1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 #include "drm.h"
28 
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32 
33 /**
34  * DOC: overview
35  *
36  * In the DRM subsystem, framebuffer pixel formats are described using the
37  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38  * fourcc code, a Format Modifier may optionally be provided, in order to
39  * further describe the buffer's format - for example tiling or compression.
40  *
41  * Format Modifiers
42  * ----------------
43  *
44  * Format modifiers are used in conjunction with a fourcc code, forming a
45  * unique fourcc:modifier pair. This format:modifier pair must fully define the
46  * format and data layout of the buffer, and should be the only way to describe
47  * that particular buffer.
48  *
49  * Having multiple fourcc:modifier pairs which describe the same layout should
50  * be avoided, as such aliases run the risk of different drivers exposing
51  * different names for the same data format, forcing userspace to understand
52  * that they are aliases.
53  *
54  * Format modifiers may change any property of the buffer, including the number
55  * of planes and/or the required allocation size. Format modifiers are
56  * vendor-namespaced, and as such the relationship between a fourcc code and a
57  * modifier is specific to the modifer being used. For example, some modifiers
58  * may preserve meaning - such as number of planes - from the fourcc code,
59  * whereas others may not.
60  *
61  * Modifiers must uniquely encode buffer layout. In other words, a buffer must
62  * match only a single modifier. A modifier must not be a subset of layouts of
63  * another modifier. For instance, it's incorrect to encode pitch alignment in
64  * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65  * aligned modifier. That said, modifiers can have implicit minimal
66  * requirements.
67  *
68  * For modifiers where the combination of fourcc code and modifier can alias,
69  * a canonical pair needs to be defined and used by all drivers. Preferred
70  * combinations are also encouraged where all combinations might lead to
71  * confusion and unnecessarily reduced interoperability. An example for the
72  * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73  *
74  * There are two kinds of modifier users:
75  *
76  * - Kernel and user-space drivers: for drivers it's important that modifiers
77  *   don't alias, otherwise two drivers might support the same format but use
78  *   different aliases, preventing them from sharing buffers in an efficient
79  *   format.
80  * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81  *   see modifiers as opaque tokens they can check for equality and intersect.
82  *   These users musn't need to know to reason about the modifier value
83  *   (i.e. they are not expected to extract information out of the modifier).
84  *
85  * Vendors should document their modifier usage in as much detail as
86  * possible, to ensure maximum compatibility across devices, drivers and
87  * applications.
88  *
89  * The authoritative list of format modifier codes is found in
90  * `include/uapi/drm/drm_fourcc.h`
91  */
92 
93 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
94 				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
95 
96 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
97 
98 /* Reserve 0 for the invalid format specifier */
99 #define DRM_FORMAT_INVALID	0
100 
101 /* color index */
102 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
103 
104 /* 8 bpp Red */
105 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
106 
107 /* 16 bpp Red */
108 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
109 
110 /* 16 bpp RG */
111 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
112 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
113 
114 /* 32 bpp RG */
115 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
116 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
117 
118 /* 8 bpp RGB */
119 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
120 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
121 
122 /* 16 bpp RGB */
123 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
124 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
125 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
126 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
127 
128 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
129 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
130 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
131 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
132 
133 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
134 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
135 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
136 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
137 
138 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
139 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
140 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
141 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
142 
143 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
144 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
145 
146 /* 24 bpp RGB */
147 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
148 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
149 
150 /* 32 bpp RGB */
151 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
152 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
153 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
154 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
155 
156 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
157 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
158 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
159 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
160 
161 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
162 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
163 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
164 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
165 
166 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
167 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
168 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
169 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
170 
171 /*
172  * Floating point 64bpp RGB
173  * IEEE 754-2008 binary16 half-precision float
174  * [15:0] sign:exponent:mantissa 1:5:10
175  */
176 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
177 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
178 
179 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
180 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
181 
182 /*
183  * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
184  * of unused padding per component:
185  */
186 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
187 
188 /* packed YCbCr */
189 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
190 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
191 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
192 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
193 
194 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
195 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
196 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
197 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
198 
199 /*
200  * packed Y2xx indicate for each component, xx valid data occupy msb
201  * 16-xx padding occupy lsb
202  */
203 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
204 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
205 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
206 
207 /*
208  * packed Y4xx indicate for each component, xx valid data occupy msb
209  * 16-xx padding occupy lsb except Y410
210  */
211 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
212 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
213 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
214 
215 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
216 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
217 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
218 
219 /*
220  * packed YCbCr420 2x2 tiled formats
221  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
222  */
223 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
224 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
225 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
226 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
227 
228 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
229 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
230 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
231 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
232 
233 /*
234  * 1-plane YUV 4:2:0
235  * In these formats, the component ordering is specified (Y, followed by U
236  * then V), but the exact Linear layout is undefined.
