1456 #define SELECT_CC_MODE(OP,X,Y)  select_cc_mode ((OP), (X), (Y))
1457 
1458 /* Return nonzero if MODE implies a floating point inequality can be
1459    reversed.  For SPARC this is always true because we have a full
1460    compliment of ordered and unordered comparisons, but until generic
1461    code knows how to reverse it correctly we keep the old definition.  */
1462 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1463 
1464 /* A function address in a call instruction for indexing purposes.  */
1465 #define FUNCTION_MODE Pmode
1466 
1467 /* Define this if addresses of constant functions
1468    shouldn't be put through pseudo regs where they can be cse'd.
1469    Desirable on machines where ordinary constants are expensive
1470    but a CALL with constant address is cheap.  */
1471 #define NO_FUNCTION_CSE 1
1472 
1473 /* The _Q_* comparison libcalls return booleans.  */
1474 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1475 
1476 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1477    that the inputs are fully consumed before the output memory is clobbered.  */
1478 
1479 #define TARGET_BUGGY_QP_LIB	0
1480 
1481 /* Assume by default that we do not have the Solaris-specific conversion
1482    routines nor 64-bit integer multiply and divide routines.  */
1483 
1484 #define SUN_CONVERSION_LIBFUNCS 	0
1485 #define DITF_CONVERSION_LIBFUNCS	0
1486 #define SUN_INTEGER_MULTIPLY_64 	0
1487 
1488 /* A C expression for the cost of a branch instruction.  A value of 1
1489    is the default; other values are interpreted relative to that.  */
1490 #define BRANCH_COST(SPEED_P, PREDICTABLE_P) \
1491   (sparc_branch_cost (SPEED_P, PREDICTABLE_P))
1492 
1493 /* Control the assembler format that we output.  */
1494 
1495 /* A C string constant describing how to begin a comment in the target
1496    assembler language.  The compiler assumes that the comment will end at
1497    the end of the line.  */
1498 
1499 #define ASM_COMMENT_START "!"
1500 
1501 /* Output to assembler file text saying following lines
1502    may contain character constants, extra white space, comments, etc.  */
1503 
1504 #define ASM_APP_ON ""
1505 
1506 /* Output to assembler file text saying following lines
1507    no longer contain unusual constructs.  */
1508 
1509 #define ASM_APP_OFF ""
1510 
1511 /* How to refer to registers in assembler output.
1512    This sequence is indexed by compiler's hard-register-number (see above).  */
1513 
1514 #define REGISTER_NAMES \
1515 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7",		\
1516  "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7",		\
1517  "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7",		\
1518  "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7",		\
1519  "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",		\
1520  "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",		\
1521  "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",	\
1522  "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",	\
1523  "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39",	\
1524  "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47",	\
1525  "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55",	\
1526  "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63",	\
1527  "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp", "%gsr" }
1528 
1529 /* Define additional names for use in asm clobbers and asm declarations.  */
1530 
1531 #define ADDITIONAL_REGISTER_NAMES \
1532 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
1533 
1534 /* On Sun 4, this limit is 2048.  We use 1000 to be safe, since the length
1535    can run past this up to a continuation point.  Once we used 1500, but
1536    a single entry in C++ can run more than 500 bytes, due to the length of
1537    mangled symbol names.  dbxout.c should really be fixed to do
1538    continuations when they are actually needed instead of trying to
1539    guess...  */
1540 #define DBX_CONTIN_LENGTH 1000
1541 
1542 /* This is how to output a command to make the user-level label named NAME
1543    defined for reference from other files.  */
1544 
1545 /* Globalizing directive for a label.  */
1546 #define GLOBAL_ASM_OP "\t.global "
1547 
1548 /* The prefix to add to user-visible assembler symbols.  */
1549 
1550 #define USER_LABEL_PREFIX "_"
1551 
1552 /* This is how to store into the string LABEL
1553    the symbol_ref name of an internal numbered label where
1554    PREFIX is the class of label and NUM is the number within the class.
1555    This is suitable for output with `assemble_name'.  */
1556 
1557 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1558   sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1559 
1560 /* This is how we hook in and defer the case-vector until the end of
1561    the function.  */
1562 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
1563   sparc_defer_case_vector ((LAB),(VEC), 0)
1564 
1565 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
1566   sparc_defer_case_vector ((LAB),(VEC), 1)
1567 
1568 /* This is how to output an element of a case-vector that is absolute.  */
1569 
1570 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1571 do {									\
1572   char label[30];							\
1573   ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);			\
1574   if (CASE_VECTOR_MODE == SImode)					\
1575     fprintf (FILE, "\t.word\t");					\
1576   else									\
1577     fprintf (FILE, "\t.xword\t");					\
1578   assemble_name (FILE, label);						\
1579   fputc ('\n', FILE);							\
1580 } while (0)
1581 
1582 /* This is how to output an element of a case-vector that is relative.
