1// Copyright 2013 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// This file implements various field and method lookup functions.
6
7package types
8
9import (
10	"fmt"
11	"strings"
12)
13
14// Internal use of LookupFieldOrMethod: If the obj result is a method
15// associated with a concrete (non-interface) type, the method's signature
16// may not be fully set up. Call Checker.objDecl(obj, nil) before accessing
17// the method's type.
18
19// LookupFieldOrMethod looks up a field or method with given package and name
20// in T and returns the corresponding *Var or *Func, an index sequence, and a
21// bool indicating if there were any pointer indirections on the path to the
22// field or method. If addressable is set, T is the type of an addressable
23// variable (only matters for method lookups).
24//
25// The last index entry is the field or method index in the (possibly embedded)
26// type where the entry was found, either:
27//
28//	1) the list of declared methods of a named type; or
29//	2) the list of all methods (method set) of an interface type; or
30//	3) the list of fields of a struct type.
31//
32// The earlier index entries are the indices of the embedded struct fields
33// traversed to get to the found entry, starting at depth 0.
34//
35// If no entry is found, a nil object is returned. In this case, the returned
36// index and indirect values have the following meaning:
37//
38//	- If index != nil, the index sequence points to an ambiguous entry
39//	(the same name appeared more than once at the same embedding level).
40//
41//	- If indirect is set, a method with a pointer receiver type was found
42//      but there was no pointer on the path from the actual receiver type to
43//	the method's formal receiver base type, nor was the receiver addressable.
44//
45func LookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) {
46	// Methods cannot be associated to a named pointer type
47	// (spec: "The type denoted by T is called the receiver base type;
48	// it must not be a pointer or interface type and it must be declared
49	// in the same package as the method.").
50	// Thus, if we have a named pointer type, proceed with the underlying
51	// pointer type but discard the result if it is a method since we would
52	// not have found it for T (see also issue 8590).
53	if t, _ := T.(*Named); t != nil {
54		if p, _ := t.Underlying().(*Pointer); p != nil {
55			obj, index, indirect = lookupFieldOrMethod(p, false, pkg, name)
56			if _, ok := obj.(*Func); ok {
57				return nil, nil, false
58			}
59			return
60		}
61	}
62
63	return lookupFieldOrMethod(T, addressable, pkg, name)
64}
65
66// TODO(gri) The named type consolidation and seen maps below must be
67//           indexed by unique keys for a given type. Verify that named
68//           types always have only one representation (even when imported
69//           indirectly via different packages.)
70
71// lookupFieldOrMethod should only be called by LookupFieldOrMethod and missingMethod.
72//
73// The resulting object may not be fully type-checked.
74func lookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) {
75	// WARNING: The code in this function is extremely subtle - do not modify casually!
76
77	if name == "_" {
78		return // blank fields/methods are never found
79	}
80
81	typ, isPtr := deref(T)
82
83	// *typ where typ is an interface has no methods.
84	if isPtr {
85		if _, ok := under(typ).(*Interface); ok {
86			return
87		}
88	}
89
90	// Start with typ as single entry at shallowest depth.
91	current := []embeddedType{{typ, nil, isPtr, false}}
92
93	// Named types that we have seen already, allocated lazily.
94	// Used to avoid endless searches in case of recursive types.
95	// Since only Named types can be used for recursive types, we
96	// only need to track those.
97	// (If we ever allow type aliases to construct recursive types,
98	// we must use type identity rather than pointer equality for
99	// the map key comparison, as we do in consolidateMultiples.)
100	var seen map[*Named]bool
101
102	// search current depth
103	for len(current) > 0 {
104		var next []embeddedType // embedded types found at current depth
105
106		// look for (pkg, name) in all types at current depth
107		var tpar *TypeParam // set if obj receiver is a type parameter
108		for _, e := range current {
109			typ := e.typ
110
111			// If we have a named type, we may have associated methods.
112			// Look for those first.
113			if named, _ := typ.(*Named); named != nil {
114				if seen[named] {
115					// We have seen this type before, at a more shallow depth
116					// (note that multiples of this type at the current depth
117					// were consolidated before). The type at that depth shadows
118					// this same type at the current depth, so we can ignore
119					// this one.
