1|// Low-level VM code for MIPS CPUs.
2|// Bytecode interpreter, fast functions and helper functions.
3|// Copyright (C) 2005-2021 Mike Pall. See Copyright Notice in luajit.h
4|//
5|// MIPS soft-float support contributed by Djordje Kovacevic and
6|// Stefan Pejic from RT-RK.com, sponsored by Cisco Systems, Inc.
7|
8|.arch mips
9|.section code_op, code_sub
10|
11|.actionlist build_actionlist
12|.globals GLOB_
13|.globalnames globnames
14|.externnames extnames
15|
16|// Note: The ragged indentation of the instructions is intentional.
17|//       The starting columns indicate data dependencies.
18|
19|//-----------------------------------------------------------------------
20|
21|// Fixed register assignments for the interpreter.
22|// Don't use: r0 = 0, r26/r27 = reserved, r28 = gp, r29 = sp, r31 = ra
23|
24|.macro .FPU, a, b
25|.if FPU
26|  a, b
27|.endif
28|.endmacro
29|
30|// The following must be C callee-save (but BASE is often refetched).
31|.define BASE,		r16	// Base of current Lua stack frame.
32|.define KBASE,		r17	// Constants of current Lua function.
33|.define PC,		r18	// Next PC.
34|.define DISPATCH,	r19	// Opcode dispatch table.
35|.define LREG,		r20	// Register holding lua_State (also in SAVE_L).
36|.define MULTRES,	r21	// Size of multi-result: (nresults+1)*8.
37|
38|.define JGL,		r30	// On-trace: global_State + 32768.
39|
40|// Constants for type-comparisons, stores and conversions. C callee-save.
41|.define TISNUM,	r22
42|.define TISNIL,	r30
43|.if FPU
44|.define TOBIT,		f30	// 2^52 + 2^51.
45|.endif
46|
47|// The following temporaries are not saved across C calls, except for RA.
48|.define RA,		r23	// Callee-save.
49|.define RB,		r8
50|.define RC,		r9
51|.define RD,		r10
52|.define INS,		r11
53|
54|.define AT,		r1	// Assembler temporary.
55|.define TMP0,		r12
56|.define TMP1,		r13
57|.define TMP2,		r14
58|.define TMP3,		r15
59|
60|// MIPS o32 calling convention.
61|.define CFUNCADDR,	r25
62|.define CARG1,		r4
63|.define CARG2,		r5
64|.define CARG3,		r6
65|.define CARG4,		r7
66|
67|.define CRET1,		r2
68|.define CRET2,		r3
69|
70|.if ENDIAN_LE
71|.define SFRETLO,	CRET1
72|.define SFRETHI,	CRET2
73|.define SFARG1LO,	CARG1
74|.define SFARG1HI,	CARG2
75|.define SFARG2LO,	CARG3
76|.define SFARG2HI,	CARG4
77|.else
78|.define SFRETLO,	CRET2
79|.define SFRETHI,	CRET1
80|.define SFARG1LO,	CARG2
81|.define SFARG1HI,	CARG1
82|.define SFARG2LO,	CARG4
83|.define SFARG2HI,	CARG3
84|.endif
85|
86|.if FPU
87|.define FARG1,		f12
88|.define FARG2,		f14
89|
90|.define FRET1,		f0
91|.define FRET2,		f2
92|.endif
93|
94|// Stack layout while in interpreter. Must match with lj_frame.h.
95|.if FPU		// MIPS32 hard-float.
96|
97|.define CFRAME_SPACE,	112	// Delta for sp.
98|
99|.define SAVE_ERRF,	124(sp)	// 32 bit C frame info.
100|.define SAVE_NRES,	120(sp)
101|.define SAVE_CFRAME,	116(sp)
102|.define SAVE_L,	112(sp)
103|//----- 8 byte aligned, ^^^^ 16 byte register save area, owned by interpreter.
104|.define SAVE_GPR_,	72	// .. 72+10*4: 32 bit GPR saves.
105|.define SAVE_FPR_,	24	// .. 24+6*8: 64 bit FPR saves.
106|
107|.else			// MIPS32 soft-float
108|
109|.define CFRAME_SPACE,	64	// Delta for sp.
110|
111|.define SAVE_ERRF,	76(sp)	// 32 bit C frame info.
112|.define SAVE_NRES,	72(sp)
113|.define SAVE_CFRAME,	68(sp)
114|.define SAVE_L,	64(sp)
115|//----- 8 byte aligned, ^^^^ 16 byte register save area, owned by interpreter.
116|.define SAVE_GPR_,	24	// .. 24+10*4: 32 bit GPR saves.
117|
118|.endif
119|
120|.define SAVE_PC,	20(sp)
121|.define ARG5,		16(sp)
122|.define CSAVE_4,	12(sp)
123|.define CSAVE_3,	8(sp)
124|.define CSAVE_2,	4(sp)
125|.define CSAVE_1,	0(sp)
126|//----- 8 byte aligned, ^^^^ 16 byte register save area, owned by callee.
127|
128|.define ARG5_OFS,	16
129|.define SAVE_MULTRES,	ARG5
130|
131|//-----------------------------------------------------------------------
132|
133|.macro saveregs
134|  addiu sp, sp, -CFRAME_SPACE
135|  sw ra, SAVE_GPR_+9*4(sp)
136|  sw r30, SAVE_GPR_+8*4(sp)
137|   .FPU sdc1 f30, SAVE_FPR_+5*8(sp)
138|  sw r23, SAVE_GPR_+7*4(sp)
139|  sw r22, SAVE_GPR_+6*4(sp)
140|   .FPU sdc1 f28, SAVE_FPR_+4*8(sp)
141|  sw r21, SAVE_GPR_+5*4(sp)
142|  sw r20, SAVE_GPR_+4*4(sp)
143|   .FPU sdc1 f26, SAVE_FPR_+3*8(sp)
144|  sw r19, SAVE_GPR_+3*4(sp)
145|  sw r18, SAVE_GPR_+2*4(sp)
146|   .FPU sdc1 f24, SAVE_FPR_+2*8(sp)
147|  sw r17, SAVE_GPR_+1*4(sp)
148|  sw r16, SAVE_GPR_+0*4(sp)
149|   .FPU sdc1 f22, SAVE_FPR_+1*8(sp)
150|   .FPU sdc1 f20, SAVE_FPR_+0*8(sp)
151|.endmacro
152|
153|.macro restoreregs_ret
154|  lw ra, SAVE_GPR_+9*4(sp)
155|  lw r30, SAVE_GPR_+8*4(sp)
156|   .FPU ldc1 f30, SAVE_FPR_+5*8(sp)
157|  lw r23, SAVE_GPR_+7*4(sp)
158|  lw r22, SAVE_GPR_+6*4(sp)
159|   .FPU ldc1 f28, SAVE_FPR_+4*8(sp)
160|  lw r21, SAVE_GPR_+5*4(sp)
161|  lw r20, SAVE_GPR_+4*4(sp)
162|   .FPU ldc1 f26, SAVE_FPR_+3*8(sp)
163|  lw r19, SAVE_GPR_+3*4(sp)
164|  lw r18, SAVE_GPR_+2*4(sp)
165|   .FPU ldc1 f24, SAVE_FPR_+2*8(sp)
166|  lw r17, SAVE_GPR_+1*4(sp)
167|  lw r16, SAVE_GPR_+0*4(sp)
168|   .FPU ldc1 f22, SAVE_FPR_+1*8(sp)
169|   .FPU ldc1 f20, SAVE_FPR_+0*8(sp)
170|  jr ra
171|  addiu sp, sp, CFRAME_SPACE
172|.endmacro
173|
174|// Type definitions. Some of these are only used for documentation.
175|.type L,		lua_State,	LREG
176|.type GL,		global_State
177|.type TVALUE,		TValue
178|.type GCOBJ,		GCobj
179|.type STR,		GCstr
180|.type TAB,		GCtab
181|.type LFUNC,		GCfuncL
182|.type CFUNC,		GCfuncC
183|.type PROTO,		GCproto
184|.type UPVAL,		GCupval
185|.type NODE,		Node
186|.type NARGS8,		int
187|.type TRACE,		GCtrace
188|.type SBUF,		SBuf
189|
190|//-----------------------------------------------------------------------
191|
192|// Trap for not-yet-implemented parts.
193|.macro NYI; .long 0xec1cf0f0; .endmacro
194|
195|// Macros to mark delay slots.
196|.macro ., a; a; .endmacro
197|.macro ., a,b; a,b; .endmacro
198|.macro ., a,b,c; a,b,c; .endmacro
199|
200|//-----------------------------------------------------------------------
201|
202|// Endian-specific defines.
203|.if ENDIAN_LE
204|.define FRAME_PC,	-4
205|.define FRAME_FUNC,	-8
206|.define HI,		4
207|.define LO,		0
208|.define OFS_RD,	2
209|.define OFS_RA,	1
210|.define OFS_OP,	0
211|.else
212|.define FRAME_PC,	-8
213|.define FRAME_FUNC,	-4
214|.define HI,		0
215|.define LO,		4
216|.define OFS_RD,	0
217|.define OFS_RA,	2
218|.define OFS_OP,	3
219|.endif
220|
221|// Instruction decode.
222|.macro decode_OP1, dst, ins; andi dst, ins, 0xff; .endmacro
223|.macro decode_OP4a, dst, ins; andi dst, ins, 0xff; .endmacro
224|.macro decode_OP4b, dst; sll dst, dst, 2; .endmacro
225|.macro decode_RC4a, dst, ins; srl dst, ins, 14; .endmacro
226|.macro decode_RC4b, dst; andi dst, dst, 0x3fc; .endmacro
227|.macro decode_RD4b, dst; sll dst, dst, 2; .endmacro
228|.macro decode_RA8a, dst, ins; srl dst, ins, 5; .endmacro
229|.macro decode_RA8b, dst; andi dst, dst, 0x7f8; .endmacro
230|.macro decode_RB8a, dst, ins; srl dst, ins, 21; .endmacro
231|.macro decode_RB8b, dst; andi dst, dst, 0x7f8; .endmacro
232|.macro decode_RD8a, dst, ins; srl dst, ins, 16; .endmacro
233|.macro decode_RD8b, dst; sll dst, dst, 3; .endmacro
234|.macro decode_RDtoRC8, dst, src; andi dst, src, 0x7f8; .endmacro
235|
236|// Instruction fetch.
237|.macro ins_NEXT1
238|  lw INS, 0(PC)
239|   addiu PC, PC, 4
240|.endmacro
241|// Instruction decode+dispatch.
242|.macro ins_NEXT2
243|  decode_OP4a TMP1, INS
244|  decode_OP4b TMP1
245|  addu TMP0, DISPATCH, TMP1
246|   decode_RD8a RD, INS
247|  lw AT, 0(TMP0)
248|   decode_RA8a RA, INS
249|   decode_RD8b RD
250|  jr AT
251|   decode_RA8b RA
252|.endmacro
253|.macro ins_NEXT
254|  ins_NEXT1
255|  ins_NEXT2
256|.endmacro
257|
258|// Instruction footer.
259|.if 1
260|  // Replicated dispatch. Less unpredictable branches, but higher I-Cache use.
261|  .define ins_next, ins_NEXT
262|  .define ins_next_, ins_NEXT
263|  .define ins_next1, ins_NEXT1
264|  .define ins_next2, ins_NEXT2
265|.else
266|  // Common dispatch. Lower I-Cache use, only one (very) unpredictable branch.
267|  // Affects only certain kinds of benchmarks (and only with -j off).
268|  .macro ins_next
269|    b ->ins_next
270|  .endmacro
271|  .macro ins_next1
272|  .endmacro
273|  .macro ins_next2
274|    b ->ins_next
275|  .endmacro
276|  .macro ins_next_
277|  ->ins_next:
278|    ins_NEXT
279|  .endmacro
280|.endif
281|
282|// Call decode and dispatch.
283|.macro ins_callt
284|  // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC
285|  lw PC, LFUNC:RB->pc
286|  lw INS, 0(PC)
287|   addiu PC, PC, 4
288|  decode_OP4a TMP1, INS
289|   decode_RA8a RA, INS
290|  decode_OP4b TMP1
291|   decode_RA8b RA
292|  addu TMP0, DISPATCH, TMP1
293|  lw TMP0, 0(TMP0)
294|  jr TMP0
295|   addu RA, RA, BASE
296|.endmacro
297|
298|.macro ins_call
299|  // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, PC = caller PC
300|  sw PC, FRAME_PC(BASE)
301|  ins_callt
302|.endmacro
303|
304|//-----------------------------------------------------------------------
305|
306|.macro branch_RD
307|  srl TMP0, RD, 1
308|  lui AT, (-(BCBIAS_J*4 >> 16) & 65535)
309|  addu TMP0, TMP0, AT
310|  addu PC, PC, TMP0
311|.endmacro
312|
313|// Assumes DISPATCH is relative to GL.
314#define DISPATCH_GL(field)	(GG_DISP2G + (int)offsetof(global_State, field))
315#define DISPATCH_J(field)	(GG_DISP2J + (int)offsetof(jit_State, field))
316#define GG_DISP2GOT		(GG_OFS(got) - GG_OFS(dispatch))
317#define DISPATCH_GOT(name)	(GG_DISP2GOT + 4*LJ_GOT_##name)
318|
319#define PC2PROTO(field)  ((int)offsetof(GCproto, field)-(int)sizeof(GCproto))
320|
321|.macro load_got, func
322|  lw CFUNCADDR, DISPATCH_GOT(func)(DISPATCH)
323|.endmacro
324|// Much faster. Sadly, there's no easy way to force the required code layout.
325|// .macro call_intern, func; bal extern func; .endmacro
326|.macro call_intern, func; jalr CFUNCADDR; .endmacro
327|.macro call_extern; jalr CFUNCADDR; .endmacro
328|.macro jmp_extern; jr CFUNCADDR; .endmacro
329|
330|.macro hotcheck, delta, target
331|  srl TMP1, PC, 1
332|  andi TMP1, TMP1, 126
333|  addu TMP1, TMP1, DISPATCH
334|  lhu TMP2, GG_DISP2HOT(TMP1)
335|  addiu TMP2, TMP2, -delta
336|  bltz TMP2, target
337|.  sh TMP2, GG_DISP2HOT(TMP1)
338|.endmacro
339|
340|.macro hotloop
341|  hotcheck HOTCOUNT_LOOP, ->vm_hotloop
342|.endmacro
343|
344|.macro hotcall
345|  hotcheck HOTCOUNT_CALL, ->vm_hotcall
346|.endmacro
347|
348|// Set current VM state. Uses TMP0.
349|.macro li_vmstate, st; li TMP0, ~LJ_VMST_..st; .endmacro
350|.macro st_vmstate; sw TMP0, DISPATCH_GL(vmstate)(DISPATCH); .endmacro
351|
352|// Move table write barrier back. Overwrites mark and tmp.
353|.macro barrierback, tab, mark, tmp, target
354|  lw tmp, DISPATCH_GL(gc.grayagain)(DISPATCH)
355|   andi mark, mark, ~LJ_GC_BLACK & 255		// black2gray(tab)
356|  sw tab, DISPATCH_GL(gc.grayagain)(DISPATCH)
357|   sb mark, tab->marked
358|  b target
359|.  sw tmp, tab->gclist
360|.endmacro
361|
362|//-----------------------------------------------------------------------
363
364/* Generate subroutines used by opcodes and other parts of the VM. */
365/* The .code_sub section should be last to help static branch prediction. */
366static void build_subroutines(BuildCtx *ctx)
367{
368  |.code_sub
369  |
370  |//-----------------------------------------------------------------------
371  |//-- Return handling ----------------------------------------------------
372  |//-----------------------------------------------------------------------
373  |
374  |->vm_returnp:
375  |  // See vm_return. Also: TMP2 = previous base.
376  |  andi AT, PC, FRAME_P
377  |  beqz AT, ->cont_dispatch
378  |.  li TMP1, LJ_TTRUE
379  |
380  |  // Return from pcall or xpcall fast func.
381  |  lw PC, FRAME_PC(TMP2)		// Fetch PC of previous frame.
382  |  move BASE, TMP2			// Restore caller base.
383  |  // Prepending may overwrite the pcall frame, so do it at the end.
384  |   sw TMP1, FRAME_PC(RA)		// Prepend true to results.
385  |   addiu RA, RA, -8
386  |
387  |->vm_returnc:
388  |   addiu RD, RD, 8			// RD = (nresults+1)*8.
389  |  andi TMP0, PC, FRAME_TYPE
390  |   beqz RD, ->vm_unwind_c_eh
391  |.   li CRET1, LUA_YIELD
392  |  beqz TMP0, ->BC_RET_Z		// Handle regular return to Lua.
393  |.  move MULTRES, RD
394  |
395  |->vm_return:
396  |  // BASE = base, RA = resultptr, RD/MULTRES = (nresults+1)*8, PC = return
397  |  // TMP0 = PC & FRAME_TYPE
398  |   li TMP2, -8
399  |  xori AT, TMP0, FRAME_C
400  |   and TMP2, PC, TMP2
401  |  bnez AT, ->vm_returnp
402  |.  subu TMP2, BASE, TMP2		// TMP2 = previous base.
403  |
404  |  addiu TMP1, RD, -8
405  |   sw TMP2, L->base
406  |    li_vmstate C
407  |   lw TMP2, SAVE_NRES
408  |   addiu BASE, BASE, -8
409  |    st_vmstate
410  |  beqz TMP1, >2
411  |.   sll TMP2, TMP2, 3
412  |1:
413  |  addiu TMP1, TMP1, -8
414  |   lw SFRETHI, HI(RA)
415  |    lw SFRETLO, LO(RA)
416  |    addiu RA, RA, 8
417  |   sw SFRETHI, HI(BASE)
418  |    sw SFRETLO, LO(BASE)
419  |  bnez TMP1, <1
420  |.  addiu BASE, BASE, 8
421  |
422  |2:
423  |  bne TMP2, RD, >6
424  |3:
425  |.  sw BASE, L->top			// Store new top.
426  |
427  |->vm_leave_cp:
428  |  lw TMP0, SAVE_CFRAME		// Restore previous C frame.
429  |   move CRET1, r0			// Ok return status for vm_pcall.
430  |  sw TMP0, L->cframe
431  |
432  |->vm_leave_unw:
433  |  restoreregs_ret
434  |
435  |6:
436  |  lw TMP1, L->maxstack
437  |  slt AT, TMP2, RD
438  |  bnez AT, >7			// Less results wanted?
439  |  // More results wanted. Check stack size and fill up results with nil.
440  |.  slt AT, BASE, TMP1
441  |  beqz AT, >8
442  |.  nop
443  |  sw TISNIL, HI(BASE)
444  |  addiu RD, RD, 8
445  |  b <2
446  |.  addiu BASE, BASE, 8
447  |
448  |7:  // Less results wanted.
449  |  subu TMP0, RD, TMP2
450  |  subu TMP0, BASE, TMP0		// Either keep top or shrink it.
451  |  b <3
452  |.  movn BASE, TMP0, TMP2		// LUA_MULTRET+1 case?
453  |
454  |8:  // Corner case: need to grow stack for filling up results.
455  |  // This can happen if:
456  |  // - A C function grows the stack (a lot).
457  |  // - The GC shrinks the stack in between.
458  |  // - A return back from a lua_call() with (high) nresults adjustment.
459  |  load_got lj_state_growstack
460  |   move MULTRES, RD
461  |  srl CARG2, TMP2, 3
462  |  call_intern lj_state_growstack	// (lua_State *L, int n)
463  |.  move CARG1, L
464  |    lw TMP2, SAVE_NRES
465  |  lw BASE, L->top			// Need the (realloced) L->top in BASE.
466  |   move RD, MULTRES
467  |  b <2
468  |.   sll TMP2, TMP2, 3
469  |
470  |->vm_unwind_c:			// Unwind C stack, return from vm_pcall.
471  |  // (void *cframe, int errcode)
472  |  move sp, CARG1
473  |  move CRET1, CARG2
474  |->vm_unwind_c_eh:			// Landing pad for external unwinder.
475  |  lw L, SAVE_L
476  |   li TMP0, ~LJ_VMST_C
477  |  lw GL:TMP1, L->glref
478  |  b ->vm_leave_unw
479  |.  sw TMP0, GL:TMP1->vmstate
480  |
481  |->vm_unwind_ff:			// Unwind C stack, return from ff pcall.
482  |  // (void *cframe)
483  |  li AT, -4
484  |  and sp, CARG1, AT
485  |->vm_unwind_ff_eh:			// Landing pad for external unwinder.
486  |  lw L, SAVE_L
487  |     .FPU lui TMP3, 0x59c0		// TOBIT = 2^52 + 2^51 (float).
488  |     li TISNUM, LJ_TISNUM		// Setup type comparison constants.
489  |     li TISNIL, LJ_TNIL
490  |  lw BASE, L->base
491  |   lw DISPATCH, L->glref		// Setup pointer to dispatch table.
492  |     .FPU mtc1 TMP3, TOBIT
493  |  li TMP1, LJ_TFALSE
494  |    li_vmstate INTERP
495  |  lw PC, FRAME_PC(BASE)		// Fetch PC of previous frame.
496  |     .FPU cvt.d.s TOBIT, TOBIT
497  |  addiu RA, BASE, -8			// Results start at BASE-8.
498  |   addiu DISPATCH, DISPATCH, GG_G2DISP
499  |  sw TMP1, HI(RA)			// Prepend false to error message.
500  |    st_vmstate
501  |  b ->vm_returnc
502  |.  li RD, 16				// 2 results: false + error message.
503  |
504  |->vm_unwind_stub:			// Jump to exit stub from unwinder.
505  |  jr CARG1
506  |.  move ra, CARG2
507  |
508  |//-----------------------------------------------------------------------
509  |//-- Grow stack for calls -----------------------------------------------
510  |//-----------------------------------------------------------------------
511  |
512  |->vm_growstack_c:			// Grow stack for C function.
513  |  b >2
514  |.  li CARG2, LUA_MINSTACK
515  |
516  |->vm_growstack_l:			// Grow stack for Lua function.
517  |  // BASE = new base, RA = BASE+framesize*8, RC = nargs*8, PC = first PC
518  |  addu RC, BASE, RC
519  |   subu RA, RA, BASE
520  |  sw BASE, L->base
521  |   addiu PC, PC, 4			// Must point after first instruction.
522  |  sw RC, L->top
523  |   srl CARG2, RA, 3
524  |2:
525  |  // L->base = new base, L->top = top
526  |  load_got lj_state_growstack
527  |   sw PC, SAVE_PC
528  |  call_intern lj_state_growstack	// (lua_State *L, int n)
529  |.  move CARG1, L
530  |  lw BASE, L->base
531  |  lw RC, L->top
532  |  lw LFUNC:RB, FRAME_FUNC(BASE)
533  |  subu RC, RC, BASE
534  |  // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC
535  |  ins_callt				// Just retry the call.
536  |
537  |//-----------------------------------------------------------------------
538  |//-- Entry points into the assembler VM ---------------------------------
539  |//-----------------------------------------------------------------------
540  |
541  |->vm_resume:				// Setup C frame and resume thread.
542  |  // (lua_State *L, TValue *base, int nres1 = 0, ptrdiff_t ef = 0)
543  |  saveregs
544  |  move L, CARG1
545  |    lw DISPATCH, L->glref		// Setup pointer to dispatch table.
546  |  move BASE, CARG2
547  |    lbu TMP1, L->status
548  |   sw L, SAVE_L
549  |  li PC, FRAME_CP
550  |  addiu TMP0, sp, CFRAME_RESUME
551  |    addiu DISPATCH, DISPATCH, GG_G2DISP
552  |   sw r0, SAVE_NRES
553  |   sw r0, SAVE_ERRF
554  |   sw CARG1, SAVE_PC		// Any value outside of bytecode is ok.
555  |   sw r0, SAVE_CFRAME
556  |    beqz TMP1, >3
557  |. sw TMP0, L->cframe
558  |
559  |  // Resume after yield (like a return).
560  |  sw L, DISPATCH_GL(cur_L)(DISPATCH)
561  |  move RA, BASE
562  |   lw BASE, L->base
563  |     li TISNUM, LJ_TISNUM		// Setup type comparison constants.
564  |   lw TMP1, L->top
565  |  lw PC, FRAME_PC(BASE)
566  |     .FPU  lui TMP3, 0x59c0		// TOBIT = 2^52 + 2^51 (float).
567  |   subu RD, TMP1, BASE
568  |     .FPU  mtc1 TMP3, TOBIT
569  |    sb r0, L->status
570  |     .FPU  cvt.d.s TOBIT, TOBIT
571  |    li_vmstate INTERP
572  |   addiu RD, RD, 8
573  |    st_vmstate
574  |   move MULTRES, RD
575  |  andi TMP0, PC, FRAME_TYPE
576  |  beqz TMP0, ->BC_RET_Z
577  |.    li TISNIL, LJ_TNIL
578  |  b ->vm_return
579  |.  nop
580  |
581  |->vm_pcall:				// Setup protected C frame and enter VM.
582  |  // (lua_State *L, TValue *base, int nres1, ptrdiff_t ef)
583  |  saveregs
584  |  sw CARG4, SAVE_ERRF
585  |  b >1
586  |.  li PC, FRAME_CP
587  |
588  |->vm_call:				// Setup C frame and enter VM.
589  |  // (lua_State *L, TValue *base, int nres1)
590  |  saveregs
591  |  li PC, FRAME_C
592  |
593  |1:  // Entry point for vm_pcall above (PC = ftype).
594  |  lw TMP1, L:CARG1->cframe
595  |    move L, CARG1
596  |   sw CARG3, SAVE_NRES
597  |    lw DISPATCH, L->glref		// Setup pointer to dispatch table.
598  |   sw CARG1, SAVE_L
599  |     move BASE, CARG2
600  |    addiu DISPATCH, DISPATCH, GG_G2DISP
601  |   sw CARG1, SAVE_PC		// Any value outside of bytecode is ok.
602  |  sw TMP1, SAVE_CFRAME
603  |  sw sp, L->cframe			// Add our C frame to cframe chain.
604  |
605  |3:  // Entry point for vm_cpcall/vm_resume (BASE = base, PC = ftype).
606  |  sw L, DISPATCH_GL(cur_L)(DISPATCH)
607  |  lw TMP2, L->base			// TMP2 = old base (used in vmeta_call).
608  |     li TISNUM, LJ_TISNUM		// Setup type comparison constants.
609  |     .FPU lui TMP3, 0x59c0		// TOBIT = 2^52 + 2^51 (float).
610  |   lw TMP1, L->top
611  |     .FPU mtc1 TMP3, TOBIT
612  |  addu PC, PC, BASE
613  |   subu NARGS8:RC, TMP1, BASE
614  |  subu PC, PC, TMP2			// PC = frame delta + frame type
615  |     .FPU cvt.d.s TOBIT, TOBIT
616  |    li_vmstate INTERP
617  |     li TISNIL, LJ_TNIL
618  |    st_vmstate
619  |
620  |->vm_call_dispatch:
621  |  // TMP2 = old base, BASE = new base, RC = nargs*8, PC = caller PC
622  |  lw TMP0, FRAME_PC(BASE)
623  |  li AT, LJ_TFUNC
624  |  bne TMP0, AT, ->vmeta_call
625  |.  lw LFUNC:RB, FRAME_FUNC(BASE)
626  |
627  |->vm_call_dispatch_f:
628  |  ins_call
629  |  // BASE = new base, RB = func, RC = nargs*8, PC = caller PC
630  |
631  |->vm_cpcall:				// Setup protected C frame, call C.
632  |  // (lua_State *L, lua_CFunction func, void *ud, lua_CPFunction cp)
633  |  saveregs
634  |  move L, CARG1
635  |   lw TMP0, L:CARG1->stack
636  |  sw CARG1, SAVE_L
637  |   lw TMP1, L->top
638  |     lw DISPATCH, L->glref		// Setup pointer to dispatch table.
639  |  sw CARG1, SAVE_PC			// Any value outside of bytecode is ok.
640  |   subu TMP0, TMP0, TMP1		// Compute -savestack(L, L->top).
641  |    lw TMP1, L->cframe
642  |     addiu DISPATCH, DISPATCH, GG_G2DISP
643  |   sw TMP0, SAVE_NRES		// Neg. delta means cframe w/o frame.
644  |  sw r0, SAVE_ERRF			// No error function.
645  |    sw TMP1, SAVE_CFRAME
646  |    sw sp, L->cframe			// Add our C frame to cframe chain.
647  |     sw L, DISPATCH_GL(cur_L)(DISPATCH)
648  |  jalr CARG4			// (lua_State *L, lua_CFunction func, void *ud)
649  |.  move CFUNCADDR, CARG4
650  |  move BASE, CRET1
651  |  bnez CRET1, <3			// Else continue with the call.
652  |.  li PC, FRAME_CP
653  |  b ->vm_leave_cp			// No base? Just remove C frame.
654  |.  nop
655  |
656  |//-----------------------------------------------------------------------
657  |//-- Metamethod handling ------------------------------------------------
658  |//-----------------------------------------------------------------------
659  |
660  |// The lj_meta_* functions (except for lj_meta_cat) don't reallocate the
661  |// stack, so BASE doesn't need to be reloaded across these calls.
662  |
663  |//-- Continuation dispatch ----------------------------------------------
664  |
665  |->cont_dispatch:
666  |  // BASE = meta base, RA = resultptr, RD = (nresults+1)*8
667  |  lw TMP0, -16+LO(BASE)		// Continuation.
668  |   move RB, BASE
669  |   move BASE, TMP2			// Restore caller BASE.
670  |    lw LFUNC:TMP1, FRAME_FUNC(TMP2)
671  |.if FFI
672  |  sltiu AT, TMP0, 2
673  |.endif
674  |     lw PC, -16+HI(RB)		// Restore PC from [cont|PC].
675  |   addu TMP2, RA, RD
676  |.if FFI
677  |  bnez AT, >1
678  |.endif
679  |.  sw TISNIL, -8+HI(TMP2)		// Ensure one valid arg.
680  |    lw TMP1, LFUNC:TMP1->pc
681  |  // BASE = base, RA = resultptr, RB = meta base
682  |  jr TMP0				// Jump to continuation.
683  |.  lw KBASE, PC2PROTO(k)(TMP1)
684  |
685  |.if FFI
686  |1:
687  |  bnez TMP0, ->cont_ffi_callback	// cont = 1: return from FFI callback.
688  |  // cont = 0: tailcall from C function.