237  * These formats can only be used with a non-Linear modifier.
238  */
239 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
240 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
241 
242 /*
243  * 2 plane RGB + A
244  * index 0 = RGB plane, same format as the corresponding non _A8 format has
245  * index 1 = A plane, [7:0] A
246  */
247 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
248 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
249 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
250 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
251 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
252 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
253 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
254 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
255 
256 /*
257  * 2 plane YCbCr
258  * index 0 = Y plane, [7:0] Y
259  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
260  * or
261  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
262  */
263 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
264 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
265 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
266 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
267 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
268 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
269 /*
270  * 2 plane YCbCr
271  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
272  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
273  */
274 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
275 
276 /*
277  * 2 plane YCbCr MSB aligned
278  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
279  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
280  */
281 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
282 
283 /*
284  * 2 plane YCbCr MSB aligned
285  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
286  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
287  */
288 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
289 
290 /*
291  * 2 plane YCbCr MSB aligned
292  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
293  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
294  */
295 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
296 
297 /*
298  * 2 plane YCbCr MSB aligned
299  * index 0 = Y plane, [15:0] Y little endian
300  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
301  */
302 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
303 
304 /* 3 plane non-subsampled (444) YCbCr
305  * 16 bits per component, but only 10 bits are used and 6 bits are padded
306  * index 0: Y plane, [15:0] Y:x [10:6] little endian
307  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
308  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
309  */
310 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
311 
312 /* 3 plane non-subsampled (444) YCrCb
313  * 16 bits per component, but only 10 bits are used and 6 bits are padded
314  * index 0: Y plane, [15:0] Y:x [10:6] little endian
315  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
316  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
317  */
318 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
319 
320 /*
321  * 3 plane YCbCr
322  * index 0: Y plane, [7:0] Y
323  * index 1: Cb plane, [7:0] Cb
324  * index 2: Cr plane, [7:0] Cr
325  * or
326  * index 1: Cr plane, [7:0] Cr
327  * index 2: Cb plane, [7:0] Cb
328  */
329 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
330 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
331 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
332 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
333 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
334 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
335 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
336 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
337 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
338 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
339 
340 
341 /*
342  * Format Modifiers:
343  *
344  * Format modifiers describe, typically, a re-ordering or modification
345  * of the data in a plane of an FB.  This can be used to express tiled/
346  * swizzled formats, or compression, or a combination of the two.
347  *
348  * The upper 8 bits of the format modifier are a vendor-id as assigned
349  * below.  The lower 56 bits are assigned as vendor sees fit.
350  */
351 
352 /* Vendor Ids: */
353 #define DRM_FORMAT_MOD_VENDOR_NONE    0
354 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
355 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
356 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
357 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
358 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
359 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
360 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
361 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
362 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
363 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
364 
365 /* add more to the end as needed */
366 
367 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
368 
369 #define fourcc_mod_code(vendor, val) \
370 	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
371 
372 /*
373  * Intel modifiers for new platforms should be added using the PRELIM_ prefix
374  * and the intel_prelim_fourcc_mod_code macro, while the upstreaming of the
375  * platform should happen without the prefix using the fourcc_mod_code macro.
376  */
377 #define INTEL_PRELIM_ID_FLAG         (1ULL << 55)
378 
379 #define intel_prelim_fourcc_mod_code(val) \
380 	(fourcc_mod_code(INTEL, (val)) | INTEL_PRELIM_ID_FLAG)
381 
382 /*
383  * Format Modifier tokens:
384  *
385  * When adding a new token please document the layout with a code comment,
386  * similar to the fourcc codes above. drm_fourcc.h is considered the
387  * authoritative source for all of these.
388  *
389  * Generic modifier names:
390  *
391  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
392  * for layouts which are common across multiple vendors. To preserve
393  * compatibility, in cases where a vendor-specific definition already exists and
394  * a generic name for it is desired, the common name is a purely symbolic alias
395  * and must use the same numerical value as the original definition.
396  *
397  * Note that generic names should only be used for modifiers which describe
398  * generic layouts (such as pixel re-ordering), which may have
399  * independently-developed support across multiple vendors.
400  *
401  * In future cases where a generic layout is identified before merging with a
402  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
403  * 'NONE' could be considered. This should only be for obvious, exceptional
404  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
405  * apply to a single vendor.
