1package Unicode::UCD;
2
3use strict;
4use warnings;
5no warnings 'surrogate';    # surrogates can be inputs to this
6use charnames ();
7
8our $VERSION = '0.72';
9
10require Exporter;
11
12our @ISA = qw(Exporter);
13
14our @EXPORT_OK = qw(charinfo
15		    charblock charscript
16		    charblocks charscripts
17		    charinrange
18		    charprop
19		    charprops_all
20		    general_categories bidi_types
21		    compexcl
22		    casefold all_casefolds casespec
23		    namedseq
24                    num
25                    prop_aliases
26                    prop_value_aliases
27                    prop_values
28                    prop_invlist
29                    prop_invmap
30                    search_invlist
31                    MAX_CP
32                );
33
34use Carp;
35
36sub IS_ASCII_PLATFORM { ord("A") == 65 }
37
38=head1 NAME
39
40Unicode::UCD - Unicode character database
41
42=head1 SYNOPSIS
43
44    use Unicode::UCD 'charinfo';
45    my $charinfo   = charinfo($codepoint);
46
47    use Unicode::UCD 'charprop';
48    my $value  = charprop($codepoint, $property);
49
50    use Unicode::UCD 'charprops_all';
51    my $all_values_hash_ref = charprops_all($codepoint);
52
53    use Unicode::UCD 'casefold';
54    my $casefold = casefold($codepoint);
55
56    use Unicode::UCD 'all_casefolds';
57    my $all_casefolds_ref = all_casefolds();
58
59    use Unicode::UCD 'casespec';
60    my $casespec = casespec($codepoint);
61
62    use Unicode::UCD 'charblock';
63    my $charblock  = charblock($codepoint);
64
65    use Unicode::UCD 'charscript';
66    my $charscript = charscript($codepoint);
67
68    use Unicode::UCD 'charblocks';
69    my $charblocks = charblocks();
70
71    use Unicode::UCD 'charscripts';
72    my $charscripts = charscripts();
73
74    use Unicode::UCD qw(charscript charinrange);
75    my $range = charscript($script);
76    print "looks like $script\n" if charinrange($range, $codepoint);
77
78    use Unicode::UCD qw(general_categories bidi_types);
79    my $categories = general_categories();
80    my $types = bidi_types();
81
82    use Unicode::UCD 'prop_aliases';
83    my @space_names = prop_aliases("space");
84
85    use Unicode::UCD 'prop_value_aliases';
86    my @gc_punct_names = prop_value_aliases("Gc", "Punct");
87
88    use Unicode::UCD 'prop_values';
89    my @all_EA_short_names = prop_values("East_Asian_Width");
90
91    use Unicode::UCD 'prop_invlist';
92    my @puncts = prop_invlist("gc=punctuation");
93
94    use Unicode::UCD 'prop_invmap';
95    my ($list_ref, $map_ref, $format, $missing)
96                                      = prop_invmap("General Category");
97
98    use Unicode::UCD 'search_invlist';
99    my $index = search_invlist(\@invlist, $code_point);
100
101    # The following function should be used only internally in
102    # implementations of the Unicode Normalization Algorithm, and there
103    # are better choices than it.
104    use Unicode::UCD 'compexcl';
105    my $compexcl = compexcl($codepoint);
106
107    use Unicode::UCD 'namedseq';
108    my $namedseq = namedseq($named_sequence_name);
109
110    my $unicode_version = Unicode::UCD::UnicodeVersion();
111
112    my $convert_to_numeric =
113              Unicode::UCD::num("\N{RUMI DIGIT ONE}\N{RUMI DIGIT TWO}");
114
115=head1 DESCRIPTION
116
117The Unicode::UCD module offers a series of functions that
118provide a simple interface to the Unicode
119Character Database.
120
121=head2 code point argument
122
123Some of the functions are called with a I<code point argument>, which is either
124a decimal or a hexadecimal scalar designating a code point in the platform's
125native character set (extended to Unicode), or a string containing C<U+>
126followed by hexadecimals
127designating a Unicode code point.  A leading 0 will force a hexadecimal
128interpretation, as will a hexadecimal digit that isn't a decimal digit.
129
130Examples:
131
132    223     # Decimal 223 in native character set
133    0223    # Hexadecimal 223, native (= 547 decimal)
134    0xDF    # Hexadecimal DF, native (= 223 decimal)
135    '0xDF'  # String form of hexadecimal (= 223 decimal)
136    'U+DF'  # Hexadecimal DF, in Unicode's character set
137                              (= LATIN SMALL LETTER SHARP S)
138
139Note that the largest code point in Unicode is U+10FFFF.
140
141=cut
142
143my $v_unicode_version;  # v-string.
144
145sub openunicode {
146    my (@path) = @_;
147    my $rfh;
148    for my $d (@INC) {
149        use File::Spec;
150        my $f = File::Spec->catfile($d, "unicore", @path);
151        return $rfh if open($rfh, '<', $f);
152    }
153    croak __PACKAGE__, ": failed to find ",
154        File::Spec->catfile("unicore", @path), " in @INC";
155}
156
157sub _dclone ($) {   # Use Storable::dclone if available; otherwise emulate it.
158
159    use if defined &DynaLoader::boot_DynaLoader, Storable => qw(dclone);
160
161    return dclone(shift) if defined &dclone;
162
163    my $arg = shift;
164    my $type = ref $arg;
165    return $arg unless $type;   # No deep cloning needed for scalars
166
167    if ($type eq 'ARRAY') {
168        my @return;
169        foreach my $element (@$arg) {
170            push @return, &_dclone($element);
171        }
172        return \@return;
173    }
174    elsif ($type eq 'HASH') {
175        my %return;
176        foreach my $key (keys %$arg) {
177            $return{$key} = &_dclone($arg->{$key});
178        }
179        return \%return;
180    }
181    else {
182        croak "_dclone can't handle " . $type;
183    }
184}
185
186=head2 B<charinfo()>
187
188    use Unicode::UCD 'charinfo';
189
190    my $charinfo = charinfo(0x41);
191
192This returns information about the input L</code point argument>
193as a reference to a hash of fields as defined by the Unicode
194standard.  If the L</code point argument> is not assigned in the standard
195(i.e., has the general category C<Cn> meaning C<Unassigned>)
196or is a non-character (meaning it is guaranteed to never be assigned in
197the standard),
198C<undef> is returned.
199
200Fields that aren't applicable to the particular code point argument exist in the
201returned hash, and are empty.
202
203For results that are less "raw" than this function returns, or to get the values for
204any property, not just the few covered by this function, use the
205L</charprop()> function.
206
207The keys in the hash with the meanings of their values are:
208
209=over
210
211=item B<code>
212
213the input native L</code point argument> expressed in hexadecimal, with
214leading zeros
215added if necessary to make it contain at least four hexdigits
216
217=item B<name>
218
219name of I<code>, all IN UPPER CASE.
220Some control-type code points do not have names.
221This field will be empty for C<Surrogate> and C<Private Use> code points,
222and for the others without a name,
223it will contain a description enclosed in angle brackets, like
224C<E<lt>controlE<gt>>.
225
226
227=item B<category>
228
229The short name of the general category of I<code>.
230This will match one of the keys in the hash returned by L</general_categories()>.
231
232The L</prop_value_aliases()> function can be used to get all the synonyms
233of the category name.
234
235=item B<combining>
236
237the combining class number for I<code> used in the Canonical Ordering Algorithm.
238For Unicode 5.1, this is described in Section 3.11 C<Canonical Ordering Behavior>
239available at
240L<http://www.unicode.org/versions/Unicode5.1.0/>
241
242The L</prop_value_aliases()> function can be used to get all the synonyms
243of the combining class number.
244
245=item B<bidi>
246
247bidirectional type of I<code>.
248This will match one of the keys in the hash returned by L</bidi_types()>.
249
250The L</prop_value_aliases()> function can be used to get all the synonyms
251of the bidi type name.
252
253=item B<decomposition>
254
255is empty if I<code> has no decomposition; or is one or more codes
256(separated by spaces) that, taken in order, represent a decomposition for
257I<code>.  Each has at least four hexdigits.
258The codes may be preceded by a word enclosed in angle brackets, then a space,
259like C<E<lt>compatE<gt> >, giving the type of decomposition
260
261This decomposition may be an intermediate one whose components are also
262decomposable.  Use L<Unicode::Normalize> to get the final decomposition in one
263step.
264
265=item B<decimal>
266
267if I<code> represents a decimal digit this is its integer numeric value
268
269=item B<digit>
270
271if I<code> represents some other digit-like number, this is its integer
272numeric value
273
274=item B<numeric>
275
276if I<code> represents a whole or rational number, this is its numeric value.
277Rational values are expressed as a string like C<1/4>.
278
279=item B<mirrored>
280
281C<Y> or C<N> designating if I<code> is mirrored in bidirectional text
282
283=item B<unicode10>
284
285name of I<code> in the Unicode 1.0 standard if one
286existed for this code point and is different from the current name
287
288=item B<comment>
289
290As of Unicode 6.0, this is always empty.
291
292=item B<upper>
293
294is, if non-empty, the uppercase mapping for I<code> expressed as at least four
295hexdigits.  This indicates that the full uppercase mapping is a single
296character, and is identical to the simple (single-character only) mapping.
297When this field is empty, it means that the simple uppercase mapping is
298I<code> itself; you'll need some other means, (like L</charprop()> or
299L</casespec()> to get the full mapping.
300
301=item B<lower>
302
303is, if non-empty, the lowercase mapping for I<code> expressed as at least four
304hexdigits.  This indicates that the full lowercase mapping is a single
305character, and is identical to the simple (single-character only) mapping.
306When this field is empty, it means that the simple lowercase mapping is
307I<code> itself; you'll need some other means, (like L</charprop()> or
308L</casespec()> to get the full mapping.
309
310=item B<title>
311
312is, if non-empty, the titlecase mapping for I<code> expressed as at least four
313hexdigits.  This indicates that the full titlecase mapping is a single
314character, and is identical to the simple (single-character only) mapping.
315When this field is empty, it means that the simple titlecase mapping is
316I<code> itself; you'll need some other means, (like L</charprop()> or
317L</casespec()> to get the full mapping.
318
319=item B<block>
320
321the block I<code> belongs to (used in C<\p{Blk=...}>).
322The L</prop_value_aliases()> function can be used to get all the synonyms
323of the block name.
324
325See L</Blocks versus Scripts>.
326
327=item B<script>
328
329the script I<code> belongs to.
330The L</prop_value_aliases()> function can be used to get all the synonyms
331of the script name.  Note that this is the older "Script" property value, and
332not the improved "Script_Extensions" value.
333
334See L</Blocks versus Scripts>.
335
336=back
337
338Note that you cannot do (de)composition and casing based solely on the
339I<decomposition>, I<combining>, I<lower>, I<upper>, and I<title> fields; you
340will need also the L</casespec()> function and the C<Composition_Exclusion>
341property.  (Or you could just use the L<lc()|perlfunc/lc>,
342L<uc()|perlfunc/uc>, and L<ucfirst()|perlfunc/ucfirst> functions, and the
343L<Unicode::Normalize> module.)
344
345=cut
346
347# NB: This function is nearly duplicated in charnames.pm
348sub _getcode {
349    my $arg = shift;
350
351    if ($arg =~ /^[1-9]\d*$/) {
352	return $arg;
353    }
354    elsif ($arg =~ /^(?:0[xX])?([[:xdigit:]]+)$/) {
355	return CORE::hex($1);
356    }
357    elsif ($arg =~ /^[Uu]\+([[:xdigit:]]+)$/) { # Is of form U+0000, means
358                                                # wants the Unicode code
359                                                # point, not the native one
360        my $decimal = CORE::hex($1);
361        return $decimal if IS_ASCII_PLATFORM;
362        return utf8::unicode_to_native($decimal);
363    }
364
365    return;
366}
367
368# Populated by _num.  Converts real number back to input rational
369my %real_to_rational;
370
371# To store the contents of files found on disk.
372my @BIDIS;
373my @CATEGORIES;
374my @DECOMPOSITIONS;
375my @NUMERIC_TYPES;
376my %SIMPLE_LOWER;
377my %SIMPLE_TITLE;
378my %SIMPLE_UPPER;
379my %UNICODE_1_NAMES;
380my %ISO_COMMENT;
381
382# Eval'd so can run on versions earlier than the property is available in
383my $Hangul_Syllables_re = eval 'qr/\p{Block=Hangul_Syllables}/';
384
385sub charinfo {
386
387    # This function has traditionally mimicked what is in UnicodeData.txt,
388    # warts and all.  This is a re-write that avoids UnicodeData.txt so that
389    # it can be removed to save disk space.  Instead, this assembles
390    # information gotten by other methods that get data from various other
391    # files.  It uses charnames to get the character name; and various
392    # mktables tables.
393
394    use feature 'unicode_strings';
395
396    # Will fail if called under minitest
397    use if defined &DynaLoader::boot_DynaLoader, "Unicode::Normalize" => qw(getCombinClass NFD);
398
399    my $arg  = shift;
400    my $code = _getcode($arg);
401    croak __PACKAGE__, "::charinfo: unknown code '$arg'" unless defined $code;
402
403    # Non-unicode implies undef.
404    return if $code > 0x10FFFF;
405
406    my %prop;
407    my $char = chr($code);
408
409    @CATEGORIES =_read_table("To/Gc.pl") unless @CATEGORIES;
410    $prop{'category'} = _search(\@CATEGORIES, 0, $#CATEGORIES, $code)
411                        // $utf8::SwashInfo{'ToGc'}{'missing'};
412    # Return undef if category value is 'Unassigned' or one of its synonyms
413    return if grep { lc $_ eq 'unassigned' }
414                                    prop_value_aliases('Gc', $prop{'category'});
415
416    $prop{'code'} = sprintf "%04X", $code;
417    $prop{'name'} = ($char =~ /\p{Cntrl}/) ? '<control>'
418                                           : (charnames::viacode($code) // "");
419
420    $prop{'combining'} = getCombinClass($code);
421
422    @BIDIS =_read_table("To/Bc.pl") unless @BIDIS;
423    $prop{'bidi'} = _search(\@BIDIS, 0, $#BIDIS, $code)
424                    // $utf8::SwashInfo{'ToBc'}{'missing'};
425
426    # For most code points, we can just read in "unicore/Decomposition.pl", as
427    # its contents are exactly what should be output.  But that file doesn't
428    # contain the data for the Hangul syllable decompositions, which can be
429    # algorithmically computed, and NFD() does that, so we call NFD() for
430    # those.  We can't use NFD() for everything, as it does a complete
431    # recursive decomposition, and what this function has always done is to
432    # return what's in UnicodeData.txt which doesn't show that recursiveness.
433    # Fortunately, the NFD() of the Hanguls doesn't have any recursion
434    # issues.
435    # Having no decomposition implies an empty field; otherwise, all but
436    # "Canonical" imply a compatible decomposition, and the type is prefixed
437    # to that, as it is in UnicodeData.txt
438    UnicodeVersion() unless defined $v_unicode_version;
439    if ($v_unicode_version ge v2.0.0 && $char =~ $Hangul_Syllables_re) {
440        # The code points of the decomposition are output in standard Unicode
441        # hex format, separated by blanks.
442        $prop{'decomposition'} = join " ", map { sprintf("%04X", $_)}
443                                           unpack "U*", NFD($char);
444    }
445    else {
446        @DECOMPOSITIONS = _read_table("Decomposition.pl")
447                          unless @DECOMPOSITIONS;
448        $prop{'decomposition'} = _search(\@DECOMPOSITIONS, 0, $#DECOMPOSITIONS,
449                                                                $code) // "";
450    }
451
452    # Can use num() to get the numeric values, if any.