689  |.  addiu TMP1, RB, -16
690  |  b ->vm_call_tail
691  |.  subu RC, TMP1, BASE
692  |.endif
693  |
694  |->cont_cat:				// RA = resultptr, RB = meta base
695  |  lw INS, -4(PC)
696  |   addiu CARG2, RB, -16
697  |  lw SFRETHI, HI(RA)
698  |    lw SFRETLO, LO(RA)
699  |  decode_RB8a MULTRES, INS
700  |   decode_RA8a RA, INS
701  |  decode_RB8b MULTRES
702  |   decode_RA8b RA
703  |  addu TMP1, BASE, MULTRES
704  |   sw BASE, L->base
705  |   subu CARG3, CARG2, TMP1
706  |  sw SFRETHI, HI(CARG2)
707  |  bne TMP1, CARG2, ->BC_CAT_Z
708  |.  sw SFRETLO, LO(CARG2)
709  |  addu RA, BASE, RA
710  |  sw SFRETHI, HI(RA)
711  |  b ->cont_nop
712  |.  sw SFRETLO, LO(RA)
713  |
714  |//-- Table indexing metamethods -----------------------------------------
715  |
716  |->vmeta_tgets1:
717  |  addiu CARG3, DISPATCH, DISPATCH_GL(tmptv)
718  |  li TMP0, LJ_TSTR
719  |  sw STR:RC, LO(CARG3)
720  |  b >1
721  |.  sw TMP0, HI(CARG3)
722  |
723  |->vmeta_tgets:
724  |  addiu CARG2, DISPATCH, DISPATCH_GL(tmptv)
725  |  li TMP0, LJ_TTAB
726  |  sw TAB:RB, LO(CARG2)
727  |   addiu CARG3, DISPATCH, DISPATCH_GL(tmptv2)
728  |  sw TMP0, HI(CARG2)
729  |   li TMP1, LJ_TSTR
730  |   sw STR:RC, LO(CARG3)
731  |  b >1
732  |.  sw TMP1, HI(CARG3)
733  |
734  |->vmeta_tgetb:			// TMP0 = index
735  |  addiu CARG3, DISPATCH, DISPATCH_GL(tmptv)
736  |  sw TMP0, LO(CARG3)
737  |  sw TISNUM, HI(CARG3)
738  |
739  |->vmeta_tgetv:
740  |1:
741  |  load_got lj_meta_tget
742  |  sw BASE, L->base
743  |  sw PC, SAVE_PC
744  |  call_intern lj_meta_tget		// (lua_State *L, TValue *o, TValue *k)
745  |.  move CARG1, L
746  |  // Returns TValue * (finished) or NULL (metamethod).
747  |  beqz CRET1, >3
748  |.  addiu TMP1, BASE, -FRAME_CONT
749  |  lw SFARG1HI, HI(CRET1)
750  |   lw SFARG2HI, LO(CRET1)
751  |  ins_next1
752  |  sw SFARG1HI, HI(RA)
753  |   sw SFARG2HI, LO(RA)
754  |  ins_next2
755  |
756  |3:  // Call __index metamethod.
757  |  // BASE = base, L->top = new base, stack = cont/func/t/k
758  |  lw BASE, L->top
759  |  sw PC, -16+HI(BASE)		// [cont|PC]
760  |   subu PC, BASE, TMP1
761  |  lw LFUNC:RB, FRAME_FUNC(BASE)	// Guaranteed to be a function here.
762  |  b ->vm_call_dispatch_f
763  |.  li NARGS8:RC, 16			// 2 args for func(t, k).
764  |
765  |->vmeta_tgetr:
766  |  load_got lj_tab_getinth
767  |  call_intern lj_tab_getinth		// (GCtab *t, int32_t key)
768  |.  nop
769  |  // Returns cTValue * or NULL.
770  |  beqz CRET1, ->BC_TGETR_Z
771  |.  move SFARG2HI, TISNIL
772  |  lw SFARG2HI, HI(CRET1)
773  |  b ->BC_TGETR_Z
774  |.  lw SFARG2LO, LO(CRET1)
775  |
776  |//-----------------------------------------------------------------------
777  |
778  |->vmeta_tsets1:
779  |  addiu CARG3, DISPATCH, DISPATCH_GL(tmptv)
780  |  li TMP0, LJ_TSTR
781  |  sw STR:RC, LO(CARG3)
782  |  b >1
783  |.  sw TMP0, HI(CARG3)
784  |
785  |->vmeta_tsets:
786  |  addiu CARG2, DISPATCH, DISPATCH_GL(tmptv)
787  |  li TMP0, LJ_TTAB
788  |  sw TAB:RB, LO(CARG2)
789  |   addiu CARG3, DISPATCH, DISPATCH_GL(tmptv2)
790  |  sw TMP0, HI(CARG2)
791  |   li TMP1, LJ_TSTR
792  |   sw STR:RC, LO(CARG3)
793  |  b >1
794  |.  sw TMP1, HI(CARG3)
795  |
796  |->vmeta_tsetb:			// TMP0 = index
797  |  addiu CARG3, DISPATCH, DISPATCH_GL(tmptv)
798  |  sw TMP0, LO(CARG3)
799  |  sw TISNUM, HI(CARG3)
800  |
801  |->vmeta_tsetv:
802  |1:
803  |  load_got lj_meta_tset
804  |  sw BASE, L->base
805  |  sw PC, SAVE_PC
806  |  call_intern lj_meta_tset		// (lua_State *L, TValue *o, TValue *k)
807  |.  move CARG1, L
808  |  // Returns TValue * (finished) or NULL (metamethod).
809  |  lw SFARG1HI, HI(RA)
810  |  beqz CRET1, >3
811  |.  lw SFARG1LO, LO(RA)
812  |  // NOBARRIER: lj_meta_tset ensures the table is not black.
813  |  ins_next1
814  |  sw SFARG1HI, HI(CRET1)
815  |   sw SFARG1LO, LO(CRET1)
816  |  ins_next2
817  |
818  |3:  // Call __newindex metamethod.
819  |  // BASE = base, L->top = new base, stack = cont/func/t/k/(v)
820  |  addiu TMP1, BASE, -FRAME_CONT
821  |  lw BASE, L->top
822  |  sw PC, -16+HI(BASE)		// [cont|PC]
823  |   subu PC, BASE, TMP1
824  |  lw LFUNC:RB, FRAME_FUNC(BASE)	// Guaranteed to be a function here.
825  |  sw SFARG1HI, 16+HI(BASE)		// Copy value to third argument.
826  |   sw SFARG1LO, 16+LO(BASE)
827  |  b ->vm_call_dispatch_f
828  |.  li NARGS8:RC, 24			// 3 args for func(t, k, v)
829  |
830  |->vmeta_tsetr:
831  |  load_got lj_tab_setinth
832  |  sw BASE, L->base
833  |  sw PC, SAVE_PC
834  |  call_intern lj_tab_setinth  // (lua_State *L, GCtab *t, int32_t key)
835  |.  move CARG1, L
836  |  // Returns TValue *.
837  |  b ->BC_TSETR_Z
838  |.  nop
839  |
840  |//-- Comparison metamethods ---------------------------------------------
841  |
842  |->vmeta_comp:
843  |  // RA/RD point to o1/o2.
844  |  move CARG2, RA
845  |  move CARG3, RD
846  |  load_got lj_meta_comp
847  |  addiu PC, PC, -4
848  |  sw BASE, L->base
849  |  sw PC, SAVE_PC
850  |  decode_OP1 CARG4, INS
851  |  call_intern lj_meta_comp	// (lua_State *L, TValue *o1, *o2, int op)
852  |.  move CARG1, L
853  |  // Returns 0/1 or TValue * (metamethod).
854  |3:
855  |  sltiu AT, CRET1, 2
856  |  beqz AT, ->vmeta_binop
857  |   negu TMP2, CRET1
858  |4:
859  |  lhu RD, OFS_RD(PC)
860  |   addiu PC, PC, 4
861  |   lui TMP1, (-(BCBIAS_J*4 >> 16) & 65535)
862  |  sll RD, RD, 2
863  |  addu RD, RD, TMP1
864  |  and RD, RD, TMP2
865  |  addu PC, PC, RD
866  |->cont_nop:
867  |  ins_next
868  |
869  |->cont_ra:				// RA = resultptr
870  |  lbu TMP1, -4+OFS_RA(PC)
871  |   lw SFRETHI, HI(RA)
872  |    lw SFRETLO, LO(RA)
873  |  sll TMP1, TMP1, 3
874  |  addu TMP1, BASE, TMP1
875  |   sw SFRETHI, HI(TMP1)
876  |  b ->cont_nop
877  |.   sw SFRETLO, LO(TMP1)
878  |
879  |->cont_condt:			// RA = resultptr
880  |  lw TMP0, HI(RA)
881  |  sltiu AT, TMP0, LJ_TISTRUECOND
882  |  b <4
883  |.  negu TMP2, AT			// Branch if result is true.
884  |
885  |->cont_condf:			// RA = resultptr
886  |  lw TMP0, HI(RA)
887  |  sltiu AT, TMP0, LJ_TISTRUECOND
888  |  b <4
889  |.  addiu TMP2, AT, -1		// Branch if result is false.
890  |
891  |->vmeta_equal:
892  |  // SFARG1LO/SFARG2LO point to o1/o2. TMP0 is set to 0/1.
893  |  load_got lj_meta_equal
894  |   move CARG2, SFARG1LO
895  |   move CARG3, SFARG2LO
896  |   move CARG4, TMP0
897  |  addiu PC, PC, -4
898  |   sw BASE, L->base
899  |   sw PC, SAVE_PC
900  |  call_intern lj_meta_equal  // (lua_State *L, GCobj *o1, *o2, int ne)
901  |.  move CARG1, L
902  |  // Returns 0/1 or TValue * (metamethod).
903  |  b <3
904  |.  nop
905  |
906  |->vmeta_equal_cd:
907  |.if FFI
908  |  load_got lj_meta_equal_cd
909  |  move CARG2, INS
910  |  addiu PC, PC, -4
911  |   sw BASE, L->base
912  |   sw PC, SAVE_PC
913  |  call_intern lj_meta_equal_cd	// (lua_State *L, BCIns op)
914  |.  move CARG1, L
915  |  // Returns 0/1 or TValue * (metamethod).
916  |  b <3
917  |.  nop
918  |.endif
919  |
920  |->vmeta_istype:
921  |  load_got lj_meta_istype
922  |  addiu PC, PC, -4
923  |   sw BASE, L->base
924  |   srl CARG2, RA, 3
925  |   srl CARG3, RD, 3
926  |  sw PC, SAVE_PC
927  |  call_intern lj_meta_istype  // (lua_State *L, BCReg ra, BCReg tp)
928  |.  move CARG1, L
929  |  b ->cont_nop
930  |.  nop
931  |
932  |//-- Arithmetic metamethods ---------------------------------------------
933  |
934  |->vmeta_unm:
935  |  move RC, RB
936  |
937  |->vmeta_arith:
938  |  load_got lj_meta_arith
939  |  decode_OP1 TMP0, INS
940  |   sw BASE, L->base
941  |  move CARG2, RA
942  |   sw PC, SAVE_PC
943  |  move CARG3, RB
944  |  move CARG4, RC
945  |  sw TMP0, ARG5
946  |  call_intern lj_meta_arith  // (lua_State *L, TValue *ra,*rb,*rc, BCReg op)
947  |.  move CARG1, L
948  |  // Returns NULL (finished) or TValue * (metamethod).
949  |  beqz CRET1, ->cont_nop
950  |.  nop
951  |
952  |  // Call metamethod for binary op.
953  |->vmeta_binop:
954  |  // BASE = old base, CRET1 = new base, stack = cont/func/o1/o2
955  |  subu TMP1, CRET1, BASE
956  |   sw PC, -16+HI(CRET1)		// [cont|PC]
957  |   move TMP2, BASE
958  |  addiu PC, TMP1, FRAME_CONT
959  |   move BASE, CRET1
960  |  b ->vm_call_dispatch
961  |.  li NARGS8:RC, 16			// 2 args for func(o1, o2).
962  |
963  |->vmeta_len:
964  |  // CARG2 already set by BC_LEN.
965#if LJ_52
966  |  move MULTRES, CARG1
967#endif
968  |  load_got lj_meta_len
969  |   sw BASE, L->base
970  |   sw PC, SAVE_PC
971  |  call_intern lj_meta_len		// (lua_State *L, TValue *o)
972  |.  move CARG1, L
973  |  // Returns NULL (retry) or TValue * (metamethod base).
974#if LJ_52
975  |  bnez CRET1, ->vmeta_binop		// Binop call for compatibility.
976  |.  nop
977  |  b ->BC_LEN_Z
978  |.  move CARG1, MULTRES
979#else
980  |  b ->vmeta_binop			// Binop call for compatibility.
981  |.  nop
982#endif
983  |
984  |//-- Call metamethod ----------------------------------------------------
985  |
986  |->vmeta_call:			// Resolve and call __call metamethod.
987  |  // TMP2 = old base, BASE = new base, RC = nargs*8
988  |  load_got lj_meta_call
989  |   sw TMP2, L->base			// This is the callers base!
990  |  addiu CARG2, BASE, -8
991  |   sw PC, SAVE_PC
992  |  addu CARG3, BASE, RC
993  |   move MULTRES, NARGS8:RC
994  |  call_intern lj_meta_call	// (lua_State *L, TValue *func, TValue *top)
995  |.  move CARG1, L
996  |  lw LFUNC:RB, FRAME_FUNC(BASE)	// Guaranteed to be a function here.
997  |   addiu NARGS8:RC, MULTRES, 8	// Got one more argument now.
998  |  ins_call
999  |
1000  |->vmeta_callt:			// Resolve __call for BC_CALLT.
1001  |  // BASE = old base, RA = new base, RC = nargs*8
1002  |  load_got lj_meta_call
1003  |   sw BASE, L->base
1004  |  addiu CARG2, RA, -8
1005  |   sw PC, SAVE_PC
1006  |  addu CARG3, RA, RC
1007  |   move MULTRES, NARGS8:RC
1008  |  call_intern lj_meta_call	// (lua_State *L, TValue *func, TValue *top)
1009  |.  move CARG1, L
1010  |  lw TMP1, FRAME_PC(BASE)
1011  |   lw LFUNC:RB, FRAME_FUNC(RA)	// Guaranteed to be a function here.
1012  |  b ->BC_CALLT_Z
1013  |.  addiu NARGS8:RC, MULTRES, 8	// Got one more argument now.
1014  |
1015  |//-- Argument coercion for 'for' statement ------------------------------
1016  |
1017  |->vmeta_for:
1018  |  load_got lj_meta_for
1019  |   sw BASE, L->base
1020  |  move CARG2, RA
1021  |   sw PC, SAVE_PC
1022  |  move MULTRES, INS
1023  |  call_intern lj_meta_for	// (lua_State *L, TValue *base)
1024  |.  move CARG1, L
1025  |.if JIT
1026  |  decode_OP1 TMP0, MULTRES
1027  |  li AT, BC_JFORI
1028  |.endif
1029  |  decode_RA8a RA, MULTRES
1030  |   decode_RD8a RD, MULTRES
1031  |  decode_RA8b RA
1032  |.if JIT
1033  |  beq TMP0, AT, =>BC_JFORI
1034  |.  decode_RD8b RD
1035  |  b =>BC_FORI
1036  |.  nop
1037  |.else
1038  |  b =>BC_FORI
1039  |.  decode_RD8b RD
1040  |.endif
1041  |
1042  |//-----------------------------------------------------------------------
1043  |//-- Fast functions -----------------------------------------------------
1044  |//-----------------------------------------------------------------------
1045  |
1046  |.macro .ffunc, name
1047  |->ff_ .. name:
1048  |.endmacro
1049  |
1050  |.macro .ffunc_1, name
1051  |->ff_ .. name:
1052  |  lw SFARG1HI, HI(BASE)
1053  |  beqz NARGS8:RC, ->fff_fallback
1054  |.  lw SFARG1LO, LO(BASE)
1055  |.endmacro
1056  |
1057  |.macro .ffunc_2, name
1058  |->ff_ .. name:
1059  |  sltiu AT, NARGS8:RC, 16
1060  |   lw SFARG1HI, HI(BASE)
1061  |  bnez AT, ->fff_fallback
1062  |.   lw SFARG2HI, 8+HI(BASE)
1063  |   lw SFARG1LO, LO(BASE)
1064  |    lw SFARG2LO, 8+LO(BASE)
1065  |.endmacro
1066  |
1067  |.macro .ffunc_n, name	// Caveat: has delay slot!
1068  |->ff_ .. name:
1069  |  lw SFARG1HI, HI(BASE)
1070  |.if FPU
1071  |   ldc1 FARG1, 0(BASE)
1072  |.else
1073  |   lw SFARG1LO, LO(BASE)
1074  |.endif
1075  |  beqz NARGS8:RC, ->fff_fallback
1076  |.  sltiu AT, SFARG1HI, LJ_TISNUM
1077  |  beqz AT, ->fff_fallback
1078  |.endmacro
1079  |
1080  |.macro .ffunc_nn, name	// Caveat: has delay slot!
1081  |->ff_ .. name:
1082  |  sltiu AT, NARGS8:RC, 16
1083  |   lw SFARG1HI, HI(BASE)
1084  |  bnez AT, ->fff_fallback
1085  |.  lw SFARG2HI, 8+HI(BASE)
1086  |  sltiu TMP0, SFARG1HI, LJ_TISNUM
1087  |.if FPU
1088  |   ldc1 FARG1, 0(BASE)
1089  |.else
1090  |   lw SFARG1LO, LO(BASE)
1091  |.endif
1092  |  sltiu TMP1, SFARG2HI, LJ_TISNUM
1093  |.if FPU
1094  |   ldc1 FARG2, 8(BASE)
1095  |.else
1096  |   lw SFARG2LO, 8+LO(BASE)
1097  |.endif
1098  |  and TMP0, TMP0, TMP1
1099  |  beqz TMP0, ->fff_fallback
1100  |.endmacro
1101  |
1102  |// Inlined GC threshold check. Caveat: uses TMP0 and TMP1 and has delay slot!
1103  |.macro ffgccheck
1104  |  lw TMP0, DISPATCH_GL(gc.total)(DISPATCH)
1105  |  lw TMP1, DISPATCH_GL(gc.threshold)(DISPATCH)
1106  |  subu AT, TMP0, TMP1
1107  |  bgezal AT, ->fff_gcstep
1108  |.endmacro
1109  |
1110  |//-- Base library: checks -----------------------------------------------
1111  |
1112  |.ffunc_1 assert
1113  |  sltiu AT, SFARG1HI, LJ_TISTRUECOND
1114  |  beqz AT, ->fff_fallback
1115  |.  addiu RA, BASE, -8
1116  |  lw PC, FRAME_PC(BASE)
1117  |  addiu RD, NARGS8:RC, 8		// Compute (nresults+1)*8.
1118  |  addu TMP2, RA, NARGS8:RC
1119  |   sw SFARG1HI, HI(RA)
1120  |  addiu TMP1, BASE, 8
1121  |  beq BASE, TMP2, ->fff_res		// Done if exactly 1 argument.
1122  |.  sw SFARG1LO, LO(RA)
1123  |1:
1124  |  lw SFRETHI, HI(TMP1)
1125  |   lw SFRETLO, LO(TMP1)
1126  |  sw SFRETHI, -8+HI(TMP1)
1127  |   sw SFRETLO, -8+LO(TMP1)
1128  |  bne TMP1, TMP2, <1
1129  |.  addiu TMP1, TMP1, 8
1130  |  b ->fff_res
1131  |.  nop
1132  |
1133  |.ffunc type
1134  |  lw SFARG1HI, HI(BASE)
1135  |  beqz NARGS8:RC, ->fff_fallback
1136  |.  sltiu TMP0, SFARG1HI, LJ_TISNUM
1137  |  movn SFARG1HI, TISNUM, TMP0
1138  |  not TMP1, SFARG1HI
1139  |  sll TMP1, TMP1, 3
1140  |  addu TMP1, CFUNC:RB, TMP1
1141  |  lw SFARG1HI, CFUNC:TMP1->upvalue[0].u32.hi
1142  |  b ->fff_restv
1143  |.  lw SFARG1LO, CFUNC:TMP1->upvalue[0].u32.lo
1144  |
1145  |//-- Base library: getters and setters ---------------------------------
1146  |
1147  |.ffunc_1 getmetatable
1148  |  li AT, LJ_TTAB
1149  |  bne SFARG1HI, AT, >6
1150  |.  li AT, LJ_TUDATA
1151  |1:  // Field metatable must be at same offset for GCtab and GCudata!
1152  |  lw TAB:SFARG1LO, TAB:SFARG1LO->metatable
1153  |2:
1154  |  lw STR:RC, DISPATCH_GL(gcroot[GCROOT_MMNAME+MM_metatable])(DISPATCH)
1155  |  beqz TAB:SFARG1LO, ->fff_restv
1156  |.  li SFARG1HI, LJ_TNIL
1157  |  lw TMP0, TAB:SFARG1LO->hmask
1158  |   li SFARG1HI, LJ_TTAB		// Use metatable as default result.
1159  |  lw TMP1, STR:RC->sid
1160  |  lw NODE:TMP2, TAB:SFARG1LO->node
1161  |  and TMP1, TMP1, TMP0		// idx = str->sid & tab->hmask
1162  |  sll TMP0, TMP1, 5
1163  |  sll TMP1, TMP1, 3
1164  |  subu TMP1, TMP0, TMP1
1165  |  addu NODE:TMP2, NODE:TMP2, TMP1	// node = tab->node + (idx*32-idx*8)
1166  |  li AT, LJ_TSTR
1167  |3:  // Rearranged logic, because we expect _not_ to find the key.
1168  |  lw CARG4, offsetof(Node, key)+HI(NODE:TMP2)
1169  |   lw TMP0, offsetof(Node, key)+LO(NODE:TMP2)
1170  |    lw NODE:TMP3, NODE:TMP2->next
1171  |  bne CARG4, AT, >4
1172  |.    lw CARG3, offsetof(Node, val)+HI(NODE:TMP2)
1173  |  beq TMP0, STR:RC, >5
1174  |.    lw TMP1, offsetof(Node, val)+LO(NODE:TMP2)
1175  |4:
1176  |  beqz NODE:TMP3, ->fff_restv	// Not found, keep default result.
1177  |.  move NODE:TMP2, NODE:TMP3
1178  |  b <3
1179  |.  nop
1180  |5:
1181  |  beq CARG3, TISNIL, ->fff_restv	// Ditto for nil value.
1182  |.  nop
1183  |  move SFARG1HI, CARG3		// Return value of mt.__metatable.
1184  |  b ->fff_restv
1185  |.  move SFARG1LO, TMP1
1186  |
1187  |6:
1188  |  beq SFARG1HI, AT, <1
1189  |.  sltu AT, TISNUM, SFARG1HI
1190  |  movz SFARG1HI, TISNUM, AT
1191  |  not TMP1, SFARG1HI
1192  |  sll TMP1, TMP1, 2
1193  |  addu TMP1, DISPATCH, TMP1
1194  |  b <2
1195  |.  lw TAB:SFARG1LO, DISPATCH_GL(gcroot[GCROOT_BASEMT])(TMP1)
1196  |
1197  |.ffunc_2 setmetatable
1198  |  // Fast path: no mt for table yet and not clearing the mt.
1199  |  li AT, LJ_TTAB
1200  |  bne SFARG1HI, AT, ->fff_fallback
1201  |.  addiu SFARG2HI, SFARG2HI, -LJ_TTAB
1202  |  lw TAB:TMP1, TAB:SFARG1LO->metatable
1203  |   lbu TMP3, TAB:SFARG1LO->marked
1204  |  or AT, SFARG2HI, TAB:TMP1
1205  |  bnez AT, ->fff_fallback
1206  |.  andi AT, TMP3, LJ_GC_BLACK	// isblack(table)
1207  |  beqz AT, ->fff_restv
1208  |.  sw TAB:SFARG2LO, TAB:SFARG1LO->metatable
1209  |  barrierback TAB:SFARG1LO, TMP3, TMP0, ->fff_restv
1210  |
1211  |.ffunc rawget
1212  |  lw CARG4, HI(BASE)
1213  |   sltiu AT, NARGS8:RC, 16
1214  |    lw TAB:CARG2, LO(BASE)
1215  |  load_got lj_tab_get
1216  |  addiu CARG4, CARG4, -LJ_TTAB
1217  |  or AT, AT, CARG4
1218  |  bnez AT, ->fff_fallback
1219  |   addiu CARG3, BASE, 8
1220  |  call_intern lj_tab_get	// (lua_State *L, GCtab *t, cTValue *key)
1221  |.  move CARG1, L
1222  |  // Returns cTValue *.
1223  |  lw SFARG1HI, HI(CRET1)
1224  |  b ->fff_restv
1225  |.  lw SFARG1LO, LO(CRET1)
1226  |
1227  |//-- Base library: conversions ------------------------------------------
1228  |
1229  |.ffunc tonumber
1230  |  // Only handles the number case inline (without a base argument).
1231  |  lw CARG1, HI(BASE)
1232  |  xori AT, NARGS8:RC, 8		// Exactly one number argument.
1233  |  sltu TMP0, TISNUM, CARG1
1234  |  or AT, AT, TMP0
1235  |  bnez AT, ->fff_fallback
1236  |.  lw SFARG1HI, HI(BASE)
1237  |  b ->fff_restv
1238  |.  lw SFARG1LO, LO(BASE)
1239  |
1240  |.ffunc_1 tostring
1241  |  // Only handles the string or number case inline.
1242  |  li AT, LJ_TSTR
1243  |  // A __tostring method in the string base metatable is ignored.
1244  |  beq SFARG1HI, AT, ->fff_restv	// String key?
1245  |  // Handle numbers inline, unless a number base metatable is present.
1246  |.  lw TMP1, DISPATCH_GL(gcroot[GCROOT_BASEMT_NUM])(DISPATCH)
1247  |  sltu TMP0, TISNUM, SFARG1HI
1248  |  or TMP0, TMP0, TMP1
1249  |  bnez TMP0, ->fff_fallback
1250  |.  sw BASE, L->base			// Add frame since C call can throw.
1251  |  ffgccheck
1252  |.  sw PC, SAVE_PC			// Redundant (but a defined value).
1253  |  load_got lj_strfmt_number
1254  |  move CARG1, L
1255  |  call_intern lj_strfmt_number	// (lua_State *L, cTValue *o)
1256  |.  move CARG2, BASE
1257  |  // Returns GCstr *.
1258  |  li SFARG1HI, LJ_TSTR
1259  |  b ->fff_restv
1260  |.  move SFARG1LO, CRET1
1261  |
1262  |//-- Base library: iterators -------------------------------------------
1263  |
1264  |.ffunc next
1265  |  lw CARG2, HI(BASE)
1266  |   lw TAB:CARG1, LO(BASE)
1267  |  beqz NARGS8:RC, ->fff_fallback
1268  |.  addu TMP2, BASE, NARGS8:RC
1269  |  li AT, LJ_TTAB
1270  |   sw TISNIL, HI(TMP2)		// Set missing 2nd arg to nil.
1271  |  bne CARG2, AT, ->fff_fallback
1272  |.  lw PC, FRAME_PC(BASE)
1273  |  load_got lj_tab_next
1274  |  addiu CARG2, BASE, 8
1275  |  call_intern lj_tab_next		// (GCtab *t, cTValue *key, TValue *o)
1276  |.  addiu CARG3, BASE, -8
1277  |  // Returns 1=found, 0=end, -1=error.
1278  |   addiu RA, BASE, -8
1279  |  bgtz CRET1, ->fff_res		// Found key/value.
1280  |.  li RD, (2+1)*8
1281  |  beqz CRET1, ->fff_restv		// End of traversal: return nil.
1282  |.  li SFARG1HI, LJ_TNIL
1283  |   lw CFUNC:RB, FRAME_FUNC(BASE)
1284  |  b ->fff_fallback			// Invalid key.
1285  |.  li RC, 2*8
1286  |
1287  |.ffunc_1 pairs
1288  |  li AT, LJ_TTAB
1289  |  bne SFARG1HI, AT, ->fff_fallback
1290  |.  lw PC, FRAME_PC(BASE)
1291#if LJ_52
1292  |  lw TAB:TMP2, TAB:SFARG1LO->metatable
1293  |  lw TMP0, CFUNC:RB->upvalue[0].u32.hi
1294  |   lw TMP1, CFUNC:RB->upvalue[0].u32.lo
1295  |  bnez TAB:TMP2, ->fff_fallback
1296#else
1297  |  lw TMP0, CFUNC:RB->upvalue[0].u32.hi
1298  |   lw TMP1, CFUNC:RB->upvalue[0].u32.lo
1299#endif
1300  |.  addiu RA, BASE, -8
1301  |   sw TISNIL, 8+HI(BASE)
1302  |  sw TMP0, HI(RA)
1303  |   sw TMP1, LO(RA)
1304  |  b ->fff_res
1305  |.  li RD, (3+1)*8
1306  |
1307  |.ffunc ipairs_aux
1308  |  sltiu AT, NARGS8:RC, 16
1309  |   lw CARG3, HI(BASE)
1310  |    lw TAB:CARG1, LO(BASE)
1311  |   lw CARG4, 8+HI(BASE)
1312  |  bnez AT, ->fff_fallback
1313  |.  addiu CARG3, CARG3, -LJ_TTAB
1314  |  xor CARG4, CARG4, TISNUM
1315  |  and AT, CARG3, CARG4
1316  |  bnez AT, ->fff_fallback
1317  |.  lw PC, FRAME_PC(BASE)
1318  |  lw TMP2, 8+LO(BASE)
1319  |   lw TMP0, TAB:CARG1->asize
1320  |   lw TMP1, TAB:CARG1->array
1321  |  addiu TMP2, TMP2, 1
1322  |  sw TISNUM, -8+HI(BASE)
1323  |  sltu AT, TMP2, TMP0
1324  |   sw TMP2, -8+LO(BASE)
1325  |  beqz AT, >2			// Not in array part?
1326  |.  addiu RA, BASE, -8
1327  |   sll TMP3, TMP2, 3
1328  |   addu TMP3, TMP1, TMP3
1329  |  lw TMP1, HI(TMP3)
1330  |   lw TMP2, LO(TMP3)
1331  |1:
1332  |  beq TMP1, TISNIL, ->fff_res	// End of iteration, return 0 results.
