1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package x509
6
7import (
8	"bytes"
9	"errors"
10	"fmt"
11	"net"
12	"net/url"
13	"reflect"
14	"runtime"
15	"strings"
16	"time"
17	"unicode/utf8"
18)
19
20type InvalidReason int
21
22const (
23	// NotAuthorizedToSign results when a certificate is signed by another
24	// which isn't marked as a CA certificate.
25	NotAuthorizedToSign InvalidReason = iota
26	// Expired results when a certificate has expired, based on the time
27	// given in the VerifyOptions.
28	Expired
29	// CANotAuthorizedForThisName results when an intermediate or root
30	// certificate has a name constraint which doesn't permit a DNS or
31	// other name (including IP address) in the leaf certificate.
32	CANotAuthorizedForThisName
33	// TooManyIntermediates results when a path length constraint is
34	// violated.
35	TooManyIntermediates
36	// IncompatibleUsage results when the certificate's key usage indicates
37	// that it may only be used for a different purpose.
38	IncompatibleUsage
39	// NameMismatch results when the subject name of a parent certificate
40	// does not match the issuer name in the child.
41	NameMismatch
42	// NameConstraintsWithoutSANs is a legacy error and is no longer returned.
43	NameConstraintsWithoutSANs
44	// UnconstrainedName results when a CA certificate contains permitted
45	// name constraints, but leaf certificate contains a name of an
46	// unsupported or unconstrained type.
47	UnconstrainedName
48	// TooManyConstraints results when the number of comparison operations
49	// needed to check a certificate exceeds the limit set by
50	// VerifyOptions.MaxConstraintComparisions. This limit exists to
51	// prevent pathological certificates can consuming excessive amounts of
52	// CPU time to verify.
53	TooManyConstraints
54	// CANotAuthorizedForExtKeyUsage results when an intermediate or root
55	// certificate does not permit a requested extended key usage.
56	CANotAuthorizedForExtKeyUsage
57)
58
59// CertificateInvalidError results when an odd error occurs. Users of this
60// library probably want to handle all these errors uniformly.
61type CertificateInvalidError struct {
62	Cert   *Certificate
63	Reason InvalidReason
64	Detail string
65}
66
67func (e CertificateInvalidError) Error() string {
68	switch e.Reason {
69	case NotAuthorizedToSign:
70		return "x509: certificate is not authorized to sign other certificates"
71	case Expired:
72		return "x509: certificate has expired or is not yet valid: " + e.Detail
73	case CANotAuthorizedForThisName:
74		return "x509: a root or intermediate certificate is not authorized to sign for this name: " + e.Detail
75	case CANotAuthorizedForExtKeyUsage:
76		return "x509: a root or intermediate certificate is not authorized for an extended key usage: " + e.Detail
77	case TooManyIntermediates:
78		return "x509: too many intermediates for path length constraint"
79	case IncompatibleUsage:
80		return "x509: certificate specifies an incompatible key usage"
81	case NameMismatch:
82		return "x509: issuer name does not match subject from issuing certificate"
83	case NameConstraintsWithoutSANs:
84		return "x509: issuer has name constraints but leaf doesn't have a SAN extension"
85	case UnconstrainedName:
86		return "x509: issuer has name constraints but leaf contains unknown or unconstrained name: " + e.Detail
87	}
88	return "x509: unknown error"
89}
90
91// HostnameError results when the set of authorized names doesn't match the
92// requested name.
93type HostnameError struct {
94	Certificate *Certificate
95	Host        string
96}
97
98func (h HostnameError) Error() string {
99	c := h.Certificate
100
101	if !c.hasSANExtension() && matchHostnames(c.Subject.CommonName, h.Host) {
102		return "x509: certificate relies on legacy Common Name field, use SANs instead"
103	}
104
105	var valid string
106	if ip := net.ParseIP(h.Host); ip != nil {
107		// Trying to validate an IP
108		if len(c.IPAddresses) == 0 {
109			return "x509: cannot validate certificate for " + h.Host + " because it doesn't contain any IP SANs"
110		}
111		for _, san := range c.IPAddresses {
112			if len(valid) > 0 {
113				valid += ", "
114			}
115			valid += san.String()
116		}
117	} else {
118		valid = strings.Join(c.DNSNames, ", ")
119	}
120
121	if len(valid) == 0 {
122		return "x509: certificate is not valid for any names, but wanted to match " + h.Host
123	}
124	return "x509: certificate is valid for " + valid + ", not " + h.Host
125}
126
127// UnknownAuthorityError results when the certificate issuer is unknown
128type UnknownAuthorityError struct {
129	Cert *Certificate
130	// hintErr contains an error that may be helpful in determining why an
131	// authority wasn't found.
132	hintErr error
133	// hintCert contains a possible authority certificate that was rejected
134	// because of the error in hintErr.