453    if (! defined (my $value = num($char))) {
454        $prop{'decimal'} = $prop{'digit'} = $prop{'numeric'} = "";
455    }
456    else {
457        if ($char =~ /\d/) {
458            $prop{'decimal'} = $prop{'digit'} = $prop{'numeric'} = $value;
459        }
460        else {
461
462            # For non-decimal-digits, we have to read in the Numeric type
463            # to distinguish them.  It is not just a matter of integer vs.
464            # rational, as some whole number values are not considered digits,
465            # e.g., TAMIL NUMBER TEN.
466            $prop{'decimal'} = "";
467
468            @NUMERIC_TYPES =_read_table("To/Nt.pl") unless @NUMERIC_TYPES;
469            if ((_search(\@NUMERIC_TYPES, 0, $#NUMERIC_TYPES, $code) // "")
470                eq 'Digit')
471            {
472                $prop{'digit'} = $prop{'numeric'} = $value;
473            }
474            else {
475                $prop{'digit'} = "";
476                $prop{'numeric'} = $real_to_rational{$value} // $value;
477            }
478        }
479    }
480
481    $prop{'mirrored'} = ($char =~ /\p{Bidi_Mirrored}/) ? 'Y' : 'N';
482
483    %UNICODE_1_NAMES =_read_table("To/Na1.pl", "use_hash") unless %UNICODE_1_NAMES;
484    $prop{'unicode10'} = $UNICODE_1_NAMES{$code} // "";
485
486    UnicodeVersion() unless defined $v_unicode_version;
487    if ($v_unicode_version ge v6.0.0) {
488        $prop{'comment'} = "";
489    }
490    else {
491        %ISO_COMMENT = _read_table("To/Isc.pl", "use_hash") unless %ISO_COMMENT;
492        $prop{'comment'} = (defined $ISO_COMMENT{$code})
493                           ? $ISO_COMMENT{$code}
494                           : "";
495    }
496
497    %SIMPLE_UPPER = _read_table("To/Uc.pl", "use_hash") unless %SIMPLE_UPPER;
498    $prop{'upper'} = (defined $SIMPLE_UPPER{$code})
499                     ? sprintf("%04X", $SIMPLE_UPPER{$code})
500                     : "";
501
502    %SIMPLE_LOWER = _read_table("To/Lc.pl", "use_hash") unless %SIMPLE_LOWER;
503    $prop{'lower'} = (defined $SIMPLE_LOWER{$code})
504                     ? sprintf("%04X", $SIMPLE_LOWER{$code})
505                     : "";
506
507    %SIMPLE_TITLE = _read_table("To/Tc.pl", "use_hash") unless %SIMPLE_TITLE;
508    $prop{'title'} = (defined $SIMPLE_TITLE{$code})
509                     ? sprintf("%04X", $SIMPLE_TITLE{$code})
510                     : "";
511
512    $prop{block}  = charblock($code);
513    $prop{script} = charscript($code);
514    return \%prop;
515}
516
517sub _search { # Binary search in a [[lo,hi,prop],[...],...] table.
518    my ($table, $lo, $hi, $code) = @_;
519
520    return if $lo > $hi;
521
522    my $mid = int(($lo+$hi) / 2);
523
524    if ($table->[$mid]->[0] < $code) {
525	if ($table->[$mid]->[1] >= $code) {
526	    return $table->[$mid]->[2];
527	} else {
528	    _search($table, $mid + 1, $hi, $code);
529	}
530    } elsif ($table->[$mid]->[0] > $code) {
531	_search($table, $lo, $mid - 1, $code);
532    } else {
533	return $table->[$mid]->[2];
534    }
535}
536
537sub _read_table ($;$) {
538
539    # Returns the contents of the mktables generated table file located at $1
540    # in the form of either an array of arrays or a hash, depending on if the
541    # optional second parameter is true (for hash return) or not.  In the case
542    # of a hash return, each key is a code point, and its corresponding value
543    # is what the table gives as the code point's corresponding value.  In the
544    # case of an array return, each outer array denotes a range with [0] the
545    # start point of that range; [1] the end point; and [2] the value that
546    # every code point in the range has.  The hash return is useful for fast
547    # lookup when the table contains only single code point ranges.  The array
548    # return takes much less memory when there are large ranges.
549    #
550    # This function has the side effect of setting
551    # $utf8::SwashInfo{$property}{'format'} to be the mktables format of the
552    #                                       table; and
553    # $utf8::SwashInfo{$property}{'missing'} to be the value for all entries
554    #                                        not listed in the table.
555    # where $property is the Unicode property name, preceded by 'To' for map
556    # properties., e.g., 'ToSc'.
557    #
558    # Table entries look like one of:
559    # 0000	0040	Common	# [65]
560    # 00AA		Latin
561
562    my $table = shift;
563    my $return_hash = shift;
564    $return_hash = 0 unless defined $return_hash;
565    my @return;
566    my %return;
567    local $_;
568    my $list = do "unicore/$table";
569
570    # Look up if this property requires adjustments, which we do below if it
571    # does.
572    require "unicore/Heavy.pl";
573    my $property = $table =~ s/\.pl//r;
574    $property = $utf8::file_to_swash_name{$property};
575    my $to_adjust = defined $property
576                    && $utf8::SwashInfo{$property}{'format'} =~ / ^ a /x;
577
578    for (split /^/m, $list) {
579        my ($start, $end, $value) = / ^ (.+?) \t (.*?) \t (.+?)
580                                        \s* ( \# .* )?  # Optional comment
581                                        $ /x;
582        my $decimal_start = hex $start;
583        my $decimal_end = ($end eq "") ? $decimal_start : hex $end;
584        $value = hex $value if $to_adjust
585                               && $utf8::SwashInfo{$property}{'format'} eq 'ax';
586        if ($return_hash) {
587            foreach my $i ($decimal_start .. $decimal_end) {
588                $return{$i} = ($to_adjust)
589                              ? $value + $i - $decimal_start
590                              : $value;
591            }
592        }
593        elsif (! $to_adjust
594               && @return
595               && $return[-1][1] == $decimal_start - 1
596               && $return[-1][2] eq $value)
597        {
598            # If this is merely extending the previous range, do just that.
599            $return[-1]->[1] = $decimal_end;
600        }
601        else {
602            push @return, [ $decimal_start, $decimal_end, $value ];
603        }
604    }
605    return ($return_hash) ? %return : @return;
606}
607
608sub charinrange {
609    my ($range, $arg) = @_;
610    my $code = _getcode($arg);
611    croak __PACKAGE__, "::charinrange: unknown code '$arg'"
612	unless defined $code;
613    _search($range, 0, $#$range, $code);
614}
615
616=head2 B<charprop()>
617
618    use Unicode::UCD 'charprop';
619
620    print charprop(0x41, "Gc"), "\n";
621    print charprop(0x61, "General_Category"), "\n";
622
623  prints
624    Lu
625    Ll
626
627This returns the value of the Unicode property given by the second parameter
628for the  L</code point argument> given by the first.
629
630The passed-in property may be specified as any of the synonyms returned by
631L</prop_aliases()>.
632
633The return value is always a scalar, either a string or a number.  For
634properties where there are synonyms for the values, the synonym returned by
635this function is the longest, most descriptive form, the one returned by
636L</prop_value_aliases()> when called in a scalar context.  Of course, you can
637call L</prop_value_aliases()> on the result to get other synonyms.
638
639The return values are more "cooked" than the L</charinfo()> ones.  For
640example, the C<"uc"> property value is the actual string containing the full
641uppercase mapping of the input code point.  You have to go to extra trouble
642with C<charinfo> to get this value from its C<upper> hash element when the
643full mapping differs from the simple one.
644
645Special note should be made of the return values for a few properties:
646
647=over
648
649=item Block
650
651The value returned is the new-style (see L</Old-style versus new-style block
652names>).
653
654=item Decomposition_Mapping
655
656Like L</charinfo()>, the result may be an intermediate decomposition whose
657components are also decomposable.  Use L<Unicode::Normalize> to get the final
658decomposition in one step.
659
660Unlike L</charinfo()>, this does not include the decomposition type.  Use the
661C<Decomposition_Type> property to get that.
662
663=item Name_Alias
664
665If the input code point's name has more than one synonym, they are returned
666joined into a single comma-separated string.
667
668=item Numeric_Value
669
670If the result is a fraction, it is converted into a floating point number to
671the accuracy of your platform.
672
673=item Script_Extensions
674
675If the result is multiple script names, they are returned joined into a single
676comma-separated string.
677
678=back
679
680When called with a property that is a Perl extension that isn't expressible in
681a compound form, this function currently returns C<undef>, as the only two
682possible values are I<true> or I<false> (1 or 0 I suppose).  This behavior may
683change in the future, so don't write code that relies on it.  C<Present_In> is
684a Perl extension that is expressible in a bipartite or compound form (for
685example, C<\p{Present_In=4.0}>), so C<charprop> accepts it.  But C<Any> is a
686Perl extension that isn't expressible that way, so C<charprop> returns
687C<undef> for it.  Also C<charprop> returns C<undef> for all Perl extensions
688that are internal-only.
689
690=cut
691
692sub charprop ($$;$) {
693    my ($input_cp, $prop, $internal_ok) = @_;
694
695    my $cp = _getcode($input_cp);
696    croak __PACKAGE__, "::charprop: unknown code point '$input_cp'" unless defined $cp;
697
698    my ($list_ref, $map_ref, $format, $default)
699                                      = prop_invmap($prop, $internal_ok);
700    return undef unless defined $list_ref;
701
702    my $i = search_invlist($list_ref, $cp);
703    croak __PACKAGE__, "::charprop: prop_invmap return is invalid for charprop('$input_cp', '$prop)" unless defined $i;
704
705    # $i is the index into both the inversion list and map of $cp.
706    my $map = $map_ref->[$i];
707
708    # Convert enumeration values to their most complete form.
709    if (! ref $map) {
710        my $long_form = prop_value_aliases($prop, $map);
711        $map = $long_form if defined $long_form;
712    }
713
714    if ($format =~ / ^ s /x) {  # Scalars
715        return join ",", @$map if ref $map; # Convert to scalar with comma
716                                            # separated array elements
717
718        # Resolve ambiguity as to whether an all digit value is a code point
719        # that should be converted to a character, or whether it is really
720        # just a number.  To do this, look at the default.  If it is a
721        # non-empty number, we can safely assume the result is also a number.
722        if ($map =~ / ^ \d+ $ /ax && $default !~ / ^ \d+ $ /ax) {
723            $map = chr $map;
724        }
725        elsif ($map =~ / ^ (?: Y | N ) $ /x) {
726
727            # prop_invmap() returns these values for properties that are Perl
728            # extensions.  But this is misleading.  For now, return undef for
729            # these, as currently documented.
730            undef $map unless
731                exists $Unicode::UCD::prop_aliases{utf8::_loose_name(lc $prop)};
732        }
733        return $map;
734    }
735    elsif ($format eq 'ar') {   # numbers, including rationals
736        my $offset = $cp - $list_ref->[$i];
737        return $map if $map =~ /nan/i;
738        return $map + $offset if $offset != 0;  # If needs adjustment
739        return eval $map;   # Convert e.g., 1/2 to 0.5
740    }
741    elsif ($format =~ /^a/) {   # Some entries need adjusting
742
743        # Linearize sequences into a string.
744        return join "", map { chr $_ } @$map if ref $map; # XXX && $format =~ /^ a [dl] /x;
745
746        return "" if $map eq "" && $format =~ /^a.*e/;
747
748        # These are all character mappings.  Return the chr if no adjustment
749        # is needed
750        return chr $cp if $map eq "0";
751
752        # Convert special entry.
753        if ($map eq '<hangul syllable>' && $format eq 'ad') {
754            use Unicode::Normalize qw(NFD);
755            return NFD(chr $cp);
756        }
757
758        # The rest need adjustment from the first entry in the inversion list
759        # corresponding to this map.
760        my $offset = $cp - $list_ref->[$i];
761        return chr($map + $cp - $list_ref->[$i]);
762    }
763    elsif ($format eq 'n') {    # The name property
764
765        # There are two special cases, handled here.
766        if ($map =~ / ( .+ ) <code\ point> $ /x) {
767            $map = sprintf("$1%04X", $cp);
768        }
769        elsif ($map eq '<hangul syllable>') {
770            $map = charnames::viacode($cp);
771        }
772        return $map;
773    }
774    else {
775        croak __PACKAGE__, "::charprop: Internal error: unknown format '$format'.  Please perlbug this";
776    }
777}
778
779=head2 B<charprops_all()>
780
781    use Unicode::UCD 'charprops_all';
782
783    my $%properties_of_A_hash_ref = charprops_all("U+41");
784
785This returns a reference to a hash whose keys are all the distinct Unicode (no
786Perl extension) properties, and whose values are the respective values for
787those properties for the input L</code point argument>.
788
789Each key is the property name in its longest, most descriptive form.  The
790values are what L</charprop()> would return.
791
792This function is expensive in time and memory.
793
794=cut
795
796sub charprops_all($) {
797    my $input_cp = shift;
798
799    my $cp = _getcode($input_cp);
800    croak __PACKAGE__, "::charprops_all: unknown code point '$input_cp'" unless defined $cp;
801
802    my %return;
803
804    require "unicore/UCD.pl";
805
806    foreach my $prop (keys %Unicode::UCD::prop_aliases) {
807
808        # Don't return a Perl extension.  (This is the only one that
809        # %prop_aliases has in it.)
810        next if $prop eq 'perldecimaldigit';
811
812        # Use long name for $prop in the hash
813        $return{scalar prop_aliases($prop)} = charprop($cp, $prop);
814    }
815
816    return \%return;
817}
818
819=head2 B<charblock()>
820
821    use Unicode::UCD 'charblock';
822
823    my $charblock = charblock(0x41);
824    my $charblock = charblock(1234);
825    my $charblock = charblock(0x263a);
826    my $charblock = charblock("U+263a");
827
828    my $range     = charblock('Armenian');
829
830With a L</code point argument> C<charblock()> returns the I<block> the code point
831belongs to, e.g.  C<Basic Latin>.  The old-style block name is returned (see
832L</Old-style versus new-style block names>).
833The L</prop_value_aliases()> function can be used to get all the synonyms
834of the block name.
835
836If the code point is unassigned, this returns the block it would belong to if
837it were assigned.  (If the Unicode version being used is so early as to not
838have blocks, all code points are considered to be in C<No_Block>.)
839
840See also L</Blocks versus Scripts>.
841
842If supplied with an argument that can't be a code point, C<charblock()> tries to
843do the opposite and interpret the argument as an old-style block name.  On an
844ASCII platform, the return value is a I<range set> with one range: an
845anonymous array with a single element that consists of another anonymous array
846whose first element is the first code point in the block, and whose second
847element is the final code point in the block.  On an EBCDIC
848platform, the first two Unicode blocks are not contiguous.  Their range sets
849are lists containing I<start-of-range>, I<end-of-range> code point pairs.  You
850can test whether a code point is in a range set using the L</charinrange()>
851function.  (To be precise, each I<range set> contains a third array element,
852after the range boundary ones: the old_style block name.)
853
854If the argument to C<charblock()> is not a known block, C<undef> is
855returned.
856
857=cut
858
859my @BLOCKS;
860my %BLOCKS;
861
862sub _charblocks {
863
864    # Can't read from the mktables table because it loses the hyphens in the
865    # original.
