1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package template
6
7import (
8	"bytes"
9	"fmt"
10	"io"
11	"reflect"
12	"runtime"
13	"sort"
14	"strings"
15	"text/template/parse"
16)
17
18// state represents the state of an execution. It's not part of the
19// template so that multiple executions of the same template
20// can execute in parallel.
21type state struct {
22	tmpl *Template
23	wr   io.Writer
24	node parse.Node // current node, for errors
25	vars []variable // push-down stack of variable values.
26}
27
28// variable holds the dynamic value of a variable such as $, $x etc.
29type variable struct {
30	name  string
31	value reflect.Value
32}
33
34// push pushes a new variable on the stack.
35func (s *state) push(name string, value reflect.Value) {
36	s.vars = append(s.vars, variable{name, value})
37}
38
39// mark returns the length of the variable stack.
40func (s *state) mark() int {
41	return len(s.vars)
42}
43
44// pop pops the variable stack up to the mark.
45func (s *state) pop(mark int) {
46	s.vars = s.vars[0:mark]
47}
48
49// setVar overwrites the top-nth variable on the stack. Used by range iterations.
50func (s *state) setVar(n int, value reflect.Value) {
51	s.vars[len(s.vars)-n].value = value
52}
53
54// varValue returns the value of the named variable.
55func (s *state) varValue(name string) reflect.Value {
56	for i := s.mark() - 1; i >= 0; i-- {
57		if s.vars[i].name == name {
58			return s.vars[i].value
59		}
60	}
61	s.errorf("undefined variable: %s", name)
62	return zero
63}
64
65var zero reflect.Value
66
67// at marks the state to be on node n, for error reporting.
68func (s *state) at(node parse.Node) {
69	s.node = node
70}
71
72// doublePercent returns the string with %'s replaced by %%, if necessary,
73// so it can be used safely inside a Printf format string.
74func doublePercent(str string) string {
75	if strings.Contains(str, "%") {
76		str = strings.Replace(str, "%", "%%", -1)
77	}
78	return str
79}
80
81// TODO: It would be nice if ExecError was more broken down, but
82// the way ErrorContext embeds the template name makes the
83// processing too clumsy.
84
85// ExecError is the custom error type returned when Execute has an
86// error evaluating its template. (If a write error occurs, the actual
87// error is returned; it will not be of type ExecError.)
88type ExecError struct {
89	Name string // Name of template.
90	Err  error  // Pre-formatted error.
91}
92
93func (e ExecError) Error() string {
94	return e.Err.Error()
95}
96
97// errorf records an ExecError and terminates processing.
98func (s *state) errorf(format string, args ...interface{}) {
99	name := doublePercent(s.tmpl.Name())
100	if s.node == nil {
101		format = fmt.Sprintf("template: %s: %s", name, format)
102	} else {
103		location, context := s.tmpl.ErrorContext(s.node)
104		format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format)
105	}
106	panic(ExecError{
107		Name: s.tmpl.Name(),
108		Err:  fmt.Errorf(format, args...),
109	})
110}
111
112// writeError is the wrapper type used internally when Execute has an
113// error writing to its output. We strip the wrapper in errRecover.
114// Note that this is not an implementation of error, so it cannot escape
115// from the package as an error value.
116type writeError struct {
117	Err error // Original error.
118}
119
120func (s *state) writeError(err error) {
121	panic(writeError{
122		Err: err,
123	})
124}
125
126// errRecover is the handler that turns panics into returns from the top
127// level of Parse.
128func errRecover(errp *error) {
129	e := recover()
130	if e != nil {
131		switch err := e.(type) {
132		case runtime.Error:
133			panic(e)
134		case writeError:
135			*errp = err.Err // Strip the wrapper.
136		case ExecError:
137			*errp = err // Keep the wrapper.
138		default:
139			panic(e)
140		}
141	}
142}
143
144// ExecuteTemplate applies the template associated with t that has the given name
145// to the specified data object and writes the output to wr.
146// If an error occurs executing the template or writing its output,
147// execution stops, but partial results may already have been written to
148// the output writer.
149// A template may be executed safely in parallel.