1333  |.  li RD, (0+1)*8
1334  |  sw TMP1, 8+HI(RA)
1335  |   sw TMP2, 8+LO(RA)
1336  |  b ->fff_res
1337  |.  li RD, (2+1)*8
1338  |
1339  |2:  // Check for empty hash part first. Otherwise call C function.
1340  |  lw TMP0, TAB:CARG1->hmask
1341  |  load_got lj_tab_getinth
1342  |  beqz TMP0, ->fff_res
1343  |.  li RD, (0+1)*8
1344  |  call_intern lj_tab_getinth		// (GCtab *t, int32_t key)
1345  |.  move CARG2, TMP2
1346  |  // Returns cTValue * or NULL.
1347  |  beqz CRET1, ->fff_res
1348  |.  li RD, (0+1)*8
1349  |  lw TMP1, HI(CRET1)
1350  |  b <1
1351  |.  lw TMP2, LO(CRET1)
1352  |
1353  |.ffunc_1 ipairs
1354  |  li AT, LJ_TTAB
1355  |  bne SFARG1HI, AT, ->fff_fallback
1356  |.  lw PC, FRAME_PC(BASE)
1357#if LJ_52
1358  |  lw TAB:TMP2, TAB:SFARG1LO->metatable
1359  |  lw TMP0, CFUNC:RB->upvalue[0].u32.hi
1360  |   lw TMP1, CFUNC:RB->upvalue[0].u32.lo
1361  |  bnez TAB:TMP2, ->fff_fallback
1362#else
1363  |  lw TMP0, CFUNC:RB->upvalue[0].u32.hi
1364  |   lw TMP1, CFUNC:RB->upvalue[0].u32.lo
1365#endif
1366  |.  addiu RA, BASE, -8
1367  |   sw TISNUM, 8+HI(BASE)
1368  |   sw r0, 8+LO(BASE)
1369  |  sw TMP0, HI(RA)
1370  |   sw TMP1, LO(RA)
1371  |  b ->fff_res
1372  |.  li RD, (3+1)*8
1373  |
1374  |//-- Base library: catch errors ----------------------------------------
1375  |
1376  |.ffunc pcall
1377  |  lbu TMP3, DISPATCH_GL(hookmask)(DISPATCH)
1378  |  beqz NARGS8:RC, ->fff_fallback
1379  |   move TMP2, BASE
1380  |   addiu BASE, BASE, 8
1381  |  // Remember active hook before pcall.
1382  |  srl TMP3, TMP3, HOOK_ACTIVE_SHIFT
1383  |  andi TMP3, TMP3, 1
1384  |  addiu PC, TMP3, 8+FRAME_PCALL
1385  |  b ->vm_call_dispatch
1386  |.  addiu NARGS8:RC, NARGS8:RC, -8
1387  |
1388  |.ffunc xpcall
1389  |    sltiu AT, NARGS8:RC, 16
1390  |  lw CARG4, 8+HI(BASE)
1391  |    bnez AT, ->fff_fallback
1392  |.  lw CARG3, 8+LO(BASE)
1393  |   lw CARG1, LO(BASE)
1394  |    lw CARG2, HI(BASE)
1395  |    lbu TMP1, DISPATCH_GL(hookmask)(DISPATCH)
1396  |  li AT, LJ_TFUNC
1397  |   move TMP2, BASE
1398  |  bne CARG4, AT, ->fff_fallback  // Traceback must be a function.
1399  |   addiu BASE, BASE, 16
1400  |  // Remember active hook before pcall.
1401  |  srl TMP3, TMP3, HOOK_ACTIVE_SHIFT
1402  |   sw CARG3, LO(TMP2)	// Swap function and traceback.
1403  |   sw CARG4, HI(TMP2)
1404  |  andi TMP3, TMP3, 1
1405  |   sw CARG1, 8+LO(TMP2)
1406  |    sw CARG2, 8+HI(TMP2)
1407  |  addiu PC, TMP3, 16+FRAME_PCALL
1408  |  b ->vm_call_dispatch
1409  |.  addiu NARGS8:RC, NARGS8:RC, -16
1410  |
1411  |//-- Coroutine library --------------------------------------------------
1412  |
1413  |.macro coroutine_resume_wrap, resume
1414  |.if resume
1415  |.ffunc coroutine_resume
1416  |  lw CARG3, HI(BASE)
1417  |  beqz NARGS8:RC, ->fff_fallback
1418  |.  lw CARG1, LO(BASE)
1419  |  li AT, LJ_TTHREAD
1420  |  bne CARG3, AT, ->fff_fallback
1421  |.else
1422  |.ffunc coroutine_wrap_aux
1423  |  lw L:CARG1, CFUNC:RB->upvalue[0].gcr
1424  |.endif
1425  |  lbu TMP0, L:CARG1->status
1426  |   lw TMP1, L:CARG1->cframe
1427  |    lw CARG2, L:CARG1->top
1428  |    lw TMP2, L:CARG1->base
1429  |  addiu TMP3, TMP0, -LUA_YIELD
1430  |  bgtz TMP3, ->fff_fallback		// st > LUA_YIELD?
1431  |.   xor TMP2, TMP2, CARG2
1432  |  bnez TMP1, ->fff_fallback		// cframe != 0?
1433  |.  or AT, TMP2, TMP0
1434  |  lw TMP0, L:CARG1->maxstack
1435  |  beqz AT, ->fff_fallback		// base == top && st == 0?
1436  |.  lw PC, FRAME_PC(BASE)
1437  |  addu TMP2, CARG2, NARGS8:RC
1438  |  sltu AT, TMP0, TMP2
1439  |  bnez AT, ->fff_fallback		// Stack overflow?
1440  |.  sw PC, SAVE_PC
1441  |   sw BASE, L->base
1442  |1:
1443  |.if resume
1444  |  addiu BASE, BASE, 8		// Keep resumed thread in stack for GC.
1445  |  addiu NARGS8:RC, NARGS8:RC, -8
1446  |  addiu TMP2, TMP2, -8
1447  |.endif
1448  |  sw TMP2, L:CARG1->top
1449  |  addu TMP1, BASE, NARGS8:RC
1450  |  move CARG3, CARG2
1451  |  sw BASE, L->top
1452  |2:  // Move args to coroutine.
1453  |   lw SFRETHI, HI(BASE)
1454  |    lw SFRETLO, LO(BASE)
1455  |  sltu AT, BASE, TMP1
1456  |  beqz AT, >3
1457  |.  addiu BASE, BASE, 8
1458  |   sw SFRETHI, HI(CARG3)
1459  |    sw SFRETLO, LO(CARG3)
1460  |  b <2
1461  |.  addiu CARG3, CARG3, 8
1462  |3:
1463  |  bal ->vm_resume			// (lua_State *L, TValue *base, 0, 0)
1464  |.  move L:RA, L:CARG1
1465  |  // Returns thread status.
1466  |4:
1467  |  lw TMP2, L:RA->base
1468  |   sltiu AT, CRET1, LUA_YIELD+1
1469  |  lw TMP3, L:RA->top
1470  |    li_vmstate INTERP
1471  |  lw BASE, L->base
1472  |    sw L, DISPATCH_GL(cur_L)(DISPATCH)
1473  |    st_vmstate
1474  |   beqz AT, >8
1475  |. subu RD, TMP3, TMP2
1476  |   lw TMP0, L->maxstack
1477  |  beqz RD, >6			// No results?
1478  |.  addu TMP1, BASE, RD
1479  |  sltu AT, TMP0, TMP1
1480  |  bnez AT, >9			// Need to grow stack?
1481  |.  addu TMP3, TMP2, RD
1482  |  sw TMP2, L:RA->top			// Clear coroutine stack.
1483  |  move TMP1, BASE
1484  |5:  // Move results from coroutine.
1485  |   lw SFRETHI, HI(TMP2)
1486  |    lw SFRETLO, LO(TMP2)
1487  |  addiu TMP2, TMP2, 8
1488  |  sltu AT, TMP2, TMP3
1489  |   sw SFRETHI, HI(TMP1)
1490  |    sw SFRETLO, LO(TMP1)
1491  |  bnez AT, <5
1492  |.  addiu TMP1, TMP1, 8
1493  |6:
1494  |  andi TMP0, PC, FRAME_TYPE
1495  |.if resume
1496  |  li TMP1, LJ_TTRUE
1497  |   addiu RA, BASE, -8
1498  |  sw TMP1, -8+HI(BASE)		// Prepend true to results.
1499  |  addiu RD, RD, 16
1500  |.else
1501  |  move RA, BASE
1502  |  addiu RD, RD, 8
1503  |.endif
1504  |7:
1505  |  sw PC, SAVE_PC
1506  |  beqz TMP0, ->BC_RET_Z
1507  |.  move MULTRES, RD
1508  |  b ->vm_return
1509  |.  nop
1510  |
1511  |8:  // Coroutine returned with error (at co->top-1).
1512  |.if resume
1513  |  addiu TMP3, TMP3, -8
1514  |   li TMP1, LJ_TFALSE
1515  |  lw SFRETHI, HI(TMP3)
1516  |   lw SFRETLO, LO(TMP3)
1517  |   sw TMP3, L:RA->top		// Remove error from coroutine stack.
1518  |    li RD, (2+1)*8
1519  |   sw TMP1, -8+HI(BASE)		// Prepend false to results.
1520  |    addiu RA, BASE, -8
1521  |  sw SFRETHI, HI(BASE)		// Copy error message.
1522  |   sw SFRETLO, LO(BASE)
1523  |  b <7
1524  |.  andi TMP0, PC, FRAME_TYPE
1525  |.else
1526  |  load_got lj_ffh_coroutine_wrap_err
1527  |  move CARG2, L:RA
1528  |  call_intern lj_ffh_coroutine_wrap_err  // (lua_State *L, lua_State *co)
1529  |.  move CARG1, L
1530  |.endif
1531  |
1532  |9:  // Handle stack expansion on return from yield.
1533  |  load_got lj_state_growstack
1534  |  srl CARG2, RD, 3
1535  |  call_intern lj_state_growstack	// (lua_State *L, int n)
1536  |.  move CARG1, L
1537  |  b <4
1538  |.  li CRET1, 0
1539  |.endmacro
1540  |
1541  |  coroutine_resume_wrap 1		// coroutine.resume
1542  |  coroutine_resume_wrap 0		// coroutine.wrap
1543  |
1544  |.ffunc coroutine_yield
1545  |  lw TMP0, L->cframe
1546  |   addu TMP1, BASE, NARGS8:RC
1547  |   sw BASE, L->base
1548  |  andi TMP0, TMP0, CFRAME_RESUME
1549  |   sw TMP1, L->top
1550  |  beqz TMP0, ->fff_fallback
1551  |.   li CRET1, LUA_YIELD
1552  |  sw r0, L->cframe
1553  |  b ->vm_leave_unw
1554  |.   sb CRET1, L->status
1555  |
1556  |//-- Math library -------------------------------------------------------
1557  |
1558  |.ffunc_1 math_abs
1559  |  bne SFARG1HI, TISNUM, >1
1560  |.  sra TMP0, SFARG1LO, 31
1561  |  xor TMP1, SFARG1LO, TMP0
1562  |  subu SFARG1LO, TMP1, TMP0
1563  |  bgez SFARG1LO, ->fff_restv
1564  |.  nop
1565  |  lui SFARG1HI, 0x41e0		// 2^31 as a double.
1566  |  b ->fff_restv
1567  |.  li SFARG1LO, 0
1568  |1:
1569  |  sltiu AT, SFARG1HI, LJ_TISNUM
1570  |  beqz AT, ->fff_fallback
1571  |.  sll SFARG1HI, SFARG1HI, 1
1572  |  srl SFARG1HI, SFARG1HI, 1
1573  |// fallthrough
1574  |
1575  |->fff_restv:
1576  |  // SFARG1LO/SFARG1HI = TValue result.
1577  |  lw PC, FRAME_PC(BASE)
1578  |   sw SFARG1HI, -8+HI(BASE)
1579  |  addiu RA, BASE, -8
1580  |   sw SFARG1LO, -8+LO(BASE)
1581  |->fff_res1:
1582  |  // RA = results, PC = return.
1583  |  li RD, (1+1)*8
1584  |->fff_res:
1585  |  // RA = results, RD = (nresults+1)*8, PC = return.
1586  |  andi TMP0, PC, FRAME_TYPE
1587  |  bnez TMP0, ->vm_return
1588  |.  move MULTRES, RD
1589  |  lw INS, -4(PC)
1590  |  decode_RB8a RB, INS
1591  |  decode_RB8b RB
1592  |5:
1593  |  sltu AT, RD, RB
1594  |  bnez AT, >6			// More results expected?
1595  |.  decode_RA8a TMP0, INS
1596  |  decode_RA8b TMP0
1597  |  ins_next1
1598  |  // Adjust BASE. KBASE is assumed to be set for the calling frame.
1599  |   subu BASE, RA, TMP0
1600  |  ins_next2
1601  |
1602  |6:  // Fill up results with nil.
1603  |  addu TMP1, RA, RD
1604  |   addiu RD, RD, 8
1605  |  b <5
1606  |.  sw TISNIL, -8+HI(TMP1)
1607  |
1608  |.macro math_extern, func
1609  |  .ffunc math_ .. func
1610  |  lw SFARG1HI, HI(BASE)
1611  |  beqz NARGS8:RC, ->fff_fallback
1612  |.  load_got func
1613  |  sltiu AT, SFARG1HI, LJ_TISNUM
1614  |  beqz AT, ->fff_fallback
1615  |.if FPU
1616  |.  ldc1 FARG1, 0(BASE)
1617  |.else
1618  |.  lw SFARG1LO, LO(BASE)
1619  |.endif
1620  |  call_extern
1621  |.  nop
1622  |  b ->fff_resn
1623  |.  nop
1624  |.endmacro
1625  |
1626  |.macro math_extern2, func
1627  |  .ffunc_nn math_ .. func
1628  |.  load_got func
1629  |  call_extern
1630  |.  nop
1631  |  b ->fff_resn
1632  |.  nop
1633  |.endmacro
1634  |
1635  |// TODO: Return integer type if result is integer (own sf implementation).
1636  |.macro math_round, func
1637  |->ff_math_ .. func:
1638  |  lw SFARG1HI, HI(BASE)
1639  |  beqz NARGS8:RC, ->fff_fallback
1640  |.  lw SFARG1LO, LO(BASE)
1641  |  beq SFARG1HI, TISNUM, ->fff_restv
1642  |.  sltu AT, SFARG1HI, TISNUM
1643  |  beqz AT, ->fff_fallback
1644  |.if FPU
1645  |.  ldc1 FARG1, 0(BASE)
1646  |  bal ->vm_ .. func
1647  |.else
1648  |.  load_got func
1649  |  call_extern
1650  |.endif
1651  |.  nop
1652  |  b ->fff_resn
1653  |.  nop
1654  |.endmacro
1655  |
1656  |  math_round floor
1657  |  math_round ceil
1658  |
1659  |.ffunc math_log
1660  |  li AT, 8
1661  |  bne NARGS8:RC, AT, ->fff_fallback	// Exactly 1 argument.
1662  |.  lw SFARG1HI, HI(BASE)
1663  |  sltiu AT, SFARG1HI, LJ_TISNUM
1664  |  beqz AT, ->fff_fallback
1665  |.  load_got log
1666  |.if FPU
1667  |  call_extern
1668  |.  ldc1 FARG1, 0(BASE)
1669  |.else
1670  |  call_extern
1671  |.  lw SFARG1LO, LO(BASE)
1672  |.endif
1673  |  b ->fff_resn
1674  |.  nop
1675  |
1676  |  math_extern log10
1677  |  math_extern exp
1678  |  math_extern sin
1679  |  math_extern cos
1680  |  math_extern tan
1681  |  math_extern asin
1682  |  math_extern acos
1683  |  math_extern atan
1684  |  math_extern sinh
1685  |  math_extern cosh
1686  |  math_extern tanh
1687  |  math_extern2 pow
1688  |  math_extern2 atan2
1689  |  math_extern2 fmod
1690  |
1691  |.if FPU
1692  |.ffunc_n math_sqrt
1693  |.  sqrt.d FRET1, FARG1
1694  |// fallthrough to ->fff_resn
1695  |.else
1696  |  math_extern sqrt
1697  |.endif
1698  |
1699  |->fff_resn:
1700  |  lw PC, FRAME_PC(BASE)
1701  |  addiu RA, BASE, -8
1702  |.if FPU
1703  |  b ->fff_res1
1704  |.  sdc1 FRET1, -8(BASE)
1705  |.else
1706  |  sw SFRETHI, -8+HI(BASE)
1707  |  b ->fff_res1
1708  |.  sw SFRETLO, -8+LO(BASE)
1709  |.endif
1710  |
1711  |
1712  |.ffunc math_ldexp
1713  |  sltiu AT, NARGS8:RC, 16
1714  |   lw SFARG1HI, HI(BASE)
1715  |  bnez AT, ->fff_fallback
1716  |.   lw CARG4, 8+HI(BASE)
1717  |  bne CARG4, TISNUM, ->fff_fallback
1718  |  load_got ldexp
1719  |.  sltu AT, SFARG1HI, TISNUM
1720  |  beqz AT, ->fff_fallback
1721  |.if FPU
1722  |.  ldc1 FARG1, 0(BASE)
1723  |.else
1724  |.  lw SFARG1LO, LO(BASE)
1725  |.endif
1726  |  call_extern
1727  |.  lw CARG3, 8+LO(BASE)
1728  |  b ->fff_resn
1729  |.  nop
1730  |
1731  |.ffunc_n math_frexp
1732  |  load_got frexp
1733  |   lw PC, FRAME_PC(BASE)
1734  |  call_extern
1735  |.  addiu CARG3, DISPATCH, DISPATCH_GL(tmptv)
1736  |   lw TMP1, DISPATCH_GL(tmptv)(DISPATCH)
1737  |  addiu RA, BASE, -8
1738  |.if FPU
1739  |   mtc1 TMP1, FARG2
1740  |  sdc1 FRET1, 0(RA)
1741  |   cvt.d.w FARG2, FARG2
1742  |   sdc1 FARG2, 8(RA)
1743  |.else
1744  |  sw SFRETLO, LO(RA)
1745  |  sw SFRETHI, HI(RA)
1746  |  sw TMP1, 8+LO(RA)
1747  |  sw TISNUM, 8+HI(RA)
1748  |.endif
1749  |  b ->fff_res
1750  |.  li RD, (2+1)*8
1751  |
1752  |.ffunc_n math_modf
1753  |  load_got modf
1754  |   lw PC, FRAME_PC(BASE)
1755  |  call_extern
1756  |.  addiu CARG3, BASE, -8
1757  |  addiu RA, BASE, -8
1758  |.if FPU
1759  |  sdc1 FRET1, 0(BASE)
1760  |.else
1761  |  sw SFRETLO, LO(BASE)
1762  |  sw SFRETHI, HI(BASE)
1763  |.endif
1764  |  b ->fff_res
1765  |.  li RD, (2+1)*8
1766  |
1767  |.macro math_minmax, name, intins, ismax
1768  |  .ffunc_1 name
1769  |  addu TMP3, BASE, NARGS8:RC
1770  |  bne SFARG1HI, TISNUM, >5
1771  |.  addiu TMP2, BASE, 8
1772  |1:  // Handle integers.
1773  |.  lw SFARG2HI, HI(TMP2)
1774  |  beq TMP2, TMP3, ->fff_restv
1775  |.  lw SFARG2LO, LO(TMP2)
1776  |  bne SFARG2HI, TISNUM, >3
1777  |.  slt AT, SFARG1LO, SFARG2LO
1778  |  intins SFARG1LO, SFARG2LO, AT
1779  |  b <1
1780  |.  addiu TMP2, TMP2, 8
1781  |
1782  |3:  // Convert intermediate result to number and continue with number loop.
1783  |  sltiu AT, SFARG2HI, LJ_TISNUM
1784  |  beqz AT, ->fff_fallback
1785  |.if FPU
1786  |.  mtc1 SFARG1LO, FRET1
1787  |  cvt.d.w FRET1, FRET1
1788  |  b >7
1789  |.  ldc1 FARG1, 0(TMP2)
1790  |.else
1791  |.  nop
1792  |  bal ->vm_sfi2d_1
1793  |.  nop
1794  |  b >7
1795  |.  nop
1796  |.endif
1797  |
1798  |5:
1799  |.  sltiu AT, SFARG1HI, LJ_TISNUM
1800  |  beqz AT, ->fff_fallback
1801  |.if FPU
1802  |.  ldc1 FRET1, 0(BASE)
1803  |.endif
1804  |
1805  |6:  // Handle numbers.
1806  |.  lw SFARG2HI, HI(TMP2)
1807  |.if FPU
1808  |  beq TMP2, TMP3, ->fff_resn
1809  |.else
1810  |  beq TMP2, TMP3, ->fff_restv
1811  |.endif
1812  |.  sltiu AT, SFARG2HI, LJ_TISNUM
1813  |  beqz AT, >8
1814  |.if FPU
1815  |.  ldc1 FARG1, 0(TMP2)
1816  |.else
1817  |.  lw SFARG2LO, LO(TMP2)
1818  |.endif
1819  |7:
1820  |.if FPU
1821  |.if ismax
1822  |  c.olt.d FARG1, FRET1
1823  |.else
1824  |  c.olt.d FRET1, FARG1
1825  |.endif
1826  |  movf.d FRET1, FARG1
1827  |.else
1828  |.if ismax
1829  |  bal ->vm_sfcmpogt
1830  |.else
1831  |  bal ->vm_sfcmpolt
1832  |.endif
1833  |.  nop
1834  |  movz SFARG1LO, SFARG2LO, CRET1
1835  |  movz SFARG1HI, SFARG2HI, CRET1
1836  |.endif
1837  |  b <6
1838  |.  addiu TMP2, TMP2, 8
1839  |
1840  |8:  // Convert integer to number and continue with number loop.
1841  |  bne SFARG2HI, TISNUM, ->fff_fallback
1842  |.if FPU
1843  |.  lwc1 FARG1, LO(TMP2)
1844  |  b <7
1845  |.  cvt.d.w FARG1, FARG1
1846  |.else
1847  |.  nop
1848  |  bal ->vm_sfi2d_2
1849  |.  nop
1850  |  b <7
1851  |.  nop
1852  |.endif
1853  |
1854  |.endmacro
1855  |
1856  |  math_minmax math_min, movz, 0
1857  |  math_minmax math_max, movn, 1
1858  |
1859  |//-- String library -----------------------------------------------------
1860  |
1861  |.ffunc string_byte			// Only handle the 1-arg case here.
1862  |  lw CARG3, HI(BASE)
1863  |   lw STR:CARG1, LO(BASE)
1864  |  xori AT, NARGS8:RC, 8
1865  |  addiu CARG3, CARG3, -LJ_TSTR
1866  |  or AT, AT, CARG3
1867  |  bnez AT, ->fff_fallback		// Need exactly 1 string argument.
1868  |.  nop
1869  |  lw TMP0, STR:CARG1->len
1870  |    addiu RA, BASE, -8
1871  |    lw PC, FRAME_PC(BASE)
1872  |  sltu RD, r0, TMP0
1873  |   lbu TMP1, STR:CARG1[1]		// Access is always ok (NUL at end).
1874  |  addiu RD, RD, 1
1875  |  sll RD, RD, 3			// RD = ((str->len != 0)+1)*8
1876  |  sw TISNUM, HI(RA)
1877  |  b ->fff_res
1878  |.  sw TMP1, LO(RA)
1879  |
1880  |.ffunc string_char			// Only handle the 1-arg case here.
1881  |  ffgccheck
1882  |.  nop
1883  |  lw CARG3, HI(BASE)
1884  |   lw CARG1, LO(BASE)
1885  |  li TMP1, 255
1886  |  xori AT, NARGS8:RC, 8		// Exactly 1 argument.
1887  |  xor TMP0, CARG3, TISNUM		// Integer.
1888  |   sltu TMP1, TMP1, CARG1		// !(255 < n).
1889  |  or AT, AT, TMP0
1890  |   or AT, AT, TMP1
1891  |  bnez AT, ->fff_fallback
1892  |.  li CARG3, 1
1893  |  addiu CARG2, sp, ARG5_OFS
1894  |  sb CARG1, ARG5
1895  |->fff_newstr:
1896  |  load_got lj_str_new
1897  |   sw BASE, L->base
1898  |   sw PC, SAVE_PC
1899  |  call_intern lj_str_new		// (lua_State *L, char *str, size_t l)
1900  |.  move CARG1, L
1901  |  // Returns GCstr *.
1902  |  lw BASE, L->base
1903  |->fff_resstr:
1904  |  move SFARG1LO, CRET1
1905  |  b ->fff_restv
1906  |.  li SFARG1HI, LJ_TSTR
1907  |
1908  |.ffunc string_sub
1909  |  ffgccheck
1910  |.  nop
1911  |  addiu AT, NARGS8:RC, -16
1912  |   lw CARG3, 16+HI(BASE)
1913  |   lw TMP0, HI(BASE)
1914  |    lw STR:CARG1, LO(BASE)
1915  |  bltz AT, ->fff_fallback
1916  |.  lw CARG2, 8+HI(BASE)
1917  |  beqz AT, >1
1918  |.  li CARG4, -1
1919  |  bne CARG3, TISNUM, ->fff_fallback
1920  |.  lw CARG4, 16+LO(BASE)
1921  |1:
1922  |  bne CARG2, TISNUM, ->fff_fallback
1923  |.  li AT, LJ_TSTR
1924  |  bne TMP0, AT, ->fff_fallback
1925  |.  lw CARG3, 8+LO(BASE)
1926  |  lw CARG2, STR:CARG1->len
1927  |  // STR:CARG1 = str, CARG2 = str->len, CARG3 = start, CARG4 = end
1928  |  slt AT, CARG4, r0
1929  |  addiu TMP0, CARG2, 1
1930  |  addu TMP1, CARG4, TMP0
1931  |   slt TMP3, CARG3, r0
1932  |  movn CARG4, TMP1, AT		// if (end < 0) end += len+1
1933  |   addu TMP1, CARG3, TMP0
1934  |   movn CARG3, TMP1, TMP3		// if (start < 0) start += len+1
1935  |   li TMP2, 1
1936  |  slt AT, CARG4, r0
1937  |   slt TMP3, r0, CARG3
1938  |  movn CARG4, r0, AT			// if (end < 0) end = 0
1939  |   movz CARG3, TMP2, TMP3		// if (start < 1) start = 1
1940  |  slt AT, CARG2, CARG4
1941  |  movn CARG4, CARG2, AT		// if (end > len) end = len
1942  |   addu CARG2, STR:CARG1, CARG3
1943  |  subu CARG3, CARG4, CARG3		// len = end - start
1944  |   addiu CARG2, CARG2, sizeof(GCstr)-1
1945  |  bgez CARG3, ->fff_newstr
1946  |.  addiu CARG3, CARG3, 1		// len++
1947  |->fff_emptystr:  // Return empty string.
1948  |  addiu STR:SFARG1LO, DISPATCH, DISPATCH_GL(strempty)
1949  |  b ->fff_restv
1950  |.  li SFARG1HI, LJ_TSTR
1951  |
1952  |.macro ffstring_op, name
1953  |  .ffunc string_ .. name
1954  |  ffgccheck
1955  |.  nop
1956  |  lw CARG3, HI(BASE)
1957  |   lw STR:CARG2, LO(BASE)
1958  |  beqz NARGS8:RC, ->fff_fallback
1959  |.  li AT, LJ_TSTR
1960  |  bne CARG3, AT, ->fff_fallback
1961  |.  addiu SBUF:CARG1, DISPATCH, DISPATCH_GL(tmpbuf)
1962  |  load_got lj_buf_putstr_ .. name
1963  |  lw TMP0, SBUF:CARG1->b
1964  |   sw L, SBUF:CARG1->L
1965  |   sw BASE, L->base
1966  |  sw TMP0, SBUF:CARG1->w
1967  |  call_intern extern lj_buf_putstr_ .. name
1968  |.  sw PC, SAVE_PC
1969  |  load_got lj_buf_tostr
1970  |  call_intern lj_buf_tostr
1971  |.  move SBUF:CARG1, SBUF:CRET1
1972  |  b ->fff_resstr
1973  |.  lw BASE, L->base
1974  |.endmacro
1975  |
1976  |ffstring_op reverse
1977  |ffstring_op lower
1978  |ffstring_op upper
1979  |
1980  |//-- Bit library --------------------------------------------------------
1981  |
1982  |->vm_tobit_fb:
1983  |  beqz TMP1, ->fff_fallback
1984  |.if FPU
1985  |.  ldc1 FARG1, 0(BASE)
1986  |  add.d FARG1, FARG1, TOBIT
1987  |  jr ra
1988  |.  mfc1 CRET1, FARG1
1989  |.else
1990  |// FP number to bit conversion for soft-float.