406  *
407  * Generic names should not be used for cases where multiple hardware vendors
408  * have implementations of the same standardised compression scheme (such as
409  * AFBC). In those cases, all implementations should use the same format
410  * modifier(s), reflecting the vendor of the standard.
411  */
412 
413 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
414 
415 /*
416  * Invalid Modifier
417  *
418  * This modifier can be used as a sentinel to terminate the format modifiers
419  * list, or to initialize a variable with an invalid modifier. It might also be
420  * used to report an error back to userspace for certain APIs.
421  */
422 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
423 
424 /*
425  * Linear Layout
426  *
427  * Just plain linear layout. Note that this is different from no specifying any
428  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
429  * which tells the driver to also take driver-internal information into account
430  * and so might actually result in a tiled framebuffer.
431  */
432 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
433 
434 /*
435  * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
436  *
437  * The "none" format modifier doesn't actually mean that the modifier is
438  * implicit, instead it means that the layout is linear. Whether modifiers are
439  * used is out-of-band information carried in an API-specific way (e.g. in a
440  * flag for drm_mode_fb_cmd2).
441  */
442 #define DRM_FORMAT_MOD_NONE	0
443 
444 /* Intel framebuffer modifiers */
445 
446 /*
447  * Intel X-tiling layout
448  *
449  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
450  * in row-major layout. Within the tile bytes are laid out row-major, with
451  * a platform-dependent stride. On top of that the memory can apply
452  * platform-depending swizzling of some higher address bits into bit6.
453  *
454  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
455  * On earlier platforms the is highly platforms specific and not useful for
456  * cross-driver sharing. It exists since on a given platform it does uniquely
457  * identify the layout in a simple way for i915-specific userspace, which
458  * facilitated conversion of userspace to modifiers. Additionally the exact
459  * format on some really old platforms is not known.
460  */
461 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
462 
463 /*
464  * Intel Y-tiling layout
465  *
466  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
467  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
468  * chunks column-major, with a platform-dependent height. On top of that the
469  * memory can apply platform-depending swizzling of some higher address bits
470  * into bit6.
471  *
472  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
473  * On earlier platforms the is highly platforms specific and not useful for
474  * cross-driver sharing. It exists since on a given platform it does uniquely
475  * identify the layout in a simple way for i915-specific userspace, which
476  * facilitated conversion of userspace to modifiers. Additionally the exact
477  * format on some really old platforms is not known.
478  */
479 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
480 
481 /*
482  * Intel Yf-tiling layout
483  *
484  * This is a tiled layout using 4Kb tiles in row-major layout.
485  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
486  * are arranged in four groups (two wide, two high) with column-major layout.
487  * Each group therefore consits out of four 256 byte units, which are also laid
488  * out as 2x2 column-major.
489  * 256 byte units are made out of four 64 byte blocks of pixels, producing
490  * either a square block or a 2:1 unit.
491  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
492  * in pixel depends on the pixel depth.
493  */
494 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
495 
496 /*
497  * Intel color control surface (CCS) for render compression
498  *
499  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
500  * The main surface will be plane index 0 and must be Y/Yf-tiled,
501  * the CCS will be plane index 1.
502  *
503  * Each CCS tile matches a 1024x512 pixel area of the main surface.
504  * To match certain aspects of the 3D hardware the CCS is
505  * considered to be made up of normal 128Bx32 Y tiles, Thus
506  * the CCS pitch must be specified in multiples of 128 bytes.
507  *
508  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
509  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
510  * But that fact is not relevant unless the memory is accessed
511  * directly.
512  */
513 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
514 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
515 
516 /*
517  * Intel color control surfaces (CCS) for Gen-12 render compression.
518  *
519  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
520  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
521  * main surface. In other words, 4 bits in CCS map to a main surface cache
522  * line pair. The main surface pitch is required to be a multiple of four
523  * Y-tile widths.
524  */
525 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
526 
527 /*
528  * Intel color control surfaces (CCS) for Gen-12 media compression
529  *
530  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
531  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
532  * main surface. In other words, 4 bits in CCS map to a main surface cache
533  * line pair. The main surface pitch is required to be a multiple of four
534  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
535  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
536  * planes 2 and 3 for the respective CCS.
537  */
538 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
539 
540 /*
541  * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
542  * compression.
543  *
544  * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
545  * and at index 1. The clear color is stored at index 2, and the pitch should
546  * be ignored. The clear color structure is 256 bits. The first 128 bits
547  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
548  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
549  * the converted clear color of size 64 bits. The first 32 bits store the Lower
550  * Converted Clear Color value and the next 32 bits store the Higher Converted
551  * Clear Color value when applicable. The Converted Clear Color values are
552  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
553  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
554  * corresponds to an area of 4x1 tiles in the main surface. The main surface
555  * pitch is required to be a multiple of 4 tile widths.
