1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Malloc profiling.
6// Patterned after tcmalloc's algorithms; shorter code.
7
8package runtime
9
10import (
11	"runtime/internal/atomic"
12	"unsafe"
13)
14
15// NOTE(rsc): Everything here could use cas if contention became an issue.
16var proflock mutex
17
18// All memory allocations are local and do not escape outside of the profiler.
19// The profiler is forbidden from referring to garbage-collected memory.
20
21const (
22	// profile types
23	memProfile bucketType = 1 + iota
24	blockProfile
25	mutexProfile
26
27	// size of bucket hash table
28	buckHashSize = 179999
29
30	// max depth of stack to record in bucket
31	maxStack = 32
32)
33
34type bucketType int
35
36// A bucket holds per-call-stack profiling information.
37// The representation is a bit sleazy, inherited from C.
38// This struct defines the bucket header. It is followed in
39// memory by the stack words and then the actual record
40// data, either a memRecord or a blockRecord.
41//
42// Per-call-stack profiling information.
43// Lookup by hashing call stack into a linked-list hash table.
44//
45// No heap pointers.
46//
47//go:notinheap
48type bucket struct {
49	next    *bucket
50	allnext *bucket
51	typ     bucketType // memBucket or blockBucket (includes mutexProfile)
52	hash    uintptr
53	size    uintptr
54	nstk    uintptr
55}
56
57// A memRecord is the bucket data for a bucket of type memProfile,
58// part of the memory profile.
59type memRecord struct {
60	// The following complex 3-stage scheme of stats accumulation
61	// is required to obtain a consistent picture of mallocs and frees
62	// for some point in time.
63	// The problem is that mallocs come in real time, while frees
64	// come only after a GC during concurrent sweeping. So if we would
65	// naively count them, we would get a skew toward mallocs.
66	//
67	// Hence, we delay information to get consistent snapshots as
68	// of mark termination. Allocations count toward the next mark
69	// termination's snapshot, while sweep frees count toward the
70	// previous mark termination's snapshot:
71	//
72	//              MT          MT          MT          MT
73	//             .·|         .·|         .·|         .·|
74	//          .·˙  |      .·˙  |      .·˙  |      .·˙  |
75	//       .·˙     |   .·˙     |   .·˙     |   .·˙     |
76	//    .·˙        |.·˙        |.·˙        |.·˙        |
77	//
78	//       alloc → ▲ ← free
79	//               ┠┅┅┅┅┅┅┅┅┅┅┅P
80	//       C+2     →    C+1    →  C
81	//
82	//                   alloc → ▲ ← free
83	//                           ┠┅┅┅┅┅┅┅┅┅┅┅P
84	//                   C+2     →    C+1    →  C
85	//
86	// Since we can't publish a consistent snapshot until all of
87	// the sweep frees are accounted for, we wait until the next
88	// mark termination ("MT" above) to publish the previous mark
89	// termination's snapshot ("P" above). To do this, allocation
90	// and free events are accounted to *future* heap profile
91	// cycles ("C+n" above) and we only publish a cycle once all
92	// of the events from that cycle must be done. Specifically:
93	//
94	// Mallocs are accounted to cycle C+2.
95	// Explicit frees are accounted to cycle C+2.
96	// GC frees (done during sweeping) are accounted to cycle C+1.
97	//
98	// After mark termination, we increment the global heap
99	// profile cycle counter and accumulate the stats from cycle C
100	// into the active profile.
101
102	// active is the currently published profile. A profiling
103	// cycle can be accumulated into active once its complete.
104	active memRecordCycle
105
106	// future records the profile events we're counting for cycles
107	// that have not yet been published. This is ring buffer
108	// indexed by the global heap profile cycle C and stores
109	// cycles C, C+1, and C+2. Unlike active, these counts are
110	// only for a single cycle; they are not cumulative across
111	// cycles.
112	//
113	// We store cycle C here because there's a window between when
114	// C becomes the active cycle and when we've flushed it to
115	// active.
116	future [3]memRecordCycle
117}
118
119// memRecordCycle
120type memRecordCycle struct {
121	allocs, frees           uintptr
122	alloc_bytes, free_bytes uintptr
123}
124
125// add accumulates b into a. It does not zero b.
