1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Garbage collector: sweeping
6
7// The sweeper consists of two different algorithms:
8//
9// * The object reclaimer finds and frees unmarked slots in spans. It
10//   can free a whole span if none of the objects are marked, but that
11//   isn't its goal. This can be driven either synchronously by
12//   mcentral.cacheSpan for mcentral spans, or asynchronously by
13//   sweepone, which looks at all the mcentral lists.
14//
15// * The span reclaimer looks for spans that contain no marked objects
16//   and frees whole spans. This is a separate algorithm because
17//   freeing whole spans is the hardest task for the object reclaimer,
18//   but is critical when allocating new spans. The entry point for
19//   this is mheap_.reclaim and it's driven by a sequential scan of
20//   the page marks bitmap in the heap arenas.
21//
22// Both algorithms ultimately call mspan.sweep, which sweeps a single
23// heap span.
24
25package runtime
26
27import (
28	"runtime/internal/atomic"
29	"unsafe"
30)
31
32var sweep sweepdata
33
34// State of background sweep.
35type sweepdata struct {
36	lock    mutex
37	g       *g
38	parked  bool
39	started bool
40
41	nbgsweep    uint32
42	npausesweep uint32
43
44	// active tracks outstanding sweepers and the sweep
45	// termination condition.
46	active activeSweep
47
48	// centralIndex is the current unswept span class.
49	// It represents an index into the mcentral span
50	// sets. Accessed and updated via its load and
51	// update methods. Not protected by a lock.
52	//
53	// Reset at mark termination.
54	// Used by mheap.nextSpanForSweep.
55	centralIndex sweepClass
56}
57
58// sweepClass is a spanClass and one bit to represent whether we're currently
59// sweeping partial or full spans.
60type sweepClass uint32
61
62const (
63	numSweepClasses            = numSpanClasses * 2
64	sweepClassDone  sweepClass = sweepClass(^uint32(0))
65)
66
67func (s *sweepClass) load() sweepClass {
68	return sweepClass(atomic.Load((*uint32)(s)))
69}
70
71func (s *sweepClass) update(sNew sweepClass) {
72	// Only update *s if its current value is less than sNew,
73	// since *s increases monotonically.
74	sOld := s.load()
75	for sOld < sNew && !atomic.Cas((*uint32)(s), uint32(sOld), uint32(sNew)) {
76		sOld = s.load()
77	}
78	// TODO(mknyszek): This isn't the only place we have
79	// an atomic monotonically increasing counter. It would
80	// be nice to have an "atomic max" which is just implemented
81	// as the above on most architectures. Some architectures
82	// like RISC-V however have native support for an atomic max.
83}
84
85func (s *sweepClass) clear() {
86	atomic.Store((*uint32)(s), 0)
87}
88
89// split returns the underlying span class as well as
90// whether we're interested in the full or partial
91// unswept lists for that class, indicated as a boolean
92// (true means "full").
93func (s sweepClass) split() (spc spanClass, full bool) {
94	return spanClass(s >> 1), s&1 == 0
95}
96
97// nextSpanForSweep finds and pops the next span for sweeping from the
98// central sweep buffers. It returns ownership of the span to the caller.
99// Returns nil if no such span exists.
100func (h *mheap) nextSpanForSweep() *mspan {
101	sg := h.sweepgen
102	for sc := sweep.centralIndex.load(); sc < numSweepClasses; sc++ {
103		spc, full := sc.split()
104		c := &h.central[spc].mcentral
105		var s *mspan
106		if full {
107			s = c.fullUnswept(sg).pop()
108		} else {
109			s = c.partialUnswept(sg).pop()
110		}
111		if s != nil {
112			// Write down that we found something so future sweepers
113			// can start from here.
114			sweep.centralIndex.update(sc)
115			return s
116		}
117	}
118	// Write down that we found nothing.
119	sweep.centralIndex.update(sweepClassDone)
120	return nil
121}
122
123const sweepDrainedMask = 1 << 31
124
125// activeSweep is a type that captures whether sweeping
126// is done, and whether there are any outstanding sweepers.