135	hintCert *Certificate
136}
137
138func (e UnknownAuthorityError) Error() string {
139	s := "x509: certificate signed by unknown authority"
140	if e.hintErr != nil {
141		certName := e.hintCert.Subject.CommonName
142		if len(certName) == 0 {
143			if len(e.hintCert.Subject.Organization) > 0 {
144				certName = e.hintCert.Subject.Organization[0]
145			} else {
146				certName = "serial:" + e.hintCert.SerialNumber.String()
147			}
148		}
149		s += fmt.Sprintf(" (possibly because of %q while trying to verify candidate authority certificate %q)", e.hintErr, certName)
150	}
151	return s
152}
153
154// SystemRootsError results when we fail to load the system root certificates.
155type SystemRootsError struct {
156	Err error
157}
158
159func (se SystemRootsError) Error() string {
160	msg := "x509: failed to load system roots and no roots provided"
161	if se.Err != nil {
162		return msg + "; " + se.Err.Error()
163	}
164	return msg
165}
166
167func (se SystemRootsError) Unwrap() error { return se.Err }
168
169// errNotParsed is returned when a certificate without ASN.1 contents is
170// verified. Platform-specific verification needs the ASN.1 contents.
171var errNotParsed = errors.New("x509: missing ASN.1 contents; use ParseCertificate")
172
173// VerifyOptions contains parameters for Certificate.Verify.
174type VerifyOptions struct {
175	// DNSName, if set, is checked against the leaf certificate with
176	// Certificate.VerifyHostname or the platform verifier.
177	DNSName string
178
179	// Intermediates is an optional pool of certificates that are not trust
180	// anchors, but can be used to form a chain from the leaf certificate to a
181	// root certificate.
182	Intermediates *CertPool
183	// Roots is the set of trusted root certificates the leaf certificate needs
184	// to chain up to. If nil, the system roots or the platform verifier are used.
185	Roots *CertPool
186
187	// CurrentTime is used to check the validity of all certificates in the
188	// chain. If zero, the current time is used.
189	CurrentTime time.Time
190
191	// KeyUsages specifies which Extended Key Usage values are acceptable. A
192	// chain is accepted if it allows any of the listed values. An empty list
193	// means ExtKeyUsageServerAuth. To accept any key usage, include ExtKeyUsageAny.
194	KeyUsages []ExtKeyUsage
195
196	// MaxConstraintComparisions is the maximum number of comparisons to
197	// perform when checking a given certificate's name constraints. If
198	// zero, a sensible default is used. This limit prevents pathological
199	// certificates from consuming excessive amounts of CPU time when
200	// validating. It does not apply to the platform verifier.
201	MaxConstraintComparisions int
202}
203
204const (
205	leafCertificate = iota
206	intermediateCertificate
207	rootCertificate
208)
209
210// rfc2821Mailbox represents a “mailbox” (which is an email address to most
211// people) by breaking it into the “local” (i.e. before the '@') and “domain”
212// parts.
213type rfc2821Mailbox struct {
214	local, domain string
215}
216
217// parseRFC2821Mailbox parses an email address into local and domain parts,
218// based on the ABNF for a “Mailbox” from RFC 2821. According to RFC 5280,
219// Section 4.2.1.6 that's correct for an rfc822Name from a certificate: “The
220// format of an rfc822Name is a "Mailbox" as defined in RFC 2821, Section 4.1.2”.
221func parseRFC2821Mailbox(in string) (mailbox rfc2821Mailbox, ok bool) {
222	if len(in) == 0 {
223		return mailbox, false
224	}
225
226	localPartBytes := make([]byte, 0, len(in)/2)
227
228	if in[0] == '"' {
229		// Quoted-string = DQUOTE *qcontent DQUOTE
230		// non-whitespace-control = %d1-8 / %d11 / %d12 / %d14-31 / %d127
231		// qcontent = qtext / quoted-pair
232		// qtext = non-whitespace-control /
233		//         %d33 / %d35-91 / %d93-126
234		// quoted-pair = ("\" text) / obs-qp
235		// text = %d1-9 / %d11 / %d12 / %d14-127 / obs-text
236		//
237		// (Names beginning with “obs-” are the obsolete syntax from RFC 2822,
238		// Section 4. Since it has been 16 years, we no longer accept that.)
239		in = in[1:]
240	QuotedString:
241		for {
242			if len(in) == 0 {
243				return mailbox, false
244			}
245			c := in[0]
246			in = in[1:]
247
248			switch {
249			case c == '"':
250				break QuotedString
251
252			case c == '\\':
253				// quoted-pair
254				if len(in) == 0 {
255					return mailbox, false
256				}
257				if in[0] == 11 ||
258					in[0] == 12 ||
259					(1 <= in[0] && in[0] <= 9) ||
260					(14 <= in[0] && in[0] <= 127) {
261					localPartBytes = append(localPartBytes, in[0])
262					in = in[1:]
263				} else {
264					return mailbox, false
265				}
266
267			case c == 11 ||
268				c == 12 ||
269				// Space (char 32) is not allowed based on the
270				// BNF, but RFC 3696 gives an example that
271				// assumes that it is. Several “verified”
272				// errata continue to argue about this point.