866    unless (@BLOCKS) {
867        UnicodeVersion() unless defined $v_unicode_version;
868        if ($v_unicode_version lt v2.0.0) {
869            my $subrange = [ 0, 0x10FFFF, 'No_Block' ];
870            push @BLOCKS, $subrange;
871            push @{$BLOCKS{'No_Block'}}, $subrange;
872        }
873        else {
874            my $blocksfh = openunicode("Blocks.txt");
875	    local $_;
876	    local $/ = "\n";
877	    while (<$blocksfh>) {
878
879                # Old versions used a different syntax to mark the range.
880                $_ =~ s/;\s+/../ if $v_unicode_version lt v3.1.0;
881
882		if (/^([0-9A-F]+)\.\.([0-9A-F]+);\s+(.+)/) {
883		    my ($lo, $hi) = (hex($1), hex($2));
884		    my $subrange = [ $lo, $hi, $3 ];
885		    push @BLOCKS, $subrange;
886		    push @{$BLOCKS{$3}}, $subrange;
887		}
888	    }
889            if (! IS_ASCII_PLATFORM) {
890                # The first two blocks, through 0xFF, are wrong on EBCDIC
891                # platforms.
892
893                my @new_blocks = _read_table("To/Blk.pl");
894
895                # Get rid of the first two ranges in the Unicode version, and
896                # replace them with the ones computed by mktables.
897                shift @BLOCKS;
898                shift @BLOCKS;
899                delete $BLOCKS{'Basic Latin'};
900                delete $BLOCKS{'Latin-1 Supplement'};
901
902                # But there are multiple entries in the computed versions, and
903                # we change their names to (which we know) to be the old-style
904                # ones.
905                for my $i (0.. @new_blocks - 1) {
906                    if ($new_blocks[$i][2] =~ s/Basic_Latin/Basic Latin/
907                        or $new_blocks[$i][2] =~
908                                    s/Latin_1_Supplement/Latin-1 Supplement/)
909                    {
910                        push @{$BLOCKS{$new_blocks[$i][2]}}, $new_blocks[$i];
911                    }
912                    else {
913                        splice @new_blocks, $i;
914                        last;
915                    }
916                }
917                unshift @BLOCKS, @new_blocks;
918            }
919	}
920    }
921}
922
923sub charblock {
924    my $arg = shift;
925
926    _charblocks() unless @BLOCKS;
927
928    my $code = _getcode($arg);
929
930    if (defined $code) {
931	my $result = _search(\@BLOCKS, 0, $#BLOCKS, $code);
932        return $result if defined $result;
933        return 'No_Block';
934    }
935    elsif (exists $BLOCKS{$arg}) {
936        return _dclone $BLOCKS{$arg};
937    }
938
939    carp __PACKAGE__, "::charblock: unknown code '$arg'";
940    return;
941}
942
943=head2 B<charscript()>
944
945    use Unicode::UCD 'charscript';
946
947    my $charscript = charscript(0x41);
948    my $charscript = charscript(1234);
949    my $charscript = charscript("U+263a");
950
951    my $range      = charscript('Thai');
952
953With a L</code point argument>, C<charscript()> returns the I<script> the
954code point belongs to, e.g., C<Latin>, C<Greek>, C<Han>.
955If the code point is unassigned or the Unicode version being used is so early
956that it doesn't have scripts, this function returns C<"Unknown">.
957The L</prop_value_aliases()> function can be used to get all the synonyms
958of the script name.
959
960Note that the Script_Extensions property is an improved version of the Script
961property, and you should probably be using that instead, with the
962L</charprop()> function.
963
964If supplied with an argument that can't be a code point, charscript() tries
965to do the opposite and interpret the argument as a script name. The
966return value is a I<range set>: an anonymous array of arrays that contain
967I<start-of-range>, I<end-of-range> code point pairs. You can test whether a
968code point is in a range set using the L</charinrange()> function.
969(To be precise, each I<range set> contains a third array element,
970after the range boundary ones: the script name.)
971
972If the C<charscript()> argument is not a known script, C<undef> is returned.
973
974See also L</Blocks versus Scripts>.
975
976=cut
977
978my @SCRIPTS;
979my %SCRIPTS;
980
981sub _charscripts {
982    unless (@SCRIPTS) {
983        UnicodeVersion() unless defined $v_unicode_version;
984        if ($v_unicode_version lt v3.1.0) {
985            push @SCRIPTS, [ 0, 0x10FFFF, 'Unknown' ];
986        }
987        else {
988            @SCRIPTS =_read_table("To/Sc.pl");
989        }
990    }
991    foreach my $entry (@SCRIPTS) {
992        $entry->[2] =~ s/(_\w)/\L$1/g;  # Preserve old-style casing
993        push @{$SCRIPTS{$entry->[2]}}, $entry;
994    }
995}
996
997sub charscript {
998    my $arg = shift;
999
1000    _charscripts() unless @SCRIPTS;
1001
1002    my $code = _getcode($arg);
1003
1004    if (defined $code) {
1005	my $result = _search(\@SCRIPTS, 0, $#SCRIPTS, $code);
1006        return $result if defined $result;
1007        return $utf8::SwashInfo{'ToSc'}{'missing'};
1008    } elsif (exists $SCRIPTS{$arg}) {
1009        return _dclone $SCRIPTS{$arg};
1010    }
1011
1012    carp __PACKAGE__, "::charscript: unknown code '$arg'";
1013    return;
1014}
1015
1016=head2 B<charblocks()>
1017
1018    use Unicode::UCD 'charblocks';
1019
1020    my $charblocks = charblocks();
1021
1022C<charblocks()> returns a reference to a hash with the known block names
1023as the keys, and the code point ranges (see L</charblock()>) as the values.
1024
1025The names are in the old-style (see L</Old-style versus new-style block
1026names>).
1027
1028L<prop_invmap("block")|/prop_invmap()> can be used to get this same data in a
1029different type of data structure.
1030
1031L<prop_values("Block")|/prop_values()> can be used to get all
1032the known new-style block names as a list, without the code point ranges.
1033
1034See also L</Blocks versus Scripts>.
1035
1036=cut
1037
1038sub charblocks {
1039    _charblocks() unless %BLOCKS;
1040    return _dclone \%BLOCKS;
1041}
1042
1043=head2 B<charscripts()>
1044
1045    use Unicode::UCD 'charscripts';
1046
1047    my $charscripts = charscripts();
1048
1049C<charscripts()> returns a reference to a hash with the known script
1050names as the keys, and the code point ranges (see L</charscript()>) as
1051the values.
1052
1053L<prop_invmap("script")|/prop_invmap()> can be used to get this same data in a
1054different type of data structure.  Since the Script_Extensions property is an
1055improved version of the Script property, you should instead use
1056L<prop_invmap("scx")|/prop_invmap()>.
1057
1058L<C<prop_values("Script")>|/prop_values()> can be used to get all
1059the known script names as a list, without the code point ranges.
1060
1061See also L</Blocks versus Scripts>.
1062
1063=cut
1064
1065sub charscripts {
1066    _charscripts() unless %SCRIPTS;
1067    return _dclone \%SCRIPTS;
1068}
1069
1070=head2 B<charinrange()>
1071
1072In addition to using the C<\p{Blk=...}> and C<\P{Blk=...}> constructs, you
1073can also test whether a code point is in the I<range> as returned by
1074L</charblock()> and L</charscript()> or as the values of the hash returned
1075by L</charblocks()> and L</charscripts()> by using C<charinrange()>:
1076
1077    use Unicode::UCD qw(charscript charinrange);
1078
1079    $range = charscript('Hiragana');
1080    print "looks like hiragana\n" if charinrange($range, $codepoint);
1081
1082=cut
1083
1084my %GENERAL_CATEGORIES =
1085 (
1086    'L'  =>         'Letter',
1087    'LC' =>         'CasedLetter',
1088    'Lu' =>         'UppercaseLetter',
1089    'Ll' =>         'LowercaseLetter',
1090    'Lt' =>         'TitlecaseLetter',
1091    'Lm' =>         'ModifierLetter',
1092    'Lo' =>         'OtherLetter',
1093    'M'  =>         'Mark',
1094    'Mn' =>         'NonspacingMark',
1095    'Mc' =>         'SpacingMark',
1096    'Me' =>         'EnclosingMark',
1097    'N'  =>         'Number',
1098    'Nd' =>         'DecimalNumber',
1099    'Nl' =>         'LetterNumber',
1100    'No' =>         'OtherNumber',
1101    'P'  =>         'Punctuation',
1102    'Pc' =>         'ConnectorPunctuation',
1103    'Pd' =>         'DashPunctuation',
1104    'Ps' =>         'OpenPunctuation',
1105    'Pe' =>         'ClosePunctuation',
1106    'Pi' =>         'InitialPunctuation',
1107    'Pf' =>         'FinalPunctuation',
1108    'Po' =>         'OtherPunctuation',
1109    'S'  =>         'Symbol',
1110    'Sm' =>         'MathSymbol',
1111    'Sc' =>         'CurrencySymbol',
1112    'Sk' =>         'ModifierSymbol',
1113    'So' =>         'OtherSymbol',
1114    'Z'  =>         'Separator',
1115    'Zs' =>         'SpaceSeparator',
1116    'Zl' =>         'LineSeparator',
1117    'Zp' =>         'ParagraphSeparator',
1118    'C'  =>         'Other',
1119    'Cc' =>         'Control',
1120    'Cf' =>         'Format',
1121    'Cs' =>         'Surrogate',
1122    'Co' =>         'PrivateUse',
1123    'Cn' =>         'Unassigned',
1124 );
1125
1126sub general_categories {
1127    return _dclone \%GENERAL_CATEGORIES;
1128}
1129
1130=head2 B<general_categories()>
1131
1132    use Unicode::UCD 'general_categories';
1133
1134    my $categories = general_categories();
1135
1136This returns a reference to a hash which has short
1137general category names (such as C<Lu>, C<Nd>, C<Zs>, C<S>) as keys and long
1138names (such as C<UppercaseLetter>, C<DecimalNumber>, C<SpaceSeparator>,
1139C<Symbol>) as values.  The hash is reversible in case you need to go
1140from the long names to the short names.  The general category is the
1141one returned from
1142L</charinfo()> under the C<category> key.
1143
1144The L</prop_values()> and L</prop_value_aliases()> functions can be used as an
1145alternative to this function; the first returning a simple list of the short
1146category names; and the second gets all the synonyms of a given category name.
1147
1148=cut
1149
1150my %BIDI_TYPES =
1151 (
1152   'L'   => 'Left-to-Right',
1153   'LRE' => 'Left-to-Right Embedding',
1154   'LRO' => 'Left-to-Right Override',
1155   'R'   => 'Right-to-Left',
1156   'AL'  => 'Right-to-Left Arabic',
1157   'RLE' => 'Right-to-Left Embedding',
1158   'RLO' => 'Right-to-Left Override',
1159   'PDF' => 'Pop Directional Format',
1160   'EN'  => 'European Number',
1161   'ES'  => 'European Number Separator',
1162   'ET'  => 'European Number Terminator',
1163   'AN'  => 'Arabic Number',
1164   'CS'  => 'Common Number Separator',
1165   'NSM' => 'Non-Spacing Mark',
1166   'BN'  => 'Boundary Neutral',
1167   'B'   => 'Paragraph Separator',
1168   'S'   => 'Segment Separator',
1169   'WS'  => 'Whitespace',
1170   'ON'  => 'Other Neutrals',
1171 );
1172
1173=head2 B<bidi_types()>
1174
1175    use Unicode::UCD 'bidi_types';
1176
1177    my $categories = bidi_types();
1178
1179This returns a reference to a hash which has the short
1180bidi (bidirectional) type names (such as C<L>, C<R>) as keys and long
1181names (such as C<Left-to-Right>, C<Right-to-Left>) as values.  The
1182hash is reversible in case you need to go from the long names to the
1183short names.  The bidi type is the one returned from
1184L</charinfo()>
1185under the C<bidi> key.  For the exact meaning of the various bidi classes
1186the Unicode TR9 is recommended reading:
1187L<http://www.unicode.org/reports/tr9/>
1188(as of Unicode 5.0.0)
1189
1190The L</prop_values()> and L</prop_value_aliases()> functions can be used as an
1191alternative to this function; the first returning a simple list of the short
1192bidi type names; and the second gets all the synonyms of a given bidi type
1193name.
1194
1195=cut
1196
1197sub bidi_types {
1198    return _dclone \%BIDI_TYPES;
1199}
1200
1201=head2 B<compexcl()>
1202
1203WARNING: Unicode discourages the use of this function or any of the
1204alternative mechanisms listed in this section (the documentation of
1205C<compexcl()>), except internally in implementations of the Unicode
1206Normalization Algorithm.  You should be using L<Unicode::Normalize> directly
1207instead of these.  Using these will likely lead to half-baked results.
1208
1209    use Unicode::UCD 'compexcl';
1210
1211    my $compexcl = compexcl(0x09dc);
1212
1213This routine returns C<undef> if the Unicode version being used is so early
1214that it doesn't have this property.
1215
1216C<compexcl()> is included for backwards
1217compatibility, but as of Perl 5.12 and more modern Unicode versions, for
1218most purposes it is probably more convenient to use one of the following
1219instead:
1220
1221    my $compexcl = chr(0x09dc) =~ /\p{Comp_Ex};
1222    my $compexcl = chr(0x09dc) =~ /\p{Full_Composition_Exclusion};
1223
1224or even
1225
1226    my $compexcl = chr(0x09dc) =~ /\p{CE};
1227    my $compexcl = chr(0x09dc) =~ /\p{Composition_Exclusion};
1228
1229The first two forms return B<true> if the L</code point argument> should not
1230be produced by composition normalization.  For the final two forms to return
1231B<true>, it is additionally required that this fact not otherwise be
1232determinable from the Unicode data base.
1233
1234This routine behaves identically to the final two forms.  That is,
1235it does not return B<true> if the code point has a decomposition
1236consisting of another single code point, nor if its decomposition starts
1237with a code point whose combining class is non-zero.  Code points that meet
1238either of these conditions should also not be produced by composition
1239normalization, which is probably why you should use the
1240C<Full_Composition_Exclusion> property instead, as shown above.
1241
1242The routine returns B<false> otherwise.
1243
1244=cut
1245
1246# Eval'd so can run on versions earlier than the property is available in
1247my $Composition_Exclusion_re = eval 'qr/\p{Composition_Exclusion}/';
1248
1249sub compexcl {
1250    my $arg  = shift;
1251    my $code = _getcode($arg);
1252    croak __PACKAGE__, "::compexcl: unknown code '$arg'"
1253	unless defined $code;
1254
1255    UnicodeVersion() unless defined $v_unicode_version;
1256    return if $v_unicode_version lt v3.0.0;
1257
1258    no warnings "non_unicode";     # So works on non-Unicode code points
1259    return chr($code) =~ $Composition_Exclusion_re
1260}
1261
1262=head2 B<casefold()>
1263
1264    use Unicode::UCD 'casefold';
1265
1266    my $casefold = casefold(0xDF);
1267    if (defined $casefold) {
1268        my @full_fold_hex = split / /, $casefold->{'full'};
1269        my $full_fold_string =
1270                    join "", map {chr(hex($_))} @full_fold_hex;
1271        my @turkic_fold_hex =
1272                        split / /, ($casefold->{'turkic'} ne "")
1273                                        ? $casefold->{'turkic'}
1274                                        : $casefold->{'full'};
1275        my $turkic_fold_string =
1276                        join "", map {chr(hex($_))} @turkic_fold_hex;
1277    }
1278    if (defined $casefold && $casefold->{'simple'} ne "") {
1279        my $simple_fold_hex = $casefold->{'simple'};
1280        my $simple_fold_string = chr(hex($simple_fold_hex));
1281    }
1282
1283This returns the (almost) locale-independent case folding of the
1284character specified by the L</code point argument>.  (Starting in Perl v5.16,
1285the core function C<fc()> returns the C<full> mapping (described below)
1286faster than this does, and for entire strings.)