127//
128// Every potential sweeper must call begin() before they look
129// for work, and end() after they've finished sweeping.
130type activeSweep struct {
131	// state is divided into two parts.
132	//
133	// The top bit (masked by sweepDrainedMask) is a boolean
134	// value indicating whether all the sweep work has been
135	// drained from the queue.
136	//
137	// The rest of the bits are a counter, indicating the
138	// number of outstanding concurrent sweepers.
139	state atomic.Uint32
140}
141
142// begin registers a new sweeper. Returns a sweepLocker
143// for acquiring spans for sweeping. Any outstanding sweeper blocks
144// sweep termination.
145//
146// If the sweepLocker is invalid, the caller can be sure that all
147// outstanding sweep work has been drained, so there is nothing left
148// to sweep. Note that there may be sweepers currently running, so
149// this does not indicate that all sweeping has completed.
150//
151// Even if the sweepLocker is invalid, its sweepGen is always valid.
152func (a *activeSweep) begin() sweepLocker {
153	for {
154		state := a.state.Load()
155		if state&sweepDrainedMask != 0 {
156			return sweepLocker{mheap_.sweepgen, false}
157		}
158		if a.state.CompareAndSwap(state, state+1) {
159			return sweepLocker{mheap_.sweepgen, true}
160		}
161	}
162}
163
164// end deregisters a sweeper. Must be called once for each time
165// begin is called if the sweepLocker is valid.
166func (a *activeSweep) end(sl sweepLocker) {
167	if sl.sweepGen != mheap_.sweepgen {
168		throw("sweeper left outstanding across sweep generations")
169	}
170	for {
171		state := a.state.Load()
172		if (state&^sweepDrainedMask)-1 >= sweepDrainedMask {
173			throw("mismatched begin/end of activeSweep")
174		}
175		if a.state.CompareAndSwap(state, state-1) {
176			if state != sweepDrainedMask {
177				return
178			}
179			if debug.gcpacertrace > 0 {
180				print("pacer: sweep done at heap size ", gcController.heapLive>>20, "MB; allocated ", (gcController.heapLive-mheap_.sweepHeapLiveBasis)>>20, "MB during sweep; swept ", mheap_.pagesSwept.Load(), " pages at ", mheap_.sweepPagesPerByte, " pages/byte\n")
181			}
182			return
183		}
184	}
185}
186
187// markDrained marks the active sweep cycle as having drained
188// all remaining work. This is safe to be called concurrently
189// with all other methods of activeSweep, though may race.
190//
191// Returns true if this call was the one that actually performed
192// the mark.
193func (a *activeSweep) markDrained() bool {
194	for {
195		state := a.state.Load()
196		if state&sweepDrainedMask != 0 {
197			return false
198		}
199		if a.state.CompareAndSwap(state, state|sweepDrainedMask) {
200			return true
201		}
202	}
203}
204
205// sweepers returns the current number of active sweepers.
206func (a *activeSweep) sweepers() uint32 {
207	return a.state.Load() &^ sweepDrainedMask
208}
209
210// isDone returns true if all sweep work has been drained and no more
211// outstanding sweepers exist. That is, when the sweep phase is
212// completely done.
213func (a *activeSweep) isDone() bool {
214	return a.state.Load() == sweepDrainedMask
215}
216
217// reset sets up the activeSweep for the next sweep cycle.
218//
219// The world must be stopped.
220func (a *activeSweep) reset() {
221	assertWorldStopped()
222	a.state.Store(0)
223}
224
225// finishsweep_m ensures that all spans are swept.
226//
227// The world must be stopped. This ensures there are no sweeps in
228// progress.
229//
230//go:nowritebarrier
231func finishsweep_m() {
232	assertWorldStopped()
233
234	// Sweeping must be complete before marking commences, so
235	// sweep any unswept spans. If this is a concurrent GC, there
236	// shouldn't be any spans left to sweep, so this should finish
237	// instantly. If GC was forced before the concurrent sweep
238	// finished, there may be spans to sweep.
239	for sweepone() != ^uintptr(0) {
240		sweep.npausesweep++
241	}
242
243	// Make sure there aren't any outstanding sweepers left.