556  */
557 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
558 
559 /*
560  * TODO: Remove the non-PRELIM version of DG2 CCS modifiers in the 9-11 ID range
561  *       Backport the upstream ADL-P CCS modifiers using the 9-11 ID range.
562  */
563 
564 /*
565  * Intel F-tiling(aka Tile4) layout
566  *
567  * This is a tiled layout using 4Kb tiles in row-major layout.
568  * Within the tile pixels are laid out in 64 byte units / sub-tiles in OWORD
569  * (16 bytes) chunks column-major..
570  */
571 #define I915_FORMAT_MOD_F_TILED         fourcc_mod_code(INTEL, 12)
572 
573 /*
574  * Intel color control surfaces (CCS) for DG2 render compression.
575  *
576  * DG2 uses a new compression format for render compression. The general
577  * layout is the same as I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS,
578  * but a new hashing/compression algorithm is used, so a fresh modifier must
579  * be associated with buffers of this type. Render compression uses 128 byte
580  * compression blocks.
581  */
582 #define I915_FORMAT_MOD_F_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 9)
583 #define PRELIM_I915_FORMAT_MOD_F_TILED_DG2_RC_CCS intel_prelim_fourcc_mod_code(13)
584 
585 /*
586  * Intel color control surfaces (CCS) for DG2 media compression.
587  *
588  * DG2 uses a new compression format for media compression. The general
589  * layout is the same as I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS,
590  * but a new hashing/compression algorithm is used, so a fresh modifier must
591  * be associated with buffers of this type. Media compression uses 256 byte
592  * compression blocks.
593  */
594 #define I915_FORMAT_MOD_F_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 10)
595 #define PRELIM_I915_FORMAT_MOD_F_TILED_DG2_MC_CCS intel_prelim_fourcc_mod_code(14)
596 
597 /*
598  * Intel color control surfaces (CCS) for DG2 clear color render compression.
599  *
600  * DG2 uses a unified compression format for clear color render compression.
601  * The general layout is a tiled layout using 4Kb tiles i.e. Tile4 layout.
602  */
603 #define I915_FORMAT_MOD_F_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 11)
604 #define PRELIM_I915_FORMAT_MOD_F_TILED_DG2_RC_CCS_CC intel_prelim_fourcc_mod_code(15)
605 
606 /*
607  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
608  *
609  * Macroblocks are laid in a Z-shape, and each pixel data is following the
610  * standard NV12 style.
611  * As for NV12, an image is the result of two frame buffers: one for Y,
612  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
613  * Alignment requirements are (for each buffer):
614  * - multiple of 128 pixels for the width
615  * - multiple of  32 pixels for the height
616  *
617  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
618  */
619 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
620 
621 /*
622  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
623  *
624  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
625  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
626  * they correspond to their 16x16 luma block.
627  */
628 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
629 
630 /*
631  * Qualcomm Compressed Format
632  *
633  * Refers to a compressed variant of the base format that is compressed.
634  * Implementation may be platform and base-format specific.
635  *
636  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
637  * Pixel data pitch/stride is aligned with macrotile width.
638  * Pixel data height is aligned with macrotile height.
639  * Entire pixel data buffer is aligned with 4k(bytes).
640  */
641 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
642 
643 /* Vivante framebuffer modifiers */
644 
645 /*
646  * Vivante 4x4 tiling layout
647  *
648  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
649  * layout.
650  */
651 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
652 
653 /*
654  * Vivante 64x64 super-tiling layout
655  *
656  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
657  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
658  * major layout.
659  *
660  * For more information: see
661  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
662  */
663 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
664 
665 /*
666  * Vivante 4x4 tiling layout for dual-pipe
667  *
668  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
669  * different base address. Offsets from the base addresses are therefore halved
670  * compared to the non-split tiled layout.
671  */
672 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
673 
674 /*
675  * Vivante 64x64 super-tiling layout for dual-pipe
676  *
677  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
678  * starts at a different base address. Offsets from the base addresses are
679  * therefore halved compared to the non-split super-tiled layout.
680  */
681 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
682 
683 /* NVIDIA frame buffer modifiers */
684 
685 /*
686  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
687  *
688  * Pixels are arranged in simple tiles of 16 x 16 bytes.
689  */
690 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
691 
692 /*
693  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
694  * and Tegra GPUs starting with Tegra K1.
695  *
696  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
697  * based on the architecture generation.  GOBs themselves are then arranged in
698  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
699  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
700  * a block depth or height of "4").
701  *
702  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
703  * in full detail.