1991  |->vm_tobit:
1992  |  sll TMP0, SFARG1HI, 1
1993  |  lui AT, 0x0020
1994  |  addu TMP0, TMP0, AT
1995  |  slt AT, TMP0, r0
1996  |  movz SFARG1LO, r0, AT
1997  |  beqz AT, >2
1998  |.  li TMP1, 0x3e0
1999  |  not TMP1, TMP1
2000  |  sra TMP0, TMP0, 21
2001  |  subu TMP0, TMP1, TMP0
2002  |  slt AT, TMP0, r0
2003  |  bnez AT, >1
2004  |.  sll TMP1, SFARG1HI, 11
2005  |  lui AT, 0x8000
2006  |  or TMP1, TMP1, AT
2007  |  srl AT, SFARG1LO, 21
2008  |  or TMP1, TMP1, AT
2009  |  slt AT, SFARG1HI, r0
2010  |  beqz AT, >2
2011  |.  srlv SFARG1LO, TMP1, TMP0
2012  |  subu SFARG1LO, r0, SFARG1LO
2013  |2:
2014  |  jr ra
2015  |.  move CRET1, SFARG1LO
2016  |1:
2017  |  addiu TMP0, TMP0, 21
2018  |  srlv TMP1, SFARG1LO, TMP0
2019  |  li AT, 20
2020  |  subu TMP0, AT, TMP0
2021  |  sll SFARG1LO, SFARG1HI, 12
2022  |  sllv AT, SFARG1LO, TMP0
2023  |  or SFARG1LO, TMP1, AT
2024  |  slt AT, SFARG1HI, r0
2025  |  beqz AT, <2
2026  |.  nop
2027  |  jr ra
2028  |.  subu CRET1, r0, SFARG1LO
2029  |.endif
2030  |
2031  |.macro .ffunc_bit, name
2032  |  .ffunc_1 bit_..name
2033  |  beq SFARG1HI, TISNUM, >6
2034  |.  move CRET1, SFARG1LO
2035  |  bal ->vm_tobit_fb
2036  |.  sltu TMP1, SFARG1HI, TISNUM
2037  |6:
2038  |.endmacro
2039  |
2040  |.macro .ffunc_bit_op, name, ins
2041  |  .ffunc_bit name
2042  |  addiu TMP2, BASE, 8
2043  |  addu TMP3, BASE, NARGS8:RC
2044  |1:
2045  |  lw SFARG1HI, HI(TMP2)
2046  |  beq TMP2, TMP3, ->fff_resi
2047  |.  lw SFARG1LO, LO(TMP2)
2048  |.if FPU
2049  |  bne SFARG1HI, TISNUM, >2
2050  |.  addiu TMP2, TMP2, 8
2051  |  b <1
2052  |.  ins CRET1, CRET1, SFARG1LO
2053  |2:
2054  |   ldc1 FARG1, -8(TMP2)
2055  |  sltu TMP1, SFARG1HI, TISNUM
2056  |  beqz TMP1, ->fff_fallback
2057  |.  add.d FARG1, FARG1, TOBIT
2058  |  mfc1 SFARG1LO, FARG1
2059  |  b <1
2060  |.  ins CRET1, CRET1, SFARG1LO
2061  |.else
2062  |  beq SFARG1HI, TISNUM, >2
2063  |.  move CRET2, CRET1
2064  |  bal ->vm_tobit_fb
2065  |.  sltu TMP1, SFARG1HI, TISNUM
2066  |  move SFARG1LO, CRET2
2067  |2:
2068  |  ins CRET1, CRET1, SFARG1LO
2069  |  b <1
2070  |.  addiu TMP2, TMP2, 8
2071  |.endif
2072  |.endmacro
2073  |
2074  |.ffunc_bit_op band, and
2075  |.ffunc_bit_op bor, or
2076  |.ffunc_bit_op bxor, xor
2077  |
2078  |.ffunc_bit bswap
2079  |  srl TMP0, CRET1, 24
2080  |   srl TMP2, CRET1, 8
2081  |  sll TMP1, CRET1, 24
2082  |   andi TMP2, TMP2, 0xff00
2083  |  or TMP0, TMP0, TMP1
2084  |   andi CRET1, CRET1, 0xff00
2085  |  or TMP0, TMP0, TMP2
2086  |   sll CRET1, CRET1, 8
2087  |  b ->fff_resi
2088  |.  or CRET1, TMP0, CRET1
2089  |
2090  |.ffunc_bit bnot
2091  |  b ->fff_resi
2092  |.  not CRET1, CRET1
2093  |
2094  |.macro .ffunc_bit_sh, name, ins, shmod
2095  |  .ffunc_2 bit_..name
2096  |  beq SFARG1HI, TISNUM, >1
2097  |.  nop
2098  |  bal ->vm_tobit_fb
2099  |.  sltu TMP1, SFARG1HI, TISNUM
2100  |  move SFARG1LO, CRET1
2101  |1:
2102  |  bne SFARG2HI, TISNUM, ->fff_fallback
2103  |.  nop
2104  |.if shmod == 1
2105  |  li AT, 32
2106  |  subu TMP0, AT, SFARG2LO
2107  |  sllv SFARG2LO, SFARG1LO, SFARG2LO
2108  |  srlv SFARG1LO, SFARG1LO, TMP0
2109  |.elif shmod == 2
2110  |  li AT, 32
2111  |  subu TMP0, AT, SFARG2LO
2112  |  srlv SFARG2LO, SFARG1LO, SFARG2LO
2113  |  sllv SFARG1LO, SFARG1LO, TMP0
2114  |.endif
2115  |  b ->fff_resi
2116  |.  ins CRET1, SFARG1LO, SFARG2LO
2117  |.endmacro
2118  |
2119  |.ffunc_bit_sh lshift, sllv, 0
2120  |.ffunc_bit_sh rshift, srlv, 0
2121  |.ffunc_bit_sh arshift, srav, 0
2122  |// Can't use rotrv, since it's only in MIPS32R2.
2123  |.ffunc_bit_sh rol, or, 1
2124  |.ffunc_bit_sh ror, or, 2
2125  |
2126  |.ffunc_bit tobit
2127  |->fff_resi:
2128  |  lw PC, FRAME_PC(BASE)
2129  |  addiu RA, BASE, -8
2130  |  sw TISNUM, -8+HI(BASE)
2131  |  b ->fff_res1
2132  |.  sw CRET1, -8+LO(BASE)
2133  |
2134  |//-----------------------------------------------------------------------
2135  |
2136  |->fff_fallback:			// Call fast function fallback handler.
2137  |  // BASE = new base, RB = CFUNC, RC = nargs*8
2138  |  lw TMP3, CFUNC:RB->f
2139  |    addu TMP1, BASE, NARGS8:RC
2140  |   lw PC, FRAME_PC(BASE)		// Fallback may overwrite PC.
2141  |    addiu TMP0, TMP1, 8*LUA_MINSTACK
2142  |     lw TMP2, L->maxstack
2143  |   sw PC, SAVE_PC			// Redundant (but a defined value).
2144  |  sltu AT, TMP2, TMP0
2145  |     sw BASE, L->base
2146  |    sw TMP1, L->top
2147  |  bnez AT, >5			// Need to grow stack.
2148  |.  move CFUNCADDR, TMP3
2149  |  jalr TMP3				// (lua_State *L)
2150  |.  move CARG1, L
2151  |  // Either throws an error, or recovers and returns -1, 0 or nresults+1.
2152  |  lw BASE, L->base
2153  |   sll RD, CRET1, 3
2154  |  bgtz CRET1, ->fff_res		// Returned nresults+1?
2155  |.  addiu RA, BASE, -8
2156  |1:  // Returned 0 or -1: retry fast path.
2157  |  lw TMP0, L->top
2158  |   lw LFUNC:RB, FRAME_FUNC(BASE)
2159  |  bnez CRET1, ->vm_call_tail		// Returned -1?
2160  |.  subu NARGS8:RC, TMP0, BASE
2161  |  ins_callt				// Returned 0: retry fast path.
2162  |
2163  |// Reconstruct previous base for vmeta_call during tailcall.
2164  |->vm_call_tail:
2165  |  andi TMP0, PC, FRAME_TYPE
2166  |   li AT, -4
2167  |  bnez TMP0, >3
2168  |.  and TMP1, PC, AT
2169  |  lbu TMP1, OFS_RA(PC)
2170  |  sll TMP1, TMP1, 3
2171  |  addiu TMP1, TMP1, 8
2172  |3:
2173  |  b ->vm_call_dispatch		// Resolve again for tailcall.
2174  |.  subu TMP2, BASE, TMP1
2175  |
2176  |5:  // Grow stack for fallback handler.
2177  |  load_got lj_state_growstack
2178  |  li CARG2, LUA_MINSTACK
2179  |  call_intern lj_state_growstack	// (lua_State *L, int n)
2180  |.  move CARG1, L
2181  |  lw BASE, L->base
2182  |  b <1
2183  |.  li CRET1, 0			// Force retry.
2184  |
2185  |->fff_gcstep:			// Call GC step function.
2186  |  // BASE = new base, RC = nargs*8
2187  |  move MULTRES, ra
2188  |  load_got lj_gc_step
2189  |   sw BASE, L->base
2190  |  addu TMP0, BASE, NARGS8:RC
2191  |   sw PC, SAVE_PC			// Redundant (but a defined value).
2192  |  sw TMP0, L->top
2193  |  call_intern lj_gc_step		// (lua_State *L)
2194  |.  move CARG1, L
2195  |   lw BASE, L->base
2196  |  move ra, MULTRES
2197  |    lw TMP0, L->top
2198  |  lw CFUNC:RB, FRAME_FUNC(BASE)
2199  |  jr ra
2200  |.  subu NARGS8:RC, TMP0, BASE
2201  |
2202  |//-----------------------------------------------------------------------
2203  |//-- Special dispatch targets -------------------------------------------
2204  |//-----------------------------------------------------------------------
2205  |
2206  |->vm_record:				// Dispatch target for recording phase.
2207  |.if JIT
2208  |  lbu TMP3, DISPATCH_GL(hookmask)(DISPATCH)
2209  |  andi AT, TMP3, HOOK_VMEVENT	// No recording while in vmevent.
2210  |  bnez AT, >5
2211  |  // Decrement the hookcount for consistency, but always do the call.
2212  |.  lw TMP2, DISPATCH_GL(hookcount)(DISPATCH)
2213  |  andi AT, TMP3, HOOK_ACTIVE
2214  |  bnez AT, >1
2215  |.  addiu TMP2, TMP2, -1
2216  |  andi AT, TMP3, LUA_MASKLINE|LUA_MASKCOUNT
2217  |  beqz AT, >1
2218  |.  nop
2219  |  b >1
2220  |.  sw TMP2, DISPATCH_GL(hookcount)(DISPATCH)
2221  |.endif
2222  |
2223  |->vm_rethook:			// Dispatch target for return hooks.
2224  |  lbu TMP3, DISPATCH_GL(hookmask)(DISPATCH)
2225  |  andi AT, TMP3, HOOK_ACTIVE		// Hook already active?
2226  |  beqz AT, >1
2227  |5:  // Re-dispatch to static ins.
2228  |.  lw AT, GG_DISP2STATIC(TMP0)	// Assumes TMP0 holds DISPATCH+OP*4.
2229  |  jr AT
2230  |.  nop
2231  |
2232  |->vm_inshook:			// Dispatch target for instr/line hooks.
2233  |  lbu TMP3, DISPATCH_GL(hookmask)(DISPATCH)
2234  |  lw TMP2, DISPATCH_GL(hookcount)(DISPATCH)
2235  |  andi AT, TMP3, HOOK_ACTIVE		// Hook already active?
2236  |  bnez AT, <5
2237  |.  andi AT, TMP3, LUA_MASKLINE|LUA_MASKCOUNT
2238  |  beqz AT, <5
2239  |.  addiu TMP2, TMP2, -1
2240  |  beqz TMP2, >1
2241  |.  sw TMP2, DISPATCH_GL(hookcount)(DISPATCH)
2242  |  andi AT, TMP3, LUA_MASKLINE
2243  |  beqz AT, <5
2244  |1:
2245  |.  load_got lj_dispatch_ins
2246  |   sw MULTRES, SAVE_MULTRES
2247  |  move CARG2, PC
2248  |   sw BASE, L->base
2249  |  // SAVE_PC must hold the _previous_ PC. The callee updates it with PC.
2250  |  call_intern lj_dispatch_ins	// (lua_State *L, const BCIns *pc)
2251  |.  move CARG1, L
2252  |3:
2253  |  lw BASE, L->base
2254  |4:  // Re-dispatch to static ins.
2255  |  lw INS, -4(PC)
2256  |  decode_OP4a TMP1, INS
2257  |  decode_OP4b TMP1
2258  |  addu TMP0, DISPATCH, TMP1
2259  |   decode_RD8a RD, INS
2260  |  lw AT, GG_DISP2STATIC(TMP0)
2261  |   decode_RA8a RA, INS
2262  |   decode_RD8b RD
2263  |  jr AT
2264  |   decode_RA8b RA
2265  |
2266  |->cont_hook:				// Continue from hook yield.
2267  |  addiu PC, PC, 4
2268  |  b <4
2269  |.  lw MULTRES, -24+LO(RB)		// Restore MULTRES for *M ins.
2270  |
2271  |->vm_hotloop:			// Hot loop counter underflow.
2272  |.if JIT
2273  |  lw LFUNC:TMP1, FRAME_FUNC(BASE)
2274  |   addiu CARG1, DISPATCH, GG_DISP2J
2275  |   sw PC, SAVE_PC
2276  |  lw TMP1, LFUNC:TMP1->pc
2277  |   move CARG2, PC
2278  |   sw L, DISPATCH_J(L)(DISPATCH)
2279  |  lbu TMP1, PC2PROTO(framesize)(TMP1)
2280  |  load_got lj_trace_hot
2281  |   sw BASE, L->base
2282  |  sll TMP1, TMP1, 3
2283  |  addu TMP1, BASE, TMP1
2284  |  call_intern lj_trace_hot		// (jit_State *J, const BCIns *pc)
2285  |.  sw TMP1, L->top
2286  |  b <3
2287  |.  nop
2288  |.endif
2289  |
2290  |->vm_callhook:			// Dispatch target for call hooks.
2291  |.if JIT
2292  |  b >1
2293  |.endif
2294  |.  move CARG2, PC
2295  |
2296  |->vm_hotcall:			// Hot call counter underflow.
2297  |.if JIT
2298  |  ori CARG2, PC, 1
2299  |1:
2300  |.endif
2301  |  load_got lj_dispatch_call
2302  |  addu TMP0, BASE, RC
2303  |   sw PC, SAVE_PC
2304  |   sw BASE, L->base
2305  |  subu RA, RA, BASE
2306  |   sw TMP0, L->top
2307  |  call_intern lj_dispatch_call	// (lua_State *L, const BCIns *pc)
2308  |.  move CARG1, L
2309  |  // Returns ASMFunction.
2310  |  lw BASE, L->base
2311  |   lw TMP0, L->top
2312  |   sw r0, SAVE_PC			// Invalidate for subsequent line hook.
2313  |  subu NARGS8:RC, TMP0, BASE
2314  |  addu RA, BASE, RA
2315  |  lw LFUNC:RB, FRAME_FUNC(BASE)
2316  |  jr CRET1
2317  |.  lw INS, -4(PC)
2318  |
2319  |->cont_stitch:			// Trace stitching.
2320  |.if JIT
2321  |  // RA = resultptr, RB = meta base
2322  |  lw INS, -4(PC)
2323  |    lw TMP2, -24+LO(RB)		// Save previous trace.
2324  |  decode_RA8a RC, INS
2325  |   addiu AT, MULTRES, -8
2326  |  decode_RA8b RC
2327  |   beqz AT, >2
2328  |. addu RC, BASE, RC			// Call base.
2329  |1:  // Move results down.
2330  |  lw SFRETHI, HI(RA)
2331  |   lw SFRETLO, LO(RA)
2332  |   addiu AT, AT, -8
2333  |    addiu RA, RA, 8
2334  |  sw SFRETHI, HI(RC)
2335  |   sw SFRETLO, LO(RC)
2336  |   bnez AT, <1
2337  |.   addiu RC, RC, 8
2338  |2:
2339  |   decode_RA8a RA, INS
2340  |    decode_RB8a RB, INS
2341  |   decode_RA8b RA
2342  |    decode_RB8b RB
2343  |   addu RA, RA, RB
2344  |   addu RA, BASE, RA
2345  |3:
2346  |   sltu AT, RC, RA
2347  |   bnez AT, >9			// More results wanted?
2348  |.   nop
2349  |
2350  |  lhu TMP3, TRACE:TMP2->traceno
2351  |  lhu RD, TRACE:TMP2->link
2352  |  beq RD, TMP3, ->cont_nop		// Blacklisted.
2353  |.  load_got lj_dispatch_stitch
2354  |  bnez RD, =>BC_JLOOP		// Jump to stitched trace.
2355  |.  sll RD, RD, 3
2356  |
2357  |  // Stitch a new trace to the previous trace.
2358  |  sw TMP3, DISPATCH_J(exitno)(DISPATCH)
2359  |  sw L, DISPATCH_J(L)(DISPATCH)
2360  |  sw BASE, L->base
2361  |  addiu CARG1, DISPATCH, GG_DISP2J
2362  |  call_intern lj_dispatch_stitch	// (jit_State *J, const BCIns *pc)
2363  |.  move CARG2, PC
2364  |  b ->cont_nop
2365  |.  lw BASE, L->base
2366  |
2367  |9:
2368  |  sw TISNIL, HI(RC)
2369  |  b <3
2370  |.  addiu RC, RC, 8
2371  |.endif
2372  |
2373  |->vm_profhook:			// Dispatch target for profiler hook.
2374#if LJ_HASPROFILE
2375  |  load_got lj_dispatch_profile
2376  |   sw MULTRES, SAVE_MULTRES
2377  |  move CARG2, PC
2378  |   sw BASE, L->base
2379  |  call_intern lj_dispatch_profile	// (lua_State *L, const BCIns *pc)
2380  |.  move CARG1, L
2381  |  // HOOK_PROFILE is off again, so re-dispatch to dynamic instruction.
2382  |  addiu PC, PC, -4
2383  |  b ->cont_nop
2384  |.  lw BASE, L->base
2385#endif
2386  |
2387  |//-----------------------------------------------------------------------
2388  |//-- Trace exit handler -------------------------------------------------
2389  |//-----------------------------------------------------------------------
2390  |
2391  |.macro savex_, a, b
2392  |.if FPU
2393  |  sdc1 f..a, 16+a*8(sp)
2394  |  sw r..a, 16+32*8+a*4(sp)
2395  |  sw r..b, 16+32*8+b*4(sp)
2396  |.else
2397  |  sw r..a, 16+a*4(sp)
2398  |  sw r..b, 16+b*4(sp)
2399  |.endif
2400  |.endmacro
2401  |
2402  |->vm_exit_handler:
2403  |.if JIT
2404  |.if FPU
2405  |  addiu sp, sp, -(16+32*8+32*4)
2406  |.else
2407  |  addiu sp, sp, -(16+32*4)
2408  |.endif
2409  |  savex_ 0, 1
2410  |  savex_ 2, 3
2411  |  savex_ 4, 5
2412  |  savex_ 6, 7
2413  |  savex_ 8, 9
2414  |  savex_ 10, 11
2415  |  savex_ 12, 13
2416  |  savex_ 14, 15
2417  |  savex_ 16, 17
2418  |  savex_ 18, 19
2419  |  savex_ 20, 21
2420  |  savex_ 22, 23
2421  |  savex_ 24, 25
2422  |  savex_ 26, 27
2423  |.if FPU
2424  |  sdc1 f28, 16+28*8(sp)
2425  |  sdc1 f30, 16+30*8(sp)
2426  |  sw r28, 16+32*8+28*4(sp)
2427  |  sw r30, 16+32*8+30*4(sp)
2428  |  sw r0, 16+32*8+31*4(sp)		// Clear RID_TMP.
2429  |  addiu TMP2, sp, 16+32*8+32*4	// Recompute original value of sp.
2430  |  sw TMP2, 16+32*8+29*4(sp)		// Store sp in RID_SP
2431  |.else
2432  |  sw r28, 16+28*4(sp)
2433  |  sw r30, 16+30*4(sp)
2434  |  sw r0, 16+31*4(sp)			// Clear RID_TMP.
2435  |  addiu TMP2, sp, 16+32*4		// Recompute original value of sp.
2436  |  sw TMP2, 16+29*4(sp)		// Store sp in RID_SP
2437  |.endif
2438  |  li_vmstate EXIT
2439  |  addiu DISPATCH, JGL, -GG_DISP2G-32768
2440  |  lw TMP1, 0(TMP2)			// Load exit number.
2441  |  st_vmstate
2442  |  lw L, DISPATCH_GL(cur_L)(DISPATCH)
2443  |   lw BASE, DISPATCH_GL(jit_base)(DISPATCH)
2444  |  load_got lj_trace_exit
2445  |  sw L, DISPATCH_J(L)(DISPATCH)
2446  |  sw ra, DISPATCH_J(parent)(DISPATCH)  // Store trace number.
2447  |   sw BASE, L->base
2448  |  sw TMP1, DISPATCH_J(exitno)(DISPATCH)  // Store exit number.
2449  |  addiu CARG1, DISPATCH, GG_DISP2J
2450  |   sw r0, DISPATCH_GL(jit_base)(DISPATCH)
2451  |  call_intern lj_trace_exit		// (jit_State *J, ExitState *ex)
2452  |.  addiu CARG2, sp, 16
2453  |  // Returns MULTRES (unscaled) or negated error code.
2454  |  lw TMP1, L->cframe
2455  |  li AT, -4
2456  |   lw BASE, L->base
2457  |  and sp, TMP1, AT
2458  |   lw PC, SAVE_PC			// Get SAVE_PC.
2459  |  b >1
2460  |.  sw L, SAVE_L			// Set SAVE_L (on-trace resume/yield).
2461  |.endif
2462  |->vm_exit_interp:
2463  |.if JIT
2464  |  // CRET1 = MULTRES or negated error code, BASE, PC and JGL set.
2465  |  lw L, SAVE_L
2466  |   addiu DISPATCH, JGL, -GG_DISP2G-32768
2467  |  sw BASE, L->base
2468  |1:
2469  |  bltz CRET1, >9			// Check for error from exit.
2470  |.  lw LFUNC:RB, FRAME_FUNC(BASE)
2471  |    .FPU lui TMP3, 0x59c0			// TOBIT = 2^52 + 2^51 (float).
2472  |  sll MULTRES, CRET1, 3
2473  |    li TISNIL, LJ_TNIL
2474  |     li TISNUM, LJ_TISNUM		// Setup type comparison constants.
2475  |  sw MULTRES, SAVE_MULTRES
2476  |    .FPU mtc1 TMP3, TOBIT
2477  |  lw TMP1, LFUNC:RB->pc
2478  |   sw r0, DISPATCH_GL(jit_base)(DISPATCH)
2479  |  lw KBASE, PC2PROTO(k)(TMP1)
2480  |    .FPU cvt.d.s TOBIT, TOBIT
2481  |  // Modified copy of ins_next which handles function header dispatch, too.
2482  |  lw INS, 0(PC)
2483  |   addiu PC, PC, 4
2484  |    // Assumes TISNIL == ~LJ_VMST_INTERP == -1
2485  |    sw TISNIL, DISPATCH_GL(vmstate)(DISPATCH)
2486  |  decode_OP4a TMP1, INS
2487  |  decode_OP4b TMP1
2488  |    sltiu TMP2, TMP1, BC_FUNCF*4
2489  |  addu TMP0, DISPATCH, TMP1
2490  |   decode_RD8a RD, INS
2491  |  lw AT, 0(TMP0)
2492  |   decode_RA8a RA, INS
2493  |    beqz TMP2, >2
2494  |.  decode_RA8b RA
2495  |  jr AT
2496  |.  decode_RD8b RD
2497  |2:
2498  |  sltiu TMP2, TMP1, (BC_FUNCC+2)*4	// Fast function?
2499  |  bnez TMP2, >3
2500  |.  lw TMP1, FRAME_PC(BASE)
2501  |  // Check frame below fast function.
2502  |  andi TMP0, TMP1, FRAME_TYPE
2503  |  bnez TMP0, >3			// Trace stitching continuation?
2504  |.  nop
2505  |  // Otherwise set KBASE for Lua function below fast function.
2506  |  lw TMP2, -4(TMP1)
2507  |  decode_RA8a TMP0, TMP2
2508  |  decode_RA8b TMP0
2509  |  subu TMP1, BASE, TMP0
2510  |  lw LFUNC:TMP2, -8+FRAME_FUNC(TMP1)
2511  |  lw TMP1, LFUNC:TMP2->pc
2512  |  lw KBASE, PC2PROTO(k)(TMP1)
2513  |3:
2514  |  addiu RC, MULTRES, -8
2515  |  jr AT
2516  |.  addu RA, RA, BASE
2517  |
2518  |9:  // Rethrow error from the right C frame.
2519  |  load_got lj_err_trace
2520  |  sub CARG2, r0, CRET1
2521  |  call_intern lj_err_trace		// (lua_State *L, int errcode)
2522  |.  move CARG1, L
2523  |.endif
2524  |
2525  |//-----------------------------------------------------------------------
2526  |//-- Math helper functions ----------------------------------------------
2527  |//-----------------------------------------------------------------------
2528  |
2529  |// Hard-float round to integer.
2530  |// Modifies AT, TMP0, FRET1, FRET2, f4. Keeps all others incl. FARG1.
2531  |.macro vm_round_hf, func
2532  |  lui TMP0, 0x4330			// Hiword of 2^52 (double).
2533  |  mtc1 r0, f4
2534  |  mtc1 TMP0, f5
2535  |  abs.d FRET2, FARG1			// |x|
2536  |    mfc1 AT, f13
2537  |  c.olt.d 0, FRET2, f4
2538  |   add.d FRET1, FRET2, f4		// (|x| + 2^52) - 2^52
2539  |  bc1f 0, >1				// Truncate only if |x| < 2^52.
2540  |.  sub.d FRET1, FRET1, f4
2541  |    slt AT, AT, r0
2542  |.if "func" == "ceil"
2543  |   lui TMP0, 0xbff0			// Hiword of -1 (double). Preserves -0.
2544  |.else
2545  |   lui TMP0, 0x3ff0			// Hiword of +1 (double).
2546  |.endif
2547  |.if "func" == "trunc"
2548  |   mtc1 TMP0, f5
2549  |  c.olt.d 0, FRET2, FRET1		// |x| < result?
2550  |   sub.d FRET2, FRET1, f4
2551  |  movt.d FRET1, FRET2, 0		// If yes, subtract +1.
2552  |  neg.d FRET2, FRET1
2553  |  jr ra
2554  |.  movn.d FRET1, FRET2, AT		// Merge sign bit back in.
2555  |.else
2556  |  neg.d FRET2, FRET1
2557  |   mtc1 TMP0, f5
2558  |  movn.d FRET1, FRET2, AT		// Merge sign bit back in.
2559  |.if "func" == "ceil"
2560  |  c.olt.d 0, FRET1, FARG1		// x > result?
2561  |.else
2562  |  c.olt.d 0, FARG1, FRET1		// x < result?
2563  |.endif
2564  |   sub.d FRET2, FRET1, f4		// If yes, subtract +-1.
2565  |  jr ra
2566  |.  movt.d FRET1, FRET2, 0
2567  |.endif
2568  |1:
2569  |  jr ra
2570  |.  mov.d FRET1, FARG1
2571  |.endmacro
2572  |
2573  |.macro vm_round, func
2574  |.if FPU
2575  |  vm_round_hf, func
2576  |.endif
2577  |.endmacro
2578  |
2579  |->vm_floor:
2580  |  vm_round floor
2581  |->vm_ceil:
2582  |  vm_round ceil
2583  |->vm_trunc:
2584  |.if JIT
2585  |  vm_round trunc
2586  |.endif
2587  |
2588  |// Soft-float integer to number conversion.
2589  |.macro sfi2d, AHI, ALO
2590  |.if not FPU
2591  |  beqz ALO, >9			// Handle zero first.
2592  |.  sra TMP0, ALO, 31
2593  |  xor TMP1, ALO, TMP0
2594  |  subu TMP1, TMP1, TMP0		// Absolute value in TMP1.
2595  |  clz AHI, TMP1
2596  |    andi TMP0, TMP0, 0x800		// Mask sign bit.
2597  |  li AT, 0x3ff+31-1
2598  |   sllv TMP1, TMP1, AHI		// Align mantissa left with leading 1.
2599  |  subu AHI, AT, AHI			// Exponent - 1 in AHI.
2600  |   sll ALO, TMP1, 21
2601  |  or AHI, AHI, TMP0			// Sign | Exponent.
2602  |   srl TMP1, TMP1, 11
2603  |  sll AHI, AHI, 20			// Align left.
2604  |  jr ra
2605  |.  addu AHI, AHI, TMP1		// Add mantissa, increment exponent.
2606  |9:
2607  |  jr ra
2608  |.  li AHI, 0
2609  |.endif
2610  |.endmacro
2611  |
2612  |// Input SFARG1LO. Output: SFARG1*. Temporaries: AT, TMP0, TMP1.
2613  |->vm_sfi2d_1:
2614  |  sfi2d SFARG1HI, SFARG1LO
2615  |
2616  |// Input SFARG2LO. Output: SFARG2*. Temporaries: AT, TMP0, TMP1.
2617  |->vm_sfi2d_2:
2618  |  sfi2d SFARG2HI, SFARG2LO
2619  |
2620  |// Soft-float comparison. Equivalent to c.eq.d.
2621  |// Input: SFARG*. Output: CRET1. Temporaries: AT, TMP0, TMP1.
2622  |->vm_sfcmpeq:
2623  |.if not FPU
2624  |  sll AT, SFARG1HI, 1
2625  |  sll TMP0, SFARG2HI, 1
2626  |  or CRET1, SFARG1LO, SFARG2LO
2627  |  or TMP1, AT, TMP0
2628  |  or TMP1, TMP1, CRET1
2629  |  beqz TMP1, >8			// Both args +-0: return 1.
2630  |.  sltu CRET1, r0, SFARG1LO
2631  |  lui TMP1, 0xffe0
2632  |  addu AT, AT, CRET1
2633  |   sltu CRET1, r0, SFARG2LO
2634  |  sltu AT, TMP1, AT
2635  |   addu TMP0, TMP0, CRET1
2636  |   sltu TMP0, TMP1, TMP0
2637  |  or TMP1, AT, TMP0
2638  |  bnez TMP1, >9			// Either arg is NaN: return 0;
2639  |.  xor TMP0, SFARG1HI, SFARG2HI
2640  |  xor TMP1, SFARG1LO, SFARG2LO
2641  |  or AT, TMP0, TMP1
2642  |  jr ra
2643  |.  sltiu CRET1, AT, 1		// Same values: return 1.
2644  |8:
2645  |  jr ra
2646  |.  li CRET1, 1
2647  |9:
2648  |  jr ra
2649  |.  li CRET1, 0
2650  |.endif
2651  |
2652  |// Soft-float comparison. Equivalent to c.ult.d and c.olt.d.
2653  |// Input: SFARG*. Output: CRET1. Temporaries: AT, TMP0, TMP1, CRET2.
2654  |->vm_sfcmpult:
2655  |.if not FPU
2656  |  b >1
2657  |.  li CRET2, 1
2658  |.endif
2659  |
2660  |->vm_sfcmpolt:
2661  |.if not FPU
2662  |  li CRET2, 0
2663  |1:
2664  |  sll AT, SFARG1HI, 1
2665  |  sll TMP0, SFARG2HI, 1
2666  |  or CRET1, SFARG1LO, SFARG2LO
2667  |  or TMP1, AT, TMP0
2668  |  or TMP1, TMP1, CRET1
2669  |  beqz TMP1, >8			// Both args +-0: return 0.
