1 /* ColorLookUpTable.java -- ICC v2 CLUT
2    Copyright (C) 2004 Free Software Foundation
3 
4 This file is part of GNU Classpath.
5 
6 GNU Classpath is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10 
11 GNU Classpath is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GNU Classpath; see the file COPYING.  If not, write to the
18 Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301 USA.
20 
21 Linking this library statically or dynamically with other modules is
22 making a combined work based on this library.  Thus, the terms and
23 conditions of the GNU General Public License cover the whole
24 combination.
25 
26 As a special exception, the copyright holders of this library give you
27 permission to link this library with independent modules to produce an
28 executable, regardless of the license terms of these independent
29 modules, and to copy and distribute the resulting executable under
30 terms of your choice, provided that you also meet, for each linked
31 independent module, the terms and conditions of the license of that
32 module.  An independent module is a module which is not derived from
33 or based on this library.  If you modify this library, you may extend
34 this exception to your version of the library, but you are not
35 obligated to do so.  If you do not wish to do so, delete this
36 exception statement from your version. */
37 
38 package gnu.java.awt.color;
39 
40 import java.awt.color.ColorSpace;
41 import java.awt.color.ICC_Profile;
42 import java.nio.ByteBuffer;
43 
44 
45 /**
46  * ColorLookUpTable handles color lookups through a color lookup table,
47  * as defined in the ICC specification.
48  * Both 'mft2' and 'mft1' (8 and 16-bit) type CLUTs are handled.
49  *
50  * This will have to be updated later for ICC 4.0.0
51  *
52  * @author Sven de Marothy
53  */
54 public class ColorLookUpTable
55 {
56   /**
57    * CIE 1931 D50 white point (in Lab coordinates)
58    */
59   private static float[] D50 = { 0.96422f, 1.00f, 0.82521f };
60 
61   /**
62    * Number of input/output channels
63    */
64   int nIn;
65 
66   /**
67    * Number of input/output channels
68    */
69   int nOut;
70   int nInTableEntries; // Number of input table entries
71   int nOutTableEntries; // Number of output table entries
72   int gridpoints; // Number of gridpoints
73   int nClut; // This is nOut*(gridpoints**nIn)
74   double[][] inTable; // 1D input table ([channel][table])
75   short[][] outTable; // 1D input table ([channel][table])
76   double[] clut; // The color lookup table
77   float[][] inMatrix; // input matrix (XYZ only)
78   boolean useMatrix; // Whether to use the matrix or not.
79   int[] multiplier;
80   int[] offsets; // Hypercube offsets
81   boolean inputLab; // Set if the CLUT input CS is Lab
82   boolean outputLab; // Set if the CLUT output CS is Lab
83 
84   /**
85    * Constructor
86    * Requires a profile file to get the CLUT from and the tag of the
87    * CLUT to create. (icSigXToYZTag where X,Y = [A | B], Z = [0,1,2])
88    */
ColorLookUpTable(ICC_Profile profile, int tag)89   public ColorLookUpTable(ICC_Profile profile, int tag)
90   {
91     useMatrix = false;
92 
93     switch (tag)
94       {
95       case ICC_Profile.icSigAToB0Tag:
96       case ICC_Profile.icSigAToB1Tag:
97       case ICC_Profile.icSigAToB2Tag:
98         if (profile.getColorSpaceType() == ColorSpace.TYPE_XYZ)
99           useMatrix = true;
100         inputLab = false;