704  *
705  *       Macro
706  * Bits  Param Description
707  * ----  ----- -----------------------------------------------------------------
708  *
709  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
710  *             compatibility with the existing
711  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
712  *
713  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
714  *             compatibility with the existing
715  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
716  *
717  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
718  *             size).  Must be zero.
719  *
720  *             Note there is no log2(width) parameter.  Some portions of the
721  *             hardware support a block width of two gobs, but it is impractical
722  *             to use due to lack of support elsewhere, and has no known
723  *             benefits.
724  *
725  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
726  *             in blocks, specified via log2(tile width in blocks)).  Must be
727  *             zero.
728  *
729  * 19:12 k     Page Kind.  This value directly maps to a field in the page
730  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
731  *             in memory and can be derived from the tuple
732  *
733  *               (format, GPU model, compression type, samples per pixel)
734  *
735  *             Where compression type is defined below.  If GPU model were
736  *             implied by the format modifier, format, or memory buffer, page
737  *             kind would not need to be included in the modifier itself, but
738  *             since the modifier should define the layout of the associated
739  *             memory buffer independent from any device or other context, it
740  *             must be included here.
741  *
742  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
743  *             starting with Fermi GPUs.  Additionally, the mapping between page
744  *             kind and bit layout has changed at various points.
745  *
746  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
747  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
748  *               2 = Gob Height 8, Turing+ Page Kind mapping
749  *               3 = Reserved for future use.
750  *
751  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
752  *             bit remapping step that occurs at an even lower level than the
753  *             page kind and block linear swizzles.  This causes the layout of
754  *             surfaces mapped in those SOC's GPUs to be incompatible with the
755  *             equivalent mapping on other GPUs in the same system.
756  *
757  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
758  *               1 = Desktop GPU and Tegra Xavier+ Layout
759  *
760  * 25:23 c     Lossless Framebuffer Compression type.
761  *
762  *               0 = none
763  *               1 = ROP/3D, layout 1, exact compression format implied by Page
764  *                   Kind field
765  *               2 = ROP/3D, layout 2, exact compression format implied by Page
766  *                   Kind field
767  *               3 = CDE horizontal
768  *               4 = CDE vertical
769  *               5 = Reserved for future use
770  *               6 = Reserved for future use
771  *               7 = Reserved for future use
772  *
773  * 55:25 -     Reserved for future use.  Must be zero.
774  */
775 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
776 	fourcc_mod_code(NVIDIA, (0x10 | \
777 				 ((h) & 0xf) | \
778 				 (((k) & 0xff) << 12) | \
779 				 (((g) & 0x3) << 20) | \
780 				 (((s) & 0x1) << 22) | \
781 				 (((c) & 0x7) << 23)))
782 
783 /* To grandfather in prior block linear format modifiers to the above layout,
784  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
785  * with block-linear layouts, is remapped within drivers to the value 0xfe,
786  * which corresponds to the "generic" kind used for simple single-sample
787  * uncompressed color formats on Fermi - Volta GPUs.
788  */
789 static __inline__ __u64
drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)790 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
791 {
792 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
793 		return modifier;
794 	else
795 		return modifier | (0xfe << 12);
796 }
797 
798 /*
799  * 16Bx2 Block Linear layout, used by Tegra K1 and later
800  *
801  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
802  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
803  *
804  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
805  *
806  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
807  * Valid values are:
808  *
809  * 0 == ONE_GOB
810  * 1 == TWO_GOBS
811  * 2 == FOUR_GOBS
812  * 3 == EIGHT_GOBS
813  * 4 == SIXTEEN_GOBS
814  * 5 == THIRTYTWO_GOBS
815  *
816  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
817  * in full detail.
818  */
819 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
820 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
821 
822 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
823 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
824 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
825 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
826 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
827 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
828 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
829 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
830 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
831 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
832 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
833 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
834 
835 /*
836  * Some Broadcom modifiers take parameters, for example the number of
837  * vertical lines in the image. Reserve the lower 32 bits for modifier
838  * type, and the next 24 bits for parameters. Top 8 bits are the
839  * vendor code.
840  */
841 #define __fourcc_mod_broadcom_param_shift 8
842 #define __fourcc_mod_broadcom_param_bits 48
843 #define fourcc_mod_broadcom_code(val, params) \
844 	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
845 #define fourcc_mod_broadcom_param(m) \
846 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
847 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
848 #define fourcc_mod_broadcom_mod(m) \
849 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
850 		 __fourcc_mod_broadcom_param_shift))
851 
852 /*
853  * Broadcom VC4 "T" format
854  *
855  * This is the primary layout that the V3D GPU can texture from (it
856  * can't do linear).  The T format has:
857  *
858  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
859  *   pixels at 32 bit depth.