126func (a *memRecordCycle) add(b *memRecordCycle) {
127	a.allocs += b.allocs
128	a.frees += b.frees
129	a.alloc_bytes += b.alloc_bytes
130	a.free_bytes += b.free_bytes
131}
132
133// A blockRecord is the bucket data for a bucket of type blockProfile,
134// which is used in blocking and mutex profiles.
135type blockRecord struct {
136	count  int64
137	cycles int64
138}
139
140var (
141	mbuckets  *bucket // memory profile buckets
142	bbuckets  *bucket // blocking profile buckets
143	xbuckets  *bucket // mutex profile buckets
144	buckhash  *[179999]*bucket
145	bucketmem uintptr
146
147	mProf struct {
148		// All fields in mProf are protected by proflock.
149
150		// cycle is the global heap profile cycle. This wraps
151		// at mProfCycleWrap.
152		cycle uint32
153		// flushed indicates that future[cycle] in all buckets
154		// has been flushed to the active profile.
155		flushed bool
156	}
157)
158
159const mProfCycleWrap = uint32(len(memRecord{}.future)) * (2 << 24)
160
161// newBucket allocates a bucket with the given type and number of stack entries.
162func newBucket(typ bucketType, nstk int) *bucket {
163	size := unsafe.Sizeof(bucket{}) + uintptr(nstk)*unsafe.Sizeof(uintptr(0))
164	switch typ {
165	default:
166		throw("invalid profile bucket type")
167	case memProfile:
168		size += unsafe.Sizeof(memRecord{})
169	case blockProfile, mutexProfile:
170		size += unsafe.Sizeof(blockRecord{})
171	}
172
173	b := (*bucket)(persistentalloc(size, 0, &memstats.buckhash_sys))
174	bucketmem += size
175	b.typ = typ
176	b.nstk = uintptr(nstk)
177	return b
178}
179
180// stk returns the slice in b holding the stack.
181func (b *bucket) stk() []uintptr {
182	stk := (*[maxStack]uintptr)(add(unsafe.Pointer(b), unsafe.Sizeof(*b)))
183	return stk[:b.nstk:b.nstk]
184}
185
186// mp returns the memRecord associated with the memProfile bucket b.
187func (b *bucket) mp() *memRecord {
188	if b.typ != memProfile {
189		throw("bad use of bucket.mp")
190	}
191	data := add(unsafe.Pointer(b), unsafe.Sizeof(*b)+b.nstk*unsafe.Sizeof(uintptr(0)))
192	return (*memRecord)(data)
193}
194
195// bp returns the blockRecord associated with the blockProfile bucket b.
196func (b *bucket) bp() *blockRecord {
197	if b.typ != blockProfile && b.typ != mutexProfile {
198		throw("bad use of bucket.bp")
199	}
200	data := add(unsafe.Pointer(b), unsafe.Sizeof(*b)+b.nstk*unsafe.Sizeof(uintptr(0)))
201	return (*blockRecord)(data)
202}
203
204// Return the bucket for stk[0:nstk], allocating new bucket if needed.
205func stkbucket(typ bucketType, size uintptr, stk []uintptr, alloc bool) *bucket {
206	if buckhash == nil {
207		buckhash = (*[buckHashSize]*bucket)(sysAlloc(unsafe.Sizeof(*buckhash), &memstats.buckhash_sys))
208		if buckhash == nil {
209			throw("runtime: cannot allocate memory")
210		}
211	}
212
213	// Hash stack.
214	var h uintptr
215	for _, pc := range stk {
216		h += pc
217		h += h << 10
218		h ^= h >> 6
219	}
220	// hash in size
221	h += size
222	h += h << 10
223	h ^= h >> 6
224	// finalize
225	h += h << 3
226	h ^= h >> 11
227
228	i := int(h % buckHashSize)
229	for b := buckhash[i]; b != nil; b = b.next {
230		if b.typ == typ && b.hash == h && b.size == size && eqslice(b.stk(), stk) {
231			return b
232		}
233	}
234
235	if !alloc {
236		return nil
237	}
238
239	// Create new bucket.