101         outputLab = (profile.getPCSType() == ColorSpace.TYPE_Lab);
102         break;
103       case ICC_Profile.icSigBToA0Tag:
104       case ICC_Profile.icSigBToA1Tag:
105       case ICC_Profile.icSigBToA2Tag:
106         if (profile.getPCSType() == ColorSpace.TYPE_XYZ)
107           useMatrix = true;
108         inputLab = (profile.getPCSType() == ColorSpace.TYPE_Lab);
109         outputLab = false;
110         break;
111       default:
112         throw new IllegalArgumentException("Not a clut-type tag.");
113       }
114 
115     byte[] data = profile.getData(tag);
116     if (data == null)
117       throw new IllegalArgumentException("Unsuitable profile, does not contain a CLUT.");
118 
119     // check 'mft'
120     if (data[0] != 0x6d || data[1] != 0x66 || data[2] != 0x74)
121       throw new IllegalArgumentException("Unsuitable profile, invalid CLUT data.");
122 
123     if (data[3] == 0x32)
124       readClut16(data);
125     else if (data[3] == 0x31)
126       readClut8(data);
127     else
128       throw new IllegalArgumentException("Unknown/invalid CLUT type.");
129   }
130 
131   /**
132    * Loads a 16-bit CLUT into our data structures
133    */
readClut16(byte[] data)134   private void readClut16(byte[] data)
135   {
136     ByteBuffer buf = ByteBuffer.wrap(data);
137 
138     nIn = data[8] & (0xFF);
139     nOut = data[9] & (0xFF);
140     nInTableEntries = buf.getShort(48);
141     nOutTableEntries = buf.getShort(50);
142     gridpoints = data[10] & (0xFF);
143 
144     inMatrix = new float[3][3];
145     for (int i = 0; i < 3; i++)
146       for (int j = 0; j < 3; j++)
147         inMatrix[i][j] = ((float) (buf.getInt(12 + (i * 3 + j) * 4))) / 65536.0f;
148 
149     inTable = new double[nIn][nInTableEntries];
150     for (int channel = 0; channel < nIn; channel++)
151       for (int i = 0; i < nInTableEntries; i++)
152         inTable[channel][i] = (double) ((int) buf.getShort(52
153                                                            + (channel * nInTableEntries
154                                                            + i) * 2)
155                               & (0xFFFF)) / 65536.0;
156 
157     nClut = nOut;
158     multiplier = new int[nIn];
159     multiplier[nIn - 1] = nOut;
160     for (int i = 0; i < nIn; i++)
161       {
162         nClut *= gridpoints;
163         if (i > 0)
164           multiplier[nIn - i - 1] = multiplier[nIn - i] * gridpoints;
165       }
166 
167     int clutOffset = 52 + nIn * nInTableEntries * 2;
168     clut = new double[nClut];
169     for (int i = 0; i < nClut; i++)
170       clut[i] = (double) ((int) buf.getShort(clutOffset + i * 2) & (0xFFFF)) / 65536.0;
171 
172     outTable = new short[nOut][nOutTableEntries];
173     for (int channel = 0; channel < nOut; channel++)
174       for (int i = 0; i < nOutTableEntries; i++)
175         outTable[channel][i] = buf.getShort(clutOffset
176                                             + (nClut
177                                             + channel * nOutTableEntries + i) * 2);
178 
179     // calculate the hypercube corner offsets
180     offsets = new int[(1 << nIn)];
181     offsets[0] = 0;
182     for (int j = 0; j < nIn; j++)
183       {
184         int factor = 1 << j;
185         for (int i = 0; i < factor; i++)
186           offsets[factor + i] = offsets[i] + multiplier[j];
187       }
188   }
189 
190   /**
191    * Loads a 8-bit CLUT into our data structures.