273				// We choose to accept it.
274				c == 32 ||
275				c == 33 ||
276				c == 127 ||
277				(1 <= c && c <= 8) ||
278				(14 <= c && c <= 31) ||
279				(35 <= c && c <= 91) ||
280				(93 <= c && c <= 126):
281				// qtext
282				localPartBytes = append(localPartBytes, c)
283
284			default:
285				return mailbox, false
286			}
287		}
288	} else {
289		// Atom ("." Atom)*
290	NextChar:
291		for len(in) > 0 {
292			// atext from RFC 2822, Section 3.2.4
293			c := in[0]
294
295			switch {
296			case c == '\\':
297				// Examples given in RFC 3696 suggest that
298				// escaped characters can appear outside of a
299				// quoted string. Several “verified” errata
300				// continue to argue the point. We choose to
301				// accept it.
302				in = in[1:]
303				if len(in) == 0 {
304					return mailbox, false
305				}
306				fallthrough
307
308			case ('0' <= c && c <= '9') ||
309				('a' <= c && c <= 'z') ||
310				('A' <= c && c <= 'Z') ||
311				c == '!' || c == '#' || c == '$' || c == '%' ||
312				c == '&' || c == '\'' || c == '*' || c == '+' ||
313				c == '-' || c == '/' || c == '=' || c == '?' ||
314				c == '^' || c == '_' || c == '`' || c == '{' ||
315				c == '|' || c == '}' || c == '~' || c == '.':
316				localPartBytes = append(localPartBytes, in[0])
317				in = in[1:]
318
319			default:
320				break NextChar
321			}
322		}
323
324		if len(localPartBytes) == 0 {
325			return mailbox, false
326		}
327
328		// From RFC 3696, Section 3:
329		// “period (".") may also appear, but may not be used to start
330		// or end the local part, nor may two or more consecutive
331		// periods appear.”
332		twoDots := []byte{'.', '.'}
333		if localPartBytes[0] == '.' ||
334			localPartBytes[len(localPartBytes)-1] == '.' ||
335			bytes.Contains(localPartBytes, twoDots) {
336			return mailbox, false
337		}
338	}
339
340	if len(in) == 0 || in[0] != '@' {
341		return mailbox, false
342	}
343	in = in[1:]
344
345	// The RFC species a format for domains, but that's known to be
346	// violated in practice so we accept that anything after an '@' is the
347	// domain part.
348	if _, ok := domainToReverseLabels(in); !ok {
349		return mailbox, false
350	}
351
352	mailbox.local = string(localPartBytes)
353	mailbox.domain = in
354	return mailbox, true
355}
356
357// domainToReverseLabels converts a textual domain name like foo.example.com to
358// the list of labels in reverse order, e.g. ["com", "example", "foo"].
359func domainToReverseLabels(domain string) (reverseLabels []string, ok bool) {
360	for len(domain) > 0 {
361		if i := strings.LastIndexByte(domain, '.'); i == -1 {
362			reverseLabels = append(reverseLabels, domain)
363			domain = ""
364		} else {
365			reverseLabels = append(reverseLabels, domain[i+1:])
366			domain = domain[:i]
367		}
368	}
369
370	if len(reverseLabels) > 0 && len(reverseLabels[0]) == 0 {
371		// An empty label at the end indicates an absolute value.
372		return nil, false
373	}
374
375	for _, label := range reverseLabels {
376		if len(label) == 0 {
377			// Empty labels are otherwise invalid.
378			return nil, false
379		}
380
381		for _, c := range label {
382			if c < 33 || c > 126 {
383				// Invalid character.
384				return nil, false
385			}
386		}
387	}
388
389	return reverseLabels, true
390}
391
392func matchEmailConstraint(mailbox rfc2821Mailbox, constraint string) (bool, error) {
393	// If the constraint contains an @, then it specifies an exact mailbox
394	// name.
395	if strings.Contains(constraint, "@") {
396		constraintMailbox, ok := parseRFC2821Mailbox(constraint)
397		if !ok {
398			return false, fmt.Errorf("x509: internal error: cannot parse constraint %q", constraint)
399		}
400		return mailbox.local == constraintMailbox.local && strings.EqualFold(mailbox.domain, constraintMailbox.domain), nil
401	}
402
403	// Otherwise the constraint is like a DNS constraint of the domain part
404	// of the mailbox.