244	// At this point, with the world stopped, it means one of two
245	// things. Either we were able to preempt a sweeper, or that
246	// a sweeper didn't call sweep.active.end when it should have.
247	// Both cases indicate a bug, so throw.
248	if sweep.active.sweepers() != 0 {
249		throw("active sweepers found at start of mark phase")
250	}
251
252	// Reset all the unswept buffers, which should be empty.
253	// Do this in sweep termination as opposed to mark termination
254	// so that we can catch unswept spans and reclaim blocks as
255	// soon as possible.
256	sg := mheap_.sweepgen
257	for i := range mheap_.central {
258		c := &mheap_.central[i].mcentral
259		c.partialUnswept(sg).reset()
260		c.fullUnswept(sg).reset()
261	}
262
263	// Sweeping is done, so if the scavenger isn't already awake,
264	// wake it up. There's definitely work for it to do at this
265	// point.
266	wakeScavenger()
267
268	nextMarkBitArenaEpoch()
269}
270
271func bgsweep(c chan int) {
272	sweep.g = getg()
273
274	lockInit(&sweep.lock, lockRankSweep)
275	lock(&sweep.lock)
276	sweep.parked = true
277	c <- 1
278	goparkunlock(&sweep.lock, waitReasonGCSweepWait, traceEvGoBlock, 1)
279
280	for {
281		for sweepone() != ^uintptr(0) {
282			sweep.nbgsweep++
283			Gosched()
284		}
285		for freeSomeWbufs(true) {
286			Gosched()
287		}
288		lock(&sweep.lock)
289		if !isSweepDone() {
290			// This can happen if a GC runs between
291			// gosweepone returning ^0 above
292			// and the lock being acquired.
293			unlock(&sweep.lock)
294			continue
295		}
296		sweep.parked = true
297		goparkunlock(&sweep.lock, waitReasonGCSweepWait, traceEvGoBlock, 1)
298	}
299}
300
301// sweepLocker acquires sweep ownership of spans.
302type sweepLocker struct {
303	// sweepGen is the sweep generation of the heap.
304	sweepGen uint32
305	valid    bool
306}
307
308// sweepLocked represents sweep ownership of a span.
309type sweepLocked struct {
310	*mspan
311}
312
313// tryAcquire attempts to acquire sweep ownership of span s. If it
314// successfully acquires ownership, it blocks sweep completion.
315func (l *sweepLocker) tryAcquire(s *mspan) (sweepLocked, bool) {
316	if !l.valid {
317		throw("use of invalid sweepLocker")
318	}
319	// Check before attempting to CAS.
320	if atomic.Load(&s.sweepgen) != l.sweepGen-2 {
321		return sweepLocked{}, false
322	}
323	// Attempt to acquire sweep ownership of s.
324	if !atomic.Cas(&s.sweepgen, l.sweepGen-2, l.sweepGen-1) {
325		return sweepLocked{}, false
326	}
327	return sweepLocked{s}, true
328}
329
330// sweepone sweeps some unswept heap span and returns the number of pages returned
331// to the heap, or ^uintptr(0) if there was nothing to sweep.
332func sweepone() uintptr {
333	gp := getg()
334
335	// Increment locks to ensure that the goroutine is not preempted
336	// in the middle of sweep thus leaving the span in an inconsistent state for next GC
337	gp.m.locks++
338
339	// TODO(austin): sweepone is almost always called in a loop;
340	// lift the sweepLocker into its callers.
341	sl := sweep.active.begin()
342	if !sl.valid {
343		gp.m.locks--
344		return ^uintptr(0)
345	}
346
347	// Find a span to sweep.
348	npages := ^uintptr(0)
349	var noMoreWork bool
350	for {
351		s := mheap_.nextSpanForSweep()
352		if s == nil {
353			noMoreWork = sweep.active.markDrained()
354			break
355		}
356		if state := s.state.get(); state != mSpanInUse {
357			// This can happen if direct sweeping already
358			// swept this span, but in that case the sweep
359			// generation should always be up-to-date.