240	b := newBucket(typ, len(stk))
241	copy(b.stk(), stk)
242	b.hash = h
243	b.size = size
244	b.next = buckhash[i]
245	buckhash[i] = b
246	if typ == memProfile {
247		b.allnext = mbuckets
248		mbuckets = b
249	} else if typ == mutexProfile {
250		b.allnext = xbuckets
251		xbuckets = b
252	} else {
253		b.allnext = bbuckets
254		bbuckets = b
255	}
256	return b
257}
258
259func eqslice(x, y []uintptr) bool {
260	if len(x) != len(y) {
261		return false
262	}
263	for i, xi := range x {
264		if xi != y[i] {
265			return false
266		}
267	}
268	return true
269}
270
271// mProf_NextCycle publishes the next heap profile cycle and creates a
272// fresh heap profile cycle. This operation is fast and can be done
273// during STW. The caller must call mProf_Flush before calling
274// mProf_NextCycle again.
275//
276// This is called by mark termination during STW so allocations and
277// frees after the world is started again count towards a new heap
278// profiling cycle.
279func mProf_NextCycle() {
280	lock(&proflock)
281	// We explicitly wrap mProf.cycle rather than depending on
282	// uint wraparound because the memRecord.future ring does not
283	// itself wrap at a power of two.
284	mProf.cycle = (mProf.cycle + 1) % mProfCycleWrap
285	mProf.flushed = false
286	unlock(&proflock)
287}
288
289// mProf_Flush flushes the events from the current heap profiling
290// cycle into the active profile. After this it is safe to start a new
291// heap profiling cycle with mProf_NextCycle.
292//
293// This is called by GC after mark termination starts the world. In
294// contrast with mProf_NextCycle, this is somewhat expensive, but safe
295// to do concurrently.
296func mProf_Flush() {
297	lock(&proflock)
298	if !mProf.flushed {
299		mProf_FlushLocked()
300		mProf.flushed = true
301	}
302	unlock(&proflock)
303}
304
305func mProf_FlushLocked() {
306	c := mProf.cycle
307	for b := mbuckets; b != nil; b = b.allnext {
308		mp := b.mp()
309
310		// Flush cycle C into the published profile and clear
311		// it for reuse.
312		mpc := &mp.future[c%uint32(len(mp.future))]
313		mp.active.add(mpc)
314		*mpc = memRecordCycle{}
315	}
316}
317
318// mProf_PostSweep records that all sweep frees for this GC cycle have
319// completed. This has the effect of publishing the heap profile
320// snapshot as of the last mark termination without advancing the heap
321// profile cycle.
322func mProf_PostSweep() {
323	lock(&proflock)
324	// Flush cycle C+1 to the active profile so everything as of
325	// the last mark termination becomes visible. *Don't* advance
326	// the cycle, since we're still accumulating allocs in cycle
327	// C+2, which have to become C+1 in the next mark termination
328	// and so on.
329	c := mProf.cycle
330	for b := mbuckets; b != nil; b = b.allnext {
331		mp := b.mp()
332		mpc := &mp.future[(c+1)%uint32(len(mp.future))]
333		mp.active.add(mpc)
334		*mpc = memRecordCycle{}
335	}
336	unlock(&proflock)
337}
338
339// Called by malloc to record a profiled block.
340func mProf_Malloc(p unsafe.Pointer, size uintptr) {
341	var stk [maxStack]uintptr
342	nstk := callers(4, stk[:])
343	lock(&proflock)
344	b := stkbucket(memProfile, size, stk[:nstk], true)
345	c := mProf.cycle
346	mp := b.mp()
347	mpc := &mp.future[(c+2)%uint32(len(mp.future))]
348	mpc.allocs++
349	mpc.alloc_bytes += size
350	unlock(&proflock)
351
352	// Setprofilebucket locks a bunch of other mutexes, so we call it outside of proflock.
353	// This reduces potential contention and chances of deadlocks.
354	// Since the object must be alive during call to mProf_Malloc,
355	// it's fine to do this non-atomically.
356	systemstack(func() {
357		setprofilebucket(p, b)
358	})
359}
360
361// Called when freeing a profiled block.
362func mProf_Free(b *bucket, size uintptr) {
363	lock(&proflock)
364	c := mProf.cycle
365	mp := b.mp()
366	mpc := &mp.future[(c+1)%uint32(len(mp.future))]
367	mpc.frees++
368	mpc.free_bytes += size
369	unlock(&proflock)
370}
371
372var blockprofilerate uint64 // in CPU ticks
373
374// SetBlockProfileRate controls the fraction of goroutine blocking events
375// that are reported in the blocking profile. The profiler aims to sample
376// an average of one blocking event per rate nanoseconds spent blocked.