405	return matchDomainConstraint(mailbox.domain, constraint)
406}
407
408func matchURIConstraint(uri *url.URL, constraint string) (bool, error) {
409	// From RFC 5280, Section 4.2.1.10:
410	// “a uniformResourceIdentifier that does not include an authority
411	// component with a host name specified as a fully qualified domain
412	// name (e.g., if the URI either does not include an authority
413	// component or includes an authority component in which the host name
414	// is specified as an IP address), then the application MUST reject the
415	// certificate.”
416
417	host := uri.Host
418	if len(host) == 0 {
419		return false, fmt.Errorf("URI with empty host (%q) cannot be matched against constraints", uri.String())
420	}
421
422	if strings.Contains(host, ":") && !strings.HasSuffix(host, "]") {
423		var err error
424		host, _, err = net.SplitHostPort(uri.Host)
425		if err != nil {
426			return false, err
427		}
428	}
429
430	if strings.HasPrefix(host, "[") && strings.HasSuffix(host, "]") ||
431		net.ParseIP(host) != nil {
432		return false, fmt.Errorf("URI with IP (%q) cannot be matched against constraints", uri.String())
433	}
434
435	return matchDomainConstraint(host, constraint)
436}
437
438func matchIPConstraint(ip net.IP, constraint *net.IPNet) (bool, error) {
439	if len(ip) != len(constraint.IP) {
440		return false, nil
441	}
442
443	for i := range ip {
444		if mask := constraint.Mask[i]; ip[i]&mask != constraint.IP[i]&mask {
445			return false, nil
446		}
447	}
448
449	return true, nil
450}
451
452func matchDomainConstraint(domain, constraint string) (bool, error) {
453	// The meaning of zero length constraints is not specified, but this
454	// code follows NSS and accepts them as matching everything.
455	if len(constraint) == 0 {
456		return true, nil
457	}
458
459	domainLabels, ok := domainToReverseLabels(domain)
460	if !ok {
461		return false, fmt.Errorf("x509: internal error: cannot parse domain %q", domain)
462	}
463
464	// RFC 5280 says that a leading period in a domain name means that at
465	// least one label must be prepended, but only for URI and email
466	// constraints, not DNS constraints. The code also supports that
467	// behaviour for DNS constraints.
468
469	mustHaveSubdomains := false
470	if constraint[0] == '.' {
471		mustHaveSubdomains = true
472		constraint = constraint[1:]
473	}
474
475	constraintLabels, ok := domainToReverseLabels(constraint)
476	if !ok {
477		return false, fmt.Errorf("x509: internal error: cannot parse domain %q", constraint)
478	}
479
480	if len(domainLabels) < len(constraintLabels) ||
481		(mustHaveSubdomains && len(domainLabels) == len(constraintLabels)) {
482		return false, nil
483	}
484
485	for i, constraintLabel := range constraintLabels {
486		if !strings.EqualFold(constraintLabel, domainLabels[i]) {
487			return false, nil
488		}
489	}
490
491	return true, nil
492}
493
494// checkNameConstraints checks that c permits a child certificate to claim the
495// given name, of type nameType. The argument parsedName contains the parsed
496// form of name, suitable for passing to the match function. The total number
497// of comparisons is tracked in the given count and should not exceed the given
498// limit.
499func (c *Certificate) checkNameConstraints(count *int,
500	maxConstraintComparisons int,
501	nameType string,
502	name string,
503	parsedName any,
504	match func(parsedName, constraint any) (match bool, err error),
505	permitted, excluded any) error {
506
507	excludedValue := reflect.ValueOf(excluded)
508
509	*count += excludedValue.Len()
510	if *count > maxConstraintComparisons {
511		return CertificateInvalidError{c, TooManyConstraints, ""}
512	}
513
514	for i := 0; i < excludedValue.Len(); i++ {
515		constraint := excludedValue.Index(i).Interface()
516		match, err := match(parsedName, constraint)
517		if err != nil {
518			return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()}
519		}
520
521		if match {
522			return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is excluded by constraint %q", nameType, name, constraint)}
523		}
524	}
525
526	permittedValue := reflect.ValueOf(permitted)
527
528	*count += permittedValue.Len()
529	if *count > maxConstraintComparisons {
530		return CertificateInvalidError{c, TooManyConstraints, ""}
531	}
532
533	ok := true
534	for i := 0; i < permittedValue.Len(); i++ {
535		constraint := permittedValue.Index(i).Interface()
536
537		var err error
538		if ok, err = match(parsedName, constraint); err != nil {
539			return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()}
540		}
541
542		if ok {
543			break
544		}
545	}
546
547	if !ok {
548		return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is not permitted by any constraint", nameType, name)}
549	}
550
551	return nil
552}
553
554// isValid performs validity checks on c given that it is a candidate to append
555// to the chain in currentChain.