860  *
861  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
862  *   16x16 pixels).
863  *
864  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
865  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
866  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
867  *
868  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
869  *   tiles) or right-to-left (odd rows of 4k tiles).
870  */
871 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
872 
873 /*
874  * Broadcom SAND format
875  *
876  * This is the native format that the H.264 codec block uses.  For VC4
877  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
878  *
879  * The image can be considered to be split into columns, and the
880  * columns are placed consecutively into memory.  The width of those
881  * columns can be either 32, 64, 128, or 256 pixels, but in practice
882  * only 128 pixel columns are used.
883  *
884  * The pitch between the start of each column is set to optimally
885  * switch between SDRAM banks. This is passed as the number of lines
886  * of column width in the modifier (we can't use the stride value due
887  * to various core checks that look at it , so you should set the
888  * stride to width*cpp).
889  *
890  * Note that the column height for this format modifier is the same
891  * for all of the planes, assuming that each column contains both Y
892  * and UV.  Some SAND-using hardware stores UV in a separate tiled
893  * image from Y to reduce the column height, which is not supported
894  * with these modifiers.
895  */
896 
897 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
898 	fourcc_mod_broadcom_code(2, v)
899 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
900 	fourcc_mod_broadcom_code(3, v)
901 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
902 	fourcc_mod_broadcom_code(4, v)
903 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
904 	fourcc_mod_broadcom_code(5, v)
905 
906 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
907 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
908 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
909 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
910 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
911 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
912 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
913 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
914 
915 /* Broadcom UIF format
916  *
917  * This is the common format for the current Broadcom multimedia
918  * blocks, including V3D 3.x and newer, newer video codecs, and
919  * displays.
920  *
921  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
922  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
923  * stored in columns, with padding between the columns to ensure that
924  * moving from one column to the next doesn't hit the same SDRAM page
925  * bank.
926  *
927  * To calculate the padding, it is assumed that each hardware block
928  * and the software driving it knows the platform's SDRAM page size,
929  * number of banks, and XOR address, and that it's identical between
930  * all blocks using the format.  This tiling modifier will use XOR as
931  * necessary to reduce the padding.  If a hardware block can't do XOR,
932  * the assumption is that a no-XOR tiling modifier will be created.
933  */
934 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
935 
936 /*
937  * Arm Framebuffer Compression (AFBC) modifiers
938  *
939  * AFBC is a proprietary lossless image compression protocol and format.
940  * It provides fine-grained random access and minimizes the amount of data
941  * transferred between IP blocks.
942  *
943  * AFBC has several features which may be supported and/or used, which are
944  * represented using bits in the modifier. Not all combinations are valid,
945  * and different devices or use-cases may support different combinations.
946  *
947  * Further information on the use of AFBC modifiers can be found in
948  * Documentation/gpu/afbc.rst
949  */
950 
951 /*
952  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
953  * modifiers) denote the category for modifiers. Currently we have only two
954  * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
955  * different categories.
956  */
957 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
958 	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
959 
960 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
961 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
962 
963 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
964 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
965 
966 /*
967  * AFBC superblock size
968  *
969  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
970  * size (in pixels) must be aligned to a multiple of the superblock size.
971  * Four lowest significant bits(LSBs) are reserved for block size.
972  *
973  * Where one superblock size is specified, it applies to all planes of the
974  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
975  * the first applies to the Luma plane and the second applies to the Chroma
976  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
977  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
978  */
979 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
980 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
981 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
982 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
983 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
984 
985 /*
986  * AFBC lossless colorspace transform
987  *
988  * Indicates that the buffer makes use of the AFBC lossless colorspace
989  * transform.
990  */
991 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
992 
993 /*
994  * AFBC block-split
995  *
996  * Indicates that the payload of each superblock is split. The second
997  * half of the payload is positioned at a predefined offset from the start
998  * of the superblock payload.
999  */
1000 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
1001 
1002 /*
1003  * AFBC sparse layout
1004  *
1005  * This flag indicates that the payload of each superblock must be stored at a
1006  * predefined position relative to the other superblocks in the same AFBC
1007  * buffer. This order is the same order used by the header buffer. In this mode
1008  * each superblock is given the same amount of space as an uncompressed
1009  * superblock of the particular format would require, rounding up to the next
1010  * multiple of 128 bytes in size.
