1 /* RTL iterators
2    Copyright (C) 2014-2019 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This structure describes the subrtxes of an rtx as follows:
21 
22    - if the rtx has no subrtxes, START and COUNT are both 0.
23 
24    - if all the subrtxes of an rtx are stored in a contiguous block
25      of XEXPs ("e"s), START is the index of the first XEXP and COUNT
26      is the number of them.
27 
28    - otherwise START is arbitrary and COUNT is UCHAR_MAX.
29 
30    rtx_all_subrtx_bounds applies to all codes.  rtx_nonconst_subrtx_bounds
31    is like rtx_all_subrtx_bounds except that all constant rtxes are treated
32    as having no subrtxes.  */
33 struct rtx_subrtx_bound_info {
34   unsigned char start;
35   unsigned char count;
36 };
37 extern rtx_subrtx_bound_info rtx_all_subrtx_bounds[];
38 extern rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[];
39 
40 /* Return true if CODE has no subrtxes.  */
41 
42 static inline bool
leaf_code_p(enum rtx_code code)43 leaf_code_p (enum rtx_code code)
44 {
45   return rtx_all_subrtx_bounds[code].count == 0;
46 }
47 
48 /* Used to iterate over subrtxes of an rtx.  T abstracts the type of
49    access.  */
50 template <typename T>
51 class generic_subrtx_iterator
52 {
53   static const size_t LOCAL_ELEMS = 16;
54   typedef typename T::value_type value_type;
55   typedef typename T::rtx_type rtx_type;
56   typedef typename T::rtunion_type rtunion_type;
57 
58 public:
59   struct array_type
60   {
61     array_type ();
62     ~array_type ();
63     value_type stack[LOCAL_ELEMS];
64     vec <value_type, va_heap, vl_embed> *heap;
65   };
66   generic_subrtx_iterator (array_type &, value_type,
67 			   const rtx_subrtx_bound_info *);
68 
69   value_type operator * () const;
70   bool at_end () const;
71   void next ();
72   void skip_subrtxes ();
73   void substitute (value_type);
74 
75 private:
76   /* The bounds to use for iterating over subrtxes.  */
77   const rtx_subrtx_bound_info *m_bounds;
78 
79   /* The storage used for the worklist.  */
80   array_type &m_array;
81 
82   /* The current rtx.  */
83   value_type m_current;
84 
85   /* The base of the current worklist.  */
86   value_type *m_base;
87 
88   /* The number of subrtxes in M_BASE.  */
89   size_t m_end;
90 
91   /* The following booleans shouldn't end up in registers or memory
92      but just direct control flow.  */
93 
94   /* True if the iteration is over.  */
95   bool m_done;
96 
97   /* True if we should skip the subrtxes of M_CURRENT.  */
98   bool m_skip;
99 
100   /* True if M_CURRENT has been replaced with a different rtx.  */
101   bool m_substitute;
102 
103   static void free_array (array_type &);
104   static size_t add_subrtxes_to_queue (array_type &, value_type *, size_t,
105 				       rtx_type);
106   static value_type *add_single_to_queue (array_type &, value_type *, size_t,
107 					  value_type);
108 };
109 
110 template <typename T>
array_type()111 inline generic_subrtx_iterator <T>::array_type::array_type () : heap (0) {}
112 
113 template <typename T>
~array_type()114 inline generic_subrtx_iterator <T>::array_type::~array_type ()
115 {
116   if (__builtin_expect (heap != 0, false))
117     free_array (*this);
118 }
119 
120 /* Iterate over X and its subrtxes, in arbitrary order.  Use ARRAY to
121    store the worklist.  We use an external array in order to avoid
122    capturing the fields of this structure when taking the address of
123    the array.  Use BOUNDS to find the bounds of simple "e"-string codes.  */
124 
125 template <typename T>
126 inline generic_subrtx_iterator <T>::
generic_subrtx_iterator(array_type & array,value_type x,const rtx_subrtx_bound_info * bounds)127 generic_subrtx_iterator (array_type &array, value_type x,
128 			 const rtx_subrtx_bound_info *bounds)
129   : m_bounds (bounds),
130     m_array (array),
131     m_current (x),
132     m_base (m_array.stack),
133     m_end (0),
134     m_done (false),
135     m_skip (false),
136     m_substitute (false)
137 {
138 }
139 
140 /* Return the current subrtx.  */
141 
142 template <typename T>
143 inline typename T::value_type
144 generic_subrtx_iterator <T>::operator * () const
145 {
146   return m_current;
147 }
148 
149 /* Return true if the iteration has finished.  */
150 
151 template <typename T>
152 inline bool
at_end()153 generic_subrtx_iterator <T>::at_end () const
154 {
155   return m_done;
156 }
157 
158 /* Move on to the next subrtx.  */
159 
160 template <typename T>
161 inline void
next()162 generic_subrtx_iterator <T>::next ()
163 {
164   if (m_substitute)
165     {