1287
1288If there is no case folding for the input code point, C<undef> is returned.
1289
1290If there is a case folding for that code point, a reference to a hash
1291with the following fields is returned:
1292
1293=over
1294
1295=item B<code>
1296
1297the input native L</code point argument> expressed in hexadecimal, with
1298leading zeros
1299added if necessary to make it contain at least four hexdigits
1300
1301=item B<full>
1302
1303one or more codes (separated by spaces) that, taken in order, give the
1304code points for the case folding for I<code>.
1305Each has at least four hexdigits.
1306
1307=item B<simple>
1308
1309is empty, or is exactly one code with at least four hexdigits which can be used
1310as an alternative case folding when the calling program cannot cope with the
1311fold being a sequence of multiple code points.  If I<full> is just one code
1312point, then I<simple> equals I<full>.  If there is no single code point folding
1313defined for I<code>, then I<simple> is the empty string.  Otherwise, it is an
1314inferior, but still better-than-nothing alternative folding to I<full>.
1315
1316=item B<mapping>
1317
1318is the same as I<simple> if I<simple> is not empty, and it is the same as I<full>
1319otherwise.  It can be considered to be the simplest possible folding for
1320I<code>.  It is defined primarily for backwards compatibility.
1321
1322=item B<status>
1323
1324is C<C> (for C<common>) if the best possible fold is a single code point
1325(I<simple> equals I<full> equals I<mapping>).  It is C<S> if there are distinct
1326folds, I<simple> and I<full> (I<mapping> equals I<simple>).  And it is C<F> if
1327there is only a I<full> fold (I<mapping> equals I<full>; I<simple> is empty).
1328Note that this
1329describes the contents of I<mapping>.  It is defined primarily for backwards
1330compatibility.
1331
1332For Unicode versions between 3.1 and 3.1.1 inclusive, I<status> can also be
1333C<I> which is the same as C<C> but is a special case for dotted uppercase I and
1334dotless lowercase i:
1335
1336=over
1337
1338=item Z<>B<*> If you use this C<I> mapping
1339
1340the result is case-insensitive,
1341but dotless and dotted I's are not distinguished
1342
1343=item Z<>B<*> If you exclude this C<I> mapping
1344
1345the result is not fully case-insensitive, but
1346dotless and dotted I's are distinguished
1347
1348=back
1349
1350=item B<turkic>
1351
1352contains any special folding for Turkic languages.  For versions of Unicode
1353starting with 3.2, this field is empty unless I<code> has a different folding
1354in Turkic languages, in which case it is one or more codes (separated by
1355spaces) that, taken in order, give the code points for the case folding for
1356I<code> in those languages.
1357Each code has at least four hexdigits.
1358Note that this folding does not maintain canonical equivalence without
1359additional processing.
1360
1361For Unicode versions between 3.1 and 3.1.1 inclusive, this field is empty unless
1362there is a
1363special folding for Turkic languages, in which case I<status> is C<I>, and
1364I<mapping>, I<full>, I<simple>, and I<turkic> are all equal.
1365
1366=back
1367
1368Programs that want complete generality and the best folding results should use
1369the folding contained in the I<full> field.  But note that the fold for some
1370code points will be a sequence of multiple code points.
1371
1372Programs that can't cope with the fold mapping being multiple code points can
1373use the folding contained in the I<simple> field, with the loss of some
1374generality.  In Unicode 5.1, about 7% of the defined foldings have no single
1375code point folding.
1376
1377The I<mapping> and I<status> fields are provided for backwards compatibility for
1378existing programs.  They contain the same values as in previous versions of
1379this function.
1380
1381Locale is not completely independent.  The I<turkic> field contains results to
1382use when the locale is a Turkic language.
1383
1384For more information about case mappings see
1385L<http://www.unicode.org/unicode/reports/tr21>
1386
1387=cut
1388
1389my %CASEFOLD;
1390
1391sub _casefold {
1392    unless (%CASEFOLD) {   # Populate the hash
1393        my ($full_invlist_ref, $full_invmap_ref, undef, $default)
1394                                                = prop_invmap('Case_Folding');
1395
1396        # Use the recipe given in the prop_invmap() pod to convert the
1397        # inversion map into the hash.
1398        for my $i (0 .. @$full_invlist_ref - 1 - 1) {
1399            next if $full_invmap_ref->[$i] == $default;
1400            my $adjust = -1;
1401            for my $j ($full_invlist_ref->[$i] .. $full_invlist_ref->[$i+1] -1) {
1402                $adjust++;
1403                if (! ref $full_invmap_ref->[$i]) {
1404
1405                    # This is a single character mapping
1406                    $CASEFOLD{$j}{'status'} = 'C';
1407                    $CASEFOLD{$j}{'simple'}
1408                        = $CASEFOLD{$j}{'full'}
1409                        = $CASEFOLD{$j}{'mapping'}
1410                        = sprintf("%04X", $full_invmap_ref->[$i] + $adjust);
1411                    $CASEFOLD{$j}{'code'} = sprintf("%04X", $j);
1412                    $CASEFOLD{$j}{'turkic'} = "";
1413                }
1414                else {  # prop_invmap ensures that $adjust is 0 for a ref
1415                    $CASEFOLD{$j}{'status'} = 'F';
1416                    $CASEFOLD{$j}{'full'}
1417                    = $CASEFOLD{$j}{'mapping'}
1418                    = join " ", map { sprintf "%04X", $_ }
1419                                                    @{$full_invmap_ref->[$i]};
1420                    $CASEFOLD{$j}{'simple'} = "";
1421                    $CASEFOLD{$j}{'code'} = sprintf("%04X", $j);
1422                    $CASEFOLD{$j}{'turkic'} = "";
1423                }
1424            }
1425        }
1426
1427        # We have filled in the full mappings above, assuming there were no
1428        # simple ones for the ones with multi-character maps.  Now, we find
1429        # and fix the cases where that assumption was false.
1430        (my ($simple_invlist_ref, $simple_invmap_ref, undef), $default)
1431                                        = prop_invmap('Simple_Case_Folding');
1432        for my $i (0 .. @$simple_invlist_ref - 1 - 1) {
1433            next if $simple_invmap_ref->[$i] == $default;
1434            my $adjust = -1;
1435            for my $j ($simple_invlist_ref->[$i]
1436                       .. $simple_invlist_ref->[$i+1] -1)
1437            {
1438                $adjust++;
1439                next if $CASEFOLD{$j}{'status'} eq 'C';
1440                $CASEFOLD{$j}{'status'} = 'S';
1441                $CASEFOLD{$j}{'simple'}
1442                    = $CASEFOLD{$j}{'mapping'}
1443                    = sprintf("%04X", $simple_invmap_ref->[$i] + $adjust);
1444                $CASEFOLD{$j}{'code'} = sprintf("%04X", $j);
1445                $CASEFOLD{$j}{'turkic'} = "";
1446            }
1447        }
1448
1449        # We hard-code in the turkish rules
1450        UnicodeVersion() unless defined $v_unicode_version;
1451        if ($v_unicode_version ge v3.2.0) {
1452
1453            # These two code points should already have regular entries, so
1454            # just fill in the turkish fields
1455            $CASEFOLD{ord('I')}{'turkic'} = '0131';
1456            $CASEFOLD{0x130}{'turkic'} = sprintf "%04X", ord('i');
1457        }
1458        elsif ($v_unicode_version ge v3.1.0) {
1459
1460            # These two code points don't have entries otherwise.
1461            $CASEFOLD{0x130}{'code'} = '0130';
1462            $CASEFOLD{0x131}{'code'} = '0131';
1463            $CASEFOLD{0x130}{'status'} = $CASEFOLD{0x131}{'status'} = 'I';
1464            $CASEFOLD{0x130}{'turkic'}
1465                = $CASEFOLD{0x130}{'mapping'}
1466                = $CASEFOLD{0x130}{'full'}
1467                = $CASEFOLD{0x130}{'simple'}
1468                = $CASEFOLD{0x131}{'turkic'}
1469                = $CASEFOLD{0x131}{'mapping'}
1470                = $CASEFOLD{0x131}{'full'}
1471                = $CASEFOLD{0x131}{'simple'}
1472                = sprintf "%04X", ord('i');
1473        }
1474    }
1475}
1476
1477sub casefold {
1478    my $arg  = shift;
1479    my $code = _getcode($arg);
1480    croak __PACKAGE__, "::casefold: unknown code '$arg'"
1481	unless defined $code;
1482
1483    _casefold() unless %CASEFOLD;
1484
1485    return $CASEFOLD{$code};
1486}
1487
1488=head2 B<all_casefolds()>
1489
1490
1491    use Unicode::UCD 'all_casefolds';
1492
1493    my $all_folds_ref = all_casefolds();
1494    foreach my $char_with_casefold (sort { $a <=> $b }
1495                                    keys %$all_folds_ref)
1496    {
1497        printf "%04X:", $char_with_casefold;
1498        my $casefold = $all_folds_ref->{$char_with_casefold};
1499
1500        # Get folds for $char_with_casefold
1501
1502        my @full_fold_hex = split / /, $casefold->{'full'};
1503        my $full_fold_string =
1504                    join "", map {chr(hex($_))} @full_fold_hex;
1505        print " full=", join " ", @full_fold_hex;
1506        my @turkic_fold_hex =
1507                        split / /, ($casefold->{'turkic'} ne "")
1508                                        ? $casefold->{'turkic'}
1509                                        : $casefold->{'full'};
1510        my $turkic_fold_string =
1511                        join "", map {chr(hex($_))} @turkic_fold_hex;
1512        print "; turkic=", join " ", @turkic_fold_hex;
1513        if (defined $casefold && $casefold->{'simple'} ne "") {
1514            my $simple_fold_hex = $casefold->{'simple'};
1515            my $simple_fold_string = chr(hex($simple_fold_hex));
1516            print "; simple=$simple_fold_hex";
1517        }
1518        print "\n";
1519    }
1520
1521This returns all the case foldings in the current version of Unicode in the
1522form of a reference to a hash.  Each key to the hash is the decimal
1523representation of a Unicode character that has a casefold to other than
1524itself.  The casefold of a semi-colon is itself, so it isn't in the hash;
1525likewise for a lowercase "a", but there is an entry for a capital "A".  The
1526hash value for each key is another hash, identical to what is returned by
1527L</casefold()> if called with that code point as its argument.  So the value
1528C<< all_casefolds()->{ord("A")}' >> is equivalent to C<casefold(ord("A"))>;
1529
1530=cut
1531
1532sub all_casefolds () {
1533    _casefold() unless %CASEFOLD;
1534    return _dclone \%CASEFOLD;
1535}
1536
1537=head2 B<casespec()>
1538
1539    use Unicode::UCD 'casespec';
1540
1541    my $casespec = casespec(0xFB00);
1542
1543This returns the potentially locale-dependent case mappings of the L</code point
1544argument>.  The mappings may be longer than a single code point (which the basic
1545Unicode case mappings as returned by L</charinfo()> never are).
1546
1547If there are no case mappings for the L</code point argument>, or if all three
1548possible mappings (I<lower>, I<title> and I<upper>) result in single code
1549points and are locale independent and unconditional, C<undef> is returned
1550(which means that the case mappings, if any, for the code point are those
1551returned by L</charinfo()>).
1552
1553Otherwise, a reference to a hash giving the mappings (or a reference to a hash
1554of such hashes, explained below) is returned with the following keys and their
1555meanings:
1556
1557The keys in the bottom layer hash with the meanings of their values are:
1558
1559=over
1560
1561=item B<code>
1562
1563the input native L</code point argument> expressed in hexadecimal, with
1564leading zeros
1565added if necessary to make it contain at least four hexdigits
1566
1567=item B<lower>
1568
1569one or more codes (separated by spaces) that, taken in order, give the
1570code points for the lower case of I<code>.
1571Each has at least four hexdigits.
1572
1573=item B<title>
1574
1575one or more codes (separated by spaces) that, taken in order, give the
1576code points for the title case of I<code>.
1577Each has at least four hexdigits.
1578
1579=item B<upper>
1580
1581one or more codes (separated by spaces) that, taken in order, give the
1582code points for the upper case of I<code>.
1583Each has at least four hexdigits.
1584
1585=item B<condition>
1586
1587the conditions for the mappings to be valid.
1588If C<undef>, the mappings are always valid.
1589When defined, this field is a list of conditions,
1590all of which must be true for the mappings to be valid.
1591The list consists of one or more
1592I<locales> (see below)
1593and/or I<contexts> (explained in the next paragraph),
1594separated by spaces.
1595(Other than as used to separate elements, spaces are to be ignored.)
1596Case distinctions in the condition list are not significant.
1597Conditions preceded by "NON_" represent the negation of the condition.
1598
1599A I<context> is one of those defined in the Unicode standard.
1600For Unicode 5.1, they are defined in Section 3.13 C<Default Case Operations>
1601available at
1602L<http://www.unicode.org/versions/Unicode5.1.0/>.
1603These are for context-sensitive casing.
1604
1605=back
1606
1607The hash described above is returned for locale-independent casing, where
1608at least one of the mappings has length longer than one.  If C<undef> is
1609returned, the code point may have mappings, but if so, all are length one,
1610and are returned by L</charinfo()>.
1611Note that when this function does return a value, it will be for the complete
1612set of mappings for a code point, even those whose length is one.
1613
1614If there are additional casing rules that apply only in certain locales,
1615an additional key for each will be defined in the returned hash.  Each such key
1616will be its locale name, defined as a 2-letter ISO 3166 country code, possibly
1617followed by a "_" and a 2-letter ISO language code (possibly followed by a "_"
1618and a variant code).  You can find the lists of all possible locales, see
1619L<Locale::Country> and L<Locale::Language>.
1620(In Unicode 6.0, the only locales returned by this function
1621are C<lt>, C<tr>, and C<az>.)
1622
1623Each locale key is a reference to a hash that has the form above, and gives
1624the casing rules for that particular locale, which take precedence over the
1625locale-independent ones when in that locale.
1626
1627If the only casing for a code point is locale-dependent, then the returned
1628hash will not have any of the base keys, like C<code>, C<upper>, etc., but
1629will contain only locale keys.
1630
1631For more information about case mappings see
1632L<http://www.unicode.org/unicode/reports/tr21/>
1633
1634=cut
1635
1636my %CASESPEC;
1637
1638sub _casespec {
1639    unless (%CASESPEC) {
1640        UnicodeVersion() unless defined $v_unicode_version;
1641        if ($v_unicode_version ge v2.1.8) {
1642            my $casespecfh = openunicode("SpecialCasing.txt");
1643	    local $_;
1644	    local $/ = "\n";
1645	    while (<$casespecfh>) {
1646		if (/^([0-9A-F]+); ([0-9A-F]+(?: [0-9A-F]+)*)?; ([0-9A-F]+(?: [0-9A-F]+)*)?; ([0-9A-F]+(?: [0-9A-F]+)*)?; (\w+(?: \w+)*)?/) {
1647
1648		    my ($hexcode, $lower, $title, $upper, $condition) =
1649			($1, $2, $3, $4, $5);
1650                    if (! IS_ASCII_PLATFORM) { # Remap entry to native
1651                        foreach my $var_ref (\$hexcode,
1652                                             \$lower,
1653                                             \$title,
1654                                             \$upper)
1655                        {
1656                            next unless defined $$var_ref;
1657                            $$var_ref = join " ",
1658                                        map { sprintf("%04X",
1659                                              utf8::unicode_to_native(hex $_)) }
1660                                        split " ", $$var_ref;
1661                        }
1662                    }
1663
1664		    my $code = hex($hexcode);
1665
1666                    # In 2.1.8, there were duplicate entries; ignore all but
1667                    # the first one -- there were no conditions in the file
1668                    # anyway.