360			if !(s.sweepgen == sl.sweepGen || s.sweepgen == sl.sweepGen+3) {
361				print("runtime: bad span s.state=", state, " s.sweepgen=", s.sweepgen, " sweepgen=", sl.sweepGen, "\n")
362				throw("non in-use span in unswept list")
363			}
364			continue
365		}
366		if s, ok := sl.tryAcquire(s); ok {
367			// Sweep the span we found.
368			npages = s.npages
369			if s.sweep(false) {
370				// Whole span was freed. Count it toward the
371				// page reclaimer credit since these pages can
372				// now be used for span allocation.
373				mheap_.reclaimCredit.Add(npages)
374			} else {
375				// Span is still in-use, so this returned no
376				// pages to the heap and the span needs to
377				// move to the swept in-use list.
378				npages = 0
379			}
380			break
381		}
382	}
383	sweep.active.end(sl)
384
385	if noMoreWork {
386		// The sweep list is empty. There may still be
387		// concurrent sweeps running, but we're at least very
388		// close to done sweeping.
389
390		// Move the scavenge gen forward (signalling
391		// that there's new work to do) and wake the scavenger.
392		//
393		// The scavenger is signaled by the last sweeper because once
394		// sweeping is done, we will definitely have useful work for
395		// the scavenger to do, since the scavenger only runs over the
396		// heap once per GC cyle. This update is not done during sweep
397		// termination because in some cases there may be a long delay
398		// between sweep done and sweep termination (e.g. not enough
399		// allocations to trigger a GC) which would be nice to fill in
400		// with scavenging work.
401		systemstack(func() {
402			lock(&mheap_.lock)
403			mheap_.pages.scavengeStartGen()
404			unlock(&mheap_.lock)
405		})
406		// Since we might sweep in an allocation path, it's not possible
407		// for us to wake the scavenger directly via wakeScavenger, since
408		// it could allocate. Ask sysmon to do it for us instead.
409		readyForScavenger()
410	}
411
412	gp.m.locks--
413	return npages
414}
415
416// isSweepDone reports whether all spans are swept.
417//
418// Note that this condition may transition from false to true at any
419// time as the sweeper runs. It may transition from true to false if a
420// GC runs; to prevent that the caller must be non-preemptible or must
421// somehow block GC progress.
422func isSweepDone() bool {
423	return sweep.active.isDone()
424}
425
426// Returns only when span s has been swept.
427//go:nowritebarrier
428func (s *mspan) ensureSwept() {
429	// Caller must disable preemption.
430	// Otherwise when this function returns the span can become unswept again
431	// (if GC is triggered on another goroutine).
432	_g_ := getg()
433	if _g_.m.locks == 0 && _g_.m.mallocing == 0 && _g_ != _g_.m.g0 {
434		throw("mspan.ensureSwept: m is not locked")
435	}
436
437	// If this operation fails, then that means that there are
438	// no more spans to be swept. In this case, either s has already
439	// been swept, or is about to be acquired for sweeping and swept.
440	sl := sweep.active.begin()
441	if sl.valid {
442		// The caller must be sure that the span is a mSpanInUse span.
443		if s, ok := sl.tryAcquire(s); ok {
444			s.sweep(false)
445			sweep.active.end(sl)
446			return
447		}
448		sweep.active.end(sl)
449	}
450
451	// Unfortunately we can't sweep the span ourselves. Somebody else
452	// got to it first. We don't have efficient means to wait, but that's
453	// OK, it will be swept fairly soon.
454	for {
455		spangen := atomic.Load(&s.sweepgen)
456		if spangen == sl.sweepGen || spangen == sl.sweepGen+3 {
457			break
458		}
459		osyield()
460	}
461}
462
463// Sweep frees or collects finalizers for blocks not marked in the mark phase.
464// It clears the mark bits in preparation for the next GC round.
465// Returns true if the span was returned to heap.
466// If preserve=true, don't return it to heap nor relink in mcentral lists;
467// caller takes care of it.