377//
378// To include every blocking event in the profile, pass rate = 1.
379// To turn off profiling entirely, pass rate <= 0.
380func SetBlockProfileRate(rate int) {
381	var r int64
382	if rate <= 0 {
383		r = 0 // disable profiling
384	} else if rate == 1 {
385		r = 1 // profile everything
386	} else {
387		// convert ns to cycles, use float64 to prevent overflow during multiplication
388		r = int64(float64(rate) * float64(tickspersecond()) / (1000 * 1000 * 1000))
389		if r == 0 {
390			r = 1
391		}
392	}
393
394	atomic.Store64(&blockprofilerate, uint64(r))
395}
396
397func blockevent(cycles int64, skip int) {
398	if cycles <= 0 {
399		cycles = 1
400	}
401	if blocksampled(cycles) {
402		saveblockevent(cycles, skip+1, blockProfile)
403	}
404}
405
406func blocksampled(cycles int64) bool {
407	rate := int64(atomic.Load64(&blockprofilerate))
408	if rate <= 0 || (rate > cycles && int64(fastrand())%rate > cycles) {
409		return false
410	}
411	return true
412}
413
414func saveblockevent(cycles int64, skip int, which bucketType) {
415	gp := getg()
416	var nstk int
417	var stk [maxStack]uintptr
418	if gp.m.curg == nil || gp.m.curg == gp {
419		nstk = callers(skip, stk[:])
420	} else {
421		nstk = gcallers(gp.m.curg, skip, stk[:])
422	}
423	lock(&proflock)
424	b := stkbucket(which, 0, stk[:nstk], true)
425	b.bp().count++
426	b.bp().cycles += cycles
427	unlock(&proflock)
428}
429
430var mutexprofilerate uint64 // fraction sampled
431
432// SetMutexProfileFraction controls the fraction of mutex contention events
433// that are reported in the mutex profile. On average 1/rate events are
434// reported. The previous rate is returned.
435//
436// To turn off profiling entirely, pass rate 0.
437// To just read the current rate, pass rate < 0.
438// (For n>1 the details of sampling may change.)
439func SetMutexProfileFraction(rate int) int {
440	if rate < 0 {
441		return int(mutexprofilerate)
442	}
443	old := mutexprofilerate
444	atomic.Store64(&mutexprofilerate, uint64(rate))
445	return int(old)
446}
447
448//go:linkname mutexevent sync.event
449func mutexevent(cycles int64, skip int) {
450	if cycles < 0 {
451		cycles = 0
452	}
453	rate := int64(atomic.Load64(&mutexprofilerate))
454	// TODO(pjw): measure impact of always calling fastrand vs using something
455	// like malloc.go:nextSample()
456	if rate > 0 && int64(fastrand())%rate == 0 {
457		saveblockevent(cycles, skip+1, mutexProfile)
458	}
459}
460
461// Go interface to profile data.
462
463// A StackRecord describes a single execution stack.
464type StackRecord struct {
465	Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry
466}
467
468// Stack returns the stack trace associated with the record,
469// a prefix of r.Stack0.
470func (r *StackRecord) Stack() []uintptr {
471	for i, v := range r.Stack0 {
472		if v == 0 {
473			return r.Stack0[0:i]
474		}
475	}
476	return r.Stack0[0:]
477}
478
479// MemProfileRate controls the fraction of memory allocations
480// that are recorded and reported in the memory profile.
481// The profiler aims to sample an average of
482// one allocation per MemProfileRate bytes allocated.
483//
484// To include every allocated block in the profile, set MemProfileRate to 1.
485// To turn off profiling entirely, set MemProfileRate to 0.
486//
487// The tools that process the memory profiles assume that the
488// profile rate is constant across the lifetime of the program
489// and equal to the current value. Programs that change the
490// memory profiling rate should do so just once, as early as
491// possible in the execution of the program (for example,
492// at the beginning of main).
493var MemProfileRate int = 512 * 1024
494
495// A MemProfileRecord describes the live objects allocated
496// by a particular call sequence (stack trace).