1669		    if (exists $CASESPEC{$code} && $v_unicode_version ne v2.1.8)
1670                    {
1671			if (exists $CASESPEC{$code}->{code}) {
1672			    my ($oldlower,
1673				$oldtitle,
1674				$oldupper,
1675				$oldcondition) =
1676				    @{$CASESPEC{$code}}{qw(lower
1677							   title
1678							   upper
1679							   condition)};
1680			    if (defined $oldcondition) {
1681				my ($oldlocale) =
1682				($oldcondition =~ /^([a-z][a-z](?:_\S+)?)/);
1683				delete $CASESPEC{$code};
1684				$CASESPEC{$code}->{$oldlocale} =
1685				{ code      => $hexcode,
1686				  lower     => $oldlower,
1687				  title     => $oldtitle,
1688				  upper     => $oldupper,
1689				  condition => $oldcondition };
1690			    }
1691			}
1692			my ($locale) =
1693			    ($condition =~ /^([a-z][a-z](?:_\S+)?)/);
1694			$CASESPEC{$code}->{$locale} =
1695			{ code      => $hexcode,
1696			  lower     => $lower,
1697			  title     => $title,
1698			  upper     => $upper,
1699			  condition => $condition };
1700		    } else {
1701			$CASESPEC{$code} =
1702			{ code      => $hexcode,
1703			  lower     => $lower,
1704			  title     => $title,
1705			  upper     => $upper,
1706			  condition => $condition };
1707		    }
1708		}
1709	    }
1710	}
1711    }
1712}
1713
1714sub casespec {
1715    my $arg  = shift;
1716    my $code = _getcode($arg);
1717    croak __PACKAGE__, "::casespec: unknown code '$arg'"
1718	unless defined $code;
1719
1720    _casespec() unless %CASESPEC;
1721
1722    return ref $CASESPEC{$code} ? _dclone $CASESPEC{$code} : $CASESPEC{$code};
1723}
1724
1725=head2 B<namedseq()>
1726
1727    use Unicode::UCD 'namedseq';
1728
1729    my $namedseq = namedseq("KATAKANA LETTER AINU P");
1730    my @namedseq = namedseq("KATAKANA LETTER AINU P");
1731    my %namedseq = namedseq();
1732
1733If used with a single argument in a scalar context, returns the string
1734consisting of the code points of the named sequence, or C<undef> if no
1735named sequence by that name exists.  If used with a single argument in
1736a list context, it returns the list of the ordinals of the code points.
1737
1738If used with no
1739arguments in a list context, it returns a hash with the names of all the
1740named sequences as the keys and their sequences as strings as
1741the values.  Otherwise, it returns C<undef> or an empty list depending
1742on the context.
1743
1744This function only operates on officially approved (not provisional) named
1745sequences.
1746
1747Note that as of Perl 5.14, C<\N{KATAKANA LETTER AINU P}> will insert the named
1748sequence into double-quoted strings, and C<charnames::string_vianame("KATAKANA
1749LETTER AINU P")> will return the same string this function does, but will also
1750operate on character names that aren't named sequences, without you having to
1751know which are which.  See L<charnames>.
1752
1753=cut
1754
1755my %NAMEDSEQ;
1756
1757sub _namedseq {
1758    unless (%NAMEDSEQ) {
1759        my $namedseqfh = openunicode("Name.pl");
1760        local $_;
1761        local $/ = "\n";
1762        while (<$namedseqfh>) {
1763            if (/^ [0-9A-F]+ \  /x) {
1764                chomp;
1765                my ($sequence, $name) = split /\t/;
1766                my @s = map { chr(hex($_)) } split(' ', $sequence);
1767                $NAMEDSEQ{$name} = join("", @s);
1768            }
1769        }
1770    }
1771}
1772
1773sub namedseq {
1774
1775    # Use charnames::string_vianame() which now returns this information,
1776    # unless the caller wants the hash returned, in which case we read it in,
1777    # and thereafter use it instead of calling charnames, as it is faster.
1778
1779    my $wantarray = wantarray();
1780    if (defined $wantarray) {
1781	if ($wantarray) {
1782	    if (@_ == 0) {
1783                _namedseq() unless %NAMEDSEQ;
1784		return %NAMEDSEQ;
1785	    } elsif (@_ == 1) {
1786		my $s;
1787                if (%NAMEDSEQ) {
1788                    $s = $NAMEDSEQ{ $_[0] };
1789                }
1790                else {
1791                    $s = charnames::string_vianame($_[0]);
1792                }
1793		return defined $s ? map { ord($_) } split('', $s) : ();
1794	    }
1795	} elsif (@_ == 1) {
1796            return $NAMEDSEQ{ $_[0] } if %NAMEDSEQ;
1797            return charnames::string_vianame($_[0]);
1798	}
1799    }
1800    return;
1801}
1802
1803my %NUMERIC;
1804
1805sub _numeric {
1806    my @numbers = _read_table("To/Nv.pl");
1807    foreach my $entry (@numbers) {
1808        my ($start, $end, $value) = @$entry;
1809
1810        # If value contains a slash, convert to decimal, add a reverse hash
1811        # used by charinfo.
1812        if ((my @rational = split /\//, $value) == 2) {
1813            my $real = $rational[0] / $rational[1];
1814            $real_to_rational{$real} = $value;
1815            $value = $real;
1816
1817            # Should only be single element, but just in case...
1818            for my $i ($start .. $end) {
1819                $NUMERIC{$i} = $value;
1820            }
1821        }
1822        else {
1823            # The values require adjusting, as is in 'a' format
1824            for my $i ($start .. $end) {
1825                $NUMERIC{$i} = $value + $i - $start;
1826            }
1827        }
1828    }
1829
1830    # Decided unsafe to use these that aren't officially part of the Unicode
1831    # standard.
1832    #use Math::Trig;
1833    #my $pi = acos(-1.0);
1834    #$NUMERIC{0x03C0} = $pi;
1835
1836    # Euler's constant, not to be confused with Euler's number
1837    #$NUMERIC{0x2107} = 0.57721566490153286060651209008240243104215933593992;
1838
1839    # Euler's number
1840    #$NUMERIC{0x212F} = 2.7182818284590452353602874713526624977572;
1841
1842    return;
1843}
1844
1845=pod
1846
1847=head2 B<num()>
1848
1849    use Unicode::UCD 'num';
1850
1851    my $val = num("123");
1852    my $one_quarter = num("\N{VULGAR FRACTION 1/4}");
1853    my $val = num("12a", \$valid_length);  # $valid_length contains 2
1854
1855C<num()> returns the numeric value of the input Unicode string; or C<undef> if it
1856doesn't think the entire string has a completely valid, safe numeric value.
1857If called with an optional second parameter, a reference to a scalar, C<num()>
1858will set the scalar to the length of any valid initial substring; or to 0 if none.
1859
1860If the string is just one character in length, the Unicode numeric value
1861is returned if it has one, or C<undef> otherwise.  If the optional scalar ref
1862is passed, it would be set to 1 if the return is valid; or 0 if the return is
1863C<undef>.  Note that the numeric value returned need not be a whole number.
1864C<num("\N{TIBETAN DIGIT HALF ZERO}")>, for example returns -0.5.
1865
1866=cut
1867
1868#A few characters to which Unicode doesn't officially
1869#assign a numeric value are considered numeric by C<num>.
1870#These are:
1871
1872# EULER CONSTANT             0.5772...  (this is NOT Euler's number)
1873# SCRIPT SMALL E             2.71828... (this IS Euler's number)
1874# GREEK SMALL LETTER PI      3.14159...
1875
1876=pod
1877
1878If the string is more than one character, C<undef> is returned unless
1879all its characters are decimal digits (that is, they would match C<\d+>),
1880from the same script.  For example if you have an ASCII '0' and a Bengali
1881'3', mixed together, they aren't considered a valid number, and C<undef>
1882is returned.  A further restriction is that the digits all have to be of
1883the same form.  A half-width digit mixed with a full-width one will
1884return C<undef>.  The Arabic script has two sets of digits;  C<num> will
1885return C<undef> unless all the digits in the string come from the same
1886set.  In all cases, the optional scalar ref parameter is set to how
1887long any valid initial substring of digits is; hence it will be set to the
1888entire string length if the main return value is not C<undef>.
1889
1890C<num> errs on the side of safety, and there may be valid strings of
1891decimal digits that it doesn't recognize.  Note that Unicode defines
1892a number of "digit" characters that aren't "decimal digit" characters.
1893"Decimal digits" have the property that they have a positional value, i.e.,
1894there is a units position, a 10's position, a 100's, etc, AND they are
1895arranged in Unicode in blocks of 10 contiguous code points.  The Chinese
1896digits, for example, are not in such a contiguous block, and so Unicode
1897doesn't view them as decimal digits, but merely digits, and so C<\d> will not
1898match them.  A single-character string containing one of these digits will
1899have its decimal value returned by C<num>, but any longer string containing
1900only these digits will return C<undef>.
1901
1902Strings of multiple sub- and superscripts are not recognized as numbers.  You
1903can use either of the compatibility decompositions in Unicode::Normalize to
1904change these into digits, and then call C<num> on the result.
1905
1906=cut
1907
1908# To handle sub, superscripts, this could if called in list context,
1909# consider those, and return the <decomposition> type in the second
1910# array element.
1911
1912sub num ($;$) {
1913    my ($string, $retlen_ref) = @_;
1914
1915    use feature 'unicode_strings';
1916
1917    _numeric unless %NUMERIC;
1918    $$retlen_ref = 0 if $retlen_ref;    # Assume will fail
1919
1920    my $length = length $string;
1921    return if $length == 0;
1922
1923    my $first_ord = ord(substr($string, 0, 1));
1924    return if ! exists  $NUMERIC{$first_ord}
1925           || ! defined $NUMERIC{$first_ord};
1926
1927    # Here, we know the first character is numeric
1928    my $value = $NUMERIC{$first_ord};
1929    $$retlen_ref = 1 if $retlen_ref;    # Assume only this one is numeric
1930
1931    return $value if $length == 1;
1932
1933    # Here, the input is longer than a single character.  To be valid, it must
1934    # be entirely decimal digits, which means it must start with one.
1935    return if $string =~ / ^ \D /x;
1936
1937    # To be a valid decimal number, it should be in a block of 10 consecutive
1938    # characters, whose values are 0, 1, 2, ... 9.  Therefore this digit's
1939    # value is its offset in that block from the character that means zero.
1940    my $zero_ord = $first_ord - $value;
1941
1942    # Unicode 6.0 instituted the rule that only digits in a consecutive
1943    # block of 10 would be considered decimal digits.  If this is an earlier
1944    # release, we verify that this first character is a member of such a
1945    # block.  That is, that the block of characters surrounding this one
1946    # consists of all \d characters whose numeric values are the expected
1947    # ones.  If not, then this single character is numeric, but the string as
1948    # a whole is not considered to be.
1949    UnicodeVersion() unless defined $v_unicode_version;
1950    if ($v_unicode_version lt v6.0.0) {
1951        for my $i (0 .. 9) {
1952            my $ord = $zero_ord + $i;
1953            return unless chr($ord) =~ /\d/;
1954            my $numeric = $NUMERIC{$ord};
1955            return unless defined $numeric;
1956            return unless $numeric == $i;
1957        }
1958    }
1959
1960    for my $i (1 .. $length -1) {
1961
1962        # Here we know either by verifying, or by fact of the first character
1963        # being a \d in Unicode 6.0 or later, that any character between the
1964        # character that means 0, and 9 positions above it must be \d, and
1965        # must have its value correspond to its offset from the zero.  Any
1966        # characters outside these 10 do not form a legal number for this
1967        # function.
1968        my $ord = ord(substr($string, $i, 1));
1969        my $digit = $ord - $zero_ord;
1970        if ($digit < 0 || $digit > 9) {
1971            $$retlen_ref = $i if $retlen_ref;
1972            return;
1973        }
1974        $value = $value * 10 + $digit;
1975    }
1976
1977    $$retlen_ref = $length if $retlen_ref;
1978    return $value;
1979}
1980
1981=pod
1982
1983=head2 B<prop_aliases()>
1984
1985    use Unicode::UCD 'prop_aliases';
1986
1987    my ($short_name, $full_name, @other_names) = prop_aliases("space");
1988    my $same_full_name = prop_aliases("Space");     # Scalar context
1989    my ($same_short_name) = prop_aliases("Space");  # gets 0th element
1990    print "The full name is $full_name\n";
1991    print "The short name is $short_name\n";
1992    print "The other aliases are: ", join(", ", @other_names), "\n";
1993
1994    prints:
1995    The full name is White_Space
1996    The short name is WSpace
1997    The other aliases are: Space
1998
1999Most Unicode properties have several synonymous names.  Typically, there is at
2000least a short name, convenient to type, and a long name that more fully
2001describes the property, and hence is more easily understood.
2002
2003If you know one name for a Unicode property, you can use C<prop_aliases> to find
2004either the long name (when called in scalar context), or a list of all of the
2005names, somewhat ordered so that the short name is in the 0th element, the long
2006name in the next element, and any other synonyms are in the remaining
2007elements, in no particular order.
2008
2009The long name is returned in a form nicely capitalized, suitable for printing.
2010
2011The input parameter name is loosely matched, which means that white space,
2012hyphens, and underscores are ignored (except for the trailing underscore in
2013the old_form grandfathered-in C<"L_">, which is better written as C<"LC">, and
2014both of which mean C<General_Category=Cased Letter>).
2015
2016If the name is unknown, C<undef> is returned (or an empty list in list
2017context).  Note that Perl typically recognizes property names in regular
2018expressions with an optional C<"Is_>" (with or without the underscore)
2019prefixed to them, such as C<\p{isgc=punct}>.  This function does not recognize
2020those in the input, returning C<undef>.  Nor are they included in the output
2021as possible synonyms.
2022
2023C<prop_aliases> does know about the Perl extensions to Unicode properties,
2024such as C<Any> and C<XPosixAlpha>, and the single form equivalents to Unicode
2025properties such as C<XDigit>, C<Greek>, C<In_Greek>, and C<Is_Greek>.  The
2026final example demonstrates that the C<"Is_"> prefix is recognized for these
2027extensions; it is needed to resolve ambiguities.  For example,
2028C<prop_aliases('lc')> returns the list C<(lc, Lowercase_Mapping)>, but
2029C<prop_aliases('islc')> returns C<(Is_LC, Cased_Letter)>.  This is
2030because C<islc> is a Perl extension which is short for
2031C<General_Category=Cased Letter>.  The lists returned for the Perl extensions
2032will not include the C<"Is_"> prefix (whether or not the input had it) unless
2033needed to resolve ambiguities, as shown in the C<"islc"> example, where the
2034returned list had one element containing C<"Is_">, and the other without.
2035
2036It is also possible for the reverse to happen:  C<prop_aliases('isc')> returns
2037the list C<(isc, ISO_Comment)>; whereas C<prop_aliases('c')> returns
2038C<(C, Other)> (the latter being a Perl extension meaning
2039C<General_Category=Other>.