468func (sl *sweepLocked) sweep(preserve bool) bool {
469	// It's critical that we enter this function with preemption disabled,
470	// GC must not start while we are in the middle of this function.
471	_g_ := getg()
472	if _g_.m.locks == 0 && _g_.m.mallocing == 0 && _g_ != _g_.m.g0 {
473		throw("mspan.sweep: m is not locked")
474	}
475
476	s := sl.mspan
477	if !preserve {
478		// We'll release ownership of this span. Nil it out to
479		// prevent the caller from accidentally using it.
480		sl.mspan = nil
481	}
482
483	sweepgen := mheap_.sweepgen
484	if state := s.state.get(); state != mSpanInUse || s.sweepgen != sweepgen-1 {
485		print("mspan.sweep: state=", state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n")
486		throw("mspan.sweep: bad span state")
487	}
488
489	if trace.enabled {
490		traceGCSweepSpan(s.npages * _PageSize)
491	}
492
493	mheap_.pagesSwept.Add(int64(s.npages))
494
495	spc := s.spanclass
496	size := s.elemsize
497
498	// The allocBits indicate which unmarked objects don't need to be
499	// processed since they were free at the end of the last GC cycle
500	// and were not allocated since then.
501	// If the allocBits index is >= s.freeindex and the bit
502	// is not marked then the object remains unallocated
503	// since the last GC.
504	// This situation is analogous to being on a freelist.
505
506	// Unlink & free special records for any objects we're about to free.
507	// Two complications here:
508	// 1. An object can have both finalizer and profile special records.
509	//    In such case we need to queue finalizer for execution,
510	//    mark the object as live and preserve the profile special.
511	// 2. A tiny object can have several finalizers setup for different offsets.
512	//    If such object is not marked, we need to queue all finalizers at once.
513	// Both 1 and 2 are possible at the same time.
514	hadSpecials := s.specials != nil
515	siter := newSpecialsIter(s)
516	for siter.valid() {
517		// A finalizer can be set for an inner byte of an object, find object beginning.
518		objIndex := uintptr(siter.s.offset) / size
519		p := s.base() + objIndex*size
520		mbits := s.markBitsForIndex(objIndex)
521		if !mbits.isMarked() {
522			// This object is not marked and has at least one special record.
523			// Pass 1: see if it has at least one finalizer.
524			hasFin := false
525			endOffset := p - s.base() + size
526			for tmp := siter.s; tmp != nil && uintptr(tmp.offset) < endOffset; tmp = tmp.next {
527				if tmp.kind == _KindSpecialFinalizer {
528					// Stop freeing of object if it has a finalizer.
529					mbits.setMarkedNonAtomic()
530					hasFin = true
531					break
532				}
533			}
534			// Pass 2: queue all finalizers _or_ handle profile record.
535			for siter.valid() && uintptr(siter.s.offset) < endOffset {
536				// Find the exact byte for which the special was setup
537				// (as opposed to object beginning).
538				special := siter.s
539				p := s.base() + uintptr(special.offset)
540				if special.kind == _KindSpecialFinalizer || !hasFin {
541					siter.unlinkAndNext()
542					freeSpecial(special, unsafe.Pointer(p), size)
543				} else {
544					// The object has finalizers, so we're keeping it alive.
545					// All other specials only apply when an object is freed,
546					// so just keep the special record.
547					siter.next()
548				}
549			}
550		} else {
551			// object is still live
552			if siter.s.kind == _KindSpecialReachable {
553				special := siter.unlinkAndNext()
554				(*specialReachable)(unsafe.Pointer(special)).reachable = true
555				freeSpecial(special, unsafe.Pointer(p), size)
556			} else {
557				// keep special record
558				siter.next()
559			}
560		}
561	}
562	if hadSpecials && s.specials == nil {
563		spanHasNoSpecials(s)
564	}
565
566	if debug.allocfreetrace != 0 || debug.clobberfree != 0 || raceenabled || msanenabled || asanenabled {
567		// Find all newly freed objects. This doesn't have to
568		// efficient; allocfreetrace has massive overhead.