1011  */
1012 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
1013 
1014 /*
1015  * AFBC copy-block restrict
1016  *
1017  * Buffers with this flag must obey the copy-block restriction. The restriction
1018  * is such that there are no copy-blocks referring across the border of 8x8
1019  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
1020  */
1021 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
1022 
1023 /*
1024  * AFBC tiled layout
1025  *
1026  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1027  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1028  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1029  * larger bpp formats. The order between the tiles is scan line.
1030  * When the tiled layout is used, the buffer size (in pixels) must be aligned
1031  * to the tile size.
1032  */
1033 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
1034 
1035 /*
1036  * AFBC solid color blocks
1037  *
1038  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1039  * can be reduced if a whole superblock is a single color.
1040  */
1041 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
1042 
1043 /*
1044  * AFBC double-buffer
1045  *
1046  * Indicates that the buffer is allocated in a layout safe for front-buffer
1047  * rendering.
1048  */
1049 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1050 
1051 /*
1052  * AFBC buffer content hints
1053  *
1054  * Indicates that the buffer includes per-superblock content hints.
1055  */
1056 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1057 
1058 /* AFBC uncompressed storage mode
1059  *
1060  * Indicates that the buffer is using AFBC uncompressed storage mode.
1061  * In this mode all superblock payloads in the buffer use the uncompressed
1062  * storage mode, which is usually only used for data which cannot be compressed.
1063  * The buffer layout is the same as for AFBC buffers without USM set, this only
1064  * affects the storage mode of the individual superblocks. Note that even a
1065  * buffer without USM set may use uncompressed storage mode for some or all
1066  * superblocks, USM just guarantees it for all.
1067  */
1068 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
1069 
1070 /*
1071  * Arm 16x16 Block U-Interleaved modifier
1072  *
1073  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1074  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1075  * in the block are reordered.
1076  */
1077 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1078 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1079 
1080 /*
1081  * Allwinner tiled modifier
1082  *
1083  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1084  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1085  * planes.
1086  *
1087  * With this tiling, the luminance samples are disposed in tiles representing
1088  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1089  * The pixel order in each tile is linear and the tiles are disposed linearly,
1090  * both in row-major order.
1091  */
1092 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1093 
1094 /*
1095  * Amlogic Video Framebuffer Compression modifiers
1096  *
1097  * Amlogic uses a proprietary lossless image compression protocol and format
1098  * for their hardware video codec accelerators, either video decoders or
1099  * video input encoders.
1100  *
1101  * It considerably reduces memory bandwidth while writing and reading
1102  * frames in memory.
1103  *
1104  * The underlying storage is considered to be 3 components, 8bit or 10-bit
1105  * per component YCbCr 420, single plane :
1106  * - DRM_FORMAT_YUV420_8BIT
1107  * - DRM_FORMAT_YUV420_10BIT
1108  *
1109  * The first 8 bits of the mode defines the layout, then the following 8 bits
1110  * defines the options changing the layout.
1111  *
1112  * Not all combinations are valid, and different SoCs may support different
1113  * combinations of layout and options.
1114  */
1115 #define __fourcc_mod_amlogic_layout_mask 0xf
1116 #define __fourcc_mod_amlogic_options_shift 8
1117 #define __fourcc_mod_amlogic_options_mask 0xf
1118 
1119 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1120 	fourcc_mod_code(AMLOGIC, \
1121 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1122 			(((__options) & __fourcc_mod_amlogic_options_mask) \
1123 			 << __fourcc_mod_amlogic_options_shift))
1124 
1125 /* Amlogic FBC Layouts */
1126 
1127 /*
1128  * Amlogic FBC Basic Layout
1129  *
1130  * The basic layout is composed of:
1131  * - a body content organized in 64x32 superblocks with 4096 bytes per
1132  *   superblock in default mode.
1133  * - a 32 bytes per 128x64 header block
1134  *
1135  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1136  */
1137 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1138 
1139 /*
1140  * Amlogic FBC Scatter Memory layout
1141  *
1142  * Indicates the header contains IOMMU references to the compressed
1143  * frames content to optimize memory access and layout.
1144  *
1145  * In this mode, only the header memory address is needed, thus the
1146  * content memory organization is tied to the current producer
1147  * execution and cannot be saved/dumped neither transferrable between
1148  * Amlogic SoCs supporting this modifier.
1149  *
1150  * Due to the nature of the layout, these buffers are not expected to
1151  * be accessible by the user-space clients, but only accessible by the
1152  * hardware producers and consumers.
1153  *
1154  * The user-space clients should expect a failure while trying to mmap
1155  * the DMA-BUF handle returned by the producer.