2040L<perluniprops/Properties accessible through Unicode::UCD> lists the available
2041forms, including which ones are discouraged from use.
2042
2043Those discouraged forms are accepted as input to C<prop_aliases>, but are not
2044returned in the lists.  C<prop_aliases('isL&')> and C<prop_aliases('isL_')>,
2045which are old synonyms for C<"Is_LC"> and should not be used in new code, are
2046examples of this.  These both return C<(Is_LC, Cased_Letter)>.  Thus this
2047function allows you to take a discouraged form, and find its acceptable
2048alternatives.  The same goes with single-form Block property equivalences.
2049Only the forms that begin with C<"In_"> are not discouraged; if you pass
2050C<prop_aliases> a discouraged form, you will get back the equivalent ones that
2051begin with C<"In_">.  It will otherwise look like a new-style block name (see.
2052L</Old-style versus new-style block names>).
2053
2054C<prop_aliases> does not know about any user-defined properties, and will
2055return C<undef> if called with one of those.  Likewise for Perl internal
2056properties, with the exception of "Perl_Decimal_Digit" which it does know
2057about (and which is documented below in L</prop_invmap()>).
2058
2059=cut
2060
2061# It may be that there are use cases where the discouraged forms should be
2062# returned.  If that comes up, an optional boolean second parameter to the
2063# function could be created, for example.
2064
2065# These are created by mktables for this routine and stored in unicore/UCD.pl
2066# where their structures are described.
2067our %string_property_loose_to_name;
2068our %ambiguous_names;
2069our %loose_perlprop_to_name;
2070our %prop_aliases;
2071
2072sub prop_aliases ($) {
2073    my $prop = $_[0];
2074    return unless defined $prop;
2075
2076    require "unicore/UCD.pl";
2077    require "unicore/Heavy.pl";
2078    require "utf8_heavy.pl";
2079
2080    # The property name may be loosely or strictly matched; we don't know yet.
2081    # But both types use lower-case.
2082    $prop = lc $prop;
2083
2084    # It is loosely matched if its lower case isn't known to be strict.
2085    my $list_ref;
2086    if (! exists $utf8::stricter_to_file_of{$prop}) {
2087        my $loose = utf8::_loose_name($prop);
2088
2089        # There is a hash that converts from any loose name to its standard
2090        # form, mapping all synonyms for a  name to one name that can be used
2091        # as a key into another hash.  The whole concept is for memory
2092        # savings, as the second hash doesn't have to have all the
2093        # combinations.  Actually, there are two hashes that do the
2094        # conversion.  One is used in utf8_heavy.pl (stored in Heavy.pl) for
2095        # looking up properties matchable in regexes.  This function needs to
2096        # access string properties, which aren't available in regexes, so a
2097        # second conversion hash is made for them (stored in UCD.pl).  Look in
2098        # the string one now, as the rest can have an optional 'is' prefix,
2099        # which these don't.
2100        if (exists $string_property_loose_to_name{$loose}) {
2101
2102            # Convert to its standard loose name.
2103            $prop = $string_property_loose_to_name{$loose};
2104        }
2105        else {
2106            my $retrying = 0;   # bool.  ? Has an initial 'is' been stripped
2107        RETRY:
2108            if (exists $utf8::loose_property_name_of{$loose}
2109                && (! $retrying
2110                    || ! exists $ambiguous_names{$loose}))
2111            {
2112                # Found an entry giving the standard form.  We don't get here
2113                # (in the test above) when we've stripped off an
2114                # 'is' and the result is an ambiguous name.  That is because
2115                # these are official Unicode properties (though Perl can have
2116                # an optional 'is' prefix meaning the official property), and
2117                # all ambiguous cases involve a Perl single-form extension
2118                # for the gc, script, or block properties, and the stripped
2119                # 'is' means that they mean one of those, and not one of
2120                # these
2121                $prop = $utf8::loose_property_name_of{$loose};
2122            }
2123            elsif (exists $loose_perlprop_to_name{$loose}) {
2124
2125                # This hash is specifically for this function to list Perl
2126                # extensions that aren't in the earlier hashes.  If there is
2127                # only one element, the short and long names are identical.
2128                # Otherwise the form is already in the same form as
2129                # %prop_aliases, which is handled at the end of the function.
2130                $list_ref = $loose_perlprop_to_name{$loose};
2131                if (@$list_ref == 1) {
2132                    my @list = ($list_ref->[0], $list_ref->[0]);
2133                    $list_ref = \@list;
2134                }
2135            }
2136            elsif (! exists $utf8::loose_to_file_of{$loose}) {
2137
2138                # loose_to_file_of is a complete list of loose names.  If not
2139                # there, the input is unknown.
2140                return;
2141            }
2142            elsif ($loose =~ / [:=] /x) {
2143
2144                # Here we found the name but not its aliases, so it has to
2145                # exist.  Exclude property-value combinations.  (This shows up
2146                # for something like ccc=vr which matches loosely, but is a
2147                # synonym for ccc=9 which matches only strictly.
2148                return;
2149            }
2150            else {
2151
2152                # Here it has to exist, and isn't a property-value
2153                # combination.  This means it must be one of the Perl
2154                # single-form extensions.  First see if it is for a
2155                # property-value combination in one of the following
2156                # properties.
2157                my @list;
2158                foreach my $property ("gc", "script") {
2159                    @list = prop_value_aliases($property, $loose);
2160                    last if @list;
2161                }
2162                if (@list) {
2163
2164                    # Here, it is one of those property-value combination
2165                    # single-form synonyms.  There are ambiguities with some
2166                    # of these.  Check against the list for these, and adjust
2167                    # if necessary.
2168                    for my $i (0 .. @list -1) {
2169                        if (exists $ambiguous_names
2170                                   {utf8::_loose_name(lc $list[$i])})
2171                        {
2172                            # The ambiguity is resolved by toggling whether or
2173                            # not it has an 'is' prefix
2174                            $list[$i] =~ s/^Is_// or $list[$i] =~ s/^/Is_/;
2175                        }
2176                    }
2177                    return @list;
2178                }
2179
2180                # Here, it wasn't one of the gc or script single-form
2181                # extensions.  It could be a block property single-form
2182                # extension.  An 'in' prefix definitely means that, and should
2183                # be looked up without the prefix.  However, starting in
2184                # Unicode 6.1, we have to special case 'indic...', as there
2185                # is a property that begins with that name.   We shouldn't
2186                # strip the 'in' from that.   I'm (khw) generalizing this to
2187                # 'indic' instead of the single property, because I suspect
2188                # that others of this class may come along in the future.
2189                # However, this could backfire and a block created whose name
2190                # begins with 'dic...', and we would want to strip the 'in'.
2191                # At which point this would have to be tweaked.
2192                my $began_with_in = $loose =~ s/^in(?!dic)//;
2193                @list = prop_value_aliases("block", $loose);
2194                if (@list) {
2195                    map { $_ =~ s/^/In_/ } @list;
2196                    return @list;
2197                }
2198
2199                # Here still haven't found it.  The last opportunity for it
2200                # being valid is only if it began with 'is'.  We retry without
2201                # the 'is', setting a flag to that effect so that we don't
2202                # accept things that begin with 'isis...'
2203                if (! $retrying && ! $began_with_in && $loose =~ s/^is//) {
2204                    $retrying = 1;
2205                    goto RETRY;
2206                }
2207
2208                # Here, didn't find it.  Since it was in %loose_to_file_of, we
2209                # should have been able to find it.
2210                carp __PACKAGE__, "::prop_aliases: Unexpectedly could not find '$prop'.  Send bug report to perlbug\@perl.org";
2211                return;
2212            }
2213        }
2214    }
2215
2216    if (! $list_ref) {
2217        # Here, we have set $prop to a standard form name of the input.  Look
2218        # it up in the structure created by mktables for this purpose, which
2219        # contains both strict and loosely matched properties.  Avoid
2220        # autovivifying.
2221        $list_ref = $prop_aliases{$prop} if exists $prop_aliases{$prop};
2222        return unless $list_ref;
2223    }
2224
2225    # The full name is in element 1.
2226    return $list_ref->[1] unless wantarray;
2227
2228    return @{_dclone $list_ref};
2229}
2230
2231=pod
2232
2233=head2 B<prop_values()>
2234
2235    use Unicode::UCD 'prop_values';
2236
2237    print "AHex values are: ", join(", ", prop_values("AHex")),
2238                               "\n";
2239  prints:
2240    AHex values are: N, Y
2241
2242Some Unicode properties have a restricted set of legal values.  For example,
2243all binary properties are restricted to just C<true> or C<false>; and there
2244are only a few dozen possible General Categories.  Use C<prop_values>
2245to find out if a given property is one such, and if so, to get a list of the
2246values:
2247
2248    print join ", ", prop_values("NFC_Quick_Check");
2249  prints:
2250    M, N, Y
2251
2252If the property doesn't have such a restricted set, C<undef> is returned.
2253
2254There are usually several synonyms for each possible value.  Use
2255L</prop_value_aliases()> to access those.
2256
2257Case, white space, hyphens, and underscores are ignored in the input property
2258name (except for the trailing underscore in the old-form grandfathered-in
2259general category property value C<"L_">, which is better written as C<"LC">).
2260
2261If the property name is unknown, C<undef> is returned.  Note that Perl typically
2262recognizes property names in regular expressions with an optional C<"Is_>"
2263(with or without the underscore) prefixed to them, such as C<\p{isgc=punct}>.
2264This function does not recognize those in the property parameter, returning
2265C<undef>.
2266
2267For the block property, new-style block names are returned (see
2268L</Old-style versus new-style block names>).
2269
2270C<prop_values> does not know about any user-defined properties, and
2271will return C<undef> if called with one of those.
2272
2273=cut
2274
2275# These are created by mktables for this module and stored in unicore/UCD.pl
2276# where their structures are described.
2277our %loose_to_standard_value;
2278our %prop_value_aliases;
2279
2280sub prop_values ($) {
2281    my $prop = shift;
2282    return undef unless defined $prop;
2283
2284    require "unicore/UCD.pl";
2285    require "utf8_heavy.pl";
2286
2287    # Find the property name synonym that's used as the key in other hashes,
2288    # which is element 0 in the returned list.
2289    ($prop) = prop_aliases($prop);
2290    return undef if ! $prop;
2291    $prop = utf8::_loose_name(lc $prop);
2292
2293    # Here is a legal property.
2294    return undef unless exists $prop_value_aliases{$prop};
2295    my @return;
2296    foreach my $value_key (sort { lc $a cmp lc $b }
2297                            keys %{$prop_value_aliases{$prop}})
2298    {
2299        push @return, $prop_value_aliases{$prop}{$value_key}[0];
2300    }
2301    return @return;
2302}
2303
2304=pod
2305
2306=head2 B<prop_value_aliases()>
2307
2308    use Unicode::UCD 'prop_value_aliases';
2309
2310    my ($short_name, $full_name, @other_names)
2311                                   = prop_value_aliases("Gc", "Punct");
2312    my $same_full_name = prop_value_aliases("Gc", "P");   # Scalar cntxt
2313    my ($same_short_name) = prop_value_aliases("Gc", "P"); # gets 0th
2314                                                           # element
2315    print "The full name is $full_name\n";
2316    print "The short name is $short_name\n";
2317    print "The other aliases are: ", join(", ", @other_names), "\n";
2318
2319  prints:
2320    The full name is Punctuation
2321    The short name is P
2322    The other aliases are: Punct
2323
2324Some Unicode properties have a restricted set of legal values.  For example,
2325all binary properties are restricted to just C<true> or C<false>; and there
2326are only a few dozen possible General Categories.
2327
2328You can use L</prop_values()> to find out if a given property is one which has
2329a restricted set of values, and if so, what those values are.  But usually
2330each value actually has several synonyms.  For example, in Unicode binary
2331properties, I<truth> can be represented by any of the strings "Y", "Yes", "T",
2332or "True"; and the General Category "Punctuation" by that string, or "Punct",
2333or simply "P".
2334
2335Like property names, there is typically at least a short name for each such
2336property-value, and a long name.  If you know any name of the property-value
2337(which you can get by L</prop_values()>, you can use C<prop_value_aliases>()
2338to get the long name (when called in scalar context), or a list of all the
2339names, with the short name in the 0th element, the long name in the next
2340element, and any other synonyms in the remaining elements, in no particular
2341order, except that any all-numeric synonyms will be last.
2342
2343The long name is returned in a form nicely capitalized, suitable for printing.
2344
2345Case, white space, hyphens, and underscores are ignored in the input parameters
2346(except for the trailing underscore in the old-form grandfathered-in general
2347category property value C<"L_">, which is better written as C<"LC">).
2348
2349If either name is unknown, C<undef> is returned.  Note that Perl typically
2350recognizes property names in regular expressions with an optional C<"Is_>"
2351(with or without the underscore) prefixed to them, such as C<\p{isgc=punct}>.
2352This function does not recognize those in the property parameter, returning
2353C<undef>.
2354
2355If called with a property that doesn't have synonyms for its values, it
2356returns the input value, possibly normalized with capitalization and
2357underscores, but not necessarily checking that the input value is valid.
2358
2359For the block property, new-style block names are returned (see
2360L</Old-style versus new-style block names>).
2361
2362To find the synonyms for single-forms, such as C<\p{Any}>, use
2363L</prop_aliases()> instead.
2364
2365C<prop_value_aliases> does not know about any user-defined properties, and
2366will return C<undef> if called with one of those.
2367
2368=cut
2369
2370sub prop_value_aliases ($$) {
2371    my ($prop, $value) = @_;
2372    return unless defined $prop && defined $value;
2373
2374    require "unicore/UCD.pl";
2375    require "utf8_heavy.pl";
2376
2377    # Find the property name synonym that's used as the key in other hashes,
2378    # which is element 0 in the returned list.
2379    ($prop) = prop_aliases($prop);
2380    return if ! $prop;
2381    $prop = utf8::_loose_name(lc $prop);
2382
2383    # Here is a legal property, but the hash below (created by mktables for
2384    # this purpose) only knows about the properties that have a very finite
2385    # number of potential values, that is not ones whose value could be
2386    # anything, like most (if not all) string properties.  These don't have
2387    # synonyms anyway.  Simply return the input.  For example, there is no
2388    # synonym for ('Uppercase_Mapping', A').
2389    if (! exists $prop_value_aliases{$prop}) {
2390
2391        # Here, we have a legal property, but an unknown value.  Since the
2392        # property is legal, if it isn't in the prop_aliases hash, it must be
2393        # a Perl-extension All perl extensions are binary, hence are
2394        # enumerateds, which means that we know that the input unknown value
2395        # is illegal.
2396        return if ! exists $Unicode::UCD::prop_aliases{$prop};
2397
2398        # Otherwise, we assume it's valid, as documented.
2399        return $value;
2400    }
2401
2402    # The value name may be loosely or strictly matched; we don't know yet.
2403    # But both types use lower-case.
2404    $value = lc $value;
2405
2406    # If the name isn't found under loose matching, it certainly won't be
2407    # found under strict
2408    my $loose_value = utf8::_loose_name($value);
2409    return unless exists $loose_to_standard_value{"$prop=$loose_value"};
2410
2411    # Similarly if the combination under loose matching doesn't exist, it
2412    # won't exist under strict.
2413    my $standard_value = $loose_to_standard_value{"$prop=$loose_value"};
2414    return unless exists $prop_value_aliases{$prop}{$standard_value};
2415
2416    # Here we did find a combination under loose matching rules.  But it could
2417    # be that is a strict property match that shouldn't have matched.