569		mbits := s.markBitsForBase()
570		abits := s.allocBitsForIndex(0)
571		for i := uintptr(0); i < s.nelems; i++ {
572			if !mbits.isMarked() && (abits.index < s.freeindex || abits.isMarked()) {
573				x := s.base() + i*s.elemsize
574				if debug.allocfreetrace != 0 {
575					tracefree(unsafe.Pointer(x), size)
576				}
577				if debug.clobberfree != 0 {
578					clobberfree(unsafe.Pointer(x), size)
579				}
580				if raceenabled {
581					racefree(unsafe.Pointer(x), size)
582				}
583				if msanenabled {
584					msanfree(unsafe.Pointer(x), size)
585				}
586				if asanenabled {
587					asanpoison(unsafe.Pointer(x), size)
588				}
589			}
590			mbits.advance()
591			abits.advance()
592		}
593	}
594
595	// Check for zombie objects.
596	if s.freeindex < s.nelems {
597		// Everything < freeindex is allocated and hence
598		// cannot be zombies.
599		//
600		// Check the first bitmap byte, where we have to be
601		// careful with freeindex.
602		obj := s.freeindex
603		if (*s.gcmarkBits.bytep(obj / 8)&^*s.allocBits.bytep(obj / 8))>>(obj%8) != 0 {
604			s.reportZombies()
605		}
606		// Check remaining bytes.
607		for i := obj/8 + 1; i < divRoundUp(s.nelems, 8); i++ {
608			if *s.gcmarkBits.bytep(i)&^*s.allocBits.bytep(i) != 0 {
609				s.reportZombies()
610			}
611		}
612	}
613
614	// Count the number of free objects in this span.
615	nalloc := uint16(s.countAlloc())
616	nfreed := s.allocCount - nalloc
617	if nalloc > s.allocCount {
618		// The zombie check above should have caught this in
619		// more detail.
620		print("runtime: nelems=", s.nelems, " nalloc=", nalloc, " previous allocCount=", s.allocCount, " nfreed=", nfreed, "\n")
621		throw("sweep increased allocation count")
622	}
623
624	s.allocCount = nalloc
625	s.freeindex = 0 // reset allocation index to start of span.
626	if trace.enabled {
627		getg().m.p.ptr().traceReclaimed += uintptr(nfreed) * s.elemsize
628	}
629
630	// gcmarkBits becomes the allocBits.
631	// get a fresh cleared gcmarkBits in preparation for next GC
632	s.allocBits = s.gcmarkBits
633	s.gcmarkBits = newMarkBits(s.nelems)
634
635	// Initialize alloc bits cache.
636	s.refillAllocCache(0)
637
638	// The span must be in our exclusive ownership until we update sweepgen,
639	// check for potential races.
640	if state := s.state.get(); state != mSpanInUse || s.sweepgen != sweepgen-1 {
641		print("mspan.sweep: state=", state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n")
642		throw("mspan.sweep: bad span state after sweep")
643	}
644	if s.sweepgen == sweepgen+1 || s.sweepgen == sweepgen+3 {
645		throw("swept cached span")
646	}
647
648	// We need to set s.sweepgen = h.sweepgen only when all blocks are swept,
649	// because of the potential for a concurrent free/SetFinalizer.
650	//
651	// But we need to set it before we make the span available for allocation
652	// (return it to heap or mcentral), because allocation code assumes that a
653	// span is already swept if available for allocation.
654	//
655	// Serialization point.
656	// At this point the mark bits are cleared and allocation ready
657	// to go so release the span.
658	atomic.Store(&s.sweepgen, sweepgen)
659
660	if spc.sizeclass() != 0 {
661		// Handle spans for small objects.
662		if nfreed > 0 {
663			// Only mark the span as needing zeroing if we've freed any
664			// objects, because a fresh span that had been allocated into,
665			// wasn't totally filled, but then swept, still has all of its
666			// free slots zeroed.