192    */
readClut8(byte[] data)193   private void readClut8(byte[] data)
194   {
195     ByteBuffer buf = ByteBuffer.wrap(data);
196 
197     nIn = (data[8] & (0xFF));
198     nOut = (data[9] & (0xFF));
199     nInTableEntries = 256; // always 256
200     nOutTableEntries = 256; // always 256
201     gridpoints = (data[10] & (0xFF));
202 
203     inMatrix = new float[3][3];
204     for (int i = 0; i < 3; i++)
205       for (int j = 0; j < 3; j++)
206         inMatrix[i][j] = ((float) (buf.getInt(12 + (i * 3 + j) * 4))) / 65536.0f;
207 
208     inTable = new double[nIn][nInTableEntries];
209     for (int channel = 0; channel < nIn; channel++)
210       for (int i = 0; i < nInTableEntries; i++)
211         inTable[channel][i] = (double) ((int) buf.get(48
212                                                       + (channel * nInTableEntries
213                                                       + i)) & (0xFF)) / 255.0;
214 
215     nClut = nOut;
216     multiplier = new int[nIn];
217     multiplier[nIn - 1] = nOut;
218     for (int i = 0; i < nIn; i++)
219       {
220         nClut *= gridpoints;
221         if (i > 0)
222           multiplier[nIn - i - 1] = multiplier[nIn - i] * gridpoints;
223       }
224 
225     int clutOffset = 48 + nIn * nInTableEntries;
226     clut = new double[nClut];
227     for (int i = 0; i < nClut; i++)
228       clut[i] = (double) ((int) buf.get(clutOffset + i) & (0xFF)) / 255.0;
229 
230     outTable = new short[nOut][nOutTableEntries];
231     for (int channel = 0; channel < nOut; channel++)
232       for (int i = 0; i < nOutTableEntries; i++)
233         outTable[channel][i] = (short) (buf.get(clutOffset + nClut
234                                                 + channel * nOutTableEntries
235                                                 + i) * 257);
236 
237     // calculate the hypercube corner offsets
238     offsets = new int[(1 << nIn)];
239     offsets[0] = 0;
240     for (int j = 0; j < nIn; j++)
241       {
242         int factor = 1 << j;
243         for (int i = 0; i < factor; i++)
244           offsets[factor + i] = offsets[i] + multiplier[j];
245       }
246   }
247 
248   /**
249    * Performs a lookup through the Color LookUp Table.
250    * If the CLUT tag type is AtoB the conversion will be from the device
251    * color space to the PCS, BtoA type goes in the opposite direction.
252    *
253    * For convenience, the PCS values for input or output will always be
254    * CIE XYZ (D50), if the actual PCS is Lab, the values will be converted.
255    *
256    * N-dimensional linear interpolation is used.
257    */
lookup(float[] in)258   float[] lookup(float[] in)
259   {
260     float[] in2 = new float[in.length];
261     if (useMatrix)
262       {
263         for (int i = 0; i < 3; i++)
264           in2[i] = in[0] * inMatrix[i][0] + in[1] * inMatrix[i][1]
265                    + in[2] * inMatrix[i][2];
266       }
267     else if (inputLab)
268       in2 = XYZtoLab(in);
269     else
270       System.arraycopy(in, 0, in2, 0, in.length);
271 
272     // input table
273     for (int i = 0; i < nIn; i++)
274       {
275         int index = (int) Math.floor(in2[i] * (double) (nInTableEntries - 1)); // floor in
276 
277         // clip values.
278         if (index >= nInTableEntries - 1)
279           in2[i] = (float) inTable[i][nInTableEntries - 1];
280         else if (index < 0)
281           in2[i] = (float) inTable[i][0];
282         else
283           {
284             // linear interpolation
285             double alpha = in2[i] * ((double) nInTableEntries - 1.0) - index;
286             in2[i] = (float) (inTable[i][index] * (1 - alpha)
287                      + inTable[i][index + 1] * alpha);
288           }
289       }
290 
291     // CLUT lookup
292     double[] output2 = new double[nOut];
293     double[] weights = new double[(1 << nIn)];
294     double[] clutalpha = new double[nIn]; // interpolation values
295     int offset = 0; // = gp
296     for (int i = 0; i < nIn; i++)
297       {
298         int index = (int) Math.floor(in2[i] * ((double) gridpoints - 1.0));
299         double alpha = in2[i] * ((double) gridpoints - 1.0) - (double) index;
300 
301         // clip values.