556func (c *Certificate) isValid(certType int, currentChain []*Certificate, opts *VerifyOptions) error {
557	if len(c.UnhandledCriticalExtensions) > 0 {
558		return UnhandledCriticalExtension{}
559	}
560
561	if len(currentChain) > 0 {
562		child := currentChain[len(currentChain)-1]
563		if !bytes.Equal(child.RawIssuer, c.RawSubject) {
564			return CertificateInvalidError{c, NameMismatch, ""}
565		}
566	}
567
568	now := opts.CurrentTime
569	if now.IsZero() {
570		now = time.Now()
571	}
572	if now.Before(c.NotBefore) {
573		return CertificateInvalidError{
574			Cert:   c,
575			Reason: Expired,
576			Detail: fmt.Sprintf("current time %s is before %s", now.Format(time.RFC3339), c.NotBefore.Format(time.RFC3339)),
577		}
578	} else if now.After(c.NotAfter) {
579		return CertificateInvalidError{
580			Cert:   c,
581			Reason: Expired,
582			Detail: fmt.Sprintf("current time %s is after %s", now.Format(time.RFC3339), c.NotAfter.Format(time.RFC3339)),
583		}
584	}
585
586	maxConstraintComparisons := opts.MaxConstraintComparisions
587	if maxConstraintComparisons == 0 {
588		maxConstraintComparisons = 250000
589	}
590	comparisonCount := 0
591
592	var leaf *Certificate
593	if certType == intermediateCertificate || certType == rootCertificate {
594		if len(currentChain) == 0 {
595			return errors.New("x509: internal error: empty chain when appending CA cert")
596		}
597		leaf = currentChain[0]
598	}
599
600	if (certType == intermediateCertificate || certType == rootCertificate) &&
601		c.hasNameConstraints() && leaf.hasSANExtension() {
602		err := forEachSAN(leaf.getSANExtension(), func(tag int, data []byte) error {
603			switch tag {
604			case nameTypeEmail:
605				name := string(data)
606				mailbox, ok := parseRFC2821Mailbox(name)
607				if !ok {
608					return fmt.Errorf("x509: cannot parse rfc822Name %q", mailbox)
609				}
610
611				if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "email address", name, mailbox,
612					func(parsedName, constraint any) (bool, error) {
613						return matchEmailConstraint(parsedName.(rfc2821Mailbox), constraint.(string))
614					}, c.PermittedEmailAddresses, c.ExcludedEmailAddresses); err != nil {
615					return err
616				}
617
618			case nameTypeDNS:
619				name := string(data)
620				if _, ok := domainToReverseLabels(name); !ok {
621					return fmt.Errorf("x509: cannot parse dnsName %q", name)
622				}
623
624				if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "DNS name", name, name,
625					func(parsedName, constraint any) (bool, error) {
626						return matchDomainConstraint(parsedName.(string), constraint.(string))
627					}, c.PermittedDNSDomains, c.ExcludedDNSDomains); err != nil {
628					return err
629				}
630
631			case nameTypeURI:
632				name := string(data)
633				uri, err := url.Parse(name)
634				if err != nil {
635					return fmt.Errorf("x509: internal error: URI SAN %q failed to parse", name)
636				}
637
638				if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "URI", name, uri,
639					func(parsedName, constraint any) (bool, error) {
640						return matchURIConstraint(parsedName.(*url.URL), constraint.(string))
641					}, c.PermittedURIDomains, c.ExcludedURIDomains); err != nil {
642					return err
643				}
644
645			case nameTypeIP:
646				ip := net.IP(data)
647				if l := len(ip); l != net.IPv4len && l != net.IPv6len {
648					return fmt.Errorf("x509: internal error: IP SAN %x failed to parse", data)
649				}
650
651				if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "IP address", ip.String(), ip,
652					func(parsedName, constraint any) (bool, error) {
653						return matchIPConstraint(parsedName.(net.IP), constraint.(*net.IPNet))
654					}, c.PermittedIPRanges, c.ExcludedIPRanges); err != nil {
655					return err
656				}
657
658			default:
659				// Unknown SAN types are ignored.
660			}
661
662			return nil
663		})
664
665		if err != nil {
666			return err
667		}
668	}
669
670	// KeyUsage status flags are ignored. From Engineering Security, Peter
671	// Gutmann: A European government CA marked its signing certificates as
672	// being valid for encryption only, but no-one noticed. Another
673	// European CA marked its signature keys as not being valid for
674	// signatures. A different CA marked its own trusted root certificate
675	// as being invalid for certificate signing. Another national CA
676	// distributed a certificate to be used to encrypt data for the
677	// country’s tax authority that was marked as only being usable for
678	// digital signatures but not for encryption. Yet another CA reversed
679	// the order of the bit flags in the keyUsage due to confusion over
680	// encoding endianness, essentially setting a random keyUsage in
681	// certificates that it issued. Another CA created a self-invalidating
682	// certificate by adding a certificate policy statement stipulating
683	// that the certificate had to be used strictly as specified in the
684	// keyUsage, and a keyUsage containing a flag indicating that the RSA
685	// encryption key could only be used for Diffie-Hellman key agreement.