497type MemProfileRecord struct {
498	AllocBytes, FreeBytes     int64       // number of bytes allocated, freed
499	AllocObjects, FreeObjects int64       // number of objects allocated, freed
500	Stack0                    [32]uintptr // stack trace for this record; ends at first 0 entry
501}
502
503// InUseBytes returns the number of bytes in use (AllocBytes - FreeBytes).
504func (r *MemProfileRecord) InUseBytes() int64 { return r.AllocBytes - r.FreeBytes }
505
506// InUseObjects returns the number of objects in use (AllocObjects - FreeObjects).
507func (r *MemProfileRecord) InUseObjects() int64 {
508	return r.AllocObjects - r.FreeObjects
509}
510
511// Stack returns the stack trace associated with the record,
512// a prefix of r.Stack0.
513func (r *MemProfileRecord) Stack() []uintptr {
514	for i, v := range r.Stack0 {
515		if v == 0 {
516			return r.Stack0[0:i]
517		}
518	}
519	return r.Stack0[0:]
520}
521
522// MemProfile returns a profile of memory allocated and freed per allocation
523// site.
524//
525// MemProfile returns n, the number of records in the current memory profile.
526// If len(p) >= n, MemProfile copies the profile into p and returns n, true.
527// If len(p) < n, MemProfile does not change p and returns n, false.
528//
529// If inuseZero is true, the profile includes allocation records
530// where r.AllocBytes > 0 but r.AllocBytes == r.FreeBytes.
531// These are sites where memory was allocated, but it has all
532// been released back to the runtime.
533//
534// The returned profile may be up to two garbage collection cycles old.
535// This is to avoid skewing the profile toward allocations; because
536// allocations happen in real time but frees are delayed until the garbage
537// collector performs sweeping, the profile only accounts for allocations
538// that have had a chance to be freed by the garbage collector.
539//
540// Most clients should use the runtime/pprof package or
541// the testing package's -test.memprofile flag instead
542// of calling MemProfile directly.
543func MemProfile(p []MemProfileRecord, inuseZero bool) (n int, ok bool) {
544	lock(&proflock)
545	// If we're between mProf_NextCycle and mProf_Flush, take care
546	// of flushing to the active profile so we only have to look
547	// at the active profile below.
548	mProf_FlushLocked()
549	clear := true
550	for b := mbuckets; b != nil; b = b.allnext {
551		mp := b.mp()
552		if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes {
553			n++
554		}
555		if mp.active.allocs != 0 || mp.active.frees != 0 {
556			clear = false
557		}
558	}
559	if clear {
560		// Absolutely no data, suggesting that a garbage collection
561		// has not yet happened. In order to allow profiling when
562		// garbage collection is disabled from the beginning of execution,
563		// accumulate all of the cycles, and recount buckets.
564		n = 0
565		for b := mbuckets; b != nil; b = b.allnext {
566			mp := b.mp()
567			for c := range mp.future {
568				mp.active.add(&mp.future[c])
569				mp.future[c] = memRecordCycle{}
570			}
571			if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes {
572				n++
573			}
574		}
575	}
576	if n <= len(p) {
577		ok = true
578		idx := 0
579		for b := mbuckets; b != nil; b = b.allnext {
580			mp := b.mp()
581			if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes {
582				record(&p[idx], b)
583				idx++
584			}
585		}
586	}
587	unlock(&proflock)
588	return
589}
590
591// Write b's data to r.
592func record(r *MemProfileRecord, b *bucket) {
593	mp := b.mp()
594	r.AllocBytes = int64(mp.active.alloc_bytes)
595	r.FreeBytes = int64(mp.active.free_bytes)
596	r.AllocObjects = int64(mp.active.allocs)
597	r.FreeObjects = int64(mp.active.frees)
598	if raceenabled {
599		racewriterangepc(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0), getcallerpc(), funcPC(MemProfile))
600	}
601	if msanenabled {
602		msanwrite(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0))
603	}
604	copy(r.Stack0[:], b.stk())
605	for i := int(b.nstk); i < len(r.Stack0); i++ {
606		r.Stack0[i] = 0
607	}
608}
609
610func iterate_memprof(fn func(*bucket, uintptr, *uintptr, uintptr, uintptr, uintptr)) {
611	lock(&proflock)
612	for b := mbuckets; b != nil; b = b.allnext {
613		mp := b.mp()
614		fn(b, b.nstk, &b.stk()[0], b.size, mp.active.allocs, mp.active.frees)
615	}
616	unlock(&proflock)
617}
618
619// BlockProfileRecord describes blocking events originated
620// at a particular call sequence (stack trace).