120					continue
121				}
122				if seen == nil {
123					seen = make(map[*Named]bool)
124				}
125				seen[named] = true
126
127				// look for a matching attached method
128				named.resolve(nil)
129				if i, m := lookupMethod(named.methods, pkg, name); m != nil {
130					// potential match
131					// caution: method may not have a proper signature yet
132					index = concat(e.index, i)
133					if obj != nil || e.multiples {
134						return nil, index, false // collision
135					}
136					obj = m
137					indirect = e.indirect
138					continue // we can't have a matching field or interface method
139				}
140
141				// continue with underlying type
142				typ = named.under()
143			}
144
145			tpar = nil
146			switch t := typ.(type) {
147			case *Struct:
148				// look for a matching field and collect embedded types
149				for i, f := range t.fields {
150					if f.sameId(pkg, name) {
151						assert(f.typ != nil)
152						index = concat(e.index, i)
153						if obj != nil || e.multiples {
154							return nil, index, false // collision
155						}
156						obj = f
157						indirect = e.indirect
158						continue // we can't have a matching interface method
159					}
160					// Collect embedded struct fields for searching the next
161					// lower depth, but only if we have not seen a match yet
162					// (if we have a match it is either the desired field or
163					// we have a name collision on the same depth; in either
164					// case we don't need to look further).
165					// Embedded fields are always of the form T or *T where
166					// T is a type name. If e.typ appeared multiple times at
167					// this depth, f.typ appears multiple times at the next
168					// depth.
169					if obj == nil && f.embedded {
170						typ, isPtr := deref(f.typ)
171						// TODO(gri) optimization: ignore types that can't
172						// have fields or methods (only Named, Struct, and
173						// Interface types need to be considered).
174						next = append(next, embeddedType{typ, concat(e.index, i), e.indirect || isPtr, e.multiples})
175					}
176				}
177
178			case *Interface:
179				// look for a matching method
180				if i, m := t.typeSet().LookupMethod(pkg, name); m != nil {
181					assert(m.typ != nil)
182					index = concat(e.index, i)
183					if obj != nil || e.multiples {
184						return nil, index, false // collision
185					}
186					obj = m
187					indirect = e.indirect
188				}
189
190			case *TypeParam:
191				if i, m := t.iface().typeSet().LookupMethod(pkg, name); m != nil {
192					assert(m.typ != nil)
193					index = concat(e.index, i)
194					if obj != nil || e.multiples {
195						return nil, index, false // collision
196					}
197					tpar = t
198					obj = m
199					indirect = e.indirect
200				}
201			}
202		}
203
204		if obj != nil {
205			// found a potential match
206			// spec: "A method call x.m() is valid if the method set of (the type of) x
207			//        contains m and the argument list can be assigned to the parameter
208			//        list of m. If x is addressable and &x's method set contains m, x.m()
209			//        is shorthand for (&x).m()".
210			if f, _ := obj.(*Func); f != nil {
211				// determine if method has a pointer receiver
212				hasPtrRecv := tpar == nil && f.hasPtrRecv()
213				if hasPtrRecv && !indirect && !addressable {
214					return nil, nil, true // pointer/addressable receiver required
215				}
216			}
217			return
218		}
219
220		current = consolidateMultiples(next)
221	}
222
223	return nil, nil, false // not found
224}
225
226// embeddedType represents an embedded type
227type embeddedType struct {
228	typ       Type
229	index     []int // embedded field indices, starting with index at depth 0
230	indirect  bool  // if set, there was a pointer indirection on the path to this field
231	multiples bool  // if set, typ appears multiple times at this depth
232}
233
234// consolidateMultiples collects multiple list entries with the same type
235// into a single entry marked as containing multiples. The result is the
236// consolidated list.
237func consolidateMultiples(list []embeddedType) []embeddedType {
238	if len(list) <= 1 {
239		return list // at most one entry - nothing to do
240	}
241
242	n := 0                     // number of entries w/ unique type
243	prev := make(map[Type]int) // index at which type was previously seen
244	for _, e := range list {
245		if i, found := lookupType(prev, e.typ); found {
246			list[i].multiples = true
247			// ignore this entry
248		} else {
249			prev[e.typ] = n
250			list[n] = e
251			n++
252		}
253	}
254	return list[:n]
255}
256
257func lookupType(m map[Type]int, typ Type) (int, bool) {
258	// fast path: maybe the types are equal
259	if i, found := m[typ]; found {
260		return i, true
261	}
262
263	for t, i := range m {
264		if Identical(t, typ) {
265			return i, true
266		}
267	}
268
269	return 0, false
270}
271
272// MissingMethod returns (nil, false) if V implements T, otherwise it
273// returns a missing method required by T and whether it is missing or
274// just has the wrong type.