150func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error {
151	var tmpl *Template
152	if t.common != nil {
153		tmpl = t.tmpl[name]
154	}
155	if tmpl == nil {
156		return fmt.Errorf("template: no template %q associated with template %q", name, t.name)
157	}
158	return tmpl.Execute(wr, data)
159}
160
161// Execute applies a parsed template to the specified data object,
162// and writes the output to wr.
163// If an error occurs executing the template or writing its output,
164// execution stops, but partial results may already have been written to
165// the output writer.
166// A template may be executed safely in parallel.
167func (t *Template) Execute(wr io.Writer, data interface{}) (err error) {
168	defer errRecover(&err)
169	value := reflect.ValueOf(data)
170	state := &state{
171		tmpl: t,
172		wr:   wr,
173		vars: []variable{{"$", value}},
174	}
175	if t.Tree == nil || t.Root == nil {
176		state.errorf("%q is an incomplete or empty template%s", t.Name(), t.DefinedTemplates())
177	}
178	state.walk(value, t.Root)
179	return
180}
181
182// DefinedTemplates returns a string listing the defined templates,
183// prefixed by the string "; defined templates are: ". If there are none,
184// it returns the empty string. For generating an error message here
185// and in html/template.
186func (t *Template) DefinedTemplates() string {
187	if t.common == nil {
188		return ""
189	}
190	var b bytes.Buffer
191	for name, tmpl := range t.tmpl {
192		if tmpl.Tree == nil || tmpl.Root == nil {
193			continue
194		}
195		if b.Len() > 0 {
196			b.WriteString(", ")
197		}
198		fmt.Fprintf(&b, "%q", name)
199	}
200	var s string
201	if b.Len() > 0 {
202		s = "; defined templates are: " + b.String()
203	}
204	return s
205}
206
207// Walk functions step through the major pieces of the template structure,
208// generating output as they go.
209func (s *state) walk(dot reflect.Value, node parse.Node) {
210	s.at(node)
211	switch node := node.(type) {
212	case *parse.ActionNode:
213		// Do not pop variables so they persist until next end.
214		// Also, if the action declares variables, don't print the result.
215		val := s.evalPipeline(dot, node.Pipe)
216		if len(node.Pipe.Decl) == 0 {
217			s.printValue(node, val)
218		}
219	case *parse.IfNode:
220		s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList)
221	case *parse.ListNode:
222		for _, node := range node.Nodes {
223			s.walk(dot, node)
224		}
225	case *parse.RangeNode:
226		s.walkRange(dot, node)
227	case *parse.TemplateNode:
228		s.walkTemplate(dot, node)
229	case *parse.TextNode:
230		if _, err := s.wr.Write(node.Text); err != nil {
231			s.writeError(err)
232		}
233	case *parse.WithNode:
234		s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList)
235	default:
236		s.errorf("unknown node: %s", node)
237	}
238}
239
240// walkIfOrWith walks an 'if' or 'with' node. The two control structures
241// are identical in behavior except that 'with' sets dot.
242func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) {
243	defer s.pop(s.mark())
244	val := s.evalPipeline(dot, pipe)
245	truth, ok := isTrue(val)
246	if !ok {
247		s.errorf("if/with can't use %v", val)
248	}
249	if truth {
250		if typ == parse.NodeWith {
251			s.walk(val, list)
252		} else {
253			s.walk(dot, list)
254		}
255	} else if elseList != nil {
256		s.walk(dot, elseList)
257	}
258}
259
260// IsTrue reports whether the value is 'true', in the sense of not the zero of its type,
261// and whether the value has a meaningful truth value. This is the definition of
262// truth used by if and other such actions.
263func IsTrue(val interface{}) (truth, ok bool) {
264	return isTrue(reflect.ValueOf(val))
265}
266
267func isTrue(val reflect.Value) (truth, ok bool) {
268	if !val.IsValid() {
269		// Something like var x interface{}, never set. It's a form of nil.