2418    # %prop_value_aliases is set up so that the strict matches will appear as
2419    # if they were in loose form.  Thus, if the non-loose version is legal,
2420    # we're ok, can skip the further check.
2421    if (! exists $utf8::stricter_to_file_of{"$prop=$value"}
2422
2423        # We're also ok and skip the further check if value loosely matches.
2424        # mktables has verified that no strict name under loose rules maps to
2425        # an existing loose name.  This code relies on the very limited
2426        # circumstances that strict names can be here.  Strict name matching
2427        # happens under two conditions:
2428        # 1) when the name begins with an underscore.  But this function
2429        #    doesn't accept those, and %prop_value_aliases doesn't have
2430        #    them.
2431        # 2) When the values are numeric, in which case we need to look
2432        #    further, but their squeezed-out loose values will be in
2433        #    %stricter_to_file_of
2434        && exists $utf8::stricter_to_file_of{"$prop=$loose_value"})
2435    {
2436        # The only thing that's legal loosely under strict is that can have an
2437        # underscore between digit pairs XXX
2438        while ($value =~ s/(\d)_(\d)/$1$2/g) {}
2439        return unless exists $utf8::stricter_to_file_of{"$prop=$value"};
2440    }
2441
2442    # Here, we know that the combination exists.  Return it.
2443    my $list_ref = $prop_value_aliases{$prop}{$standard_value};
2444    if (@$list_ref > 1) {
2445        # The full name is in element 1.
2446        return $list_ref->[1] unless wantarray;
2447
2448        return @{_dclone $list_ref};
2449    }
2450
2451    return $list_ref->[0] unless wantarray;
2452
2453    # Only 1 element means that it repeats
2454    return ( $list_ref->[0], $list_ref->[0] );
2455}
2456
2457# All 1 bits but the top one is the largest possible IV.
2458$Unicode::UCD::MAX_CP = (~0) >> 1;
2459
2460=pod
2461
2462=head2 B<prop_invlist()>
2463
2464C<prop_invlist> returns an inversion list (described below) that defines all the
2465code points for the binary Unicode property (or "property=value" pair) given
2466by the input parameter string:
2467
2468 use feature 'say';
2469 use Unicode::UCD 'prop_invlist';
2470 say join ", ", prop_invlist("Any");
2471
2472 prints:
2473 0, 1114112
2474
2475If the input is unknown C<undef> is returned in scalar context; an empty-list
2476in list context.  If the input is known, the number of elements in
2477the list is returned if called in scalar context.
2478
2479L<perluniprops|perluniprops/Properties accessible through \p{} and \P{}> gives
2480the list of properties that this function accepts, as well as all the possible
2481forms for them (including with the optional "Is_" prefixes).  (Except this
2482function doesn't accept any Perl-internal properties, some of which are listed
2483there.) This function uses the same loose or tighter matching rules for
2484resolving the input property's name as is done for regular expressions.  These
2485are also specified in L<perluniprops|perluniprops/Properties accessible
2486through \p{} and \P{}>.  Examples of using the "property=value" form are:
2487
2488 say join ", ", prop_invlist("Script_Extensions=Shavian");
2489
2490 prints:
2491 66640, 66688
2492
2493 say join ", ", prop_invlist("ASCII_Hex_Digit=No");
2494
2495 prints:
2496 0, 48, 58, 65, 71, 97, 103
2497
2498 say join ", ", prop_invlist("ASCII_Hex_Digit=Yes");
2499
2500 prints:
2501 48, 58, 65, 71, 97, 103
2502
2503Inversion lists are a compact way of specifying Unicode property-value
2504definitions.  The 0th item in the list is the lowest code point that has the
2505property-value.  The next item (item [1]) is the lowest code point beyond that
2506one that does NOT have the property-value.  And the next item beyond that
2507([2]) is the lowest code point beyond that one that does have the
2508property-value, and so on.  Put another way, each element in the list gives
2509the beginning of a range that has the property-value (for even numbered
2510elements), or doesn't have the property-value (for odd numbered elements).
2511The name for this data structure stems from the fact that each element in the
2512list toggles (or inverts) whether the corresponding range is or isn't on the
2513list.
2514
2515In the final example above, the first ASCII Hex digit is code point 48, the
2516character "0", and all code points from it through 57 (a "9") are ASCII hex
2517digits.  Code points 58 through 64 aren't, but 65 (an "A") through 70 (an "F")
2518are, as are 97 ("a") through 102 ("f").  103 starts a range of code points
2519that aren't ASCII hex digits.  That range extends to infinity, which on your
2520computer can be found in the variable C<$Unicode::UCD::MAX_CP>.  (This
2521variable is as close to infinity as Perl can get on your platform, and may be
2522too high for some operations to work; you may wish to use a smaller number for
2523your purposes.)
2524
2525Note that the inversion lists returned by this function can possibly include
2526non-Unicode code points, that is anything above 0x10FFFF.  Unicode properties
2527are not defined on such code points.  You might wish to change the output to
2528not include these.  Simply add 0x110000 at the end of the non-empty returned
2529list if it isn't already that value; and pop that value if it is; like:
2530
2531 my @list = prop_invlist("foo");
2532 if (@list) {
2533     if ($list[-1] == 0x110000) {
2534         pop @list;  # Defeat the turning on for above Unicode
2535     }
2536     else {
2537         push @list, 0x110000; # Turn off for above Unicode
2538     }
2539 }
2540
2541It is a simple matter to expand out an inversion list to a full list of all
2542code points that have the property-value:
2543
2544 my @invlist = prop_invlist($property_name);
2545 die "empty" unless @invlist;
2546 my @full_list;
2547 for (my $i = 0; $i < @invlist; $i += 2) {
2548    my $upper = ($i + 1) < @invlist
2549                ? $invlist[$i+1] - 1      # In range
2550                : $Unicode::UCD::MAX_CP;  # To infinity.
2551    for my $j ($invlist[$i] .. $upper) {
2552        push @full_list, $j;
2553    }
2554 }
2555
2556C<prop_invlist> does not know about any user-defined nor Perl internal-only
2557properties, and will return C<undef> if called with one of those.
2558
2559The L</search_invlist()> function is provided for finding a code point within
2560an inversion list.
2561
2562=cut
2563
2564# User-defined properties could be handled with some changes to utf8_heavy.pl;
2565# and implementing here of dealing with EXTRAS.  If done, consideration should
2566# be given to the fact that the user subroutine could return different results
2567# with each call; security issues need to be thought about.
2568
2569# These are created by mktables for this routine and stored in unicore/UCD.pl
2570# where their structures are described.
2571our %loose_defaults;
2572our $MAX_UNICODE_CODEPOINT;
2573
2574sub prop_invlist ($;$) {
2575    my $prop = $_[0];
2576
2577    # Undocumented way to get at Perl internal properties; it may be changed
2578    # or removed without notice at any time.
2579    my $internal_ok = defined $_[1] && $_[1] eq '_perl_core_internal_ok';
2580
2581    return if ! defined $prop;
2582
2583    require "utf8_heavy.pl";
2584
2585    # Warnings for these are only for regexes, so not applicable to us
2586    no warnings 'deprecated';
2587
2588    # Get the swash definition of the property-value.
2589    my $swash = utf8::SWASHNEW(__PACKAGE__, $prop, undef, 1, 0);
2590
2591    # Fail if not found, or isn't a boolean property-value, or is a
2592    # user-defined property, or is internal-only.
2593    return if ! $swash
2594              || ref $swash eq ""
2595              || $swash->{'BITS'} != 1
2596              || $swash->{'USER_DEFINED'}
2597              || (! $internal_ok && $prop =~ /^\s*_/);
2598
2599    if ($swash->{'EXTRAS'}) {
2600        carp __PACKAGE__, "::prop_invlist: swash returned for $prop unexpectedly has EXTRAS magic";
2601        return;
2602    }
2603    if ($swash->{'SPECIALS'}) {
2604        carp __PACKAGE__, "::prop_invlist: swash returned for $prop unexpectedly has SPECIALS magic";
2605        return;
2606    }
2607
2608    my @invlist;
2609
2610    if ($swash->{'LIST'} =~ /^V/) {
2611
2612        # A 'V' as the first character marks the input as already an inversion
2613        # list, in which case, all we need to do is put the remaining lines
2614        # into our array.
2615        @invlist = split "\n", $swash->{'LIST'} =~ s/ \s* (?: \# .* )? $ //xmgr;
2616        shift @invlist;
2617    }
2618    else {
2619        # The input lines look like:
2620        # 0041\t005A   # [26]
2621        # 005F
2622
2623        # Split into lines, stripped of trailing comments
2624        foreach my $range (split "\n",
2625                              $swash->{'LIST'} =~ s/ \s* (?: \# .* )? $ //xmgr)
2626        {
2627            # And find the beginning and end of the range on the line
2628            my ($hex_begin, $hex_end) = split "\t", $range;
2629            my $begin = hex $hex_begin;
2630
2631            # If the new range merely extends the old, we remove the marker
2632            # created the last time through the loop for the old's end, which
2633            # causes the new one's end to be used instead.
2634            if (@invlist && $begin == $invlist[-1]) {
2635                pop @invlist;
2636            }
2637            else {
2638                # Add the beginning of the range
2639                push @invlist, $begin;
2640            }
2641
2642            if (defined $hex_end) { # The next item starts with the code point 1
2643                                    # beyond the end of the range.
2644                no warnings 'portable';
2645                my $end = hex $hex_end;
2646                last if $end == $Unicode::UCD::MAX_CP;
2647                push @invlist, $end + 1;
2648            }
2649            else {  # No end of range, is a single code point.
2650                push @invlist, $begin + 1;
2651            }
2652        }
2653    }
2654
2655    # Could need to be inverted: add or subtract a 0 at the beginning of the
2656    # list.
2657    if ($swash->{'INVERT_IT'}) {
2658        if (@invlist && $invlist[0] == 0) {
2659            shift @invlist;
2660        }
2661        else {
2662            unshift @invlist, 0;
2663        }
2664    }
2665
2666    return @invlist;
2667}
2668
2669=pod
2670
2671=head2 B<prop_invmap()>
2672
2673 use Unicode::UCD 'prop_invmap';
2674 my ($list_ref, $map_ref, $format, $default)
2675                                      = prop_invmap("General Category");
2676
2677C<prop_invmap> is used to get the complete mapping definition for a property,
2678in the form of an inversion map.  An inversion map consists of two parallel
2679arrays.  One is an ordered list of code points that mark range beginnings, and
2680the other gives the value (or mapping) that all code points in the
2681corresponding range have.
2682
2683C<prop_invmap> is called with the name of the desired property.  The name is
2684loosely matched, meaning that differences in case, white-space, hyphens, and
2685underscores are not meaningful (except for the trailing underscore in the
2686old-form grandfathered-in property C<"L_">, which is better written as C<"LC">,
2687or even better, C<"Gc=LC">).
2688
2689Many Unicode properties have more than one name (or alias).  C<prop_invmap>
2690understands all of these, including Perl extensions to them.  Ambiguities are
2691resolved as described above for L</prop_aliases()> (except if a property has
2692both a complete mapping, and a binary C<Y>/C<N> mapping, then specifying the
2693property name prefixed by C<"is"> causes the binary one to be returned).  The
2694Perl internal property "Perl_Decimal_Digit, described below, is also accepted.
2695An empty list is returned if the property name is unknown.
2696See L<perluniprops/Properties accessible through Unicode::UCD> for the
2697properties acceptable as inputs to this function.
2698
2699It is a fatal error to call this function except in list context.
2700
2701In addition to the two arrays that form the inversion map, C<prop_invmap>
2702returns two other values; one is a scalar that gives some details as to the
2703format of the entries of the map array; the other is a default value, useful
2704in maps whose format name begins with the letter C<"a">, as described
2705L<below in its subsection|/a>; and for specialized purposes, such as
2706converting to another data structure, described at the end of this main
2707section.
2708
2709This means that C<prop_invmap> returns a 4 element list.  For example,
2710
2711 my ($blocks_ranges_ref, $blocks_maps_ref, $format, $default)
2712                                                 = prop_invmap("Block");
2713
2714In this call, the two arrays will be populated as shown below (for Unicode
27156.0):
2716
2717 Index  @blocks_ranges  @blocks_maps
2718   0        0x0000      Basic Latin
2719   1        0x0080      Latin-1 Supplement
2720   2        0x0100      Latin Extended-A
2721   3        0x0180      Latin Extended-B
2722   4        0x0250      IPA Extensions
2723   5        0x02B0      Spacing Modifier Letters
2724   6        0x0300      Combining Diacritical Marks
2725   7        0x0370      Greek and Coptic
2726   8        0x0400      Cyrillic
2727  ...
2728 233        0x2B820     No_Block
2729 234        0x2F800     CJK Compatibility Ideographs Supplement
2730 235        0x2FA20     No_Block
2731 236        0xE0000     Tags
2732 237        0xE0080     No_Block
2733 238        0xE0100     Variation Selectors Supplement
2734 239        0xE01F0     No_Block
2735 240        0xF0000     Supplementary Private Use Area-A
2736 241        0x100000    Supplementary Private Use Area-B
2737 242        0x110000    No_Block
2738
2739The first line (with Index [0]) means that the value for code point 0 is "Basic
2740Latin".  The entry "0x0080" in the @blocks_ranges column in the second line
2741means that the value from the first line, "Basic Latin", extends to all code
2742points in the range from 0 up to but not including 0x0080, that is, through
2743127.  In other words, the code points from 0 to 127 are all in the "Basic
2744Latin" block.  Similarly, all code points in the range from 0x0080 up to (but
2745not including) 0x0100 are in the block named "Latin-1 Supplement", etc.
2746(Notice that the return is the old-style block names; see L</Old-style versus
2747new-style block names>).
2748
2749The final line (with Index [242]) means that the value for all code points above
2750the legal Unicode maximum code point have the value "No_Block", which is the
2751term Unicode uses for a non-existing block.
2752
2753The arrays completely specify the mappings for all possible code points.
2754The final element in an inversion map returned by this function will always be
2755for the range that consists of all the code points that aren't legal Unicode,
2756but that are expressible on the platform.  (That is, it starts with code point
27570x110000, the first code point above the legal Unicode maximum, and extends to
2758infinity.) The value for that range will be the same that any typical
2759unassigned code point has for the specified property.  (Certain unassigned
2760code points are not "typical"; for example the non-character code points, or
2761those in blocks that are to be written right-to-left.  The above-Unicode
2762range's value is not based on these atypical code points.)  It could be argued
2763that, instead of treating these as unassigned Unicode code points, the value
2764for this range should be C<undef>.  If you wish, you can change the returned
2765arrays accordingly.
2766
2767The maps for almost all properties are simple scalars that should be
2768interpreted as-is.
2769These values are those given in the Unicode-supplied data files, which may be
2770inconsistent as to capitalization and as to which synonym for a property-value
2771is given.  The results may be normalized by using the L</prop_value_aliases()>
2772function.
2773
2774There are exceptions to the simple scalar maps.  Some properties have some
2775elements in their map list that are themselves lists of scalars; and some
2776special strings are returned that are not to be interpreted as-is.  Element
2777[2] (placed into C<$format> in the example above) of the returned four element
2778list tells you if the map has any of these special elements or not, as follows:
2779
2780=over
2781
2782=item B<C<s>>
2783
2784means all the elements of the map array are simple scalars, with no special
2785elements.  Almost all properties are like this, like the C<block> example
2786above.