166       m_substitute = false;
167       m_skip = false;
168       return;
169     }
170   if (!m_skip)
171     {
172       /* Add the subrtxes of M_CURRENT.  */
173       rtx_type x = T::get_rtx (m_current);
174       if (__builtin_expect (x != 0, true))
175 	{
176 	  enum rtx_code code = GET_CODE (x);
177 	  ssize_t count = m_bounds[code].count;
178 	  if (count > 0)
179 	    {
180 	      /* Handle the simple case of a single "e" block that is known
181 		 to fit into the current array.  */
182 	      if (__builtin_expect (m_end + count <= LOCAL_ELEMS + 1, true))
183 		{
184 		  /* Set M_CURRENT to the first subrtx and queue the rest.  */
185 		  ssize_t start = m_bounds[code].start;
186 		  rtunion_type *src = &x->u.fld[start];
187 		  if (__builtin_expect (count > 2, false))
188 		    m_base[m_end++] = T::get_value (src[2].rt_rtx);
189 		  if (count > 1)
190 		    m_base[m_end++] = T::get_value (src[1].rt_rtx);
191 		  m_current = T::get_value (src[0].rt_rtx);
192 		  return;
193 		}
194 	      /* Handle cases which aren't simple "e" sequences or where
195 		 the sequence might overrun M_BASE.  */
196 	      count = add_subrtxes_to_queue (m_array, m_base, m_end, x);
197 	      if (count > 0)
198 		{
199 		  m_end += count;
200 		  if (m_end > LOCAL_ELEMS)
201 		    m_base = m_array.heap->address ();
202 		  m_current = m_base[--m_end];
203 		  return;
204 		}
205 	    }
206 	}
207     }
208   else
209     m_skip = false;
210   if (m_end == 0)
211     m_done = true;
212   else
213     m_current = m_base[--m_end];
214 }
215 
216 /* Skip the subrtxes of the current rtx.  */
217 
218 template <typename T>
219 inline void
skip_subrtxes()220 generic_subrtx_iterator <T>::skip_subrtxes ()
221 {
222   m_skip = true;
223 }
224 
225 /* Ignore the subrtxes of the current rtx and look at X instead.  */
226 
227 template <typename T>
228 inline void
substitute(value_type x)229 generic_subrtx_iterator <T>::substitute (value_type x)
230 {
231   m_substitute = true;
232   m_current = x;
233 }
234 
235 /* Iterators for const_rtx.  */
236 struct const_rtx_accessor
237 {
238   typedef const_rtx value_type;
239   typedef const_rtx rtx_type;
240   typedef const rtunion rtunion_type;
get_rtxconst_rtx_accessor241   static rtx_type get_rtx (value_type x) { return x; }
get_valueconst_rtx_accessor242   static value_type get_value (rtx_type x) { return x; }
243 };
244 typedef generic_subrtx_iterator <const_rtx_accessor> subrtx_iterator;
245 
246 /* Iterators for non-constant rtx.  */
247 struct rtx_var_accessor
248 {
249   typedef rtx value_type;
250   typedef rtx rtx_type;
251   typedef rtunion rtunion_type;
get_rtxrtx_var_accessor252   static rtx_type get_rtx (value_type x) { return x; }
get_valuertx_var_accessor253   static value_type get_value (rtx_type x) { return x; }
254 };
255 typedef generic_subrtx_iterator <rtx_var_accessor> subrtx_var_iterator;
256 
257 /* Iterators for rtx *.  */
258 struct rtx_ptr_accessor
259 {
260   typedef rtx *value_type;
261   typedef rtx rtx_type;
262   typedef rtunion rtunion_type;
get_rtxrtx_ptr_accessor263   static rtx_type get_rtx (value_type ptr) { return *ptr; }
get_valuertx_ptr_accessor264   static value_type get_value (rtx_type &x) { return &x; }
265 };
266 typedef generic_subrtx_iterator <rtx_ptr_accessor> subrtx_ptr_iterator;
267 
268 #define ALL_BOUNDS rtx_all_subrtx_bounds
269 #define NONCONST_BOUNDS rtx_nonconst_subrtx_bounds
270 
271 /* Use ITER to iterate over const_rtx X and its recursive subrtxes,
272    using subrtx_iterator::array ARRAY as the storage for the worklist.
273    ARRAY can be reused for multiple consecutive iterations but shouldn't
274    be shared by two concurrent iterations.  TYPE is ALL if all subrtxes
275    are of interest or NONCONST if it is safe to ignore subrtxes of
276    constants.  */
277 #define FOR_EACH_SUBRTX(ITER, ARRAY, X, TYPE) \
278   for (subrtx_iterator ITER (ARRAY, X, TYPE##_BOUNDS); !ITER.at_end (); \
279        ITER.next ())
280 
281 /* Like FOR_EACH_SUBRTX, but iterate over subrtxes of an rtx X.  */
282 #define FOR_EACH_SUBRTX_VAR(ITER, ARRAY, X, TYPE) \
283   for (subrtx_var_iterator ITER (ARRAY, X, TYPE##_BOUNDS); !ITER.at_end (); \
284        ITER.next ())
285 
286 /* Like FOR_EACH_SUBRTX, but iterate over subrtx pointers of rtx pointer X.
287    For example, if X is &PATTERN (insn) and the pattern is a SET, iterate
288    over &PATTERN (insn), &SET_DEST (PATTERN (insn)), etc.  */
289 #define FOR_EACH_SUBRTX_PTR(ITER, ARRAY, X, TYPE) \
290   for (subrtx_ptr_iterator ITER (ARRAY, X, TYPE##_BOUNDS); !ITER.at_end (); \
291        ITER.next ())
292