270		return false, true
271	}
272	switch val.Kind() {
273	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
274		truth = val.Len() > 0
275	case reflect.Bool:
276		truth = val.Bool()
277	case reflect.Complex64, reflect.Complex128:
278		truth = val.Complex() != 0
279	case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface:
280		truth = !val.IsNil()
281	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
282		truth = val.Int() != 0
283	case reflect.Float32, reflect.Float64:
284		truth = val.Float() != 0
285	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
286		truth = val.Uint() != 0
287	case reflect.Struct:
288		truth = true // Struct values are always true.
289	default:
290		return
291	}
292	return truth, true
293}
294
295func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) {
296	s.at(r)
297	defer s.pop(s.mark())
298	val, _ := indirect(s.evalPipeline(dot, r.Pipe))
299	// mark top of stack before any variables in the body are pushed.
300	mark := s.mark()
301	oneIteration := func(index, elem reflect.Value) {
302		// Set top var (lexically the second if there are two) to the element.
303		if len(r.Pipe.Decl) > 0 {
304			s.setVar(1, elem)
305		}
306		// Set next var (lexically the first if there are two) to the index.
307		if len(r.Pipe.Decl) > 1 {
308			s.setVar(2, index)
309		}
310		s.walk(elem, r.List)
311		s.pop(mark)
312	}
313	switch val.Kind() {
314	case reflect.Array, reflect.Slice:
315		if val.Len() == 0 {
316			break
317		}
318		for i := 0; i < val.Len(); i++ {
319			oneIteration(reflect.ValueOf(i), val.Index(i))
320		}
321		return
322	case reflect.Map:
323		if val.Len() == 0 {
324			break
325		}
326		for _, key := range sortKeys(val.MapKeys()) {
327			oneIteration(key, val.MapIndex(key))
328		}
329		return
330	case reflect.Chan:
331		if val.IsNil() {
332			break
333		}
334		i := 0
335		for ; ; i++ {
336			elem, ok := val.Recv()
337			if !ok {
338				break
339			}
340			oneIteration(reflect.ValueOf(i), elem)
341		}
342		if i == 0 {
343			break
344		}
345		return
346	case reflect.Invalid:
347		break // An invalid value is likely a nil map, etc. and acts like an empty map.
348	default:
349		s.errorf("range can't iterate over %v", val)
350	}
351	if r.ElseList != nil {
352		s.walk(dot, r.ElseList)
353	}
354}
355
356func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) {
357	s.at(t)
358	tmpl := s.tmpl.tmpl[t.Name]
359	if tmpl == nil {
360		s.errorf("template %q not defined", t.Name)
361	}
362	// Variables declared by the pipeline persist.
363	dot = s.evalPipeline(dot, t.Pipe)
364	newState := *s
365	newState.tmpl = tmpl
366	// No dynamic scoping: template invocations inherit no variables.
367	newState.vars = []variable{{"$", dot}}
368	newState.walk(dot, tmpl.Root)
369}
370
371// Eval functions evaluate pipelines, commands, and their elements and extract
372// values from the data structure by examining fields, calling methods, and so on.
373// The printing of those values happens only through walk functions.
374
375// evalPipeline returns the value acquired by evaluating a pipeline. If the
376// pipeline has a variable declaration, the variable will be pushed on the
377// stack. Callers should therefore pop the stack after they are finished
378// executing commands depending on the pipeline value.
379func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) {
380	if pipe == nil {
381		return
382	}
383	s.at(pipe)
384	for _, cmd := range pipe.Cmds {
385		value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg.
386		// If the object has type interface{}, dig down one level to the thing inside.
387		if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
388			value = reflect.ValueOf(value.Interface()) // lovely!
389		}
390	}
391	for _, variable := range pipe.Decl {
392		s.push(variable.Ident[0], value)
393	}
394	return value
395}
396
397func (s *state) notAFunction(args []parse.Node, final reflect.Value) {
398	if len(args) > 1 || final.IsValid() {
399		s.errorf("can't give argument to non-function %s", args[0])
400	}
401}
402
403func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value {
404	firstWord := cmd.Args[0]
405	switch n := firstWord.(type) {
406	case *parse.FieldNode:
407		return s.evalFieldNode(dot, n, cmd.Args, final)
408	case *parse.ChainNode:
409		return s.evalChainNode(dot, n, cmd.Args, final)
410	case *parse.IdentifierNode:
411		// Must be a function.