275//
276// For non-interface types V, or if static is set, V implements T if all
277// methods of T are present in V. Otherwise (V is an interface and static
278// is not set), MissingMethod only checks that methods of T which are also
279// present in V have matching types (e.g., for a type assertion x.(T) where
280// x is of interface type V).
281//
282func MissingMethod(V Type, T *Interface, static bool) (method *Func, wrongType bool) {
283	m, typ := (*Checker)(nil).missingMethod(V, T, static)
284	return m, typ != nil
285}
286
287// missingMethod is like MissingMethod but accepts a *Checker as
288// receiver and an addressable flag.
289// The receiver may be nil if missingMethod is invoked through
290// an exported API call (such as MissingMethod), i.e., when all
291// methods have been type-checked.
292// If the type has the correctly named method, but with the wrong
293// signature, the existing method is returned as well.
294// To improve error messages, also report the wrong signature
295// when the method exists on *V instead of V.
296func (check *Checker) missingMethod(V Type, T *Interface, static bool) (method, wrongType *Func) {
297	// fast path for common case
298	if T.Empty() {
299		return
300	}
301
302	if ityp, _ := under(V).(*Interface); ityp != nil {
303		// TODO(gri) the methods are sorted - could do this more efficiently
304		for _, m := range T.typeSet().methods {
305			_, f := ityp.typeSet().LookupMethod(m.pkg, m.name)
306
307			if f == nil {
308				if !static {
309					continue
310				}
311				return m, f
312			}
313
314			// both methods must have the same number of type parameters
315			ftyp := f.typ.(*Signature)
316			mtyp := m.typ.(*Signature)
317			if ftyp.TypeParams().Len() != mtyp.TypeParams().Len() {
318				return m, f
319			}
320			if ftyp.TypeParams().Len() > 0 {
321				panic("method with type parameters")
322			}
323
324			// If the methods have type parameters we don't care whether they
325			// are the same or not, as long as they match up. Use unification
326			// to see if they can be made to match.
327			// TODO(gri) is this always correct? what about type bounds?
328			// (Alternative is to rename/subst type parameters and compare.)
329			u := newUnifier(true)
330			u.x.init(ftyp.TypeParams().list())
331			if !u.unify(ftyp, mtyp) {
332				return m, f
333			}
334		}
335
336		return
337	}
338
339	// A concrete type implements T if it implements all methods of T.
340	for _, m := range T.typeSet().methods {
341		// TODO(gri) should this be calling lookupFieldOrMethod instead (and why not)?
342		obj, _, _ := lookupFieldOrMethod(V, false, m.pkg, m.name)
343
344		// Check if *V implements this method of T.
345		if obj == nil {
346			ptr := NewPointer(V)
347			obj, _, _ = lookupFieldOrMethod(ptr, false, m.pkg, m.name)
348
349			if obj != nil {
350				// methods may not have a fully set up signature yet
351				if check != nil {
352					check.objDecl(obj, nil)
353				}
354				return m, obj.(*Func)
355			}
356		}
357
358		// we must have a method (not a field of matching function type)
359		f, _ := obj.(*Func)
360		if f == nil {
361			return m, nil
362		}
363
364		// methods may not have a fully set up signature yet
365		if check != nil {
366			check.objDecl(f, nil)
367		}
368
369		// both methods must have the same number of type parameters
370		ftyp := f.typ.(*Signature)
371		mtyp := m.typ.(*Signature)
372		if ftyp.TypeParams().Len() != mtyp.TypeParams().Len() {
373			return m, f
374		}
375		if ftyp.TypeParams().Len() > 0 {
376			panic("method with type parameters")
377		}
378
379		// If the methods have type parameters we don't care whether they
380		// are the same or not, as long as they match up. Use unification
381		// to see if they can be made to match.
382		// TODO(gri) is this always correct? what about type bounds?
383		// (Alternative is to rename/subst type parameters and compare.)
384		u := newUnifier(true)
385		u.x.init(ftyp.RecvTypeParams().list())
386		if !u.unify(ftyp, mtyp) {
387			return m, f
388		}
389	}
390
391	return
392}
393
394// missingMethodReason returns a string giving the detailed reason for a missing method m,
395// where m is missing from V, but required by T. It puts the reason in parentheses,
396// and may include more have/want info after that. If non-nil, wrongType is a relevant
397// method that matches in some way. It may have the correct name, but wrong type, or
398// it may have a pointer receiver.