621type BlockProfileRecord struct {
622	Count  int64
623	Cycles int64
624	StackRecord
625}
626
627// BlockProfile returns n, the number of records in the current blocking profile.
628// If len(p) >= n, BlockProfile copies the profile into p and returns n, true.
629// If len(p) < n, BlockProfile does not change p and returns n, false.
630//
631// Most clients should use the runtime/pprof package or
632// the testing package's -test.blockprofile flag instead
633// of calling BlockProfile directly.
634func BlockProfile(p []BlockProfileRecord) (n int, ok bool) {
635	lock(&proflock)
636	for b := bbuckets; b != nil; b = b.allnext {
637		n++
638	}
639	if n <= len(p) {
640		ok = true
641		for b := bbuckets; b != nil; b = b.allnext {
642			bp := b.bp()
643			r := &p[0]
644			r.Count = bp.count
645			r.Cycles = bp.cycles
646			if raceenabled {
647				racewriterangepc(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0), getcallerpc(), funcPC(BlockProfile))
648			}
649			if msanenabled {
650				msanwrite(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0))
651			}
652			i := copy(r.Stack0[:], b.stk())
653			for ; i < len(r.Stack0); i++ {
654				r.Stack0[i] = 0
655			}
656			p = p[1:]
657		}
658	}
659	unlock(&proflock)
660	return
661}
662
663// MutexProfile returns n, the number of records in the current mutex profile.
664// If len(p) >= n, MutexProfile copies the profile into p and returns n, true.
665// Otherwise, MutexProfile does not change p, and returns n, false.
666//
667// Most clients should use the runtime/pprof package
668// instead of calling MutexProfile directly.
669func MutexProfile(p []BlockProfileRecord) (n int, ok bool) {
670	lock(&proflock)
671	for b := xbuckets; b != nil; b = b.allnext {
672		n++
673	}
674	if n <= len(p) {
675		ok = true
676		for b := xbuckets; b != nil; b = b.allnext {
677			bp := b.bp()
678			r := &p[0]
679			r.Count = int64(bp.count)
680			r.Cycles = bp.cycles
681			i := copy(r.Stack0[:], b.stk())
682			for ; i < len(r.Stack0); i++ {
683				r.Stack0[i] = 0
684			}
685			p = p[1:]
686		}
687	}
688	unlock(&proflock)
689	return
690}
691
692// ThreadCreateProfile returns n, the number of records in the thread creation profile.
693// If len(p) >= n, ThreadCreateProfile copies the profile into p and returns n, true.
694// If len(p) < n, ThreadCreateProfile does not change p and returns n, false.
695//
696// Most clients should use the runtime/pprof package instead
697// of calling ThreadCreateProfile directly.
698func ThreadCreateProfile(p []StackRecord) (n int, ok bool) {
699	first := (*m)(atomic.Loadp(unsafe.Pointer(&allm)))
700	for mp := first; mp != nil; mp = mp.alllink {
701		n++
702	}
703	if n <= len(p) {
704		ok = true
705		i := 0
706		for mp := first; mp != nil; mp = mp.alllink {
707			p[i].Stack0 = mp.createstack
708			i++
709		}
710	}
711	return
712}
713
714// GoroutineProfile returns n, the number of records in the active goroutine stack profile.
715// If len(p) >= n, GoroutineProfile copies the profile into p and returns n, true.
716// If len(p) < n, GoroutineProfile does not change p and returns n, false.
717//
718// Most clients should use the runtime/pprof package instead
719// of calling GoroutineProfile directly.
720func GoroutineProfile(p []StackRecord) (n int, ok bool) {
721	gp := getg()
722
723	isOK := func(gp1 *g) bool {
724		// Checking isSystemGoroutine here makes GoroutineProfile
725		// consistent with both NumGoroutine and Stack.