412		return s.evalFunction(dot, n, cmd, cmd.Args, final)
413	case *parse.PipeNode:
414		// Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored.
415		return s.evalPipeline(dot, n)
416	case *parse.VariableNode:
417		return s.evalVariableNode(dot, n, cmd.Args, final)
418	}
419	s.at(firstWord)
420	s.notAFunction(cmd.Args, final)
421	switch word := firstWord.(type) {
422	case *parse.BoolNode:
423		return reflect.ValueOf(word.True)
424	case *parse.DotNode:
425		return dot
426	case *parse.NilNode:
427		s.errorf("nil is not a command")
428	case *parse.NumberNode:
429		return s.idealConstant(word)
430	case *parse.StringNode:
431		return reflect.ValueOf(word.Text)
432	}
433	s.errorf("can't evaluate command %q", firstWord)
434	panic("not reached")
435}
436
437// idealConstant is called to return the value of a number in a context where
438// we don't know the type. In that case, the syntax of the number tells us
439// its type, and we use Go rules to resolve.  Note there is no such thing as
440// a uint ideal constant in this situation - the value must be of int type.
441func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value {
442	// These are ideal constants but we don't know the type
443	// and we have no context.  (If it was a method argument,
444	// we'd know what we need.) The syntax guides us to some extent.
445	s.at(constant)
446	switch {
447	case constant.IsComplex:
448		return reflect.ValueOf(constant.Complex128) // incontrovertible.
449	case constant.IsFloat && !isHexConstant(constant.Text) && strings.IndexAny(constant.Text, ".eE") >= 0:
450		return reflect.ValueOf(constant.Float64)
451	case constant.IsInt:
452		n := int(constant.Int64)
453		if int64(n) != constant.Int64 {
454			s.errorf("%s overflows int", constant.Text)
455		}
456		return reflect.ValueOf(n)
457	case constant.IsUint:
458		s.errorf("%s overflows int", constant.Text)
459	}
460	return zero
461}
462
463func isHexConstant(s string) bool {
464	return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')
465}
466
467func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value {
468	s.at(field)
469	return s.evalFieldChain(dot, dot, field, field.Ident, args, final)
470}
471
472func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value {
473	s.at(chain)
474	if len(chain.Field) == 0 {
475		s.errorf("internal error: no fields in evalChainNode")
476	}
477	if chain.Node.Type() == parse.NodeNil {
478		s.errorf("indirection through explicit nil in %s", chain)
479	}
480	// (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields.
481	pipe := s.evalArg(dot, nil, chain.Node)
482	return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final)
483}
484
485func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value {
486	// $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields.
487	s.at(variable)
488	value := s.varValue(variable.Ident[0])
489	if len(variable.Ident) == 1 {
490		s.notAFunction(args, final)
491		return value
492	}
493	return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final)
494}
495
496// evalFieldChain evaluates .X.Y.Z possibly followed by arguments.
497// dot is the environment in which to evaluate arguments, while
498// receiver is the value being walked along the chain.
499func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value {
500	n := len(ident)
501	for i := 0; i < n-1; i++ {
502		receiver = s.evalField(dot, ident[i], node, nil, zero, receiver)
503	}
504	// Now if it's a method, it gets the arguments.
505	return s.evalField(dot, ident[n-1], node, args, final, receiver)
506}
507
508func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value {
509	s.at(node)
510	name := node.Ident
511	function, ok := findFunction(name, s.tmpl)
512	if !ok {
513		s.errorf("%q is not a defined function", name)
514	}
515	return s.evalCall(dot, function, cmd, name, args, final)
516}
517
518// evalField evaluates an expression like (.Field) or (.Field arg1 arg2).
519// The 'final' argument represents the return value from the preceding
520// value of the pipeline, if any.
521func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value {
522	if !receiver.IsValid() {
523		return zero
524	}
525	typ := receiver.Type()
526	receiver, isNil := indirect(receiver)
527	// Unless it's an interface, need to get to a value of type *T to guarantee
528	// we see all methods of T and *T.