2670  |.  sltu CRET1, r0, SFARG1LO
2671  |  lui TMP1, 0xffe0
2672  |  addu AT, AT, CRET1
2673  |   sltu CRET1, r0, SFARG2LO
2674  |  sltu AT, TMP1, AT
2675  |   addu TMP0, TMP0, CRET1
2676  |   sltu TMP0, TMP1, TMP0
2677  |  or TMP1, AT, TMP0
2678  |  bnez TMP1, >9			// Either arg is NaN: return 0 or 1;
2679  |.  and AT, SFARG1HI, SFARG2HI
2680  |  bltz AT, >5			// Both args negative?
2681  |.  nop
2682  |  beq SFARG1HI, SFARG2HI, >8
2683  |.  sltu CRET1, SFARG1LO, SFARG2LO
2684  |  jr ra
2685  |.  slt CRET1, SFARG1HI, SFARG2HI
2686  |5:  // Swap conditions if both operands are negative.
2687  |  beq SFARG1HI, SFARG2HI, >8
2688  |.  sltu CRET1, SFARG2LO, SFARG1LO
2689  |  jr ra
2690  |.  slt CRET1, SFARG2HI, SFARG1HI
2691  |8:
2692  |  jr ra
2693  |.  nop
2694  |9:
2695  |  jr ra
2696  |.  move CRET1, CRET2
2697  |.endif
2698  |
2699  |->vm_sfcmpogt:
2700  |.if not FPU
2701  |  sll AT, SFARG2HI, 1
2702  |  sll TMP0, SFARG1HI, 1
2703  |  or CRET1, SFARG2LO, SFARG1LO
2704  |  or TMP1, AT, TMP0
2705  |  or TMP1, TMP1, CRET1
2706  |  beqz TMP1, >8			// Both args +-0: return 0.
2707  |.  sltu CRET1, r0, SFARG2LO
2708  |  lui TMP1, 0xffe0
2709  |  addu AT, AT, CRET1
2710  |   sltu CRET1, r0, SFARG1LO
2711  |  sltu AT, TMP1, AT
2712  |   addu TMP0, TMP0, CRET1
2713  |   sltu TMP0, TMP1, TMP0
2714  |  or TMP1, AT, TMP0
2715  |  bnez TMP1, >9			// Either arg is NaN: return 0 or 1;
2716  |.  and AT, SFARG2HI, SFARG1HI
2717  |  bltz AT, >5			// Both args negative?
2718  |.  nop
2719  |  beq SFARG2HI, SFARG1HI, >8
2720  |.  sltu CRET1, SFARG2LO, SFARG1LO
2721  |  jr ra
2722  |.  slt CRET1, SFARG2HI, SFARG1HI
2723  |5:  // Swap conditions if both operands are negative.
2724  |  beq SFARG2HI, SFARG1HI, >8
2725  |.  sltu CRET1, SFARG1LO, SFARG2LO
2726  |  jr ra
2727  |.  slt CRET1, SFARG1HI, SFARG2HI
2728  |8:
2729  |  jr ra
2730  |.  nop
2731  |9:
2732  |  jr ra
2733  |.  li CRET1, 0
2734  |.endif
2735  |
2736  |// Soft-float comparison. Equivalent to c.ole.d a, b or c.ole.d b, a.
2737  |// Input: SFARG*, TMP3. Output: CRET1. Temporaries: AT, TMP0, TMP1.
2738  |->vm_sfcmpolex:
2739  |.if not FPU
2740  |  sll AT, SFARG1HI, 1
2741  |  sll TMP0, SFARG2HI, 1
2742  |  or CRET1, SFARG1LO, SFARG2LO
2743  |  or TMP1, AT, TMP0
2744  |  or TMP1, TMP1, CRET1
2745  |  beqz TMP1, >8			// Both args +-0: return 1.
2746  |.  sltu CRET1, r0, SFARG1LO
2747  |  lui TMP1, 0xffe0
2748  |  addu AT, AT, CRET1
2749  |   sltu CRET1, r0, SFARG2LO
2750  |  sltu AT, TMP1, AT
2751  |   addu TMP0, TMP0, CRET1
2752  |   sltu TMP0, TMP1, TMP0
2753  |  or TMP1, AT, TMP0
2754  |  bnez TMP1, >9			// Either arg is NaN: return 0;
2755  |.  and AT, SFARG1HI, SFARG2HI
2756  |  xor AT, AT, TMP3
2757  |  bltz AT, >5			// Both args negative?
2758  |.  nop
2759  |  beq SFARG1HI, SFARG2HI, >6
2760  |.  sltu CRET1, SFARG2LO, SFARG1LO
2761  |  jr ra
2762  |.  slt CRET1, SFARG2HI, SFARG1HI
2763  |5:  // Swap conditions if both operands are negative.
2764  |  beq SFARG1HI, SFARG2HI, >6
2765  |.  sltu CRET1, SFARG1LO, SFARG2LO
2766  |  slt CRET1, SFARG1HI, SFARG2HI
2767  |6:
2768  |  jr ra
2769  |.  nop
2770  |8:
2771  |  jr ra
2772  |.  li CRET1, 1
2773  |9:
2774  |  jr ra
2775  |.  li CRET1, 0
2776  |.endif
2777  |
2778  |.macro sfmin_max, name, fpcall
2779  |->vm_sf .. name:
2780  |.if JIT and not FPU
2781  |  move TMP2, ra
2782  |  bal ->fpcall
2783  |.  nop
2784  |  move TMP0, CRET1
2785  |  move SFRETHI, SFARG1HI
2786  |   move SFRETLO, SFARG1LO
2787  |  move ra, TMP2
2788  |  movz SFRETHI, SFARG2HI, TMP0
2789  |  jr ra
2790  |.  movz SFRETLO, SFARG2LO, TMP0
2791  |.endif
2792  |.endmacro
2793  |
2794  |  sfmin_max min, vm_sfcmpolt
2795  |  sfmin_max max, vm_sfcmpogt
2796  |
2797  |//-----------------------------------------------------------------------
2798  |//-- Miscellaneous functions --------------------------------------------
2799  |//-----------------------------------------------------------------------
2800  |
2801  |.define NEXT_TAB,		TAB:CARG1
2802  |.define NEXT_IDX,		CARG2
2803  |.define NEXT_ASIZE,		CARG3
2804  |.define NEXT_NIL,		CARG4
2805  |.define NEXT_TMP0,		r12
2806  |.define NEXT_TMP1,		r13
2807  |.define NEXT_TMP2,		r14
2808  |.define NEXT_RES_VK,		CRET1
2809  |.define NEXT_RES_IDX,	CRET2
2810  |.define NEXT_RES_PTR,	sp
2811  |.define NEXT_RES_VAL_I,	0(sp)
2812  |.define NEXT_RES_VAL_IT,	4(sp)
2813  |.define NEXT_RES_KEY_I,	8(sp)
2814  |.define NEXT_RES_KEY_IT,	12(sp)
2815  |
2816  |// TValue *lj_vm_next(GCtab *t, uint32_t idx)
2817  |// Next idx returned in CRET2.
2818  |->vm_next:
2819  |.if JIT and ENDIAN_LE
2820  |   lw NEXT_ASIZE, NEXT_TAB->asize
2821  |  lw NEXT_TMP0, NEXT_TAB->array
2822  |    li NEXT_NIL, LJ_TNIL
2823  |1:  // Traverse array part.
2824  |   sltu AT, NEXT_IDX, NEXT_ASIZE
2825  |    sll NEXT_TMP1, NEXT_IDX, 3
2826  |   beqz AT, >5
2827  |.   addu NEXT_TMP1, NEXT_TMP0, NEXT_TMP1
2828  |  lw NEXT_TMP2, 4(NEXT_TMP1)
2829  |   sw NEXT_IDX, NEXT_RES_KEY_I
2830  |  beq NEXT_TMP2, NEXT_NIL, <1
2831  |.  addiu NEXT_IDX, NEXT_IDX, 1
2832  |    lw NEXT_TMP0, 0(NEXT_TMP1)
2833  |   li AT, LJ_TISNUM
2834  |  sw NEXT_TMP2, NEXT_RES_VAL_IT
2835  |   sw AT, NEXT_RES_KEY_IT
2836  |    sw NEXT_TMP0, NEXT_RES_VAL_I
2837  |  move NEXT_RES_VK, NEXT_RES_PTR
2838  |  jr ra
2839  |.  move NEXT_RES_IDX, NEXT_IDX
2840  |
2841  |5:  // Traverse hash part.
2842  |  subu NEXT_RES_IDX, NEXT_IDX, NEXT_ASIZE
2843  |   lw NODE:NEXT_RES_VK, NEXT_TAB->node
2844  |    sll NEXT_TMP2, NEXT_RES_IDX, 5
2845  |  lw NEXT_TMP0, NEXT_TAB->hmask
2846  |    sll AT, NEXT_RES_IDX, 3
2847  |    subu AT, NEXT_TMP2, AT
2848  |   addu NODE:NEXT_RES_VK, NODE:NEXT_RES_VK, AT
2849  |6:
2850  |  sltu AT, NEXT_TMP0, NEXT_RES_IDX
2851  |  bnez AT, >8
2852  |.  nop
2853  |  lw NEXT_TMP2, NODE:NEXT_RES_VK->val.it
2854  |  bne NEXT_TMP2, NEXT_NIL, >9
2855  |.  addiu NEXT_RES_IDX, NEXT_RES_IDX, 1
2856  |  // Skip holes in hash part.
2857  |  b <6
2858  |.  addiu NODE:NEXT_RES_VK, NODE:NEXT_RES_VK, sizeof(Node)
2859  |
2860  |8:  // End of iteration. Set the key to nil (not the value).
2861  |  sw NEXT_NIL, NEXT_RES_KEY_IT
2862  |  move NEXT_RES_VK, NEXT_RES_PTR
2863  |9:
2864  |  jr ra
2865  |.  addu NEXT_RES_IDX, NEXT_RES_IDX, NEXT_ASIZE
2866  |.endif
2867  |
2868  |//-----------------------------------------------------------------------
2869  |//-- FFI helper functions -----------------------------------------------
2870  |//-----------------------------------------------------------------------
2871  |
2872  |// Handler for callback functions. Callback slot number in r1, g in r2.
2873  |->vm_ffi_callback:
2874  |.if FFI
2875  |.type CTSTATE, CTState, PC
2876  |  saveregs
2877  |  lw CTSTATE, GL:r2->ctype_state
2878  |   addiu DISPATCH, r2, GG_G2DISP
2879  |  load_got lj_ccallback_enter
2880  |  sw r1, CTSTATE->cb.slot
2881  |  sw CARG1, CTSTATE->cb.gpr[0]
2882  |  sw CARG2, CTSTATE->cb.gpr[1]
2883  |   .FPU sdc1 FARG1, CTSTATE->cb.fpr[0]
2884  |  sw CARG3, CTSTATE->cb.gpr[2]
2885  |  sw CARG4, CTSTATE->cb.gpr[3]
2886  |   .FPU sdc1 FARG2, CTSTATE->cb.fpr[1]
2887  |  addiu TMP0, sp, CFRAME_SPACE+16
2888  |  sw TMP0, CTSTATE->cb.stack
2889  |  sw r0, SAVE_PC			// Any value outside of bytecode is ok.
2890  |   move CARG2, sp
2891  |  call_intern lj_ccallback_enter	// (CTState *cts, void *cf)
2892  |.  move CARG1, CTSTATE
2893  |  // Returns lua_State *.
2894  |  lw BASE, L:CRET1->base
2895  |  lw RC, L:CRET1->top
2896  |     li TISNUM, LJ_TISNUM		// Setup type comparison constants.
2897  |   move L, CRET1
2898  |     .FPU lui TMP3, 0x59c0		// TOBIT = 2^52 + 2^51 (float).
2899  |  lw LFUNC:RB, FRAME_FUNC(BASE)
2900  |     .FPU mtc1 TMP3, TOBIT
2901  |    li_vmstate INTERP
2902  |     li TISNIL, LJ_TNIL
2903  |  subu RC, RC, BASE
2904  |    st_vmstate
2905  |     .FPU cvt.d.s TOBIT, TOBIT
2906  |  ins_callt
2907  |.endif
2908  |
2909  |->cont_ffi_callback:			// Return from FFI callback.
2910  |.if FFI
2911  |  load_got lj_ccallback_leave
2912  |  lw CTSTATE, DISPATCH_GL(ctype_state)(DISPATCH)
2913  |   sw BASE, L->base
2914  |   sw RB, L->top
2915  |  sw L, CTSTATE->L
2916  |  move CARG2, RA
2917  |  call_intern lj_ccallback_leave	// (CTState *cts, TValue *o)
2918  |.  move CARG1, CTSTATE
2919  |   .FPU ldc1 FRET1, CTSTATE->cb.fpr[0]
2920  |  lw CRET1, CTSTATE->cb.gpr[0]
2921  |   .FPU ldc1 FRET2, CTSTATE->cb.fpr[1]
2922  |  b ->vm_leave_unw
2923  |.  lw CRET2, CTSTATE->cb.gpr[1]
2924  |.endif
2925  |
2926  |->vm_ffi_call:			// Call C function via FFI.
2927  |  // Caveat: needs special frame unwinding, see below.
2928  |.if FFI
2929  |  .type CCSTATE, CCallState, CARG1
2930  |  lw TMP1, CCSTATE->spadj
2931  |   lbu CARG2, CCSTATE->nsp
2932  |  move TMP2, sp
2933  |  subu sp, sp, TMP1
2934  |  sw ra, -4(TMP2)
2935  |   sll CARG2, CARG2, 2
2936  |  sw r16, -8(TMP2)
2937  |  sw CCSTATE, -12(TMP2)
2938  |  move r16, TMP2
2939  |  addiu TMP1, CCSTATE, offsetof(CCallState, stack)
2940  |  addiu TMP2, sp, 16
2941  |  beqz CARG2, >2
2942  |.  addu TMP3, TMP1, CARG2
2943  |1:
2944  |   lw TMP0, 0(TMP1)
2945  |  addiu TMP1, TMP1, 4
2946  |  sltu AT, TMP1, TMP3
2947  |   sw TMP0, 0(TMP2)
2948  |  bnez AT, <1
2949  |.  addiu TMP2, TMP2, 4
2950  |2:
2951  |  lw CFUNCADDR, CCSTATE->func
2952  |  lw CARG2, CCSTATE->gpr[1]
2953  |  lw CARG3, CCSTATE->gpr[2]
2954  |  lw CARG4, CCSTATE->gpr[3]
2955  |  .FPU ldc1 FARG1, CCSTATE->fpr[0]
2956  |  .FPU ldc1 FARG2, CCSTATE->fpr[1]
2957  |  jalr CFUNCADDR
2958  |.  lw CARG1, CCSTATE->gpr[0]		// Do this last, since CCSTATE is CARG1.
2959  |  lw CCSTATE:TMP1, -12(r16)
2960  |  lw TMP2, -8(r16)
2961  |  lw ra, -4(r16)
2962  |  sw CRET1, CCSTATE:TMP1->gpr[0]
2963  |  sw CRET2, CCSTATE:TMP1->gpr[1]
2964  |.if FPU
2965  |  sdc1 FRET1, CCSTATE:TMP1->fpr[0]
2966  |  sdc1 FRET2, CCSTATE:TMP1->fpr[1]
2967  |.else
2968  |  sw CARG1, CCSTATE:TMP1->gpr[2]	// Soft-float: complex double .im part.
2969  |  sw CARG2, CCSTATE:TMP1->gpr[3]
2970  |.endif
2971  |  move sp, r16
2972  |  jr ra
2973  |.  move r16, TMP2
2974  |.endif
2975  |// Note: vm_ffi_call must be the last function in this object file!
2976  |
2977  |//-----------------------------------------------------------------------
2978}
2979
2980/* Generate the code for a single instruction. */
2981static void build_ins(BuildCtx *ctx, BCOp op, int defop)
2982{
2983  int vk = 0;
2984  |=>defop:
2985
2986  switch (op) {
2987
2988  /* -- Comparison ops ---------------------------------------------------- */
2989
2990  /* Remember: all ops branch for a true comparison, fall through otherwise. */
2991
2992  case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT:
2993    |  // RA = src1*8, RD = src2*8, JMP with RD = target
2994    |.macro bc_comp, FRA, FRD, RAHI, RALO, RDHI, RDLO, movop, fmovop, fcomp, sfcomp
2995    |  addu RA, BASE, RA
2996    |   addu RD, BASE, RD
2997    |  lw RAHI, HI(RA)
2998    |   lw RDHI, HI(RD)
2999    |    lhu TMP2, OFS_RD(PC)
3000    |    addiu PC, PC, 4
3001    |  bne RAHI, TISNUM, >2
3002    |.  lw RALO, LO(RA)
3003    |    lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535)
3004    |  lw RDLO, LO(RD)
3005    |  bne RDHI, TISNUM, >5
3006    |.   decode_RD4b TMP2
3007    |  slt AT, SFARG1LO, SFARG2LO
3008    |    addu TMP2, TMP2, TMP3
3009    |  movop TMP2, r0, AT
3010    |1:
3011    |  addu PC, PC, TMP2
3012    |  ins_next
3013    |
3014    |2:  // RA is not an integer.
3015    |  sltiu AT, RAHI, LJ_TISNUM
3016    |  beqz AT, ->vmeta_comp
3017    |.   lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535)
3018    |  sltiu AT, RDHI, LJ_TISNUM
3019    |.if FPU
3020    |  ldc1 FRA, 0(RA)
3021    |   ldc1 FRD, 0(RD)
3022    |.else
3023    |   lw RDLO, LO(RD)
3024    |.endif
3025    |  beqz AT, >4
3026    |.   decode_RD4b TMP2
3027    |3:  // RA and RD are both numbers.
3028    |.if FPU
3029    |  fcomp f20, f22
3030    |   addu TMP2, TMP2, TMP3
3031    |  b <1
3032    |.  fmovop TMP2, r0
3033    |.else
3034    |  bal sfcomp
3035    |.   addu TMP2, TMP2, TMP3
3036    |  b <1
3037    |.  movop TMP2, r0, CRET1
3038    |.endif
3039    |
3040    |4:  // RA is a number, RD is not a number.
3041    |  bne RDHI, TISNUM, ->vmeta_comp
3042    |  // RA is a number, RD is an integer. Convert RD to a number.
3043    |.if FPU
3044    |.  lwc1 FRD, LO(RD)
3045    |  b <3
3046    |.  cvt.d.w FRD, FRD
3047    |.else
3048    |.  nop
3049    |.if "RDHI" == "SFARG1HI"
3050    |  bal ->vm_sfi2d_1
3051    |.else
3052    |  bal ->vm_sfi2d_2
3053    |.endif
3054    |.  nop
3055    |  b <3
3056    |.  nop
3057    |.endif
3058    |
3059    |5:  // RA is an integer, RD is not an integer
3060    |  sltiu AT, RDHI, LJ_TISNUM
3061    |  beqz AT, ->vmeta_comp
3062    |  // RA is an integer, RD is a number. Convert RA to a number.
3063    |.if FPU
3064    |.  mtc1 RALO, FRA
3065    |   ldc1 FRD, 0(RD)
3066    |  b <3
3067    |   cvt.d.w FRA, FRA
3068    |.else
3069    |.  nop
3070    |.if "RAHI" == "SFARG1HI"
3071    |  bal ->vm_sfi2d_1
3072    |.else
3073    |  bal ->vm_sfi2d_2
3074    |.endif
3075    |.  nop
3076    |  b <3
3077    |.  nop
3078    |.endif
3079    |.endmacro
3080    |
3081    if (op == BC_ISLT) {
3082      |  bc_comp f20, f22, SFARG1HI, SFARG1LO, SFARG2HI, SFARG2LO, movz, movf, c.olt.d, ->vm_sfcmpolt
3083    } else if (op == BC_ISGE) {
3084      |  bc_comp f20, f22, SFARG1HI, SFARG1LO, SFARG2HI, SFARG2LO, movn, movt, c.olt.d, ->vm_sfcmpolt
3085    } else if (op == BC_ISLE) {
3086      |  bc_comp f22, f20, SFARG2HI, SFARG2LO, SFARG1HI, SFARG1LO, movn, movt, c.ult.d, ->vm_sfcmpult
3087    } else {
3088      |  bc_comp f22, f20, SFARG2HI, SFARG2LO, SFARG1HI, SFARG1LO, movz, movf, c.ult.d, ->vm_sfcmpult
3089    }
3090    break;
3091
3092  case BC_ISEQV: case BC_ISNEV:
3093    vk = op == BC_ISEQV;
3094    |  // RA = src1*8, RD = src2*8, JMP with RD = target
3095    |  addu RA, BASE, RA
3096    |    addiu PC, PC, 4
3097    |  addu RD, BASE, RD
3098    |  lw SFARG1HI, HI(RA)
3099    |    lhu TMP2, -4+OFS_RD(PC)
3100    |  lw SFARG2HI, HI(RD)
3101    |    lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535)
3102    |  sltu AT, TISNUM, SFARG1HI
3103    |  sltu TMP0, TISNUM, SFARG2HI
3104    |  or AT, AT, TMP0
3105    if (vk) {
3106      |  beqz AT, ->BC_ISEQN_Z
3107    } else {
3108      |  beqz AT, ->BC_ISNEN_Z
3109    }
3110    |.   decode_RD4b TMP2
3111    |  // Either or both types are not numbers.
3112    |  lw SFARG1LO, LO(RA)
3113    |  lw SFARG2LO, LO(RD)
3114    |  addu TMP2, TMP2, TMP3
3115    |.if FFI
3116    |  li TMP3, LJ_TCDATA
3117    |  beq SFARG1HI, TMP3, ->vmeta_equal_cd
3118    |.endif
3119    |.  sltiu AT, SFARG1HI, LJ_TISPRI		// Not a primitive?
3120    |.if FFI
3121    |  beq SFARG2HI, TMP3, ->vmeta_equal_cd
3122    |.endif
3123    |.  xor TMP3, SFARG1LO, SFARG2LO		// Same tv?
3124    |  xor SFARG2HI, SFARG2HI, SFARG1HI		// Same type?
3125    |  sltiu TMP0, SFARG1HI, LJ_TISTABUD+1	// Table or userdata?
3126    |  movz TMP3, r0, AT			// Ignore tv if primitive.
3127    |  movn TMP0, r0, SFARG2HI			// Tab/ud and same type?
3128    |  or AT, SFARG2HI, TMP3			// Same type && (pri||same tv).
3129    |  movz TMP0, r0, AT
3130    |  beqz TMP0, >1	// Done if not tab/ud or not same type or same tv.
3131    if (vk) {
3132      |.  movn TMP2, r0, AT
3133    } else {
3134      |.  movz TMP2, r0, AT
3135    }
3136    |  // Different tables or userdatas. Need to check __eq metamethod.
3137    |  // Field metatable must be at same offset for GCtab and GCudata!
3138    |  lw TAB:TMP1, TAB:SFARG1LO->metatable
3139    |  beqz TAB:TMP1, >1		// No metatable?
3140    |.  nop
3141    |  lbu TMP1, TAB:TMP1->nomm
3142    |  andi TMP1, TMP1, 1<<MM_eq
3143    |  bnez TMP1, >1			// Or 'no __eq' flag set?
3144    |.  nop
3145    |  b ->vmeta_equal			// Handle __eq metamethod.
3146    |.  li TMP0, 1-vk			// ne = 0 or 1.
3147    |1:
3148    |  addu PC, PC, TMP2
3149    |  ins_next
3150    break;
3151
3152  case BC_ISEQS: case BC_ISNES:
3153    vk = op == BC_ISEQS;
3154    |  // RA = src*8, RD = str_const*8 (~), JMP with RD = target
3155    |  addu RA, BASE, RA
3156    |   addiu PC, PC, 4
3157    |  lw TMP0, HI(RA)
3158    |   srl RD, RD, 1
3159    |  lw STR:TMP3, LO(RA)
3160    |   subu RD, KBASE, RD
3161    |    lhu TMP2, -4+OFS_RD(PC)
3162    |.if FFI
3163    |  li AT, LJ_TCDATA
3164    |  beq TMP0, AT, ->vmeta_equal_cd
3165    |.endif
3166    |.  lw STR:TMP1, -4(RD)		// KBASE-4-str_const*4
3167    |  addiu TMP0, TMP0, -LJ_TSTR
3168    |   decode_RD4b TMP2
3169    |  xor TMP1, STR:TMP1, STR:TMP3
3170    |  or TMP0, TMP0, TMP1
3171    |   lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535)
3172    |   addu TMP2, TMP2, TMP3
3173    if (vk) {
3174      |  movn TMP2, r0, TMP0
3175    } else {
3176      |  movz TMP2, r0, TMP0
3177    }
3178    |  addu PC, PC, TMP2
3179    |  ins_next
3180    break;
3181
3182  case BC_ISEQN: case BC_ISNEN:
3183    vk = op == BC_ISEQN;
3184    |  // RA = src*8, RD = num_const*8, JMP with RD = target
3185    |  addu RA, BASE, RA
3186    |   addu RD, KBASE, RD
3187    |  lw SFARG1HI, HI(RA)
3188    |   lw SFARG2HI, HI(RD)
3189    |    lhu TMP2, OFS_RD(PC)
3190    |    addiu PC, PC, 4
3191    |    lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535)
3192    |    decode_RD4b TMP2
3193    if (vk) {
3194      |->BC_ISEQN_Z:
3195    } else {
3196      |->BC_ISNEN_Z:
3197    }
3198    |  bne SFARG1HI, TISNUM, >3
3199    |.  lw SFARG1LO, LO(RA)
3200    |  lw SFARG2LO, LO(RD)
3201    |    addu TMP2, TMP2, TMP3
3202    |  bne SFARG2HI, TISNUM, >6
3203    |.  xor AT, SFARG1LO, SFARG2LO
3204    if (vk) {
3205      |  movn TMP2, r0, AT
3206      |1:
3207      |  addu PC, PC, TMP2
3208      |2:
3209    } else {
3210      |  movz TMP2, r0, AT
3211      |1:
3212      |2:
3213      |  addu PC, PC, TMP2
3214    }
3215    |  ins_next
3216    |
3217    |3:  // RA is not an integer.
3218    |  sltiu AT, SFARG1HI, LJ_TISNUM
3219    |.if FFI
3220    |  beqz AT, >8
3221    |.else
3222    |  beqz AT, <2
3223    |.endif
3224    |.   addu TMP2, TMP2, TMP3
3225    |  sltiu AT, SFARG2HI, LJ_TISNUM
3226    |.if FPU
3227    |  ldc1 f20, 0(RA)
3228    |   ldc1 f22, 0(RD)
3229    |.endif
3230    |  beqz AT, >5
3231    |.  lw SFARG2LO, LO(RD)
3232    |4:  // RA and RD are both numbers.
3233    |.if FPU
3234    |  c.eq.d f20, f22
3235    |  b <1
3236    if (vk) {
3237      |.  movf TMP2, r0
3238    } else {
3239      |.  movt TMP2, r0
3240    }
3241    |.else
3242    |  bal ->vm_sfcmpeq
3243    |.  nop
3244    |  b <1
3245    if (vk) {
3246      |.  movz TMP2, r0, CRET1
3247    } else {
3248      |.  movn TMP2, r0, CRET1
3249    }
3250    |.endif
3251    |
3252    |5:  // RA is a number, RD is not a number.
3253    |.if FFI
3254    |  bne SFARG2HI, TISNUM, >9
3255    |.else
3256    |  bne SFARG2HI, TISNUM, <2
3257    |.endif
3258    |  // RA is a number, RD is an integer. Convert RD to a number.
3259    |.if FPU
3260    |.  lwc1 f22, LO(RD)
3261    |  b <4
3262    |.  cvt.d.w f22, f22
3263    |.else
3264    |.  nop
3265    |  bal ->vm_sfi2d_2
3266    |.  nop
3267    |  b <4
3268    |.  nop
3269    |.endif
3270    |
3271    |6:  // RA is an integer, RD is not an integer
3272    |  sltiu AT, SFARG2HI, LJ_TISNUM
3273    |.if FFI
3274    |  beqz AT, >9
3275    |.else
3276    |  beqz AT, <2
3277    |.endif
3278    |  // RA is an integer, RD is a number. Convert RA to a number.