302         if (index >= gridpoints - 1)
303           {
304             index = gridpoints - 1;
305             alpha = 1.0;
306           }
307         else if (index < 0)
308           index = 0;
309         clutalpha[i] = alpha;
310         offset += index * multiplier[i];
311       }
312 
313     // Calculate interpolation weights
314     weights[0] = 1.0;
315     for (int j = 0; j < nIn; j++)
316       {
317         int factor = 1 << j;
318         for (int i = 0; i < factor; i++)
319           {
320             weights[factor + i] = weights[i] * clutalpha[j];
321             weights[i] *= (1.0 - clutalpha[j]);
322           }
323       }
324 
325     for (int i = 0; i < nOut; i++)
326       output2[i] = weights[0] * clut[offset + i];
327 
328     for (int i = 1; i < (1 << nIn); i++)
329       {
330         int offset2 = offset + offsets[i];
331         for (int f = 0; f < nOut; f++)
332           output2[f] += weights[i] * clut[offset2 + f];
333       }
334 
335     // output table
336     float[] output = new float[nOut];
337     for (int i = 0; i < nOut; i++)
338       {
339         int index = (int) Math.floor(output2[i] * ((double) nOutTableEntries
340                                      - 1.0));
341 
342         // clip values.
343         if (index >= nOutTableEntries - 1)
344           output[i] = outTable[i][nOutTableEntries - 1];
345         else if (index < 0)
346           output[i] = outTable[i][0];
347         else
348           {
349             // linear interpolation
350             double a = output2[i] * ((double) nOutTableEntries - 1.0)
351                        - (double) index;
352             output[i] = (float) ((double) ((int) outTable[i][index] & (0xFFFF)) * (1
353                         - a)
354                         + (double) ((int) outTable[i][index + 1] & (0xFFFF)) * a) / 65536f;
355           }
356       }
357 
358     if (outputLab)
359       return LabtoXYZ(output);
360     return output;
361   }
362 
363   /**
364    * Converts CIE Lab coordinates to (D50) XYZ ones.
365    */
LabtoXYZ(float[] in)366   private float[] LabtoXYZ(float[] in)
367   {
368     // Convert from byte-packed format to a
369     // more convenient one (actual Lab values)
370     // (See ICC spec for details)
371     // factor is 100 * 65536 / 65280
372     in[0] = (float) (100.392156862745 * in[0]);
373     in[1] = (in[1] * 256.0f) - 128.0f;
374     in[2] = (in[2] * 256.0f) - 128.0f;
375 
376     float[] out = new float[3];
377 
378     out[1] = (in[0] + 16.0f) / 116.0f;
379     out[0] = in[1] / 500.0f + out[1];
380     out[2] = out[1] - in[2] / 200.0f;
381 
382     for (int i = 0; i < 3; i++)
383       {
384         double exp = out[i] * out[i] * out[i];
385         if (exp <= 0.008856)
386           out[i] = (out[i] - 16.0f / 116.0f) / 7.787f;
387         else
388           out[i] = (float) exp;
389         out[i] = D50[i] * out[i];
390       }
391     return out;
392   }
393 
394   /**
395    * Converts CIE XYZ coordinates to Lab ones.
396    */
XYZtoLab(float[] in)397   private float[] XYZtoLab(float[] in)
398   {
399     float[] temp = new float[3];
400 
401     for (int i = 0; i < 3; i++)
402       {
403         temp[i] = in[i] / D50[i];
404 
405         if (temp[i] <= 0.008856f)
406           temp[i] = (7.7870689f * temp[i]) + (16f / 116.0f);
407         else
408           temp[i] = (float) Math.exp((1.0 / 3.0) * Math.log(temp[i]));
409       }
410 
411     float[] out = new float[3];
412     out[0] = (116.0f * temp[1]) - 16f;
413     out[1] = 500.0f * (temp[0] - temp[1]);
414     out[2] = 200.0f * (temp[1] - temp[2]);
415 
416     // Normalize to packed format
417     out[0] = (float) (out[0] / 100.392156862745);
418     out[1] = (out[1] + 128f) / 256f;
419     out[2] = (out[2] + 128f) / 256f;
420     for (int i = 0; i < 3; i++)
421       {
422         if (out[i] < 0f)
423           out[i] = 0f;
424         if (out[i] > 1f)
425           out[i] = 1f;
426       }
427     return out;
428   }
429 }
430