686
687	if certType == intermediateCertificate && (!c.BasicConstraintsValid || !c.IsCA) {
688		return CertificateInvalidError{c, NotAuthorizedToSign, ""}
689	}
690
691	if c.BasicConstraintsValid && c.MaxPathLen >= 0 {
692		numIntermediates := len(currentChain) - 1
693		if numIntermediates > c.MaxPathLen {
694			return CertificateInvalidError{c, TooManyIntermediates, ""}
695		}
696	}
697
698	return nil
699}
700
701// Verify attempts to verify c by building one or more chains from c to a
702// certificate in opts.Roots, using certificates in opts.Intermediates if
703// needed. If successful, it returns one or more chains where the first
704// element of the chain is c and the last element is from opts.Roots.
705//
706// If opts.Roots is nil, the platform verifier might be used, and
707// verification details might differ from what is described below. If system
708// roots are unavailable the returned error will be of type SystemRootsError.
709//
710// Name constraints in the intermediates will be applied to all names claimed
711// in the chain, not just opts.DNSName. Thus it is invalid for a leaf to claim
712// example.com if an intermediate doesn't permit it, even if example.com is not
713// the name being validated. Note that DirectoryName constraints are not
714// supported.
715//
716// Name constraint validation follows the rules from RFC 5280, with the
717// addition that DNS name constraints may use the leading period format
718// defined for emails and URIs. When a constraint has a leading period
719// it indicates that at least one additional label must be prepended to
720// the constrained name to be considered valid.
721//
722// Extended Key Usage values are enforced nested down a chain, so an intermediate
723// or root that enumerates EKUs prevents a leaf from asserting an EKU not in that
724// list. (While this is not specified, it is common practice in order to limit
725// the types of certificates a CA can issue.)
726//
727// WARNING: this function doesn't do any revocation checking.
728func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error) {
729	// Platform-specific verification needs the ASN.1 contents so
730	// this makes the behavior consistent across platforms.
731	if len(c.Raw) == 0 {
732		return nil, errNotParsed
733	}
734	for i := 0; i < opts.Intermediates.len(); i++ {
735		c, err := opts.Intermediates.cert(i)
736		if err != nil {
737			return nil, fmt.Errorf("crypto/x509: error fetching intermediate: %w", err)
738		}
739		if len(c.Raw) == 0 {
740			return nil, errNotParsed
741		}
742	}
743
744	// Use platform verifiers, where available, if Roots is from SystemCertPool.
745	if runtime.GOOS == "windows" || runtime.GOOS == "darwin" || runtime.GOOS == "ios" {
746		if opts.Roots == nil {
747			return c.systemVerify(&opts)
748		}
749		if opts.Roots != nil && opts.Roots.systemPool {
750			platformChains, err := c.systemVerify(&opts)
751			// If the platform verifier succeeded, or there are no additional
752			// roots, return the platform verifier result. Otherwise, continue
753			// with the Go verifier.
754			if err == nil || opts.Roots.len() == 0 {
755				return platformChains, err
756			}
757		}
758	}
759
760	if opts.Roots == nil {
761		opts.Roots = systemRootsPool()
762		if opts.Roots == nil {
763			return nil, SystemRootsError{systemRootsErr}
764		}
765	}
766
767	err = c.isValid(leafCertificate, nil, &opts)
768	if err != nil {
769		return
770	}
771
772	if len(opts.DNSName) > 0 {
773		err = c.VerifyHostname(opts.DNSName)
774		if err != nil {
775			return
776		}
777	}
778
779	var candidateChains [][]*Certificate
780	if opts.Roots.contains(c) {
781		candidateChains = append(candidateChains, []*Certificate{c})
782	} else {
783		if candidateChains, err = c.buildChains(nil, []*Certificate{c}, nil, &opts); err != nil {
784			return nil, err
785		}
786	}
787
788	keyUsages := opts.KeyUsages
789	if len(keyUsages) == 0 {
790		keyUsages = []ExtKeyUsage{ExtKeyUsageServerAuth}
791	}
792
793	// If any key usage is acceptable then we're done.