3279    |.if FPU
3280    |.  mtc1 SFARG1LO, f20
3281    |   ldc1 f22, 0(RD)
3282    |  b <4
3283    |   cvt.d.w f20, f20
3284    |.else
3285    |.  nop
3286    |  bal ->vm_sfi2d_1
3287    |.  nop
3288    |  b <4
3289    |.  nop
3290    |.endif
3291    |
3292    |.if FFI
3293    |8:
3294    |  li AT, LJ_TCDATA
3295    |  bne SFARG1HI, AT, <2
3296    |.  nop
3297    |  b ->vmeta_equal_cd
3298    |.  nop
3299    |9:
3300    |  li AT, LJ_TCDATA
3301    |  bne SFARG2HI, AT, <2
3302    |.  nop
3303    |  b ->vmeta_equal_cd
3304    |.  nop
3305    |.endif
3306    break;
3307
3308  case BC_ISEQP: case BC_ISNEP:
3309    vk = op == BC_ISEQP;
3310    |  // RA = src*8, RD = primitive_type*8 (~), JMP with RD = target
3311    |  addu RA, BASE, RA
3312    |   srl TMP1, RD, 3
3313    |  lw TMP0, HI(RA)
3314    |    lhu TMP2, OFS_RD(PC)
3315    |   not TMP1, TMP1
3316    |    addiu PC, PC, 4
3317    |.if FFI
3318    |  li AT, LJ_TCDATA
3319    |  beq TMP0, AT, ->vmeta_equal_cd
3320    |.endif
3321    |.  xor TMP0, TMP0, TMP1
3322    |  decode_RD4b TMP2
3323    |  lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535)
3324    |  addu TMP2, TMP2, TMP3
3325    if (vk) {
3326      |  movn TMP2, r0, TMP0
3327    } else {
3328      |  movz TMP2, r0, TMP0
3329    }
3330    |  addu PC, PC, TMP2
3331    |  ins_next
3332    break;
3333
3334  /* -- Unary test and copy ops ------------------------------------------- */
3335
3336  case BC_ISTC: case BC_ISFC: case BC_IST: case BC_ISF:
3337    |  // RA = dst*8 or unused, RD = src*8, JMP with RD = target
3338    |  addu RD, BASE, RD
3339    |   lhu TMP2, OFS_RD(PC)
3340    |  lw TMP0, HI(RD)
3341    |   addiu PC, PC, 4
3342    if (op == BC_IST || op == BC_ISF) {
3343      |  sltiu TMP0, TMP0, LJ_TISTRUECOND
3344      |   decode_RD4b TMP2
3345      |   lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535)
3346      |   addu TMP2, TMP2, TMP3
3347      if (op == BC_IST) {
3348	|  movz TMP2, r0, TMP0
3349      } else {
3350	|  movn TMP2, r0, TMP0
3351      }
3352      |  addu PC, PC, TMP2
3353    } else {
3354      |  sltiu TMP0, TMP0, LJ_TISTRUECOND
3355      |  lw SFRETHI, HI(RD)
3356      |   lw SFRETLO, LO(RD)
3357      if (op == BC_ISTC) {
3358	|  beqz TMP0, >1
3359      } else {
3360	|  bnez TMP0, >1
3361      }
3362      |.  addu RA, BASE, RA
3363      |   decode_RD4b TMP2
3364      |   lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535)
3365      |   addu TMP2, TMP2, TMP3
3366      |  sw SFRETHI, HI(RA)
3367      |   sw SFRETLO, LO(RA)
3368      |   addu PC, PC, TMP2
3369      |1:
3370    }
3371    |  ins_next
3372    break;
3373
3374  case BC_ISTYPE:
3375    |  // RA = src*8, RD = -type*8
3376    |  addu TMP2, BASE, RA
3377    |  srl TMP1, RD, 3
3378    |  lw TMP0, HI(TMP2)
3379    |  ins_next1
3380    |  addu AT, TMP0, TMP1
3381    |  bnez AT, ->vmeta_istype
3382    |.  ins_next2
3383    break;
3384  case BC_ISNUM:
3385    |  // RA = src*8, RD = -(TISNUM-1)*8
3386    |  addu TMP2, BASE, RA
3387    |  lw TMP0, HI(TMP2)
3388    |  ins_next1
3389    |  sltiu AT, TMP0, LJ_TISNUM
3390    |  beqz AT, ->vmeta_istype
3391    |.  ins_next2
3392    break;
3393
3394  /* -- Unary ops --------------------------------------------------------- */
3395
3396  case BC_MOV:
3397    |  // RA = dst*8, RD = src*8
3398    |  addu RD, BASE, RD
3399    |   addu RA, BASE, RA
3400    |  lw SFRETHI, HI(RD)
3401    |   lw SFRETLO, LO(RD)
3402    |  ins_next1
3403    |  sw SFRETHI, HI(RA)
3404    |   sw SFRETLO, LO(RA)
3405    |  ins_next2
3406    break;
3407  case BC_NOT:
3408    |  // RA = dst*8, RD = src*8
3409    |  addu RD, BASE, RD
3410    |   addu RA, BASE, RA
3411    |  lw TMP0, HI(RD)
3412    |   li TMP1, LJ_TFALSE
3413    |  sltiu TMP0, TMP0, LJ_TISTRUECOND
3414    |  addiu TMP1, TMP0, LJ_TTRUE
3415    |  ins_next1
3416    |  sw TMP1, HI(RA)
3417    |  ins_next2
3418    break;
3419  case BC_UNM:
3420    |  // RA = dst*8, RD = src*8
3421    |  addu RB, BASE, RD
3422    |  lw SFARG1HI, HI(RB)
3423    |   addu RA, BASE, RA
3424    |  bne SFARG1HI, TISNUM, >2
3425    |.  lw SFARG1LO, LO(RB)
3426    |  lui TMP1, 0x8000
3427    |  beq SFARG1LO, TMP1, ->vmeta_unm	// Meta handler deals with -2^31.
3428    |.  negu SFARG1LO, SFARG1LO
3429    |1:
3430    |  ins_next1
3431    |  sw SFARG1HI, HI(RA)
3432    |   sw SFARG1LO, LO(RA)
3433    |  ins_next2
3434    |2:
3435    |  sltiu AT, SFARG1HI, LJ_TISNUM
3436    |  beqz AT, ->vmeta_unm
3437    |.  lui TMP1, 0x8000
3438    |  b <1
3439    |.  xor SFARG1HI, SFARG1HI, TMP1
3440    break;
3441  case BC_LEN:
3442    |  // RA = dst*8, RD = src*8
3443    |  addu CARG2, BASE, RD
3444    |   addu RA, BASE, RA
3445    |  lw TMP0, HI(CARG2)
3446    |   lw CARG1, LO(CARG2)
3447    |  li AT, LJ_TSTR
3448    |  bne TMP0, AT, >2
3449    |.  li AT, LJ_TTAB
3450    |   lw CRET1, STR:CARG1->len
3451    |1:
3452    |  ins_next1
3453    |  sw TISNUM, HI(RA)
3454    |   sw CRET1, LO(RA)
3455    |  ins_next2
3456    |2:
3457    |  bne TMP0, AT, ->vmeta_len
3458    |.  nop
3459#if LJ_52
3460    |  lw TAB:TMP2, TAB:CARG1->metatable
3461    |  bnez TAB:TMP2, >9
3462    |.  nop
3463    |3:
3464#endif
3465    |->BC_LEN_Z:
3466    |  load_got lj_tab_len
3467    |  call_intern lj_tab_len		// (GCtab *t)
3468    |.  nop
3469    |  // Returns uint32_t (but less than 2^31).
3470    |  b <1
3471    |.  nop
3472#if LJ_52
3473    |9:
3474    |  lbu TMP0, TAB:TMP2->nomm
3475    |  andi TMP0, TMP0, 1<<MM_len
3476    |  bnez TMP0, <3			// 'no __len' flag set: done.
3477    |.  nop
3478    |  b ->vmeta_len
3479    |.  nop
3480#endif
3481    break;
3482
3483  /* -- Binary ops -------------------------------------------------------- */
3484
3485    |.macro fpmod, a, b, c
3486    |  bal ->vm_floor     // floor(b/c)
3487    |.  div.d FARG1, b, c
3488    |  mul.d a, FRET1, c
3489    |  sub.d a, b, a      // b - floor(b/c)*c
3490    |.endmacro
3491
3492    |.macro sfpmod
3493    |  addiu sp, sp, -16
3494    |
3495    |  load_got __divdf3
3496    |  sw SFARG1HI, HI(sp)
3497    |   sw SFARG1LO, LO(sp)
3498    |  sw SFARG2HI, 8+HI(sp)
3499    |  call_extern
3500    |.  sw SFARG2LO, 8+LO(sp)
3501    |
3502    |  load_got floor
3503    |  move SFARG1HI, SFRETHI
3504    |  call_extern
3505    |.  move SFARG1LO, SFRETLO
3506    |
3507    |  load_got __muldf3
3508    |  move SFARG1HI, SFRETHI
3509    |   move SFARG1LO, SFRETLO
3510    |  lw SFARG2HI, 8+HI(sp)
3511    |  call_extern
3512    |.  lw SFARG2LO, 8+LO(sp)
3513    |
3514    |  load_got __subdf3
3515    |  lw SFARG1HI, HI(sp)
3516    |   lw SFARG1LO, LO(sp)
3517    |  move SFARG2HI, SFRETHI
3518    |  call_extern
3519    |.  move SFARG2LO, SFRETLO
3520    |
3521    |  addiu sp, sp, 16
3522    |.endmacro
3523
3524    |.macro ins_arithpre, label
3525    ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN);
3526    |  // RA = dst*8, RB = src1*8, RC = src2*8 | num_const*8
3527    ||switch (vk) {
3528    ||case 0:
3529    |   decode_RB8a RB, INS
3530    |   decode_RB8b RB
3531    |    decode_RDtoRC8 RC, RD
3532    |   // RA = dst*8, RB = src1*8, RC = num_const*8
3533    |   addu RB, BASE, RB
3534    |.if "label" ~= "none"
3535    |   b label
3536    |.endif
3537    |.   addu RC, KBASE, RC
3538    ||  break;
3539    ||case 1:
3540    |   decode_RB8a RC, INS
3541    |   decode_RB8b RC
3542    |    decode_RDtoRC8 RB, RD
3543    |   // RA = dst*8, RB = num_const*8, RC = src1*8
3544    |   addu RC, BASE, RC
3545    |.if "label" ~= "none"
3546    |   b label
3547    |.endif
3548    |.   addu RB, KBASE, RB
3549    ||  break;
3550    ||default:
3551    |   decode_RB8a RB, INS
3552    |   decode_RB8b RB
3553    |    decode_RDtoRC8 RC, RD
3554    |   // RA = dst*8, RB = src1*8, RC = src2*8
3555    |   addu RB, BASE, RB
3556    |.if "label" ~= "none"
3557    |   b label
3558    |.endif
3559    |.   addu RC, BASE, RC
3560    ||  break;
3561    ||}
3562    |.endmacro
3563    |
3564    |.macro ins_arith, intins, fpins, fpcall, label
3565    |  ins_arithpre none
3566    |
3567    |.if "label" ~= "none"
3568    |label:
3569    |.endif
3570    |
3571    |  lw SFARG1HI, HI(RB)
3572    |   lw SFARG2HI, HI(RC)
3573    |
3574    |.if "intins" ~= "div"
3575    |
3576    |  // Check for two integers.
3577    |  lw SFARG1LO, LO(RB)
3578    |  bne SFARG1HI, TISNUM, >5
3579    |.  lw SFARG2LO, LO(RC)
3580    |  bne SFARG2HI, TISNUM, >5
3581    |
3582    |.if "intins" == "addu"
3583    |.  intins CRET1, SFARG1LO, SFARG2LO
3584    |  xor TMP1, CRET1, SFARG1LO	// ((y^a) & (y^b)) < 0: overflow.
3585    |  xor TMP2, CRET1, SFARG2LO
3586    |  and TMP1, TMP1, TMP2
3587    |  bltz TMP1, ->vmeta_arith
3588    |.  addu RA, BASE, RA
3589    |.elif "intins" == "subu"
3590    |.  intins CRET1, SFARG1LO, SFARG2LO
3591    |  xor TMP1, CRET1, SFARG1LO	// ((y^a) & (a^b)) < 0: overflow.
3592    |  xor TMP2, SFARG1LO, SFARG2LO
3593    |  and TMP1, TMP1, TMP2
3594    |  bltz TMP1, ->vmeta_arith
3595    |.  addu RA, BASE, RA
3596    |.elif "intins" == "mult"
3597    |.  intins SFARG1LO, SFARG2LO
3598    |  mflo CRET1
3599    |  mfhi TMP2
3600    |  sra TMP1, CRET1, 31
3601    |  bne TMP1, TMP2, ->vmeta_arith
3602    |.  addu RA, BASE, RA
3603    |.else
3604    |.  load_got lj_vm_modi
3605    |  beqz SFARG2LO, ->vmeta_arith
3606    |.  addu RA, BASE, RA
3607    |.if ENDIAN_BE
3608    |  move CARG1, SFARG1LO
3609    |.endif
3610    |  call_extern
3611    |.  move CARG2, SFARG2LO
3612    |.endif
3613    |
3614    |  ins_next1
3615    |  sw TISNUM, HI(RA)
3616    |   sw CRET1, LO(RA)
3617    |3:
3618    |  ins_next2
3619    |
3620    |.elif not FPU
3621    |
3622    |  lw SFARG1LO, LO(RB)
3623    |   lw SFARG2LO, LO(RC)
3624    |
3625    |.endif
3626    |
3627    |5:  // Check for two numbers.
3628    |  .FPU ldc1 f20, 0(RB)
3629    |  sltiu AT, SFARG1HI, LJ_TISNUM
3630    |   sltiu TMP0, SFARG2HI, LJ_TISNUM
3631    |  .FPU ldc1 f22, 0(RC)
3632    |   and AT, AT, TMP0
3633    |   beqz AT, ->vmeta_arith
3634    |.   addu RA, BASE, RA
3635    |
3636    |.if FPU
3637    |  fpins FRET1, f20, f22
3638    |.elif "fpcall" == "sfpmod"
3639    |  sfpmod
3640    |.else
3641    |  load_got fpcall
3642    |  call_extern
3643    |.  nop
3644    |.endif
3645    |
3646    |  ins_next1
3647    |.if not FPU
3648    |  sw SFRETHI, HI(RA)
3649    |.endif
3650    |.if "intins" ~= "div"
3651    |  b <3
3652    |.endif
3653    |.if FPU
3654    |.  sdc1 FRET1, 0(RA)
3655    |.else
3656    |.  sw SFRETLO, LO(RA)
3657    |.endif
3658    |.if "intins" == "div"
3659    |  ins_next2
3660    |.endif
3661    |
3662    |.endmacro
3663
3664  case BC_ADDVN: case BC_ADDNV: case BC_ADDVV:
3665    |  ins_arith addu, add.d, __adddf3, none
3666    break;
3667  case BC_SUBVN: case BC_SUBNV: case BC_SUBVV:
3668    |  ins_arith subu, sub.d, __subdf3, none
3669    break;
3670  case BC_MULVN: case BC_MULNV: case BC_MULVV:
3671    |  ins_arith mult, mul.d, __muldf3, none
3672    break;
3673  case BC_DIVVN:
3674    |  ins_arith div, div.d, __divdf3, ->BC_DIVVN_Z
3675    break;
3676  case BC_DIVNV: case BC_DIVVV:
3677    |  ins_arithpre ->BC_DIVVN_Z
3678    break;
3679  case BC_MODVN:
3680    |  ins_arith modi, fpmod, sfpmod, ->BC_MODVN_Z
3681    break;
3682  case BC_MODNV: case BC_MODVV:
3683    |  ins_arithpre ->BC_MODVN_Z
3684    break;
3685  case BC_POW:
3686    |  ins_arithpre none
3687    |  lw SFARG1HI, HI(RB)
3688    |   lw SFARG2HI, HI(RC)
3689    |  sltiu AT, SFARG1HI, LJ_TISNUM
3690    |  sltiu TMP0, SFARG2HI, LJ_TISNUM
3691    |  and AT, AT, TMP0
3692    |  load_got pow
3693    |  beqz AT, ->vmeta_arith
3694    |.  addu RA, BASE, RA
3695    |.if FPU
3696    |  ldc1 FARG1, 0(RB)
3697    |  ldc1 FARG2, 0(RC)
3698    |.else
3699    |  lw SFARG1LO, LO(RB)
3700    |   lw SFARG2LO, LO(RC)
3701    |.endif
3702    |  call_extern
3703    |.  nop
3704    |  ins_next1
3705    |.if FPU
3706    |  sdc1 FRET1, 0(RA)
3707    |.else
3708    |  sw SFRETHI, HI(RA)
3709    |   sw SFRETLO, LO(RA)
3710    |.endif
3711    |  ins_next2
3712    break;
3713
3714  case BC_CAT:
3715    |  // RA = dst*8, RB = src_start*8, RC = src_end*8
3716    |  decode_RB8a RB, INS
3717    |  decode_RB8b RB
3718    |   decode_RDtoRC8 RC, RD
3719    |  subu CARG3, RC, RB
3720    |   sw BASE, L->base
3721    |  addu CARG2, BASE, RC
3722    |  move MULTRES, RB
3723    |->BC_CAT_Z:
3724    |  load_got lj_meta_cat
3725    |  srl CARG3, CARG3, 3
3726    |   sw PC, SAVE_PC
3727    |  call_intern lj_meta_cat		// (lua_State *L, TValue *top, int left)
3728    |.  move CARG1, L
3729    |  // Returns NULL (finished) or TValue * (metamethod).
3730    |  bnez CRET1, ->vmeta_binop
3731    |.  lw BASE, L->base
3732    |  addu RB, BASE, MULTRES
3733    |  lw SFRETHI, HI(RB)
3734    |   lw SFRETLO, LO(RB)
3735    |   addu RA, BASE, RA
3736    |  ins_next1
3737    |  sw SFRETHI, HI(RA)
3738    |   sw SFRETLO, LO(RA)
3739    |  ins_next2
3740    break;
3741
3742  /* -- Constant ops ------------------------------------------------------ */
3743
3744  case BC_KSTR:
3745    |  // RA = dst*8, RD = str_const*8 (~)
3746    |  srl TMP1, RD, 1
3747    |  subu TMP1, KBASE, TMP1
3748    |  ins_next1
3749    |  lw TMP0, -4(TMP1)		// KBASE-4-str_const*4
3750    |  addu RA, BASE, RA
3751    |   li TMP2, LJ_TSTR
3752    |  sw TMP0, LO(RA)
3753    |   sw TMP2, HI(RA)
3754    |  ins_next2
3755    break;
3756  case BC_KCDATA:
3757    |.if FFI
3758    |  // RA = dst*8, RD = cdata_const*8 (~)
3759    |  srl TMP1, RD, 1
3760    |  subu TMP1, KBASE, TMP1
3761    |  ins_next1
3762    |  lw TMP0, -4(TMP1)		// KBASE-4-cdata_const*4
3763    |  addu RA, BASE, RA
3764    |   li TMP2, LJ_TCDATA
3765    |  sw TMP0, LO(RA)
3766    |   sw TMP2, HI(RA)
3767    |  ins_next2
3768    |.endif
3769    break;
3770  case BC_KSHORT:
3771    |  // RA = dst*8, RD = int16_literal*8
3772    |  sra RD, INS, 16
3773    |  addu RA, BASE, RA
3774    |  ins_next1
3775    |  sw TISNUM, HI(RA)
3776    |   sw RD, LO(RA)
3777    |  ins_next2
3778    break;
3779  case BC_KNUM:
3780    |  // RA = dst*8, RD = num_const*8
3781    |  addu RD, KBASE, RD
3782    |   addu RA, BASE, RA
3783    |  lw SFRETHI, HI(RD)
3784    |   lw SFRETLO, LO(RD)
3785    |  ins_next1
3786    |  sw SFRETHI, HI(RA)
3787    |   sw SFRETLO, LO(RA)
3788    |  ins_next2
3789    break;
3790  case BC_KPRI:
3791    |  // RA = dst*8, RD = primitive_type*8 (~)
3792    |  srl TMP1, RD, 3
3793    |   addu RA, BASE, RA
3794    |  not TMP0, TMP1
3795    |  ins_next1
3796    |   sw TMP0, HI(RA)
3797    |  ins_next2
3798    break;
3799  case BC_KNIL:
3800    |  // RA = base*8, RD = end*8
3801    |  addu RA, BASE, RA
3802    |  sw TISNIL, HI(RA)
3803    |   addiu RA, RA, 8
3804    |  addu RD, BASE, RD
3805    |1:
3806    |  sw TISNIL, HI(RA)
3807    |  slt AT, RA, RD
3808    |  bnez AT, <1
3809    |.  addiu RA, RA, 8
3810    |  ins_next_
3811    break;
3812
3813  /* -- Upvalue and function ops ------------------------------------------ */
3814
3815  case BC_UGET:
3816    |  // RA = dst*8, RD = uvnum*8
3817    |  lw LFUNC:RB, FRAME_FUNC(BASE)
3818    |   srl RD, RD, 1
3819    |   addu RD, RD, LFUNC:RB
3820    |  lw UPVAL:RB, LFUNC:RD->uvptr
3821    |  ins_next1
3822    |  lw TMP1, UPVAL:RB->v
3823    |  lw SFRETHI, HI(TMP1)
3824    |   lw SFRETLO, LO(TMP1)
3825    |  addu RA, BASE, RA
3826    |  sw SFRETHI, HI(RA)
3827    |   sw SFRETLO, LO(RA)
3828    |  ins_next2
3829    break;
3830  case BC_USETV:
3831    |  // RA = uvnum*8, RD = src*8
3832    |  lw LFUNC:RB, FRAME_FUNC(BASE)
3833    |    srl RA, RA, 1
3834    |   addu RD, BASE, RD
3835    |    addu RA, RA, LFUNC:RB
3836    |  lw UPVAL:RB, LFUNC:RA->uvptr
3837    |   lw SFRETHI, HI(RD)
3838    |    lw SFRETLO, LO(RD)
3839    |  lbu TMP3, UPVAL:RB->marked
3840    |   lw CARG2, UPVAL:RB->v
3841    |  andi TMP3, TMP3, LJ_GC_BLACK	// isblack(uv)
3842    |  lbu TMP0, UPVAL:RB->closed
3843    |   sw SFRETHI, HI(CARG2)
3844    |    sw SFRETLO, LO(CARG2)
3845    |  li AT, LJ_GC_BLACK|1
3846    |  or TMP3, TMP3, TMP0
3847    |  beq TMP3, AT, >2			// Upvalue is closed and black?
3848    |.  addiu TMP2, SFRETHI, -(LJ_TNUMX+1)
3849    |1:
3850    |  ins_next
3851    |
3852    |2:  // Check if new value is collectable.
3853    |  sltiu AT, TMP2, LJ_TISGCV - (LJ_TNUMX+1)
3854    |  beqz AT, <1			// tvisgcv(v)
3855    |.  nop
3856    |  lbu TMP3, GCOBJ:SFRETLO->gch.marked
3857    |  andi TMP3, TMP3, LJ_GC_WHITES	// iswhite(v)
3858    |  beqz TMP3, <1
3859    |.  load_got lj_gc_barrieruv
3860    |  // Crossed a write barrier. Move the barrier forward.
3861    |  call_intern lj_gc_barrieruv	// (global_State *g, TValue *tv)
3862    |.  addiu CARG1, DISPATCH, GG_DISP2G
3863    |  b <1
3864    |.  nop
3865    break;
3866  case BC_USETS:
3867    |  // RA = uvnum*8, RD = str_const*8 (~)
3868    |  lw LFUNC:RB, FRAME_FUNC(BASE)
3869    |    srl RA, RA, 1
3870    |   srl TMP1, RD, 1
3871    |    addu RA, RA, LFUNC:RB
3872    |   subu TMP1, KBASE, TMP1
3873    |  lw UPVAL:RB, LFUNC:RA->uvptr
3874    |   lw STR:TMP1, -4(TMP1)		// KBASE-4-str_const*4
3875    |  lbu TMP2, UPVAL:RB->marked
3876    |   lw CARG2, UPVAL:RB->v
3877    |   lbu TMP3, STR:TMP1->marked
3878    |  andi AT, TMP2, LJ_GC_BLACK	// isblack(uv)
3879    |   lbu TMP2, UPVAL:RB->closed
3880    |   li TMP0, LJ_TSTR
3881    |   sw STR:TMP1, LO(CARG2)
3882    |  bnez AT, >2
3883    |.  sw TMP0, HI(CARG2)
3884    |1:
3885    |  ins_next
3886    |
3887    |2:  // Check if string is white and ensure upvalue is closed.
3888    |  beqz TMP2, <1
3889    |.  andi AT, TMP3, LJ_GC_WHITES	// iswhite(str)
3890    |  beqz AT, <1
3891    |.  load_got lj_gc_barrieruv
3892    |  // Crossed a write barrier. Move the barrier forward.
3893    |  call_intern lj_gc_barrieruv	// (global_State *g, TValue *tv)
3894    |.  addiu CARG1, DISPATCH, GG_DISP2G
3895    |  b <1
3896    |.  nop
3897    break;
3898  case BC_USETN:
3899    |  // RA = uvnum*8, RD = num_const*8
3900    |  lw LFUNC:RB, FRAME_FUNC(BASE)
3901    |   srl RA, RA, 1
3902    |    addu RD, KBASE, RD
3903    |   addu RA, RA, LFUNC:RB
3904    |   lw UPVAL:RB, LFUNC:RA->uvptr
3905    |    lw SFRETHI, HI(RD)
3906    |     lw SFRETLO, LO(RD)
3907    |   lw TMP1, UPVAL:RB->v
3908    |  ins_next1
3909    |    sw SFRETHI, HI(TMP1)
3910    |     sw SFRETLO, LO(TMP1)
3911    |  ins_next2
3912    break;
3913  case BC_USETP:
3914    |  // RA = uvnum*8, RD = primitive_type*8 (~)
3915    |  lw LFUNC:RB, FRAME_FUNC(BASE)
3916    |   srl RA, RA, 1
3917    |    srl TMP0, RD, 3
3918    |   addu RA, RA, LFUNC:RB
3919    |    not TMP0, TMP0
3920    |   lw UPVAL:RB, LFUNC:RA->uvptr
3921    |  ins_next1
3922    |   lw TMP1, UPVAL:RB->v
3923    |   sw TMP0, HI(TMP1)
3924    |  ins_next2
3925    break;
3926
3927  case BC_UCLO:
3928    |  // RA = level*8, RD = target
3929    |  lw TMP2, L->openupval
3930    |  branch_RD			// Do this first since RD is not saved.
3931    |  load_got lj_func_closeuv
3932    |   sw BASE, L->base
3933    |  beqz TMP2, >1
3934    |.  move CARG1, L
3935    |  call_intern lj_func_closeuv	// (lua_State *L, TValue *level)
3936    |.  addu CARG2, BASE, RA
3937    |  lw BASE, L->base
3938    |1:
3939    |  ins_next
3940    break;
3941
3942  case BC_FNEW:
3943    |  // RA = dst*8, RD = proto_const*8 (~) (holding function prototype)
3944    |  srl TMP1, RD, 1
3945    |  load_got lj_func_newL_gc
3946    |  subu TMP1, KBASE, TMP1
3947    |  lw CARG3, FRAME_FUNC(BASE)
3948    |  lw CARG2, -4(TMP1)		// KBASE-4-tab_const*4
3949    |   sw BASE, L->base
3950    |   sw PC, SAVE_PC
3951    |  // (lua_State *L, GCproto *pt, GCfuncL *parent)
3952    |  call_intern lj_func_newL_gc
3953    |.  move CARG1, L
3954    |  // Returns GCfuncL *.
3955    |  lw BASE, L->base
3956    |   li TMP0, LJ_TFUNC
3957    |  ins_next1
3958    |  addu RA, BASE, RA
3959    |  sw LFUNC:CRET1, LO(RA)
3960    |   sw TMP0, HI(RA)
3961    |  ins_next2
3962    break;
3963
3964  /* -- Table ops --------------------------------------------------------- */
3965
3966  case BC_TNEW:
3967  case BC_TDUP:
3968    |  // RA = dst*8, RD = (hbits|asize)*8 | tab_const*8 (~)
3969    |  lw TMP0, DISPATCH_GL(gc.total)(DISPATCH)
3970    |  lw TMP1, DISPATCH_GL(gc.threshold)(DISPATCH)
3971    |   sw BASE, L->base
3972    |   sw PC, SAVE_PC
3973    |  sltu AT, TMP0, TMP1
3974    |  beqz AT, >5
3975    |1:
3976    if (op == BC_TNEW) {
3977      |  load_got lj_tab_new
3978      |  srl CARG2, RD, 3
3979      |  andi CARG2, CARG2, 0x7ff
3980      |  li TMP0, 0x801
3981      |  addiu AT, CARG2, -0x7ff
3982      |   srl CARG3, RD, 14
3983      |  movz CARG2, TMP0, AT
3984      |  // (lua_State *L, int32_t asize, uint32_t hbits)
3985      |  call_intern lj_tab_new
3986      |.  move CARG1, L
3987      |  // Returns Table *.
3988    } else {
3989      |  load_got lj_tab_dup
3990      |  srl TMP1, RD, 1
3991      |  subu TMP1, KBASE, TMP1
3992      |  move CARG1, L
3993      |  call_intern lj_tab_dup		// (lua_State *L, Table *kt)
3994      |.  lw CARG2, -4(TMP1)		// KBASE-4-str_const*4
3995      |  // Returns Table *.
3996    }
3997    |  lw BASE, L->base
3998    |  ins_next1
3999    |  addu RA, BASE, RA
4000    |   li TMP0, LJ_TTAB
4001    |  sw TAB:CRET1, LO(RA)
4002    |   sw TMP0, HI(RA)
4003    |  ins_next2
4004    |5:
4005    |  load_got lj_gc_step_fixtop
4006    |  move MULTRES, RD
4007    |  call_intern lj_gc_step_fixtop	// (lua_State *L)
4008    |.  move CARG1, L
4009    |  b <1
4010    |.  move RD, MULTRES
4011    break;
4012
4013  case BC_GGET:
4014    |  // RA = dst*8, RD = str_const*8 (~)
4015  case BC_GSET:
4016    |  // RA = src*8, RD = str_const*8 (~)
4017    |  lw LFUNC:TMP2, FRAME_FUNC(BASE)
4018    |   srl TMP1, RD, 1
4019    |   subu TMP1, KBASE, TMP1
4020    |  lw TAB:RB, LFUNC:TMP2->env
4021    |  lw STR:RC, -4(TMP1)		// KBASE-4-str_const*4
4022    if (op == BC_GGET) {
4023      |  b ->BC_TGETS_Z
4024    } else {
4025      |  b ->BC_TSETS_Z
4026    }
4027    |.  addu RA, BASE, RA
4028    break;
4029
4030  case BC_TGETV:
4031    |  // RA = dst*8, RB = table*8, RC = key*8
4032    |  decode_RB8a RB, INS
4033    |  decode_RB8b RB
4034    |   decode_RDtoRC8 RC, RD
4035    |  addu CARG2, BASE, RB
4036    |   addu CARG3, BASE, RC
4037    |  lw TMP1, HI(CARG2)
4038    |   lw TMP2, HI(CARG3)
4039    |    lw TAB:RB, LO(CARG2)
4040    |  li AT, LJ_TTAB
4041    |  bne TMP1, AT, ->vmeta_tgetv
4042    |.  addu RA, BASE, RA
4043    |  bne TMP2, TISNUM, >5
4044    |.  lw RC, LO(CARG3)
4045    |  lw TMP0, TAB:RB->asize
4046    |   lw TMP1, TAB:RB->array
4047    |  sltu AT, RC, TMP0
4048    |   sll TMP2, RC, 3
4049    |  beqz AT, ->vmeta_tgetv		// Integer key and in array part?
4050    |.  addu TMP2, TMP1, TMP2
4051    |  lw SFRETHI, HI(TMP2)
4052    |  beq SFRETHI, TISNIL, >2
4053    |.  lw SFRETLO, LO(TMP2)
4054    |1:
4055    |  ins_next1
4056    |  sw SFRETHI, HI(RA)
4057    |   sw SFRETLO, LO(RA)
4058    |  ins_next2
4059    |
4060    |2:  // Check for __index if table value is nil.
4061    |  lw TAB:TMP2, TAB:RB->metatable
4062    |  beqz TAB:TMP2, <1		// No metatable: done.
4063    |.  nop
4064    |  lbu TMP0, TAB:TMP2->nomm
4065    |  andi TMP0, TMP0, 1<<MM_index
4066    |  bnez TMP0, <1			// 'no __index' flag set: done.
4067    |.  nop
4068    |  b ->vmeta_tgetv
4069    |.  nop
4070    |
4071    |5:
4072    |  li AT, LJ_TSTR
4073    |  bne TMP2, AT, ->vmeta_tgetv
4074    |.  nop
4075    |  b ->BC_TGETS_Z			// String key?