529	ptr := receiver
530	if ptr.Kind() != reflect.Interface && ptr.CanAddr() {
531		ptr = ptr.Addr()
532	}
533	if method := ptr.MethodByName(fieldName); method.IsValid() {
534		return s.evalCall(dot, method, node, fieldName, args, final)
535	}
536	hasArgs := len(args) > 1 || final.IsValid()
537	// It's not a method; must be a field of a struct or an element of a map. The receiver must not be nil.
538	if isNil {
539		s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
540	}
541	switch receiver.Kind() {
542	case reflect.Struct:
543		tField, ok := receiver.Type().FieldByName(fieldName)
544		if ok {
545			field := receiver.FieldByIndex(tField.Index)
546			if tField.PkgPath != "" { // field is unexported
547				s.errorf("%s is an unexported field of struct type %s", fieldName, typ)
548			}
549			// If it's a function, we must call it.
550			if hasArgs {
551				s.errorf("%s has arguments but cannot be invoked as function", fieldName)
552			}
553			return field
554		}
555		s.errorf("%s is not a field of struct type %s", fieldName, typ)
556	case reflect.Map:
557		// If it's a map, attempt to use the field name as a key.
558		nameVal := reflect.ValueOf(fieldName)
559		if nameVal.Type().AssignableTo(receiver.Type().Key()) {
560			if hasArgs {
561				s.errorf("%s is not a method but has arguments", fieldName)
562			}
563			result := receiver.MapIndex(nameVal)
564			if !result.IsValid() {
565				switch s.tmpl.option.missingKey {
566				case mapInvalid:
567					// Just use the invalid value.
568				case mapZeroValue:
569					result = reflect.Zero(receiver.Type().Elem())
570				case mapError:
571					s.errorf("map has no entry for key %q", fieldName)
572				}
573			}
574			return result
575		}
576	}
577	s.errorf("can't evaluate field %s in type %s", fieldName, typ)
578	panic("not reached")
579}
580
581var (
582	errorType       = reflect.TypeOf((*error)(nil)).Elem()
583	fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
584)
585
586// evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so
587// it looks just like a function call.  The arg list, if non-nil, includes (in the manner of the shell), arg[0]
588// as the function itself.
589func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value {
590	if args != nil {
591		args = args[1:] // Zeroth arg is function name/node; not passed to function.
592	}
593	typ := fun.Type()
594	numIn := len(args)
595	if final.IsValid() {
596		numIn++
597	}
598	numFixed := len(args)
599	if typ.IsVariadic() {
600		numFixed = typ.NumIn() - 1 // last arg is the variadic one.
601		if numIn < numFixed {
602			s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
603		}
604	} else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() {
605		s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args))
606	}
607	if !goodFunc(typ) {
608		// TODO: This could still be a confusing error; maybe goodFunc should provide info.
609		s.errorf("can't call method/function %q with %d results", name, typ.NumOut())
610	}
611	// Build the arg list.
612	argv := make([]reflect.Value, numIn)
613	// Args must be evaluated. Fixed args first.
614	i := 0
615	for ; i < numFixed && i < len(args); i++ {
616		argv[i] = s.evalArg(dot, typ.In(i), args[i])
617	}
618	// Now the ... args.
619	if typ.IsVariadic() {
620		argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
621		for ; i < len(args); i++ {
622			argv[i] = s.evalArg(dot, argType, args[i])
623		}
624	}
625	// Add final value if necessary.
626	if final.IsValid() {
627		t := typ.In(typ.NumIn() - 1)
628		if typ.IsVariadic() {
629			if numIn-1 < numFixed {
630				// The added final argument corresponds to a fixed parameter of the function.
631				// Validate against the type of the actual parameter.
632				t = typ.In(numIn - 1)
633			} else {
634				// The added final argument corresponds to the variadic part.
635				// Validate against the type of the elements of the variadic slice.
636				t = t.Elem()
637			}
638		}
639		argv[i] = s.validateType(final, t)
640	}
641	result := fun.Call(argv)
642	// If we have an error that is not nil, stop execution and return that error to the caller.
643	if len(result) == 2 && !result[1].IsNil() {
644		s.at(node)
645		s.errorf("error calling %s: %s", name, result[1].Interface().(error))
646	}
647	return result[0]
648}
649
650// canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero.