1156  */
1157 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1158 
1159 /* Amlogic FBC Layout Options Bit Mask */
1160 
1161 /*
1162  * Amlogic FBC Memory Saving mode
1163  *
1164  * Indicates the storage is packed when pixel size is multiple of word
1165  * boudaries, i.e. 8bit should be stored in this mode to save allocation
1166  * memory.
1167  *
1168  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1169  * the basic layout and 3200 bytes per 64x32 superblock combined with
1170  * the scatter layout.
1171  */
1172 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1173 
1174 /*
1175  * AMD modifiers
1176  *
1177  * Memory layout:
1178  *
1179  * without DCC:
1180  *   - main surface
1181  *
1182  * with DCC & without DCC_RETILE:
1183  *   - main surface in plane 0
1184  *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1185  *
1186  * with DCC & DCC_RETILE:
1187  *   - main surface in plane 0
1188  *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1189  *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1190  *
1191  * For multi-plane formats the above surfaces get merged into one plane for
1192  * each format plane, based on the required alignment only.
1193  *
1194  * Bits  Parameter                Notes
1195  * ----- ------------------------ ---------------------------------------------
1196  *
1197  *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1198  *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1199  *    13 DCC
1200  *    14 DCC_RETILE
1201  *    15 DCC_PIPE_ALIGN
1202  *    16 DCC_INDEPENDENT_64B
1203  *    17 DCC_INDEPENDENT_128B
1204  * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1205  *    20 DCC_CONSTANT_ENCODE
1206  * 23:21 PIPE_XOR_BITS            Only for some chips
1207  * 26:24 BANK_XOR_BITS            Only for some chips
1208  * 29:27 PACKERS                  Only for some chips
1209  * 32:30 RB                       Only for some chips
1210  * 35:33 PIPE                     Only for some chips
1211  * 55:36 -                        Reserved for future use, must be zero
1212  */
1213 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1214 
1215 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1216 
1217 /* Reserve 0 for GFX8 and older */
1218 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1219 #define AMD_FMT_MOD_TILE_VER_GFX10 2
1220 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1221 
1222 /*
1223  * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1224  * version.
1225  */
1226 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1227 
1228 /*
1229  * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1230  * GFX9 as canonical version.
1231  */
1232 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1233 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1234 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1235 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1236 
1237 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1238 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1239 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1240 
1241 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1242 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1243 #define AMD_FMT_MOD_TILE_SHIFT 8
1244 #define AMD_FMT_MOD_TILE_MASK 0x1F
1245 
1246 /* Whether DCC compression is enabled. */
1247 #define AMD_FMT_MOD_DCC_SHIFT 13
1248 #define AMD_FMT_MOD_DCC_MASK 0x1
1249 
1250 /*
1251  * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1252  * one which is not-aligned.
1253  */
1254 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1255 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1256 
1257 /* Only set if DCC_RETILE = false */
1258 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1259 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1260 
1261 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1262 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1263 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1264 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1265 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1266 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1267 
1268 /*
1269  * DCC supports embedding some clear colors directly in the DCC surface.
1270  * However, on older GPUs the rendering HW ignores the embedded clear color
1271  * and prefers the driver provided color. This necessitates doing a fastclear
1272  * eliminate operation before a process transfers control.
1273  *
1274  * If this bit is set that means the fastclear eliminate is not needed for these
1275  * embeddable colors.
1276  */
1277 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1278 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1279 
1280 /*
1281  * The below fields are for accounting for per GPU differences. These are only
1282  * relevant for GFX9 and later and if the tile field is *_X/_T.
1283  *
1284  * PIPE_XOR_BITS = always needed
1285  * BANK_XOR_BITS = only for TILE_VER_GFX9
1286  * PACKERS = only for TILE_VER_GFX10_RBPLUS
1287  * RB = only for TILE_VER_GFX9 & DCC
1288  * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1289  */
1290 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1291 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1292 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1293 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1294 #define AMD_FMT_MOD_PACKERS_SHIFT 27
1295 #define AMD_FMT_MOD_PACKERS_MASK 0x7
1296 #define AMD_FMT_MOD_RB_SHIFT 30
1297 #define AMD_FMT_MOD_RB_MASK 0x7
1298 #define AMD_FMT_MOD_PIPE_SHIFT 33
1299 #define AMD_FMT_MOD_PIPE_MASK 0x7
1300 
1301 #define AMD_FMT_MOD_SET(field, value) \
1302 	((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)
1303 #define AMD_FMT_MOD_GET(field, value) \
1304 	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1305 #define AMD_FMT_MOD_CLEAR(field) \
1306 	(~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1307 
1308 #if defined(__cplusplus)
1309 }
1310 #endif
1311 
1312 #endif /* DRM_FOURCC_H */
1313