726		return gp1 != gp && readgstatus(gp1) != _Gdead && !isSystemGoroutine(gp1, false)
727	}
728
729	stopTheWorld("profile")
730
731	n = 1
732	for _, gp1 := range allgs {
733		if isOK(gp1) {
734			n++
735		}
736	}
737
738	if n <= len(p) {
739		ok = true
740		r := p
741
742		// Save current goroutine.
743		sp := getcallersp()
744		pc := getcallerpc()
745		systemstack(func() {
746			saveg(pc, sp, gp, &r[0])
747		})
748		r = r[1:]
749
750		// Save other goroutines.
751		for _, gp1 := range allgs {
752			if isOK(gp1) {
753				if len(r) == 0 {
754					// Should be impossible, but better to return a
755					// truncated profile than to crash the entire process.
756					break
757				}
758				saveg(^uintptr(0), ^uintptr(0), gp1, &r[0])
759				r = r[1:]
760			}
761		}
762	}
763
764	startTheWorld()
765
766	return n, ok
767}
768
769func saveg(pc, sp uintptr, gp *g, r *StackRecord) {
770	n := gentraceback(pc, sp, 0, gp, 0, &r.Stack0[0], len(r.Stack0), nil, nil, 0)
771	if n < len(r.Stack0) {
772		r.Stack0[n] = 0
773	}
774}
775
776// Stack formats a stack trace of the calling goroutine into buf
777// and returns the number of bytes written to buf.
778// If all is true, Stack formats stack traces of all other goroutines
779// into buf after the trace for the current goroutine.
780func Stack(buf []byte, all bool) int {
781	if all {
782		stopTheWorld("stack trace")
783	}
784
785	n := 0
786	if len(buf) > 0 {
787		gp := getg()
788		sp := getcallersp()
789		pc := getcallerpc()
790		systemstack(func() {
791			g0 := getg()
792			// Force traceback=1 to override GOTRACEBACK setting,
793			// so that Stack's results are consistent.
794			// GOTRACEBACK is only about crash dumps.
795			g0.m.traceback = 1
796			g0.writebuf = buf[0:0:len(buf)]
797			goroutineheader(gp)
798			traceback(pc, sp, 0, gp)
799			if all {
800				tracebackothers(gp)
801			}
802			g0.m.traceback = 0
803			n = len(g0.writebuf)
804			g0.writebuf = nil
805		})
806	}
807
808	if all {
809		startTheWorld()
810	}
811	return n
812}
813
814// Tracing of alloc/free/gc.
815
816var tracelock mutex
817
818func tracealloc(p unsafe.Pointer, size uintptr, typ *_type) {
819	lock(&tracelock)
820	gp := getg()
821	gp.m.traceback = 2
822	if typ == nil {
823		print("tracealloc(", p, ", ", hex(size), ")\n")
824	} else {
825		print("tracealloc(", p, ", ", hex(size), ", ", typ.string(), ")\n")
826	}
827	if gp.m.curg == nil || gp == gp.m.curg {
828		goroutineheader(gp)
829		pc := getcallerpc()
830		sp := getcallersp()
831		systemstack(func() {
832			traceback(pc, sp, 0, gp)
833		})
834	} else {
835		goroutineheader(gp.m.curg)
836		traceback(^uintptr(0), ^uintptr(0), 0, gp.m.curg)
837	}
838	print("\n")
839	gp.m.traceback = 0
840	unlock(&tracelock)
841}
842
843func tracefree(p unsafe.Pointer, size uintptr) {
844	lock(&tracelock)
845	gp := getg()
846	gp.m.traceback = 2
847	print("tracefree(", p, ", ", hex(size), ")\n")
848	goroutineheader(gp)
849	pc := getcallerpc()
850	sp := getcallersp()
851	systemstack(func() {
852		traceback(pc, sp, 0, gp)
853	})
854	print("\n")
855	gp.m.traceback = 0
856	unlock(&tracelock)
857}
858
859func tracegc() {
860	lock(&tracelock)
861	gp := getg()
862	gp.m.traceback = 2
863	print("tracegc()\n")
864	// running on m->g0 stack; show all non-g0 goroutines
865	tracebackothers(gp)
866	print("end tracegc\n")
867	print("\n")
868	gp.m.traceback = 0
869	unlock(&tracelock)
870}
871