651func canBeNil(typ reflect.Type) bool {
652	switch typ.Kind() {
653	case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
654		return true
655	}
656	return false
657}
658
659// validateType guarantees that the value is valid and assignable to the type.
660func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value {
661	if !value.IsValid() {
662		if typ == nil || canBeNil(typ) {
663			// An untyped nil interface{}. Accept as a proper nil value.
664			return reflect.Zero(typ)
665		}
666		s.errorf("invalid value; expected %s", typ)
667	}
668	if typ != nil && !value.Type().AssignableTo(typ) {
669		if value.Kind() == reflect.Interface && !value.IsNil() {
670			value = value.Elem()
671			if value.Type().AssignableTo(typ) {
672				return value
673			}
674			// fallthrough
675		}
676		// Does one dereference or indirection work? We could do more, as we
677		// do with method receivers, but that gets messy and method receivers
678		// are much more constrained, so it makes more sense there than here.
679		// Besides, one is almost always all you need.
680		switch {
681		case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ):
682			value = value.Elem()
683			if !value.IsValid() {
684				s.errorf("dereference of nil pointer of type %s", typ)
685			}
686		case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr():
687			value = value.Addr()
688		default:
689			s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
690		}
691	}
692	return value
693}
694
695func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value {
696	s.at(n)
697	switch arg := n.(type) {
698	case *parse.DotNode:
699		return s.validateType(dot, typ)
700	case *parse.NilNode:
701		if canBeNil(typ) {
702			return reflect.Zero(typ)
703		}
704		s.errorf("cannot assign nil to %s", typ)
705	case *parse.FieldNode:
706		return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ)
707	case *parse.VariableNode:
708		return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ)
709	case *parse.PipeNode:
710		return s.validateType(s.evalPipeline(dot, arg), typ)
711	case *parse.IdentifierNode:
712		return s.validateType(s.evalFunction(dot, arg, arg, nil, zero), typ)
713	case *parse.ChainNode:
714		return s.validateType(s.evalChainNode(dot, arg, nil, zero), typ)
715	}
716	switch typ.Kind() {
717	case reflect.Bool:
718		return s.evalBool(typ, n)
719	case reflect.Complex64, reflect.Complex128:
720		return s.evalComplex(typ, n)
721	case reflect.Float32, reflect.Float64:
722		return s.evalFloat(typ, n)
723	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
724		return s.evalInteger(typ, n)
725	case reflect.Interface:
726		if typ.NumMethod() == 0 {
727			return s.evalEmptyInterface(dot, n)
728		}
729	case reflect.String:
730		return s.evalString(typ, n)
731	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
732		return s.evalUnsignedInteger(typ, n)
733	}
734	s.errorf("can't handle %s for arg of type %s", n, typ)
735	panic("not reached")
736}
737
738func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value {
739	s.at(n)
740	if n, ok := n.(*parse.BoolNode); ok {
741		value := reflect.New(typ).Elem()
742		value.SetBool(n.True)
743		return value
744	}
745	s.errorf("expected bool; found %s", n)
746	panic("not reached")
747}
748
749func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value {
750	s.at(n)
751	if n, ok := n.(*parse.StringNode); ok {
752		value := reflect.New(typ).Elem()
753		value.SetString(n.Text)
754		return value
755	}
756	s.errorf("expected string; found %s", n)
757	panic("not reached")
758}
759
760func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value {
761	s.at(n)
762	if n, ok := n.(*parse.NumberNode); ok && n.IsInt {
763		value := reflect.New(typ).Elem()
764		value.SetInt(n.Int64)
765		return value
766	}
767	s.errorf("expected integer; found %s", n)
768	panic("not reached")
769}
770
771func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value {
772	s.at(n)
773	if n, ok := n.(*parse.NumberNode); ok && n.IsUint {
774		value := reflect.New(typ).Elem()
775		value.SetUint(n.Uint64)
776		return value
777	}
778	s.errorf("expected unsigned integer; found %s", n)
779	panic("not reached")
780}
781
782func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value {
783	s.at(n)
784	if n, ok := n.(*parse.NumberNode); ok && n.IsFloat {
785		value := reflect.New(typ).Elem()
786		value.SetFloat(n.Float64)
787		return value
788	}
789	s.errorf("expected float; found %s", n)
790	panic("not reached")
791}
792
793func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value {
794	if n, ok := n.(*parse.NumberNode); ok && n.IsComplex {
795		value := reflect.New(typ).Elem()
796		value.SetComplex(n.Complex128)
797		return value
798	}
799	s.errorf("expected complex; found %s", n)
800	panic("not reached")
801}
802
803func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value {
804	s.at(n)
805	switch n := n.(type) {
806	case *parse.BoolNode:
807		return reflect.ValueOf(n.True)
808	case *parse.DotNode:
809		return dot
810	case *parse.FieldNode:
811		return s.evalFieldNode(dot, n, nil, zero)
812	case *parse.IdentifierNode:
813		return s.evalFunction(dot, n, n, nil, zero)
814	case *parse.NilNode:
815		// NilNode is handled in evalArg, the only place that calls here.