1583    (SPARC uses such vectors only when generating PIC.)  */
1584 
1585 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)		\
1586 do {									\
1587   char label[30];							\
1588   ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));			\
1589   if (CASE_VECTOR_MODE == SImode)					\
1590     fprintf (FILE, "\t.word\t");					\
1591   else									\
1592     fprintf (FILE, "\t.xword\t");					\
1593   assemble_name (FILE, label);						\
1594   ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL));			\
1595   fputc ('-', FILE);							\
1596   assemble_name (FILE, label);						\
1597   fputc ('\n', FILE);							\
1598 } while (0)
1599 
1600 /* This is what to output before and after case-vector (both
1601    relative and absolute).  If .subsection -1 works, we put case-vectors
1602    at the beginning of the current section.  */
1603 
1604 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1605 
1606 #define ASM_OUTPUT_ADDR_VEC_START(FILE)					\
1607   fprintf(FILE, "\t.subsection\t-1\n")
1608 
1609 #define ASM_OUTPUT_ADDR_VEC_END(FILE)					\
1610   fprintf(FILE, "\t.previous\n")
1611 
1612 #endif
1613 
1614 /* This is how to output an assembler line
1615    that says to advance the location counter
1616    to a multiple of 2**LOG bytes.  */
1617 
1618 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1619   if ((LOG) != 0)			\
1620     fprintf (FILE, "\t.align %d\n", (1 << (LOG)))
1621 
1622 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1623   fprintf (FILE, "\t.skip " HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1624 
1625 /* This says how to output an assembler line
1626    to define a global common symbol.  */
1627 
1628 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1629 ( fputs ("\t.common ", (FILE)),		\
1630   assemble_name ((FILE), (NAME)),		\
1631   fprintf ((FILE), "," HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1632 
1633 /* This says how to output an assembler line to define a local common
1634    symbol.  */
1635 
1636 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)		\
1637 ( fputs ("\t.reserve ", (FILE)),					\
1638   assemble_name ((FILE), (NAME)),					\
1639   fprintf ((FILE), "," HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n",	\
1640 	   (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1641 
1642 /* A C statement (sans semicolon) to output to the stdio stream
1643    FILE the assembler definition of uninitialized global DECL named
1644    NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1645    Try to use asm_output_aligned_bss to implement this macro.  */
1646 
1647 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)	\
1648   do {								\
1649     ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN);		\
1650   } while (0)
1651 
1652 /* Output #ident as a .ident.  */
1653 
1654 #undef TARGET_ASM_OUTPUT_IDENT
1655 #define TARGET_ASM_OUTPUT_IDENT default_asm_output_ident_directive
1656 
1657 /* Prettify the assembly.  */
1658 
1659 extern int sparc_indent_opcode;
1660 
1661 #define ASM_OUTPUT_OPCODE(FILE, PTR)	\
1662   do {					\
1663     if (sparc_indent_opcode)		\
1664       {					\
1665 	putc (' ', FILE);		\
1666 	sparc_indent_opcode = 0;	\
1667       }					\
1668   } while (0)
1669 
1670 /* TLS support defaulting to original Sun flavor.  GNU extensions
1671    must be activated in separate configuration files.  */
1672 #ifdef HAVE_AS_TLS
1673 #define TARGET_TLS 1
1674 #else
1675 #define TARGET_TLS 0
1676 #endif
1677 
1678 #define TARGET_SUN_TLS TARGET_TLS
1679 #define TARGET_GNU_TLS 0
1680 
1681 #ifdef HAVE_AS_FMAF_HPC_VIS3
1682 #define AS_NIAGARA3_FLAG "d"
1683 #else
1684 #define AS_NIAGARA3_FLAG "b"
1685 #endif
1686 
1687 #ifdef HAVE_AS_SPARC4
1688 #define AS_NIAGARA4_FLAG "-xarch=sparc4"
1689 #else
1690 #define AS_NIAGARA4_FLAG "-Av9" AS_NIAGARA3_FLAG
1691 #endif
1692 
1693 #ifdef HAVE_AS_SPARC5_VIS4
1694 #define AS_NIAGARA7_FLAG "-xarch=sparc5"
1695 #else
1696 #define AS_NIAGARA7_FLAG AS_NIAGARA4_FLAG
1697 #endif
1698 
1699 #ifdef HAVE_AS_SPARC6
1700 #define AS_M8_FLAG "-xarch=sparc6"
1701 #else
1702 #define AS_M8_FLAG AS_NIAGARA7_FLAG
1703 #endif
1704 
1705 #ifdef HAVE_AS_LEON
1706 #define AS_LEON_FLAG "-Aleon"
1707 #define AS_LEONV7_FLAG "-Aleon"
1708 #else
1709 #define AS_LEON_FLAG "-Av8"
1710 #define AS_LEONV7_FLAG "-Av7"
1711 #endif
1712 
1713 /* We use gcc _mcount for profiling.  */
1714 #define NO_PROFILE_COUNTERS 0
1715 
1716 /* Debug support */
1717 #define MASK_DEBUG_OPTIONS		0x01	/* debug option handling */
1718 #define MASK_DEBUG_ALL			MASK_DEBUG_OPTIONS
1719 
1720 #define TARGET_DEBUG_OPTIONS		(sparc_debug & MASK_DEBUG_OPTIONS)
1721 
1722 /* By default, use the weakest memory model for the cpu.  */
1723 #ifndef SUBTARGET_DEFAULT_MEMORY_MODEL
1724 #define SUBTARGET_DEFAULT_MEMORY_MODEL	SMM_DEFAULT
1725 #endif
1726 
1727 /* Define this to 1 if the FE_EXCEPT values defined in fenv.h start at 1.  */
1728 #define SPARC_LOW_FE_EXCEPT_VALUES 0
1729 
1730 #define TARGET_SUPPORTS_WIDE_INT 1
1731