4076    |.  nop
4077    break;
4078  case BC_TGETS:
4079    |  // RA = dst*8, RB = table*8, RC = str_const*4 (~)
4080    |  decode_RB8a RB, INS
4081    |  decode_RB8b RB
4082    |  addu CARG2, BASE, RB
4083    |   decode_RC4a RC, INS
4084    |  lw TMP0, HI(CARG2)
4085    |   decode_RC4b RC
4086    |  li AT, LJ_TTAB
4087    |   lw TAB:RB, LO(CARG2)
4088    |   subu CARG3, KBASE, RC
4089    |   lw STR:RC, -4(CARG3)		// KBASE-4-str_const*4
4090    |  bne TMP0, AT, ->vmeta_tgets1
4091    |.  addu RA, BASE, RA
4092    |->BC_TGETS_Z:
4093    |  // TAB:RB = GCtab *, STR:RC = GCstr *, RA = dst*8
4094    |  lw TMP0, TAB:RB->hmask
4095    |  lw TMP1, STR:RC->sid
4096    |  lw NODE:TMP2, TAB:RB->node
4097    |  and TMP1, TMP1, TMP0		// idx = str->sid & tab->hmask
4098    |  sll TMP0, TMP1, 5
4099    |  sll TMP1, TMP1, 3
4100    |  subu TMP1, TMP0, TMP1
4101    |  addu NODE:TMP2, NODE:TMP2, TMP1	// node = tab->node + (idx*32-idx*8)
4102    |1:
4103    |  lw CARG1, offsetof(Node, key)+HI(NODE:TMP2)
4104    |   lw TMP0, offsetof(Node, key)+LO(NODE:TMP2)
4105    |    lw NODE:TMP1, NODE:TMP2->next
4106    |    lw SFRETHI, offsetof(Node, val)+HI(NODE:TMP2)
4107    |  addiu CARG1, CARG1, -LJ_TSTR
4108    |   xor TMP0, TMP0, STR:RC
4109    |  or AT, CARG1, TMP0
4110    |  bnez AT, >4
4111    |.  lw TAB:TMP3, TAB:RB->metatable
4112    |    beq SFRETHI, TISNIL, >5	// Key found, but nil value?
4113    |.    lw SFRETLO, offsetof(Node, val)+LO(NODE:TMP2)
4114    |3:
4115    |  ins_next1
4116    |    sw SFRETHI, HI(RA)
4117    |     sw SFRETLO, LO(RA)
4118    |  ins_next2
4119    |
4120    |4:  // Follow hash chain.
4121    |  bnez NODE:TMP1, <1
4122    |.  move NODE:TMP2, NODE:TMP1
4123    |  // End of hash chain: key not found, nil result.
4124    |
4125    |5:  // Check for __index if table value is nil.
4126    |  beqz TAB:TMP3, <3		// No metatable: done.
4127    |.  li SFRETHI, LJ_TNIL
4128    |  lbu TMP0, TAB:TMP3->nomm
4129    |  andi TMP0, TMP0, 1<<MM_index
4130    |  bnez TMP0, <3			// 'no __index' flag set: done.
4131    |.  nop
4132    |  b ->vmeta_tgets
4133    |.  nop
4134    break;
4135  case BC_TGETB:
4136    |  // RA = dst*8, RB = table*8, RC = index*8
4137    |  decode_RB8a RB, INS
4138    |  decode_RB8b RB
4139    |  addu CARG2, BASE, RB
4140    |   decode_RDtoRC8 RC, RD
4141    |  lw CARG1, HI(CARG2)
4142    |  li AT, LJ_TTAB
4143    |   lw TAB:RB, LO(CARG2)
4144    |   addu RA, BASE, RA
4145    |  bne CARG1, AT, ->vmeta_tgetb
4146    |.  srl TMP0, RC, 3
4147    |  lw TMP1, TAB:RB->asize
4148    |   lw TMP2, TAB:RB->array
4149    |  sltu AT, TMP0, TMP1
4150    |  beqz AT, ->vmeta_tgetb
4151    |.  addu RC, TMP2, RC
4152    |  lw SFRETHI, HI(RC)
4153    |  beq SFRETHI, TISNIL, >5
4154    |.  lw SFRETLO, LO(RC)
4155    |1:
4156    |  ins_next1
4157    |  sw SFRETHI, HI(RA)
4158    |   sw SFRETLO, LO(RA)
4159    |  ins_next2
4160    |
4161    |5:  // Check for __index if table value is nil.
4162    |  lw TAB:TMP2, TAB:RB->metatable
4163    |  beqz TAB:TMP2, <1		// No metatable: done.
4164    |.  nop
4165    |  lbu TMP1, TAB:TMP2->nomm
4166    |  andi TMP1, TMP1, 1<<MM_index
4167    |  bnez TMP1, <1			// 'no __index' flag set: done.
4168    |.  nop
4169    |  b ->vmeta_tgetb			// Caveat: preserve TMP0 and CARG2!
4170    |.  nop
4171    break;
4172  case BC_TGETR:
4173    |  // RA = dst*8, RB = table*8, RC = key*8
4174    |  decode_RB8a RB, INS
4175    |  decode_RB8b RB
4176    |   decode_RDtoRC8 RC, RD
4177    |  addu RB, BASE, RB
4178    |   addu RC, BASE, RC
4179    |  lw TAB:CARG1, LO(RB)
4180    |   lw CARG2, LO(RC)
4181    |    addu RA, BASE, RA
4182    |  lw TMP0, TAB:CARG1->asize
4183    |   lw TMP1, TAB:CARG1->array
4184    |  sltu AT, CARG2, TMP0
4185    |   sll TMP2, CARG2, 3
4186    |  beqz AT, ->vmeta_tgetr		// In array part?
4187    |.  addu CRET1, TMP1, TMP2
4188    |  lw SFARG2HI, HI(CRET1)
4189    |   lw SFARG2LO, LO(CRET1)
4190    |->BC_TGETR_Z:
4191    |  ins_next1
4192    |  sw SFARG2HI, HI(RA)
4193    |   sw SFARG2LO, LO(RA)
4194    |  ins_next2
4195    break;
4196
4197  case BC_TSETV:
4198    |  // RA = src*8, RB = table*8, RC = key*8
4199    |  decode_RB8a RB, INS
4200    |  decode_RB8b RB
4201    |   decode_RDtoRC8 RC, RD
4202    |  addu CARG2, BASE, RB
4203    |   addu CARG3, BASE, RC
4204    |  lw TMP1, HI(CARG2)
4205    |   lw TMP2, HI(CARG3)
4206    |    lw TAB:RB, LO(CARG2)
4207    |  li AT, LJ_TTAB
4208    |  bne TMP1, AT, ->vmeta_tsetv
4209    |.  addu RA, BASE, RA
4210    |  bne TMP2, TISNUM, >5
4211    |.  lw RC, LO(CARG3)
4212    |  lw TMP0, TAB:RB->asize
4213    |   lw TMP1, TAB:RB->array
4214    |  sltu AT, RC, TMP0
4215    |   sll TMP2, RC, 3
4216    |  beqz AT, ->vmeta_tsetv		// Integer key and in array part?
4217    |.  addu TMP1, TMP1, TMP2
4218    |  lw TMP0, HI(TMP1)
4219    |   lbu TMP3, TAB:RB->marked
4220    |  lw SFRETHI, HI(RA)
4221    |  beq TMP0, TISNIL, >3
4222    |.  lw SFRETLO, LO(RA)
4223    |1:
4224    |   andi AT, TMP3, LJ_GC_BLACK  // isblack(table)
4225    |  sw SFRETHI, HI(TMP1)
4226    |  bnez AT, >7
4227    |.  sw SFRETLO, LO(TMP1)
4228    |2:
4229    |  ins_next
4230    |
4231    |3:  // Check for __newindex if previous value is nil.
4232    |  lw TAB:TMP2, TAB:RB->metatable
4233    |  beqz TAB:TMP2, <1		// No metatable: done.
4234    |.  nop
4235    |  lbu TMP2, TAB:TMP2->nomm
4236    |  andi TMP2, TMP2, 1<<MM_newindex
4237    |  bnez TMP2, <1			// 'no __newindex' flag set: done.
4238    |.  nop
4239    |  b ->vmeta_tsetv
4240    |.  nop
4241    |
4242    |5:
4243    |  li AT, LJ_TSTR
4244    |  bne TMP2, AT, ->vmeta_tsetv
4245    |.  nop
4246    |  b ->BC_TSETS_Z			// String key?
4247    |.  nop
4248    |
4249    |7:  // Possible table write barrier for the value. Skip valiswhite check.
4250    |  barrierback TAB:RB, TMP3, TMP0, <2
4251    break;
4252  case BC_TSETS:
4253    |  // RA = src*8, RB = table*8, RC = str_const*8 (~)
4254    |  decode_RB8a RB, INS
4255    |  decode_RB8b RB
4256    |  addu CARG2, BASE, RB
4257    |   decode_RC4a RC, INS
4258    |  lw TMP0, HI(CARG2)
4259    |   decode_RC4b RC
4260    |  li AT, LJ_TTAB
4261    |   subu CARG3, KBASE, RC
4262    |    lw TAB:RB, LO(CARG2)
4263    |   lw STR:RC, -4(CARG3)		// KBASE-4-str_const*4
4264    |  bne TMP0, AT, ->vmeta_tsets1
4265    |.  addu RA, BASE, RA
4266    |->BC_TSETS_Z:
4267    |  // TAB:RB = GCtab *, STR:RC = GCstr *, RA = BASE+src*8
4268    |  lw TMP0, TAB:RB->hmask
4269    |  lw TMP1, STR:RC->sid
4270    |  lw NODE:TMP2, TAB:RB->node
4271    |   sb r0, TAB:RB->nomm		// Clear metamethod cache.
4272    |  and TMP1, TMP1, TMP0		// idx = str->sid & tab->hmask
4273    |  sll TMP0, TMP1, 5
4274    |  sll TMP1, TMP1, 3
4275    |  subu TMP1, TMP0, TMP1
4276    |  addu NODE:TMP2, NODE:TMP2, TMP1	// node = tab->node + (idx*32-idx*8)
4277    |.if FPU
4278    |   ldc1 f20, 0(RA)
4279    |.else
4280    |   lw SFRETHI, HI(RA)
4281    |    lw SFRETLO, LO(RA)
4282    |.endif
4283    |1:
4284    |  lw CARG1, offsetof(Node, key)+HI(NODE:TMP2)
4285    |   lw TMP0, offsetof(Node, key)+LO(NODE:TMP2)
4286    |  li AT, LJ_TSTR
4287    |    lw NODE:TMP1, NODE:TMP2->next
4288    |  bne CARG1, AT, >5
4289    |.   lw CARG2, offsetof(Node, val)+HI(NODE:TMP2)
4290    |   bne TMP0, STR:RC, >5
4291    |.    lbu TMP3, TAB:RB->marked
4292    |    beq CARG2, TISNIL, >4		// Key found, but nil value?
4293    |.    lw TAB:TMP0, TAB:RB->metatable
4294    |2:
4295    |  andi AT, TMP3, LJ_GC_BLACK	// isblack(table)
4296    |.if FPU
4297    |  bnez AT, >7
4298    |.  sdc1 f20, NODE:TMP2->val
4299    |.else
4300    |   sw SFRETHI, NODE:TMP2->val.u32.hi
4301    |  bnez AT, >7
4302    |.   sw SFRETLO, NODE:TMP2->val.u32.lo
4303    |.endif
4304    |3:
4305    |  ins_next
4306    |
4307    |4:  // Check for __newindex if previous value is nil.
4308    |  beqz TAB:TMP0, <2		// No metatable: done.
4309    |.  nop
4310    |  lbu TMP0, TAB:TMP0->nomm
4311    |  andi TMP0, TMP0, 1<<MM_newindex
4312    |  bnez TMP0, <2			// 'no __newindex' flag set: done.
4313    |.  nop
4314    |  b ->vmeta_tsets
4315    |.  nop
4316    |
4317    |5:  // Follow hash chain.
4318    |  bnez NODE:TMP1, <1
4319    |.  move NODE:TMP2, NODE:TMP1
4320    |  // End of hash chain: key not found, add a new one
4321    |
4322    |  // But check for __newindex first.
4323    |  lw TAB:TMP2, TAB:RB->metatable
4324    |  beqz TAB:TMP2, >6		// No metatable: continue.
4325    |.  addiu CARG3, DISPATCH, DISPATCH_GL(tmptv)
4326    |  lbu TMP0, TAB:TMP2->nomm
4327    |  andi TMP0, TMP0, 1<<MM_newindex
4328    |  beqz TMP0, ->vmeta_tsets		// 'no __newindex' flag NOT set: check.
4329    |.  li AT, LJ_TSTR
4330    |6:
4331    |  load_got lj_tab_newkey
4332    |  sw STR:RC, LO(CARG3)
4333    |  sw AT, HI(CARG3)
4334    |   sw BASE, L->base
4335    |  move CARG2, TAB:RB
4336    |   sw PC, SAVE_PC
4337    |  call_intern lj_tab_newkey	// (lua_State *L, GCtab *t, TValue *k
4338    |.  move CARG1, L
4339    |  // Returns TValue *.
4340    |  lw BASE, L->base
4341    |.if FPU
4342    |  b <3				// No 2nd write barrier needed.
4343    |.  sdc1 f20, 0(CRET1)
4344    |.else
4345    |  lw SFARG1HI, HI(RA)
4346    |   lw SFARG1LO, LO(RA)
4347    |  sw SFARG1HI, HI(CRET1)
4348    |  b <3				// No 2nd write barrier needed.
4349    |.  sw SFARG1LO, LO(CRET1)
4350    |.endif
4351    |
4352    |7:  // Possible table write barrier for the value. Skip valiswhite check.
4353    |  barrierback TAB:RB, TMP3, TMP0, <3
4354    break;
4355  case BC_TSETB:
4356    |  // RA = src*8, RB = table*8, RC = index*8
4357    |  decode_RB8a RB, INS
4358    |  decode_RB8b RB
4359    |  addu CARG2, BASE, RB
4360    |   decode_RDtoRC8 RC, RD
4361    |  lw CARG1, HI(CARG2)
4362    |  li AT, LJ_TTAB
4363    |   lw TAB:RB, LO(CARG2)
4364    |   addu RA, BASE, RA
4365    |  bne CARG1, AT, ->vmeta_tsetb
4366    |.  srl TMP0, RC, 3
4367    |  lw TMP1, TAB:RB->asize
4368    |   lw TMP2, TAB:RB->array
4369    |  sltu AT, TMP0, TMP1
4370    |  beqz AT, ->vmeta_tsetb
4371    |.  addu RC, TMP2, RC
4372    |  lw TMP1, HI(RC)
4373    |   lbu TMP3, TAB:RB->marked
4374    |  beq TMP1, TISNIL, >5
4375    |1:
4376    |.  lw SFRETHI, HI(RA)
4377    |    lw SFRETLO, LO(RA)
4378    |  andi AT, TMP3, LJ_GC_BLACK	// isblack(table)
4379    |   sw SFRETHI, HI(RC)
4380    |  bnez AT, >7
4381    |.   sw SFRETLO, LO(RC)
4382    |2:
4383    |  ins_next
4384    |
4385    |5:  // Check for __newindex if previous value is nil.
4386    |  lw TAB:TMP2, TAB:RB->metatable
4387    |  beqz TAB:TMP2, <1		// No metatable: done.
4388    |.  nop
4389    |  lbu TMP1, TAB:TMP2->nomm
4390    |  andi TMP1, TMP1, 1<<MM_newindex
4391    |  bnez TMP1, <1			// 'no __newindex' flag set: done.
4392    |.  nop
4393    |  b ->vmeta_tsetb			// Caveat: preserve TMP0 and CARG2!
4394    |.  nop
4395    |
4396    |7:  // Possible table write barrier for the value. Skip valiswhite check.
4397    |  barrierback TAB:RB, TMP3, TMP0, <2
4398    break;
4399  case BC_TSETR:
4400    |  // RA = dst*8, RB = table*8, RC = key*8
4401    |  decode_RB8a RB, INS
4402    |  decode_RB8b RB
4403    |   decode_RDtoRC8 RC, RD
4404    |  addu CARG1, BASE, RB
4405    |   addu CARG3, BASE, RC
4406    |  lw TAB:CARG2, LO(CARG1)
4407    |   lw CARG3, LO(CARG3)
4408    |  lbu TMP3, TAB:CARG2->marked
4409    |   lw TMP0, TAB:CARG2->asize
4410    |    lw TMP1, TAB:CARG2->array
4411    |  andi AT, TMP3, LJ_GC_BLACK	// isblack(table)
4412    |  bnez AT, >7
4413    |.  addu RA, BASE, RA
4414    |2:
4415    |  sltu AT, CARG3, TMP0
4416    |   sll TMP2, CARG3, 3
4417    |  beqz AT, ->vmeta_tsetr		// In array part?
4418    |.  addu CRET1, TMP1, TMP2
4419    |->BC_TSETR_Z:
4420    |  lw SFARG1HI, HI(RA)
4421    |   lw SFARG1LO, LO(RA)
4422    |  ins_next1
4423    |  sw SFARG1HI, HI(CRET1)
4424    |   sw SFARG1LO, LO(CRET1)
4425    |  ins_next2
4426    |
4427    |7:  // Possible table write barrier for the value. Skip valiswhite check.
4428    |  barrierback TAB:CARG2, TMP3, CRET1, <2
4429    break;
4430
4431  case BC_TSETM:
4432    |  // RA = base*8 (table at base-1), RD = num_const*8 (start index)
4433    |  addu RA, BASE, RA
4434    |1:
4435    |   addu TMP3, KBASE, RD
4436    |  lw TAB:CARG2, -8+LO(RA)		// Guaranteed to be a table.
4437    |    addiu TMP0, MULTRES, -8
4438    |   lw TMP3, LO(TMP3)		// Integer constant is in lo-word.
4439    |    beqz TMP0, >4			// Nothing to copy?
4440    |.    srl CARG3, TMP0, 3
4441    |  addu CARG3, CARG3, TMP3
4442    |  lw TMP2, TAB:CARG2->asize
4443    |   sll TMP1, TMP3, 3
4444    |    lbu TMP3, TAB:CARG2->marked
4445    |   lw CARG1, TAB:CARG2->array
4446    |  sltu AT, TMP2, CARG3
4447    |  bnez AT, >5
4448    |.  addu TMP2, RA, TMP0
4449    |   addu TMP1, TMP1, CARG1
4450    |  andi TMP0, TMP3, LJ_GC_BLACK	// isblack(table)
4451    |3:  // Copy result slots to table.
4452    |   lw SFRETHI, HI(RA)
4453    |    lw SFRETLO, LO(RA)
4454    |    addiu RA, RA, 8
4455    |  sltu AT, RA, TMP2
4456    |   sw SFRETHI, HI(TMP1)
4457    |    sw SFRETLO, LO(TMP1)
4458    |  bnez AT, <3
4459    |.   addiu TMP1, TMP1, 8
4460    |  bnez TMP0, >7
4461    |. nop
4462    |4:
4463    |  ins_next
4464    |
4465    |5:  // Need to resize array part.
4466    |  load_got lj_tab_reasize
4467    |   sw BASE, L->base
4468    |   sw PC, SAVE_PC
4469    |  move BASE, RD
4470    |  call_intern lj_tab_reasize	// (lua_State *L, GCtab *t, int nasize)
4471    |.  move CARG1, L
4472    |  // Must not reallocate the stack.
4473    |  move RD, BASE
4474    |  b <1
4475    |.  lw BASE, L->base	// Reload BASE for lack of a saved register.
4476    |
4477    |7:  // Possible table write barrier for any value. Skip valiswhite check.
4478    |  barrierback TAB:CARG2, TMP3, TMP0, <4
4479    break;
4480
4481  /* -- Calls and vararg handling ----------------------------------------- */
4482
4483  case BC_CALLM:
4484    |  // RA = base*8, (RB = (nresults+1)*8,) RC = extra_nargs*8
4485    |  decode_RDtoRC8 NARGS8:RC, RD
4486    |  b ->BC_CALL_Z
4487    |.  addu NARGS8:RC, NARGS8:RC, MULTRES
4488    break;
4489  case BC_CALL:
4490    |  // RA = base*8, (RB = (nresults+1)*8,) RC = (nargs+1)*8
4491    |  decode_RDtoRC8 NARGS8:RC, RD
4492    |->BC_CALL_Z:
4493    |  move TMP2, BASE
4494    |  addu BASE, BASE, RA
4495    |   li AT, LJ_TFUNC
4496    |  lw TMP0, HI(BASE)
4497    |   lw LFUNC:RB, LO(BASE)
4498    |   addiu BASE, BASE, 8
4499    |  bne TMP0, AT, ->vmeta_call
4500    |.  addiu NARGS8:RC, NARGS8:RC, -8
4501    |  ins_call
4502    break;
4503
4504  case BC_CALLMT:
4505    |  // RA = base*8, (RB = 0,) RC = extra_nargs*8
4506    |  addu NARGS8:RD, NARGS8:RD, MULTRES	// BC_CALLT gets RC from RD.
4507    |  // Fall through. Assumes BC_CALLT follows.
4508    break;
4509  case BC_CALLT:
4510    |  // RA = base*8, (RB = 0,) RC = (nargs+1)*8
4511    |  addu RA, BASE, RA
4512    |   li AT, LJ_TFUNC
4513    |  lw TMP0, HI(RA)
4514    |   lw LFUNC:RB, LO(RA)
4515    |   move NARGS8:RC, RD
4516    |    lw TMP1, FRAME_PC(BASE)
4517    |   addiu RA, RA, 8
4518    |  bne TMP0, AT, ->vmeta_callt
4519    |.  addiu NARGS8:RC, NARGS8:RC, -8
4520    |->BC_CALLT_Z:
4521    |  andi TMP0, TMP1, FRAME_TYPE	// Caveat: preserve TMP0 until the 'or'.
4522    |   lbu TMP3, LFUNC:RB->ffid
4523    |  bnez TMP0, >7
4524    |.  xori TMP2, TMP1, FRAME_VARG
4525    |1:
4526    |  sw LFUNC:RB, FRAME_FUNC(BASE)	// Copy function down, but keep PC.
4527    |  sltiu AT, TMP3, 2		// (> FF_C) Calling a fast function?
4528    |  move TMP2, BASE
4529    |  beqz NARGS8:RC, >3
4530    |.  move TMP3, NARGS8:RC
4531    |2:
4532    |   lw SFRETHI, HI(RA)
4533    |    lw SFRETLO, LO(RA)
4534    |    addiu RA, RA, 8
4535    |  addiu TMP3, TMP3, -8
4536    |   sw SFRETHI, HI(TMP2)
4537    |    sw SFRETLO, LO(TMP2)
4538    |  bnez TMP3, <2
4539    |.   addiu TMP2, TMP2, 8
4540    |3:
4541    |  or TMP0, TMP0, AT
4542    |  beqz TMP0, >5
4543    |.  nop
4544    |4:
4545    |  ins_callt
4546    |
4547    |5:  // Tailcall to a fast function with a Lua frame below.
4548    |  lw INS, -4(TMP1)
4549    |  decode_RA8a RA, INS
4550    |  decode_RA8b RA
4551    |  subu TMP1, BASE, RA
4552    |  lw LFUNC:TMP1, -8+FRAME_FUNC(TMP1)
4553    |  lw TMP1, LFUNC:TMP1->pc
4554    |  b <4
4555    |.  lw KBASE, PC2PROTO(k)(TMP1)	// Need to prepare KBASE.
4556    |
4557    |7:  // Tailcall from a vararg function.
4558    |  andi AT, TMP2, FRAME_TYPEP
4559    |  bnez AT, <1			// Vararg frame below?
4560    |.  subu TMP2, BASE, TMP2		// Relocate BASE down.
4561    |  move BASE, TMP2
4562    |  lw TMP1, FRAME_PC(TMP2)
4563    |  b <1
4564    |.  andi TMP0, TMP1, FRAME_TYPE
4565    break;
4566
4567  case BC_ITERC:
4568    |  // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 ((2+1)*8))
4569    |  move TMP2, BASE
4570    |  addu BASE, BASE, RA
4571    |   li AT, LJ_TFUNC
4572    |  lw TMP1, -24+HI(BASE)
4573    |   lw LFUNC:RB, -24+LO(BASE)
4574    |    lw SFARG1HI, -16+HI(BASE)
4575    |     lw SFARG1LO, -16+LO(BASE)
4576    |    lw SFARG2HI, -8+HI(BASE)
4577    |     lw SFARG2LO, -8+LO(BASE)
4578    |  sw TMP1, HI(BASE)		// Copy callable.
4579    |   sw LFUNC:RB, LO(BASE)
4580    |    sw SFARG1HI, 8+HI(BASE)	// Copy state.
4581    |     sw SFARG1LO, 8+LO(BASE)
4582    |    sw SFARG2HI, 16+HI(BASE)	// Copy control var.
4583    |     sw SFARG2LO, 16+LO(BASE)
4584    |   addiu BASE, BASE, 8
4585    |  bne TMP1, AT, ->vmeta_call
4586    |.  li NARGS8:RC, 16		// Iterators get 2 arguments.
4587    |  ins_call
4588    break;
4589
4590  case BC_ITERN:
4591    |.if JIT and ENDIAN_LE
4592    |  hotloop
4593    |.endif
4594    |->vm_IITERN:
4595    |  // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 (2+1)*8)
4596    |  addu RA, BASE, RA
4597    |  lw TAB:RB, -16+LO(RA)
4598    |  lw RC, -8+LO(RA)			// Get index from control var.
4599    |  lw TMP0, TAB:RB->asize
4600    |  lw TMP1, TAB:RB->array
4601    |   addiu PC, PC, 4
4602    |1:  // Traverse array part.
4603    |  sltu AT, RC, TMP0
4604    |  beqz AT, >5			// Index points after array part?
4605    |.  sll TMP3, RC, 3
4606    |  addu TMP3, TMP1, TMP3
4607    |  lw SFARG1HI, HI(TMP3)
4608    |   lw SFARG1LO, LO(TMP3)
4609    |     lhu RD, -4+OFS_RD(PC)
4610    |  sw TISNUM, HI(RA)
4611    |   sw RC, LO(RA)
4612    |  beq SFARG1HI, TISNIL, <1		// Skip holes in array part.
4613    |.  addiu RC, RC, 1
4614    |  sw SFARG1HI, 8+HI(RA)
4615    |   sw SFARG1LO, 8+LO(RA)
4616    |     lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535)
4617    |     decode_RD4b RD
4618    |     addu RD, RD, TMP3
4619    |   sw RC, -8+LO(RA)		// Update control var.
4620    |     addu PC, PC, RD
4621    |3:
4622    |  ins_next
4623    |
4624    |5:  // Traverse hash part.
4625    |  lw TMP1, TAB:RB->hmask
4626    |  subu RC, RC, TMP0
4627    |   lw TMP2, TAB:RB->node
4628    |6:
4629    |  sltu AT, TMP1, RC		// End of iteration? Branch to ITERL+1.
4630    |  bnez AT, <3
4631    |.  sll TMP3, RC, 5
4632    |   sll RB, RC, 3
4633    |   subu TMP3, TMP3, RB
4634    |  addu NODE:TMP3, TMP3, TMP2
4635    |  lw SFARG1HI, NODE:TMP3->val.u32.hi
4636    |   lw SFARG1LO, NODE:TMP3->val.u32.lo
4637    |     lhu RD, -4+OFS_RD(PC)
4638    |  beq SFARG1HI, TISNIL, <6		// Skip holes in hash part.
4639    |.  addiu RC, RC, 1
4640    |  lw SFARG2HI, NODE:TMP3->key.u32.hi
4641    |   lw SFARG2LO, NODE:TMP3->key.u32.lo
4642    |     lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535)
4643    |  sw SFARG1HI, 8+HI(RA)
4644    |   sw SFARG1LO, 8+LO(RA)
4645    |    addu RC, RC, TMP0
4646    |     decode_RD4b RD
4647    |     addu RD, RD, TMP3
4648    |  sw SFARG2HI, HI(RA)
4649    |   sw SFARG2LO, LO(RA)
4650    |     addu PC, PC, RD
4651    |  b <3
4652    |.  sw RC, -8+LO(RA)		// Update control var.
4653    break;
4654
4655  case BC_ISNEXT:
4656    |  // RA = base*8, RD = target (points to ITERN)
4657    |  addu RA, BASE, RA
4658    |    srl TMP0, RD, 1
4659    |  lw CARG1, -24+HI(RA)
4660    |  lw CFUNC:CARG2, -24+LO(RA)
4661    |    addu TMP0, PC, TMP0
4662    |   lw CARG3, -16+HI(RA)
4663    |   lw CARG4, -8+HI(RA)
4664    |  li AT, LJ_TFUNC
4665    |  bne CARG1, AT, >5
4666    |.   lui TMP2, (-(BCBIAS_J*4 >> 16) & 65535)
4667    |  lbu CARG2, CFUNC:CARG2->ffid
4668    |   addiu CARG3, CARG3, -LJ_TTAB
4669    |   addiu CARG4, CARG4, -LJ_TNIL
4670    |   or CARG3, CARG3, CARG4
4671    |  addiu CARG2, CARG2, -FF_next_N
4672    |  or CARG2, CARG2, CARG3
4673    |  bnez CARG2, >5
4674    |.  lui TMP1, (LJ_KEYINDEX >> 16)
4675    |  addu PC, TMP0, TMP2
4676    |  ori TMP1, TMP1, (LJ_KEYINDEX & 0xffff)
4677    |  sw r0, -8+LO(RA)			// Initialize control var.
4678    |  sw TMP1, -8+HI(RA)
4679    |1:
4680    |  ins_next
4681    |5:  // Despecialize bytecode if any of the checks fail.
4682    |  li TMP3, BC_JMP
4683    |   li TMP1, BC_ITERC
4684    |  sb TMP3, -4+OFS_OP(PC)
4685    |  addu PC, TMP0, TMP2
4686    |.if JIT
4687    |  lb TMP0, OFS_OP(PC)
4688    |  li AT, BC_ITERN
4689    |  bne TMP0, AT, >6
4690    |.  lhu TMP2, OFS_RD(PC)
4691    |.endif
4692    |  b <1
4693    |.  sb TMP1, OFS_OP(PC)
4694    |.if JIT
4695    |6:  // Unpatch JLOOP.