816		s.errorf("evalEmptyInterface: nil (can't happen)")
817	case *parse.NumberNode:
818		return s.idealConstant(n)
819	case *parse.StringNode:
820		return reflect.ValueOf(n.Text)
821	case *parse.VariableNode:
822		return s.evalVariableNode(dot, n, nil, zero)
823	case *parse.PipeNode:
824		return s.evalPipeline(dot, n)
825	}
826	s.errorf("can't handle assignment of %s to empty interface argument", n)
827	panic("not reached")
828}
829
830// indirect returns the item at the end of indirection, and a bool to indicate if it's nil.
831func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
832	for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() {
833		if v.IsNil() {
834			return v, true
835		}
836	}
837	return v, false
838}
839
840// printValue writes the textual representation of the value to the output of
841// the template.
842func (s *state) printValue(n parse.Node, v reflect.Value) {
843	s.at(n)
844	iface, ok := printableValue(v)
845	if !ok {
846		s.errorf("can't print %s of type %s", n, v.Type())
847	}
848	_, err := fmt.Fprint(s.wr, iface)
849	if err != nil {
850		s.writeError(err)
851	}
852}
853
854// printableValue returns the, possibly indirected, interface value inside v that
855// is best for a call to formatted printer.
856func printableValue(v reflect.Value) (interface{}, bool) {
857	if v.Kind() == reflect.Ptr {
858		v, _ = indirect(v) // fmt.Fprint handles nil.
859	}
860	if !v.IsValid() {
861		return "<no value>", true
862	}
863
864	if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
865		if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) {
866			v = v.Addr()
867		} else {
868			switch v.Kind() {
869			case reflect.Chan, reflect.Func:
870				return nil, false
871			}
872		}
873	}
874	return v.Interface(), true
875}
876
877// Types to help sort the keys in a map for reproducible output.
878
879type rvs []reflect.Value
880
881func (x rvs) Len() int      { return len(x) }
882func (x rvs) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
883
884type rvInts struct{ rvs }
885
886func (x rvInts) Less(i, j int) bool { return x.rvs[i].Int() < x.rvs[j].Int() }
887
888type rvUints struct{ rvs }
889
890func (x rvUints) Less(i, j int) bool { return x.rvs[i].Uint() < x.rvs[j].Uint() }
891
892type rvFloats struct{ rvs }
893
894func (x rvFloats) Less(i, j int) bool { return x.rvs[i].Float() < x.rvs[j].Float() }
895
896type rvStrings struct{ rvs }
897
898func (x rvStrings) Less(i, j int) bool { return x.rvs[i].String() < x.rvs[j].String() }
899
900// sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys.
901func sortKeys(v []reflect.Value) []reflect.Value {
902	if len(v) <= 1 {
903		return v
904	}
905	switch v[0].Kind() {
906	case reflect.Float32, reflect.Float64:
907		sort.Sort(rvFloats{v})
908	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
909		sort.Sort(rvInts{v})
910	case reflect.String:
911		sort.Sort(rvStrings{v})
912	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
913		sort.Sort(rvUints{v})
914	}
915	return v
916}
917