667			s.needzero = 1
668			stats := memstats.heapStats.acquire()
669			atomic.Xadduintptr(&stats.smallFreeCount[spc.sizeclass()], uintptr(nfreed))
670			memstats.heapStats.release()
671		}
672		if !preserve {
673			// The caller may not have removed this span from whatever
674			// unswept set its on but taken ownership of the span for
675			// sweeping by updating sweepgen. If this span still is in
676			// an unswept set, then the mcentral will pop it off the
677			// set, check its sweepgen, and ignore it.
678			if nalloc == 0 {
679				// Free totally free span directly back to the heap.
680				mheap_.freeSpan(s)
681				return true
682			}
683			// Return span back to the right mcentral list.
684			if uintptr(nalloc) == s.nelems {
685				mheap_.central[spc].mcentral.fullSwept(sweepgen).push(s)
686			} else {
687				mheap_.central[spc].mcentral.partialSwept(sweepgen).push(s)
688			}
689		}
690	} else if !preserve {
691		// Handle spans for large objects.
692		if nfreed != 0 {
693			// Free large object span to heap.
694
695			// NOTE(rsc,dvyukov): The original implementation of efence
696			// in CL 22060046 used sysFree instead of sysFault, so that
697			// the operating system would eventually give the memory
698			// back to us again, so that an efence program could run
699			// longer without running out of memory. Unfortunately,
700			// calling sysFree here without any kind of adjustment of the
701			// heap data structures means that when the memory does
702			// come back to us, we have the wrong metadata for it, either in
703			// the mspan structures or in the garbage collection bitmap.
704			// Using sysFault here means that the program will run out of
705			// memory fairly quickly in efence mode, but at least it won't
706			// have mysterious crashes due to confused memory reuse.
707			// It should be possible to switch back to sysFree if we also
708			// implement and then call some kind of mheap.deleteSpan.
709			if debug.efence > 0 {
710				s.limit = 0 // prevent mlookup from finding this span
711				sysFault(unsafe.Pointer(s.base()), size)
712			} else {
713				mheap_.freeSpan(s)
714			}
715			stats := memstats.heapStats.acquire()
716			atomic.Xadduintptr(&stats.largeFreeCount, 1)
717			atomic.Xadduintptr(&stats.largeFree, size)
718			memstats.heapStats.release()
719			return true
720		}
721
722		// Add a large span directly onto the full+swept list.
723		mheap_.central[spc].mcentral.fullSwept(sweepgen).push(s)
724	}
725	return false
726}
727
728// reportZombies reports any marked but free objects in s and throws.
729//
730// This generally means one of the following:
731//
732// 1. User code converted a pointer to a uintptr and then back
733// unsafely, and a GC ran while the uintptr was the only reference to
734// an object.
735//
736// 2. User code (or a compiler bug) constructed a bad pointer that
737// points to a free slot, often a past-the-end pointer.
738//
739// 3. The GC two cycles ago missed a pointer and freed a live object,
740// but it was still live in the last cycle, so this GC cycle found a
741// pointer to that object and marked it.
742func (s *mspan) reportZombies() {
743	printlock()
744	print("runtime: marked free object in span ", s, ", elemsize=", s.elemsize, " freeindex=", s.freeindex, " (bad use of unsafe.Pointer? try -d=checkptr)\n")
745	mbits := s.markBitsForBase()
746	abits := s.allocBitsForIndex(0)
747	for i := uintptr(0); i < s.nelems; i++ {
748		addr := s.base() + i*s.elemsize
749		print(hex(addr))
750		alloc := i < s.freeindex || abits.isMarked()
751		if alloc {
752			print(" alloc")
753		} else {
754			print(" free ")
755		}
756		if mbits.isMarked() {
757			print(" marked  ")
758		} else {
759			print(" unmarked")
760		}
761		zombie := mbits.isMarked() && !alloc
762		if zombie {
763			print(" zombie")
764		}
765		print("\n")
766		if zombie {
767			length := s.elemsize
768			if length > 1024 {
769				length = 1024
770			}
771			hexdumpWords(addr, addr+length, nil)
772		}
773		mbits.advance()
774		abits.advance()
775	}
776	throw("found pointer to free object")
777}
778
779// deductSweepCredit deducts sweep credit for allocating a span of
780// size spanBytes. This must be performed *before* the span is
781// allocated to ensure the system has enough credit. If necessary, it
782// performs sweeping to prevent going in to debt. If the caller will
783// also sweep pages (e.g., for a large allocation), it can pass a
784// non-zero callerSweepPages to leave that many pages unswept.