399func (check *Checker) missingMethodReason(V, T Type, m, wrongType *Func) string {
400	var r string
401	var mname string
402	if compilerErrorMessages {
403		mname = m.Name() + " method"
404	} else {
405		mname = "method " + m.Name()
406	}
407	if wrongType != nil {
408		if Identical(m.typ, wrongType.typ) {
409			if m.Name() == wrongType.Name() {
410				r = fmt.Sprintf("(%s has pointer receiver)", mname)
411			} else {
412				r = fmt.Sprintf("(missing %s)\n\t\thave %s^^%s\n\t\twant %s^^%s",
413					mname, wrongType.Name(), wrongType.typ, m.Name(), m.typ)
414			}
415		} else {
416			if compilerErrorMessages {
417				r = fmt.Sprintf("(wrong type for %s)\n\t\thave %s^^%s\n\t\twant %s^^%s",
418					mname, wrongType.Name(), wrongType.typ, m.Name(), m.typ)
419			} else {
420				r = fmt.Sprintf("(wrong type for %s: have %s, want %s)",
421					mname, wrongType.typ, m.typ)
422			}
423		}
424		// This is a hack to print the function type without the leading
425		// 'func' keyword in the have/want printouts. We could change to have
426		// an extra formatting option for types2.Type that doesn't print out
427		// 'func'.
428		r = strings.Replace(r, "^^func", "", -1)
429	} else if IsInterface(T) && !isTypeParam(T) {
430		if isInterfacePtr(V) {
431			r = fmt.Sprintf("(%s is pointer to interface, not interface)", V)
432		}
433	} else if isInterfacePtr(T) && !isTypeParam(T) {
434		r = fmt.Sprintf("(%s is pointer to interface, not interface)", T)
435	}
436	if r == "" {
437		r = fmt.Sprintf("(missing %s)", mname)
438	}
439	return r
440}
441
442func isInterfacePtr(T Type) bool {
443	p, _ := under(T).(*Pointer)
444	return p != nil && IsInterface(p.base) && !isTypeParam(T)
445}
446
447// assertableTo reports whether a value of type V can be asserted to have type T.
448// It returns (nil, false) as affirmative answer. Otherwise it returns a missing
449// method required by V and whether it is missing or just has the wrong type.
450// The receiver may be nil if assertableTo is invoked through an exported API call
451// (such as AssertableTo), i.e., when all methods have been type-checked.
452// If the global constant forceStrict is set, assertions that are known to fail
453// are not permitted.
454func (check *Checker) assertableTo(V *Interface, T Type) (method, wrongType *Func) {
455	// no static check is required if T is an interface
456	// spec: "If T is an interface type, x.(T) asserts that the
457	//        dynamic type of x implements the interface T."
458	if IsInterface(T) && !forceStrict {
459		return
460	}
461	return check.missingMethod(T, V, false)
462}
463
464// deref dereferences typ if it is a *Pointer and returns its base and true.
465// Otherwise it returns (typ, false).
466func deref(typ Type) (Type, bool) {
467	if p, _ := typ.(*Pointer); p != nil {
468		// p.base should never be nil, but be conservative
469		if p.base == nil {
470			if debug {
471				panic("pointer with nil base type (possibly due to an invalid cyclic declaration)")
472			}
473			return Typ[Invalid], true
474		}
475		return p.base, true
476	}
477	return typ, false
478}
479
480// derefStructPtr dereferences typ if it is a (named or unnamed) pointer to a
481// (named or unnamed) struct and returns its base. Otherwise it returns typ.
482func derefStructPtr(typ Type) Type {
483	if p, _ := under(typ).(*Pointer); p != nil {
484		if _, ok := under(p.base).(*Struct); ok {
485			return p.base
486		}
487	}
488	return typ
489}
490
491// concat returns the result of concatenating list and i.
492// The result does not share its underlying array with list.
493func concat(list []int, i int) []int {
494	var t []int
495	t = append(t, list...)
496	return append(t, i)
497}
498
499// fieldIndex returns the index for the field with matching package and name, or a value < 0.
500func fieldIndex(fields []*Var, pkg *Package, name string) int {
501	if name != "_" {
502		for i, f := range fields {
503			if f.sameId(pkg, name) {
504				return i
505			}
506		}
507	}
508	return -1
509}
510
511// lookupMethod returns the index of and method with matching package and name, or (-1, nil).
512func lookupMethod(methods []*Func, pkg *Package, name string) (int, *Func) {
513	if name != "_" {
514		for i, m := range methods {
515			if m.sameId(pkg, name) {
516				return i, m
517			}
518		}
519	}
520	return -1, nil
521}
522