794	for _, usage := range keyUsages {
795		if usage == ExtKeyUsageAny {
796			return candidateChains, nil
797		}
798	}
799
800	for _, candidate := range candidateChains {
801		if checkChainForKeyUsage(candidate, keyUsages) {
802			chains = append(chains, candidate)
803		}
804	}
805
806	if len(chains) == 0 {
807		return nil, CertificateInvalidError{c, IncompatibleUsage, ""}
808	}
809
810	return chains, nil
811}
812
813func appendToFreshChain(chain []*Certificate, cert *Certificate) []*Certificate {
814	n := make([]*Certificate, len(chain)+1)
815	copy(n, chain)
816	n[len(chain)] = cert
817	return n
818}
819
820// maxChainSignatureChecks is the maximum number of CheckSignatureFrom calls
821// that an invocation of buildChains will (transitively) make. Most chains are
822// less than 15 certificates long, so this leaves space for multiple chains and
823// for failed checks due to different intermediates having the same Subject.
824const maxChainSignatureChecks = 100
825
826func (c *Certificate) buildChains(cache map[*Certificate][][]*Certificate, currentChain []*Certificate, sigChecks *int, opts *VerifyOptions) (chains [][]*Certificate, err error) {
827	var (
828		hintErr  error
829		hintCert *Certificate
830	)
831
832	considerCandidate := func(certType int, candidate *Certificate) {
833		for _, cert := range currentChain {
834			if cert.Equal(candidate) {
835				return
836			}
837		}
838
839		if sigChecks == nil {
840			sigChecks = new(int)
841		}
842		*sigChecks++
843		if *sigChecks > maxChainSignatureChecks {
844			err = errors.New("x509: signature check attempts limit reached while verifying certificate chain")
845			return
846		}
847
848		if err := c.CheckSignatureFrom(candidate); err != nil {
849			if hintErr == nil {
850				hintErr = err
851				hintCert = candidate
852			}
853			return
854		}
855
856		err = candidate.isValid(certType, currentChain, opts)
857		if err != nil {
858			return
859		}
860
861		switch certType {
862		case rootCertificate:
863			chains = append(chains, appendToFreshChain(currentChain, candidate))
864		case intermediateCertificate:
865			if cache == nil {
866				cache = make(map[*Certificate][][]*Certificate)
867			}
868			childChains, ok := cache[candidate]
869			if !ok {
870				childChains, err = candidate.buildChains(cache, appendToFreshChain(currentChain, candidate), sigChecks, opts)
871				cache[candidate] = childChains
872			}
873			chains = append(chains, childChains...)
874		}
875	}
876
877	for _, root := range opts.Roots.findPotentialParents(c) {
878		considerCandidate(rootCertificate, root)
879	}
880	for _, intermediate := range opts.Intermediates.findPotentialParents(c) {
881		considerCandidate(intermediateCertificate, intermediate)
882	}
883
884	if len(chains) > 0 {
885		err = nil
886	}
887	if len(chains) == 0 && err == nil {
888		err = UnknownAuthorityError{c, hintErr, hintCert}
889	}
890
891	return
892}
893
894func validHostnamePattern(host string) bool { return validHostname(host, true) }
895func validHostnameInput(host string) bool   { return validHostname(host, false) }
896
897// validHostname reports whether host is a valid hostname that can be matched or
898// matched against according to RFC 6125 2.2, with some leniency to accommodate
899// legacy values.
900func validHostname(host string, isPattern bool) bool {
901	if !isPattern {
902		host = strings.TrimSuffix(host, ".")
903	}
904	if len(host) == 0 {
905		return false
906	}
907
908	for i, part := range strings.Split(host, ".") {
909		if part == "" {
910			// Empty label.
911			return false
912		}
913		if isPattern && i == 0 && part == "*" {
914			// Only allow full left-most wildcards, as those are the only ones
915			// we match, and matching literal '*' characters is probably never
916			// the expected behavior.
917			continue
918		}
919		for j, c := range part {
920			if 'a' <= c && c <= 'z' {
921				continue
922			}
923			if '0' <= c && c <= '9' {
924				continue
925			}
926			if 'A' <= c && c <= 'Z' {
927				continue
928			}
929			if c == '-' && j != 0 {
930				continue
931			}
932			if c == '_' {
933				// Not a valid character in hostnames, but commonly
934				// found in deployments outside the WebPKI.
935				continue
936			}
937			return false
938		}
939	}
940
941	return true
942}
943
944func matchExactly(hostA, hostB string) bool {
945	if hostA == "" || hostA == "." || hostB == "" || hostB == "." {
946		return false
947	}
948	return toLowerCaseASCII(hostA) == toLowerCaseASCII(hostB)
949}
950
951func matchHostnames(pattern, host string) bool {
952	pattern = toLowerCaseASCII(pattern)
953	host = toLowerCaseASCII(strings.TrimSuffix(host, "."))
954
955	if len(pattern) == 0 || len(host) == 0 {
956		return false
957	}
958
959	patternParts := strings.Split(pattern, ".")
960	hostParts := strings.Split(host, ".")