785//
786// deductSweepCredit makes a worst-case assumption that all spanBytes
787// bytes of the ultimately allocated span will be available for object
788// allocation.
789//
790// deductSweepCredit is the core of the "proportional sweep" system.
791// It uses statistics gathered by the garbage collector to perform
792// enough sweeping so that all pages are swept during the concurrent
793// sweep phase between GC cycles.
794//
795// mheap_ must NOT be locked.
796func deductSweepCredit(spanBytes uintptr, callerSweepPages uintptr) {
797	if mheap_.sweepPagesPerByte == 0 {
798		// Proportional sweep is done or disabled.
799		return
800	}
801
802	if trace.enabled {
803		traceGCSweepStart()
804	}
805
806retry:
807	sweptBasis := mheap_.pagesSweptBasis.Load()
808
809	// Fix debt if necessary.
810	newHeapLive := uintptr(atomic.Load64(&gcController.heapLive)-mheap_.sweepHeapLiveBasis) + spanBytes
811	pagesTarget := int64(mheap_.sweepPagesPerByte*float64(newHeapLive)) - int64(callerSweepPages)
812	for pagesTarget > int64(mheap_.pagesSwept.Load()-sweptBasis) {
813		if sweepone() == ^uintptr(0) {
814			mheap_.sweepPagesPerByte = 0
815			break
816		}
817		if mheap_.pagesSweptBasis.Load() != sweptBasis {
818			// Sweep pacing changed. Recompute debt.
819			goto retry
820		}
821	}
822
823	if trace.enabled {
824		traceGCSweepDone()
825	}
826}
827
828// clobberfree sets the memory content at x to bad content, for debugging
829// purposes.
830func clobberfree(x unsafe.Pointer, size uintptr) {
831	// size (span.elemsize) is always a multiple of 4.
832	for i := uintptr(0); i < size; i += 4 {
833		*(*uint32)(add(x, i)) = 0xdeadbeef
834	}
835}
836
837// gcPaceSweeper updates the sweeper's pacing parameters.
838//
839// Must be called whenever the GC's pacing is updated.
840//
841// The world must be stopped, or mheap_.lock must be held.
842func gcPaceSweeper(trigger uint64) {
843	assertWorldStoppedOrLockHeld(&mheap_.lock)
844
845	// Update sweep pacing.
846	if isSweepDone() {
847		mheap_.sweepPagesPerByte = 0
848	} else {
849		// Concurrent sweep needs to sweep all of the in-use
850		// pages by the time the allocated heap reaches the GC
851		// trigger. Compute the ratio of in-use pages to sweep
852		// per byte allocated, accounting for the fact that
853		// some might already be swept.
854		heapLiveBasis := atomic.Load64(&gcController.heapLive)
855		heapDistance := int64(trigger) - int64(heapLiveBasis)
856		// Add a little margin so rounding errors and
857		// concurrent sweep are less likely to leave pages
858		// unswept when GC starts.
859		heapDistance -= 1024 * 1024
860		if heapDistance < _PageSize {
861			// Avoid setting the sweep ratio extremely high
862			heapDistance = _PageSize
863		}
864		pagesSwept := mheap_.pagesSwept.Load()
865		pagesInUse := mheap_.pagesInUse.Load()
866		sweepDistancePages := int64(pagesInUse) - int64(pagesSwept)
867		if sweepDistancePages <= 0 {
868			mheap_.sweepPagesPerByte = 0
869		} else {
870			mheap_.sweepPagesPerByte = float64(sweepDistancePages) / float64(heapDistance)
871			mheap_.sweepHeapLiveBasis = heapLiveBasis
872			// Write pagesSweptBasis last, since this
873			// signals concurrent sweeps to recompute
874			// their debt.
875			mheap_.pagesSweptBasis.Store(pagesSwept)
876		}
877	}
878}
879