4696    |  lw TMP0, DISPATCH_J(trace)(DISPATCH)
4697    |   sll TMP2, TMP2, 2
4698    |  addu TMP0, TMP0, TMP2
4699    |  lw TRACE:TMP2, 0(TMP0)
4700    |  lw TMP0, TRACE:TMP2->startins
4701    |   li AT, -256
4702    |  and TMP0, TMP0, AT
4703    |  or TMP0, TMP0, TMP1
4704    |  b <1
4705    |.  sw TMP0, 0(PC)
4706    |.endif
4707    break;
4708
4709  case BC_VARG:
4710    |  // RA = base*8, RB = (nresults+1)*8, RC = numparams*8
4711    |  lw TMP0, FRAME_PC(BASE)
4712    |  decode_RDtoRC8 RC, RD
4713    |   decode_RB8a RB, INS
4714    |  addu RC, BASE, RC
4715    |   decode_RB8b RB
4716    |   addu RA, BASE, RA
4717    |  addiu RC, RC, FRAME_VARG
4718    |   addu TMP2, RA, RB
4719    |  addiu TMP3, BASE, -8		// TMP3 = vtop
4720    |  subu RC, RC, TMP0		// RC = vbase
4721    |  // Note: RC may now be even _above_ BASE if nargs was < numparams.
4722    |  beqz RB, >5			// Copy all varargs?
4723    |.  subu TMP1, TMP3, RC
4724    |  addiu TMP2, TMP2, -16
4725    |1:  // Copy vararg slots to destination slots.
4726    |  lw CARG1, HI(RC)
4727    |  sltu AT, RC, TMP3
4728    |   lw CARG2, LO(RC)
4729    |    addiu RC, RC, 8
4730    |  movz CARG1, TISNIL, AT
4731    |  sw CARG1, HI(RA)
4732    |   sw CARG2, LO(RA)
4733    |  sltu AT, RA, TMP2
4734    |  bnez AT, <1
4735    |.   addiu RA, RA, 8
4736    |3:
4737    |  ins_next
4738    |
4739    |5:  // Copy all varargs.
4740    |  lw TMP0, L->maxstack
4741    |  blez TMP1, <3			// No vararg slots?
4742    |.  li MULTRES, 8			// MULTRES = (0+1)*8
4743    |  addu TMP2, RA, TMP1
4744    |  sltu AT, TMP0, TMP2
4745    |  bnez AT, >7
4746    |.  addiu MULTRES, TMP1, 8
4747    |6:
4748    |  lw SFRETHI, HI(RC)
4749    |   lw SFRETLO, LO(RC)
4750    |   addiu RC, RC, 8
4751    |  sw SFRETHI, HI(RA)
4752    |   sw SFRETLO, LO(RA)
4753    |  sltu AT, RC, TMP3
4754    |  bnez AT, <6			// More vararg slots?
4755    |.  addiu RA, RA, 8
4756    |  b <3
4757    |.  nop
4758    |
4759    |7:  // Grow stack for varargs.
4760    |  load_got lj_state_growstack
4761    |   sw RA, L->top
4762    |  subu RA, RA, BASE
4763    |   sw BASE, L->base
4764    |  subu BASE, RC, BASE		// Need delta, because BASE may change.
4765    |   sw PC, SAVE_PC
4766    |  srl CARG2, TMP1, 3
4767    |  call_intern lj_state_growstack	// (lua_State *L, int n)
4768    |.  move CARG1, L
4769    |  move RC, BASE
4770    |  lw BASE, L->base
4771    |  addu RA, BASE, RA
4772    |  addu RC, BASE, RC
4773    |  b <6
4774    |.  addiu TMP3, BASE, -8
4775    break;
4776
4777  /* -- Returns ----------------------------------------------------------- */
4778
4779  case BC_RETM:
4780    |  // RA = results*8, RD = extra_nresults*8
4781    |  addu RD, RD, MULTRES		// MULTRES >= 8, so RD >= 8.
4782    |  // Fall through. Assumes BC_RET follows.
4783    break;
4784
4785  case BC_RET:
4786    |  // RA = results*8, RD = (nresults+1)*8
4787    |  lw PC, FRAME_PC(BASE)
4788    |   addu RA, BASE, RA
4789    |    move MULTRES, RD
4790    |1:
4791    |  andi TMP0, PC, FRAME_TYPE
4792    |  bnez TMP0, ->BC_RETV_Z
4793    |.  xori TMP1, PC, FRAME_VARG
4794    |
4795    |->BC_RET_Z:
4796    |  // BASE = base, RA = resultptr, RD = (nresults+1)*8, PC = return
4797    |   lw INS, -4(PC)
4798    |    addiu TMP2, BASE, -8
4799    |    addiu RC, RD, -8
4800    |  decode_RA8a TMP0, INS
4801    |   decode_RB8a RB, INS
4802    |  decode_RA8b TMP0
4803    |   decode_RB8b RB
4804    |   addu TMP3, TMP2, RB
4805    |  beqz RC, >3
4806    |.  subu BASE, TMP2, TMP0
4807    |2:
4808    |   lw SFRETHI, HI(RA)
4809    |    lw SFRETLO, LO(RA)
4810    |    addiu RA, RA, 8
4811    |  addiu RC, RC, -8
4812    |   sw SFRETHI, HI(TMP2)
4813    |    sw SFRETLO, LO(TMP2)
4814    |  bnez RC, <2
4815    |.   addiu TMP2, TMP2, 8
4816    |3:
4817    |  addiu TMP3, TMP3, -8
4818    |5:
4819    |  sltu AT, TMP2, TMP3
4820    |  bnez AT, >6
4821    |.  lw LFUNC:TMP1, FRAME_FUNC(BASE)
4822    |  ins_next1
4823    |  lw TMP1, LFUNC:TMP1->pc
4824    |  lw KBASE, PC2PROTO(k)(TMP1)
4825    |  ins_next2
4826    |
4827    |6:  // Fill up results with nil.
4828    |  sw TISNIL, HI(TMP2)
4829    |  b <5
4830    |.  addiu TMP2, TMP2, 8
4831    |
4832    |->BC_RETV_Z:  // Non-standard return case.
4833    |  andi TMP2, TMP1, FRAME_TYPEP
4834    |  bnez TMP2, ->vm_return
4835    |.  nop
4836    |  // Return from vararg function: relocate BASE down.
4837    |  subu BASE, BASE, TMP1
4838    |  b <1
4839    |.  lw PC, FRAME_PC(BASE)
4840    break;
4841
4842  case BC_RET0: case BC_RET1:
4843    |  // RA = results*8, RD = (nresults+1)*8
4844    |  lw PC, FRAME_PC(BASE)
4845    |   addu RA, BASE, RA
4846    |    move MULTRES, RD
4847    |  andi TMP0, PC, FRAME_TYPE
4848    |  bnez TMP0, ->BC_RETV_Z
4849    |.  xori TMP1, PC, FRAME_VARG
4850    |
4851    |  lw INS, -4(PC)
4852    |   addiu TMP2, BASE, -8
4853    if (op == BC_RET1) {
4854      |  lw SFRETHI, HI(RA)
4855      |   lw SFRETLO, LO(RA)
4856    }
4857    |  decode_RB8a RB, INS
4858    |   decode_RA8a RA, INS
4859    |  decode_RB8b RB
4860    |   decode_RA8b RA
4861    if (op == BC_RET1) {
4862      |  sw SFRETHI, HI(TMP2)
4863      |   sw SFRETLO, LO(TMP2)
4864    }
4865    |   subu BASE, TMP2, RA
4866    |5:
4867    |  sltu AT, RD, RB
4868    |  bnez AT, >6
4869    |.  lw LFUNC:TMP1, FRAME_FUNC(BASE)
4870    |  ins_next1
4871    |  lw TMP1, LFUNC:TMP1->pc
4872    |  lw KBASE, PC2PROTO(k)(TMP1)
4873    |  ins_next2
4874    |
4875    |6:  // Fill up results with nil.
4876    |  addiu TMP2, TMP2, 8
4877    |  addiu RD, RD, 8
4878    |  b <5
4879    if (op == BC_RET1) {
4880      |.  sw TISNIL, HI(TMP2)
4881    } else {
4882      |.  sw TISNIL, -8+HI(TMP2)
4883    }
4884    break;
4885
4886  /* -- Loops and branches ------------------------------------------------ */
4887
4888  case BC_FORL:
4889    |.if JIT
4890    |  hotloop
4891    |.endif
4892    |  // Fall through. Assumes BC_IFORL follows.
4893    break;
4894
4895  case BC_JFORI:
4896  case BC_JFORL:
4897#if !LJ_HASJIT
4898    break;
4899#endif
4900  case BC_FORI:
4901  case BC_IFORL:
4902    |  // RA = base*8, RD = target (after end of loop or start of loop)
4903    vk = (op == BC_IFORL || op == BC_JFORL);
4904    |  addu RA, BASE, RA
4905    |  lw SFARG1HI, FORL_IDX*8+HI(RA)
4906    |   lw SFARG1LO, FORL_IDX*8+LO(RA)
4907    if (op != BC_JFORL) {
4908      |  srl RD, RD, 1
4909      |  lui TMP2, (-(BCBIAS_J*4 >> 16) & 65535)
4910      |  addu TMP2, RD, TMP2
4911    }
4912    if (!vk) {
4913      |  lw SFARG2HI, FORL_STOP*8+HI(RA)
4914      |   lw SFARG2LO, FORL_STOP*8+LO(RA)
4915      |  bne SFARG1HI, TISNUM, >5
4916      |.  lw SFRETHI, FORL_STEP*8+HI(RA)
4917      |  xor AT, SFARG2HI, TISNUM
4918      |   lw SFRETLO, FORL_STEP*8+LO(RA)
4919      |  xor TMP0, SFRETHI, TISNUM
4920      |  or AT, AT, TMP0
4921      |  bnez AT, ->vmeta_for
4922      |.  slt AT, SFRETLO, r0
4923      |  slt CRET1, SFARG2LO, SFARG1LO
4924      |  slt TMP1, SFARG1LO, SFARG2LO
4925      |  movn CRET1, TMP1, AT
4926    } else {
4927      |  bne SFARG1HI, TISNUM, >5
4928      |.  lw SFARG2LO, FORL_STEP*8+LO(RA)
4929      |  lw SFRETLO, FORL_STOP*8+LO(RA)
4930      |  move TMP3, SFARG1LO
4931      |  addu SFARG1LO, SFARG1LO, SFARG2LO
4932      |  xor TMP0, SFARG1LO, TMP3
4933      |  xor TMP1, SFARG1LO, SFARG2LO
4934      |  and TMP0, TMP0, TMP1
4935      |  slt TMP1, SFARG1LO, SFRETLO
4936      |  slt CRET1, SFRETLO, SFARG1LO
4937      |  slt AT, SFARG2LO, r0
4938      |   slt TMP0, TMP0, r0		// ((y^a) & (y^b)) < 0: overflow.
4939      |  movn CRET1, TMP1, AT
4940      |   or CRET1, CRET1, TMP0
4941    }
4942    |1:
4943    if (op == BC_FORI) {
4944      |  movz TMP2, r0, CRET1
4945      |  addu PC, PC, TMP2
4946    } else if (op == BC_JFORI) {
4947      |  addu PC, PC, TMP2
4948      |  lhu RD, -4+OFS_RD(PC)
4949    } else if (op == BC_IFORL) {
4950      |  movn TMP2, r0, CRET1
4951      |  addu PC, PC, TMP2
4952    }
4953    if (vk) {
4954      |  sw SFARG1HI, FORL_IDX*8+HI(RA)
4955      |   sw SFARG1LO, FORL_IDX*8+LO(RA)
4956    }
4957    |  ins_next1
4958    |  sw SFARG1HI, FORL_EXT*8+HI(RA)
4959    |   sw SFARG1LO, FORL_EXT*8+LO(RA)
4960    |2:
4961    if (op == BC_JFORI) {
4962      |  beqz CRET1, =>BC_JLOOP
4963      |.  decode_RD8b RD
4964    } else if (op == BC_JFORL) {
4965      |  beqz CRET1, =>BC_JLOOP
4966    }
4967    |  ins_next2
4968    |
4969    |5:  // FP loop.
4970    |.if FPU
4971    if (!vk) {
4972      |  ldc1 f0, FORL_IDX*8(RA)
4973      |   ldc1 f2, FORL_STOP*8(RA)
4974      |  sltiu TMP0, SFARG1HI, LJ_TISNUM
4975      |  sltiu TMP1, SFARG2HI, LJ_TISNUM
4976      |  sltiu AT, SFRETHI, LJ_TISNUM
4977      |  and TMP0, TMP0, TMP1
4978      |  and AT, AT, TMP0
4979      |  beqz AT, ->vmeta_for
4980      |.  slt TMP3, SFRETHI, r0
4981      |  c.ole.d 0, f0, f2
4982      |  c.ole.d 1, f2, f0
4983      |  li CRET1, 1
4984      |  movt CRET1, r0, 0
4985      |  movt AT, r0, 1
4986      |  b <1
4987      |.  movn CRET1, AT, TMP3
4988    } else {
4989      |  ldc1 f0, FORL_IDX*8(RA)
4990      |   ldc1 f4, FORL_STEP*8(RA)
4991      |    ldc1 f2, FORL_STOP*8(RA)
4992      |   lw SFARG2HI, FORL_STEP*8+HI(RA)
4993      |  add.d f0, f0, f4
4994      |  c.ole.d 0, f0, f2
4995      |  c.ole.d 1, f2, f0
4996      |   slt TMP3, SFARG2HI, r0
4997      |  li CRET1, 1
4998      |  li AT, 1
4999      |  movt CRET1, r0, 0
5000      |  movt AT, r0, 1
5001      |  movn CRET1, AT, TMP3
5002      if (op == BC_IFORL) {
5003	|  movn TMP2, r0, CRET1
5004	|  addu PC, PC, TMP2
5005      }
5006      |  sdc1 f0, FORL_IDX*8(RA)
5007      |  ins_next1
5008      |  b <2
5009      |.  sdc1 f0, FORL_EXT*8(RA)
5010    }
5011    |.else
5012    if (!vk) {
5013      |  sltiu TMP0, SFARG1HI, LJ_TISNUM
5014      |  sltiu TMP1, SFARG2HI, LJ_TISNUM
5015      |  sltiu AT, SFRETHI, LJ_TISNUM
5016      |  and TMP0, TMP0, TMP1
5017      |  and AT, AT, TMP0
5018      |  beqz AT, ->vmeta_for
5019      |.  nop
5020      |  bal ->vm_sfcmpolex
5021      |.  move TMP3, SFRETHI
5022      |  b <1
5023      |.  nop
5024    } else {
5025      |   lw SFARG2HI, FORL_STEP*8+HI(RA)
5026      |  load_got __adddf3
5027      |  call_extern
5028      |.  sw TMP2, ARG5
5029      |  lw SFARG2HI, FORL_STOP*8+HI(RA)
5030      |   lw SFARG2LO, FORL_STOP*8+LO(RA)
5031      |  move SFARG1HI, SFRETHI
5032      |   move SFARG1LO, SFRETLO
5033      |  bal ->vm_sfcmpolex
5034      |.  lw TMP3, FORL_STEP*8+HI(RA)
5035      if ( op == BC_JFORL ) {
5036	|   lhu RD, -4+OFS_RD(PC)
5037	|  lw TMP2, ARG5
5038	|  b <1
5039	|.  decode_RD8b RD
5040      } else {
5041	|  b <1
5042	|.  lw TMP2, ARG5
5043      }
5044    }
5045    |.endif
5046    break;
5047
5048  case BC_ITERL:
5049    |.if JIT
5050    |  hotloop
5051    |.endif
5052    |  // Fall through. Assumes BC_IITERL follows.
5053    break;
5054
5055  case BC_JITERL:
5056#if !LJ_HASJIT
5057    break;
5058#endif
5059  case BC_IITERL:
5060    |  // RA = base*8, RD = target
5061    |  addu RA, BASE, RA
5062    |  lw TMP1, HI(RA)
5063    |  beq TMP1, TISNIL, >1		// Stop if iterator returned nil.
5064    |.  lw TMP2, LO(RA)
5065    if (op == BC_JITERL) {
5066      |  sw TMP1, -8+HI(RA)
5067      |  b =>BC_JLOOP
5068      |.  sw TMP2, -8+LO(RA)
5069    } else {
5070      |  branch_RD			// Otherwise save control var + branch.
5071      |  sw TMP1, -8+HI(RA)
5072      |   sw TMP2, -8+LO(RA)
5073    }
5074    |1:
5075    |  ins_next
5076    break;
5077
5078  case BC_LOOP:
5079    |  // RA = base*8, RD = target (loop extent)
5080    |  // Note: RA/RD is only used by trace recorder to determine scope/extent
5081    |  // This opcode does NOT jump, it's only purpose is to detect a hot loop.
5082    |.if JIT
5083    |  hotloop
5084    |.endif
5085    |  // Fall through. Assumes BC_ILOOP follows.
5086    break;
5087
5088  case BC_ILOOP:
5089    |  // RA = base*8, RD = target (loop extent)
5090    |  ins_next
5091    break;
5092
5093  case BC_JLOOP:
5094    |.if JIT
5095    |  // RA = base*8 (ignored), RD = traceno*8
5096    |  lw TMP1, DISPATCH_J(trace)(DISPATCH)
5097    |  srl RD, RD, 1
5098    |   li AT, 0
5099    |  addu TMP1, TMP1, RD
5100    |  // Traces on MIPS don't store the trace number, so use 0.
5101    |   sw AT, DISPATCH_GL(vmstate)(DISPATCH)
5102    |  lw TRACE:TMP2, 0(TMP1)
5103    |   sw BASE, DISPATCH_GL(jit_base)(DISPATCH)
5104    |  lw TMP2, TRACE:TMP2->mcode
5105    |   sw L, DISPATCH_GL(tmpbuf.L)(DISPATCH)
5106    |  jr TMP2
5107    |.  addiu JGL, DISPATCH, GG_DISP2G+32768
5108    |.endif
5109    break;
5110
5111  case BC_JMP:
5112    |  // RA = base*8 (only used by trace recorder), RD = target
5113    |  branch_RD
5114    |  ins_next
5115    break;
5116
5117  /* -- Function headers -------------------------------------------------- */
5118
5119  case BC_FUNCF:
5120    |.if JIT
5121    |  hotcall
5122    |.endif
5123  case BC_FUNCV:  /* NYI: compiled vararg functions. */
5124    |  // Fall through. Assumes BC_IFUNCF/BC_IFUNCV follow.
5125    break;
5126
5127  case BC_JFUNCF:
5128#if !LJ_HASJIT
5129    break;
5130#endif
5131  case BC_IFUNCF:
5132    |  // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8
5133    |  lw TMP2, L->maxstack
5134    |   lbu TMP1, -4+PC2PROTO(numparams)(PC)
5135    |    lw KBASE, -4+PC2PROTO(k)(PC)
5136    |  sltu AT, TMP2, RA
5137    |  bnez AT, ->vm_growstack_l
5138    |.  sll TMP1, TMP1, 3
5139    if (op != BC_JFUNCF) {
5140      |  ins_next1
5141    }
5142    |2:
5143    |  sltu AT, NARGS8:RC, TMP1		// Check for missing parameters.
5144    |  bnez AT, >3
5145    |.  addu AT, BASE, NARGS8:RC
5146    if (op == BC_JFUNCF) {
5147      |  decode_RD8a RD, INS
5148      |  b =>BC_JLOOP
5149      |.  decode_RD8b RD
5150    } else {
5151      |  ins_next2
5152    }
5153    |
5154    |3:  // Clear missing parameters.
5155    |  sw TISNIL, HI(AT)
5156    |  b <2
5157    |.  addiu NARGS8:RC, NARGS8:RC, 8
5158    break;
5159
5160  case BC_JFUNCV:
5161#if !LJ_HASJIT
5162    break;
5163#endif
5164    |  NYI  // NYI: compiled vararg functions
5165    break;  /* NYI: compiled vararg functions. */
5166
5167  case BC_IFUNCV:
5168    |  // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8
5169    |   addu TMP1, BASE, RC
5170    |  lw TMP2, L->maxstack
5171    |  addu TMP0, RA, RC
5172    |   sw LFUNC:RB, LO(TMP1)		// Store copy of LFUNC.
5173    |   addiu TMP3, RC, 8+FRAME_VARG
5174    |  sltu AT, TMP0, TMP2
5175    |    lw KBASE, -4+PC2PROTO(k)(PC)
5176    |  beqz AT, ->vm_growstack_l
5177    |.  sw TMP3, HI(TMP1)		// Store delta + FRAME_VARG.
5178    |  lbu TMP2, -4+PC2PROTO(numparams)(PC)
5179    |   move RA, BASE
5180    |   move RC, TMP1
5181    |  ins_next1
5182    |  beqz TMP2, >3
5183    |.  addiu BASE, TMP1, 8
5184    |1:
5185    |  lw TMP0, HI(RA)
5186    |   lw TMP3, LO(RA)
5187    |  sltu AT, RA, RC			// Less args than parameters?
5188    |  move CARG1, TMP0
5189    |  movz TMP0, TISNIL, AT		// Clear missing parameters.
5190    |  movn CARG1, TISNIL, AT		// Clear old fixarg slot (help the GC).
5191    |   sw TMP3, 8+LO(TMP1)
5192    |    addiu TMP2, TMP2, -1
5193    |  sw TMP0, 8+HI(TMP1)
5194    |    addiu TMP1, TMP1, 8
5195    |  sw CARG1, HI(RA)
5196    |  bnez TMP2, <1
5197    |.   addiu RA, RA, 8
5198    |3:
5199    |  ins_next2
5200    break;
5201
5202  case BC_FUNCC:
5203  case BC_FUNCCW:
5204    |  // BASE = new base, RA = BASE+framesize*8, RB = CFUNC, RC = nargs*8
5205    if (op == BC_FUNCC) {
5206      |  lw CFUNCADDR, CFUNC:RB->f
5207    } else {
5208      |  lw CFUNCADDR, DISPATCH_GL(wrapf)(DISPATCH)
5209    }
5210    |  addu TMP1, RA, NARGS8:RC
5211    |  lw TMP2, L->maxstack
5212    |   addu RC, BASE, NARGS8:RC
5213    |  sw BASE, L->base
5214    |  sltu AT, TMP2, TMP1
5215    |   sw RC, L->top
5216    |    li_vmstate C
5217    if (op == BC_FUNCCW) {
5218      |  lw CARG2, CFUNC:RB->f
5219    }
5220    |  bnez AT, ->vm_growstack_c	// Need to grow stack.
5221    |.  move CARG1, L
5222    |  jalr CFUNCADDR			// (lua_State *L [, lua_CFunction f])
5223    |.   st_vmstate
5224    |  // Returns nresults.
5225    |  lw BASE, L->base
5226    |   sll RD, CRET1, 3
5227    |  lw TMP1, L->top
5228    |    li_vmstate INTERP
5229    |  lw PC, FRAME_PC(BASE)		// Fetch PC of caller.
5230    |   subu RA, TMP1, RD		// RA = L->top - nresults*8
5231    |    sw L, DISPATCH_GL(cur_L)(DISPATCH)
5232    |  b ->vm_returnc
5233    |.   st_vmstate
5234    break;
5235
5236  /* ---------------------------------------------------------------------- */
5237
5238  default:
5239    fprintf(stderr, "Error: undefined opcode BC_%s\n", bc_names[op]);
5240    exit(2);
5241    break;
5242  }
5243}
5244
5245static int build_backend(BuildCtx *ctx)
5246{
5247  int op;
5248
5249  dasm_growpc(Dst, BC__MAX);
5250
5251  build_subroutines(ctx);
5252
5253  |.code_op
5254  for (op = 0; op < BC__MAX; op++)
5255    build_ins(ctx, (BCOp)op, op);
5256
5257  return BC__MAX;
5258}
5259
5260/* Emit pseudo frame-info for all assembler functions. */
5261static void emit_asm_debug(BuildCtx *ctx)
5262{
5263  int fcofs = (int)((uint8_t *)ctx->glob[GLOB_vm_ffi_call] - ctx->code);
5264  int i;
5265  switch (ctx->mode) {
5266  case BUILD_elfasm:
5267    fprintf(ctx->fp, "\t.section .debug_frame,\"\",@progbits\n");
5268    fprintf(ctx->fp,
5269	".Lframe0:\n"
5270	"\t.4byte .LECIE0-.LSCIE0\n"
5271	".LSCIE0:\n"
5272	"\t.4byte 0xffffffff\n"
5273	"\t.byte 0x1\n"
5274	"\t.string \"\"\n"
5275	"\t.uleb128 0x1\n"
5276	"\t.sleb128 -4\n"
5277	"\t.byte 31\n"
5278	"\t.byte 0xc\n\t.uleb128 29\n\t.uleb128 0\n"
5279	"\t.align 2\n"
5280	".LECIE0:\n\n");
5281    fprintf(ctx->fp,
5282	".LSFDE0:\n"
5283	"\t.4byte .LEFDE0-.LASFDE0\n"
5284	".LASFDE0:\n"
5285	"\t.4byte .Lframe0\n"
5286	"\t.4byte .Lbegin\n"
5287	"\t.4byte %d\n"
5288	"\t.byte 0xe\n\t.uleb128 %d\n"
5289	"\t.byte 0x9f\n\t.sleb128 1\n"
5290	"\t.byte 0x9e\n\t.sleb128 2\n",
5291	fcofs, CFRAME_SIZE);
5292    for (i = 23; i >= 16; i--)
5293      fprintf(ctx->fp, "\t.byte %d\n\t.uleb128 %d\n", 0x80+i, 26-i);
5294#if !LJ_SOFTFP
5295    for (i = 30; i >= 20; i -= 2)
5296      fprintf(ctx->fp, "\t.byte %d\n\t.uleb128 %d\n", 0x80+32+i, 42-i);
5297#endif
5298    fprintf(ctx->fp,
5299	"\t.align 2\n"
5300	".LEFDE0:\n\n");
5301#if LJ_HASFFI
5302    fprintf(ctx->fp,
5303	".LSFDE1:\n"
5304	"\t.4byte .LEFDE1-.LASFDE1\n"
5305	".LASFDE1:\n"
5306	"\t.4byte .Lframe0\n"
5307	"\t.4byte lj_vm_ffi_call\n"
5308	"\t.4byte %d\n"
5309	"\t.byte 0x9f\n\t.uleb128 1\n"
5310	"\t.byte 0x90\n\t.uleb128 2\n"
5311	"\t.byte 0xd\n\t.uleb128 0x10\n"
5312	"\t.align 2\n"
5313	".LEFDE1:\n\n", (int)ctx->codesz - fcofs);
5314#endif
5315#if !LJ_NO_UNWIND
5316    fprintf(ctx->fp, "\t.section .eh_frame,\"aw\",@progbits\n");
5317    fprintf(ctx->fp,
5318	"\t.globl lj_err_unwind_dwarf\n"
5319	".Lframe1:\n"
5320	"\t.4byte .LECIE1-.LSCIE1\n"
5321	".LSCIE1:\n"
5322	"\t.4byte 0\n"
5323	"\t.byte 0x1\n"
5324	"\t.string \"zPR\"\n"
5325	"\t.uleb128 0x1\n"
5326	"\t.sleb128 -4\n"
5327	"\t.byte 31\n"
5328	"\t.uleb128 6\n"			/* augmentation length */
5329	"\t.byte 0\n"
5330	"\t.4byte lj_err_unwind_dwarf\n"
5331	"\t.byte 0\n"
5332	"\t.byte 0xc\n\t.uleb128 29\n\t.uleb128 0\n"
5333	"\t.align 2\n"
5334	".LECIE1:\n\n");
5335    fprintf(ctx->fp,
5336	".LSFDE2:\n"
5337	"\t.4byte .LEFDE2-.LASFDE2\n"
5338	".LASFDE2:\n"
5339	"\t.4byte .LASFDE2-.Lframe1\n"
5340	"\t.4byte .Lbegin\n"
5341	"\t.4byte %d\n"
5342	"\t.uleb128 0\n"			/* augmentation length */
5343	"\t.byte 0xe\n\t.uleb128 %d\n"
5344	"\t.byte 0x9f\n\t.sleb128 1\n"
5345	"\t.byte 0x9e\n\t.sleb128 2\n",
5346	fcofs, CFRAME_SIZE);
5347    for (i = 23; i >= 16; i--)
5348      fprintf(ctx->fp, "\t.byte %d\n\t.uleb128 %d\n", 0x80+i, 26-i);
5349#if !LJ_SOFTFP
5350    for (i = 30; i >= 20; i -= 2)
5351      fprintf(ctx->fp, "\t.byte %d\n\t.uleb128 %d\n", 0x80+32+i, 42-i);
5352#endif
5353    fprintf(ctx->fp,
5354	"\t.align 2\n"
5355	".LEFDE2:\n\n");
5356#if LJ_HASFFI
5357    fprintf(ctx->fp,
5358	".Lframe2:\n"
5359	"\t.4byte .LECIE2-.LSCIE2\n"
5360	".LSCIE2:\n"
5361	"\t.4byte 0\n"
5362	"\t.byte 0x1\n"
5363	"\t.string \"zR\"\n"
5364	"\t.uleb128 0x1\n"
5365	"\t.sleb128 -4\n"
5366	"\t.byte 31\n"
5367	"\t.uleb128 1\n"			/* augmentation length */
5368	"\t.byte 0\n"
5369	"\t.byte 0xc\n\t.uleb128 29\n\t.uleb128 0\n"
5370	"\t.align 2\n"
5371	".LECIE2:\n\n");
5372    fprintf(ctx->fp,
5373	".LSFDE3:\n"
5374	"\t.4byte .LEFDE3-.LASFDE3\n"
5375	".LASFDE3:\n"
5376	"\t.4byte .LASFDE3-.Lframe2\n"
5377	"\t.4byte lj_vm_ffi_call\n"
5378	"\t.4byte %d\n"
5379	"\t.uleb128 0\n"			/* augmentation length */
5380	"\t.byte 0x9f\n\t.uleb128 1\n"
5381	"\t.byte 0x90\n\t.uleb128 2\n"
5382	"\t.byte 0xd\n\t.uleb128 0x10\n"
5383	"\t.align 2\n"
5384	".LEFDE3:\n\n", (int)ctx->codesz - fcofs);
5385#endif
5386#endif
5387    break;
5388  default:
5389    break;
5390  }
5391}
5392
5393