961
962	if len(patternParts) != len(hostParts) {
963		return false
964	}
965
966	for i, patternPart := range patternParts {
967		if i == 0 && patternPart == "*" {
968			continue
969		}
970		if patternPart != hostParts[i] {
971			return false
972		}
973	}
974
975	return true
976}
977
978// toLowerCaseASCII returns a lower-case version of in. See RFC 6125 6.4.1. We use
979// an explicitly ASCII function to avoid any sharp corners resulting from
980// performing Unicode operations on DNS labels.
981func toLowerCaseASCII(in string) string {
982	// If the string is already lower-case then there's nothing to do.
983	isAlreadyLowerCase := true
984	for _, c := range in {
985		if c == utf8.RuneError {
986			// If we get a UTF-8 error then there might be
987			// upper-case ASCII bytes in the invalid sequence.
988			isAlreadyLowerCase = false
989			break
990		}
991		if 'A' <= c && c <= 'Z' {
992			isAlreadyLowerCase = false
993			break
994		}
995	}
996
997	if isAlreadyLowerCase {
998		return in
999	}
1000
1001	out := []byte(in)
1002	for i, c := range out {
1003		if 'A' <= c && c <= 'Z' {
1004			out[i] += 'a' - 'A'
1005		}
1006	}
1007	return string(out)
1008}
1009
1010// VerifyHostname returns nil if c is a valid certificate for the named host.
1011// Otherwise it returns an error describing the mismatch.
1012//
1013// IP addresses can be optionally enclosed in square brackets and are checked
1014// against the IPAddresses field. Other names are checked case insensitively
1015// against the DNSNames field. If the names are valid hostnames, the certificate
1016// fields can have a wildcard as the left-most label.
1017//
1018// Note that the legacy Common Name field is ignored.
1019func (c *Certificate) VerifyHostname(h string) error {
1020	// IP addresses may be written in [ ].
1021	candidateIP := h
1022	if len(h) >= 3 && h[0] == '[' && h[len(h)-1] == ']' {
1023		candidateIP = h[1 : len(h)-1]
1024	}
1025	if ip := net.ParseIP(candidateIP); ip != nil {
1026		// We only match IP addresses against IP SANs.
1027		// See RFC 6125, Appendix B.2.
1028		for _, candidate := range c.IPAddresses {
1029			if ip.Equal(candidate) {
1030				return nil
1031			}
1032		}
1033		return HostnameError{c, candidateIP}
1034	}
1035
1036	candidateName := toLowerCaseASCII(h) // Save allocations inside the loop.
1037	validCandidateName := validHostnameInput(candidateName)
1038
1039	for _, match := range c.DNSNames {
1040		// Ideally, we'd only match valid hostnames according to RFC 6125 like
1041		// browsers (more or less) do, but in practice Go is used in a wider
1042		// array of contexts and can't even assume DNS resolution. Instead,
1043		// always allow perfect matches, and only apply wildcard and trailing
1044		// dot processing to valid hostnames.
1045		if validCandidateName && validHostnamePattern(match) {
1046			if matchHostnames(match, candidateName) {
1047				return nil
1048			}
1049		} else {
1050			if matchExactly(match, candidateName) {
1051				return nil
1052			}
1053		}
1054	}
1055
1056	return HostnameError{c, h}
1057}
1058
1059func checkChainForKeyUsage(chain []*Certificate, keyUsages []ExtKeyUsage) bool {
1060	usages := make([]ExtKeyUsage, len(keyUsages))
1061	copy(usages, keyUsages)
1062
1063	if len(chain) == 0 {
1064		return false
1065	}
1066
1067	usagesRemaining := len(usages)
1068
1069	// We walk down the list and cross out any usages that aren't supported
1070	// by each certificate. If we cross out all the usages, then the chain
1071	// is unacceptable.
1072
1073NextCert:
1074	for i := len(chain) - 1; i >= 0; i-- {
1075		cert := chain[i]
1076		if len(cert.ExtKeyUsage) == 0 && len(cert.UnknownExtKeyUsage) == 0 {
1077			// The certificate doesn't have any extended key usage specified.
1078			continue
1079		}
1080
1081		for _, usage := range cert.ExtKeyUsage {
1082			if usage == ExtKeyUsageAny {
1083				// The certificate is explicitly good for any usage.
1084				continue NextCert
1085			}
1086		}
1087
1088		const invalidUsage ExtKeyUsage = -1
1089
1090	NextRequestedUsage:
1091		for i, requestedUsage := range usages {
1092			if requestedUsage == invalidUsage {
1093				continue
1094			}
1095
1096			for _, usage := range cert.ExtKeyUsage {
1097				if requestedUsage == usage {
1098					continue NextRequestedUsage
1099				}
1100			}
1101
1102			usages[i] = invalidUsage
1103			usagesRemaining--
1104			if usagesRemaining == 0 {
1105				return false
1106			}
1107		}
1108	}
1109
1110	return true
1111}
1112