2787
2788=item B<C<sl>>
2789
2790means that some of the map array elements have the form given by C<"s">, and
2791the rest are lists of scalars.  For example, here is a portion of the output
2792of calling C<prop_invmap>() with the "Script Extensions" property:
2793
2794 @scripts_ranges  @scripts_maps
2795      ...
2796      0x0953      Devanagari
2797      0x0964      [ Bengali, Devanagari, Gurumukhi, Oriya ]
2798      0x0966      Devanagari
2799      0x0970      Common
2800
2801Here, the code points 0x964 and 0x965 are both used in Bengali,
2802Devanagari, Gurmukhi, and Oriya, but no other scripts.
2803
2804The Name_Alias property is also of this form.  But each scalar consists of two
2805components:  1) the name, and 2) the type of alias this is.  They are
2806separated by a colon and a space.  In Unicode 6.1, there are several alias types:
2807
2808=over
2809
2810=item C<correction>
2811
2812indicates that the name is a corrected form for the
2813original name (which remains valid) for the same code point.
2814
2815=item C<control>
2816
2817adds a new name for a control character.
2818
2819=item C<alternate>
2820
2821is an alternate name for a character
2822
2823=item C<figment>
2824
2825is a name for a character that has been documented but was never in any
2826actual standard.
2827
2828=item C<abbreviation>
2829
2830is a common abbreviation for a character
2831
2832=back
2833
2834The lists are ordered (roughly) so the most preferred names come before less
2835preferred ones.
2836
2837For example,
2838
2839 @aliases_ranges        @alias_maps
2840    ...
2841    0x009E        [ 'PRIVACY MESSAGE: control', 'PM: abbreviation' ]
2842    0x009F        [ 'APPLICATION PROGRAM COMMAND: control',
2843                    'APC: abbreviation'
2844                  ]
2845    0x00A0        'NBSP: abbreviation'
2846    0x00A1        ""
2847    0x00AD        'SHY: abbreviation'
2848    0x00AE        ""
2849    0x01A2        'LATIN CAPITAL LETTER GHA: correction'
2850    0x01A3        'LATIN SMALL LETTER GHA: correction'
2851    0x01A4        ""
2852    ...
2853
2854A map to the empty string means that there is no alias defined for the code
2855point.
2856
2857=item B<C<a>>
2858
2859is like C<"s"> in that all the map array elements are scalars, but here they are
2860restricted to all being integers, and some have to be adjusted (hence the name
2861C<"a">) to get the correct result.  For example, in:
2862
2863 my ($uppers_ranges_ref, $uppers_maps_ref, $format, $default)
2864                          = prop_invmap("Simple_Uppercase_Mapping");
2865
2866the returned arrays look like this:
2867
2868 @$uppers_ranges_ref    @$uppers_maps_ref   Note
2869       0                      0
2870      97                     65          'a' maps to 'A', b => B ...
2871     123                      0
2872     181                    924          MICRO SIGN => Greek Cap MU
2873     182                      0
2874     ...
2875
2876and C<$default> is 0.
2877
2878Let's start with the second line.  It says that the uppercase of code point 97
2879is 65; or C<uc("a")> == "A".  But the line is for the entire range of code
2880points 97 through 122.  To get the mapping for any code point in this range,
2881you take the offset it has from the beginning code point of the range, and add
2882that to the mapping for that first code point.  So, the mapping for 122 ("z")
2883is derived by taking the offset of 122 from 97 (=25) and adding that to 65,
2884yielding 90 ("z").  Likewise for everything in between.
2885
2886Requiring this simple adjustment allows the returned arrays to be
2887significantly smaller than otherwise, up to a factor of 10, speeding up
2888searching through them.
2889
2890Ranges that map to C<$default>, C<"0">, behave somewhat differently.  For
2891these, each code point maps to itself.  So, in the first line in the example,
2892S<C<ord(uc(chr(0)))>> is 0, S<C<ord(uc(chr(1)))>> is 1, ..
2893S<C<ord(uc(chr(96)))>> is 96.
2894
2895=item B<C<al>>
2896
2897means that some of the map array elements have the form given by C<"a">, and
2898the rest are ordered lists of code points.
2899For example, in:
2900
2901 my ($uppers_ranges_ref, $uppers_maps_ref, $format, $default)
2902                                 = prop_invmap("Uppercase_Mapping");
2903
2904the returned arrays look like this:
2905
2906 @$uppers_ranges_ref    @$uppers_maps_ref
2907       0                      0
2908      97                     65
2909     123                      0
2910     181                    924
2911     182                      0
2912     ...
2913    0x0149              [ 0x02BC 0x004E ]
2914    0x014A                    0
2915    0x014B                  330
2916     ...
2917
2918This is the full Uppercase_Mapping property (as opposed to the
2919Simple_Uppercase_Mapping given in the example for format C<"a">).  The only
2920difference between the two in the ranges shown is that the code point at
29210x0149 (LATIN SMALL LETTER N PRECEDED BY APOSTROPHE) maps to a string of two
2922characters, 0x02BC (MODIFIER LETTER APOSTROPHE) followed by 0x004E (LATIN
2923CAPITAL LETTER N).
2924
2925No adjustments are needed to entries that are references to arrays; each such
2926entry will have exactly one element in its range, so the offset is always 0.
2927
2928The fourth (index [3]) element (C<$default>) in the list returned for this
2929format is 0.
2930
2931=item B<C<ae>>
2932
2933This is like C<"a">, but some elements are the empty string, and should not be
2934adjusted.
2935The one internal Perl property accessible by C<prop_invmap> is of this type:
2936"Perl_Decimal_Digit" returns an inversion map which gives the numeric values
2937that are represented by the Unicode decimal digit characters.  Characters that
2938don't represent decimal digits map to the empty string, like so:
2939
2940 @digits    @values
2941 0x0000       ""
2942 0x0030        0
2943 0x003A:      ""
2944 0x0660:       0
2945 0x066A:      ""
2946 0x06F0:       0
2947 0x06FA:      ""
2948 0x07C0:       0
2949 0x07CA:      ""
2950 0x0966:       0
2951 ...
2952
2953This means that the code points from 0 to 0x2F do not represent decimal digits;
2954the code point 0x30 (DIGIT ZERO) represents 0;  code point 0x31, (DIGIT ONE),
2955represents 0+1-0 = 1; ... code point 0x39, (DIGIT NINE), represents 0+9-0 = 9;
2956... code points 0x3A through 0x65F do not represent decimal digits; 0x660
2957(ARABIC-INDIC DIGIT ZERO), represents 0; ... 0x07C1 (NKO DIGIT ONE),
2958represents 0+1-0 = 1 ...
2959
2960The fourth (index [3]) element (C<$default>) in the list returned for this
2961format is the empty string.
2962
2963=item B<C<ale>>
2964
2965is a combination of the C<"al"> type and the C<"ae"> type.  Some of
2966the map array elements have the forms given by C<"al">, and
2967the rest are the empty string.  The property C<NFKC_Casefold> has this form.
2968An example slice is:
2969
2970 @$ranges_ref  @$maps_ref         Note
2971    ...
2972   0x00AA       97                FEMININE ORDINAL INDICATOR => 'a'
2973   0x00AB        0
2974   0x00AD                         SOFT HYPHEN => ""
2975   0x00AE        0
2976   0x00AF     [ 0x0020, 0x0304 ]  MACRON => SPACE . COMBINING MACRON
2977   0x00B0        0
2978   ...
2979
2980The fourth (index [3]) element (C<$default>) in the list returned for this
2981format is 0.
2982
2983=item B<C<ar>>
2984
2985means that all the elements of the map array are either rational numbers or
2986the string C<"NaN">, meaning "Not a Number".  A rational number is either an
2987integer, or two integers separated by a solidus (C<"/">).  The second integer
2988represents the denominator of the division implied by the solidus, and is
2989actually always positive, so it is guaranteed not to be 0 and to not be
2990signed.  When the element is a plain integer (without the
2991solidus), it may need to be adjusted to get the correct value by adding the
2992offset, just as other C<"a"> properties.  No adjustment is needed for
2993fractions, as the range is guaranteed to have just a single element, and so
2994the offset is always 0.
2995
2996If you want to convert the returned map to entirely scalar numbers, you
2997can use something like this:
2998
2999 my ($invlist_ref, $invmap_ref, $format) = prop_invmap($property);
3000 if ($format && $format eq "ar") {
3001     map { $_ = eval $_ if $_ ne 'NaN' } @$map_ref;
3002 }
3003
3004Here's some entries from the output of the property "Nv", which has format
3005C<"ar">.
3006
3007 @numerics_ranges  @numerics_maps       Note
3008        0x00           "NaN"
3009        0x30             0           DIGIT 0 .. DIGIT 9
3010        0x3A           "NaN"
3011        0xB2             2           SUPERSCRIPTs 2 and 3
3012        0xB4           "NaN"
3013        0xB9             1           SUPERSCRIPT 1
3014        0xBA           "NaN"
3015        0xBC            1/4          VULGAR FRACTION 1/4
3016        0xBD            1/2          VULGAR FRACTION 1/2
3017        0xBE            3/4          VULGAR FRACTION 3/4
3018        0xBF           "NaN"
3019        0x660            0           ARABIC-INDIC DIGIT ZERO .. NINE
3020        0x66A          "NaN"
3021
3022The fourth (index [3]) element (C<$default>) in the list returned for this
3023format is C<"NaN">.
3024
3025=item B<C<n>>
3026
3027means the Name property.  All the elements of the map array are simple
3028scalars, but some of them contain special strings that require more work to
3029get the actual name.
3030
3031Entries such as:
3032
3033 CJK UNIFIED IDEOGRAPH-<code point>
3034
3035mean that the name for the code point is "CJK UNIFIED IDEOGRAPH-"
3036with the code point (expressed in hexadecimal) appended to it, like "CJK
3037UNIFIED IDEOGRAPH-3403" (similarly for S<C<CJK COMPATIBILITY IDEOGRAPH-E<lt>code
3038pointE<gt>>>).
3039
3040Also, entries like
3041
3042 <hangul syllable>
3043
3044means that the name is algorithmically calculated.  This is easily done by
3045the function L<charnames/charnames::viacode(code)>.
3046
3047Note that for control characters (C<Gc=cc>), Unicode's data files have the
3048string "C<E<lt>controlE<gt>>", but the real name of each of these characters is the empty
3049string.  This function returns that real name, the empty string.  (There are
3050names for these characters, but they are considered aliases, not the Name
3051property name, and are contained in the C<Name_Alias> property.)
3052
3053=item B<C<ad>>
3054
3055means the Decomposition_Mapping property.  This property is like C<"al">
3056properties, except that one of the scalar elements is of the form:
3057
3058 <hangul syllable>
3059
3060This signifies that this entry should be replaced by the decompositions for
3061all the code points whose decomposition is algorithmically calculated.  (All
3062of them are currently in one range and no others outside the range are likely
3063to ever be added to Unicode; the C<"n"> format
3064has this same entry.)  These can be generated via the function
3065L<Unicode::Normalize::NFD()|Unicode::Normalize>.
3066
3067Note that the mapping is the one that is specified in the Unicode data files,
3068and to get the final decomposition, it may need to be applied recursively.
3069Unicode in fact discourages use of this property except internally in
3070implementations of the Unicode Normalization Algorithm.
3071
3072The fourth (index [3]) element (C<$default>) in the list returned for this
3073format is 0.
3074
3075=back
3076
3077Note that a format begins with the letter "a" if and only the property it is
3078for requires adjustments by adding the offsets in multi-element ranges.  For
3079all these properties, an entry should be adjusted only if the map is a scalar
3080which is an integer.  That is, it must match the regular expression:
3081
3082    / ^ -? \d+ $ /xa
3083
3084Further, the first element in a range never needs adjustment, as the
3085adjustment would be just adding 0.
3086
3087A binary search such as that provided by L</search_invlist()>, can be used to
3088quickly find a code point in the inversion list, and hence its corresponding
3089mapping.
3090
3091The final, fourth element (index [3], assigned to C<$default> in the "block"
3092example) in the four element list returned by this function is used with the
3093C<"a"> format types; it may also be useful for applications
3094that wish to convert the returned inversion map data structure into some
3095other, such as a hash.  It gives the mapping that most code points map to
3096under the property.  If you establish the convention that any code point not
3097explicitly listed in your data structure maps to this value, you can
3098potentially make your data structure much smaller.  As you construct your data
3099structure from the one returned by this function, simply ignore those ranges
3100that map to this value.  For example, to
3101convert to the data structure searchable by L</charinrange()>, you can follow
3102this recipe for properties that don't require adjustments:
3103
3104 my ($list_ref, $map_ref, $format, $default) = prop_invmap($property);
3105 my @range_list;
3106
3107 # Look at each element in the list, but the -2 is needed because we
3108 # look at $i+1 in the loop, and the final element is guaranteed to map
3109 # to $default by prop_invmap(), so we would skip it anyway.
3110 for my $i (0 .. @$list_ref - 2) {
3111    next if $map_ref->[$i] eq $default;
3112    push @range_list, [ $list_ref->[$i],
3113                        $list_ref->[$i+1],
3114                        $map_ref->[$i]
3115                      ];
3116 }
3117
3118 print charinrange(\@range_list, $code_point), "\n";
3119
3120With this, C<charinrange()> will return C<undef> if its input code point maps
3121to C<$default>.  You can avoid this by omitting the C<next> statement, and adding
3122a line after the loop to handle the final element of the inversion map.
3123
3124Similarly, this recipe can be used for properties that do require adjustments:
3125
3126 for my $i (0 .. @$list_ref - 2) {
3127    next if $map_ref->[$i] eq $default;
3128
3129    # prop_invmap() guarantees that if the mapping is to an array, the
3130    # range has just one element, so no need to worry about adjustments.
3131    if (ref $map_ref->[$i]) {
3132        push @range_list,
3133                   [ $list_ref->[$i], $list_ref->[$i], $map_ref->[$i] ];
3134    }
3135    else {  # Otherwise each element is actually mapped to a separate
3136            # value, so the range has to be split into single code point
3137            # ranges.
3138
3139        my $adjustment = 0;
3140
3141        # For each code point that gets mapped to something...
3142        for my $j ($list_ref->[$i] .. $list_ref->[$i+1] -1 ) {
3143
3144            # ... add a range consisting of just it mapping to the
3145            # original plus the adjustment, which is incremented for the
3146            # next time through the loop, as the offset increases by 1
3147            # for each element in the range
3148            push @range_list,
3149                             [ $j, $j, $map_ref->[$i] + $adjustment++ ];
3150        }
3151    }
3152 }
3153
3154Note that the inversion maps returned for the C<Case_Folding> and
3155C<Simple_Case_Folding> properties do not include the Turkic-locale mappings.
3156Use L</casefold()> for these.
3157
3158C<prop_invmap> does not know about any user-defined properties, and will
3159return C<undef> if called with one of those.
3160
3161The returned values for the Perl extension properties, such as C<Any> and
3162C<Greek> are somewhat misleading.  The values are either C<"Y"> or C<"N>".
3163All Unicode properties are bipartite, so you can actually use the C<"Y"> or
3164C<"N>" in a Perl regular expression for these, like C<qr/\p{ID_Start=Y/}> or
3165C<qr/\p{Upper=N/}>.  But the Perl extensions aren't specified this way, only
3166like C</qr/\p{Any}>, I<etc>.  You can't actually use the C<"Y"> and C<"N>" in
3167them.
3168
3169=head3 Getting every available name
3170
3171Instead of reading the Unicode Database directly from files, as you were able
3172to do for a long time, you are encouraged to use the supplied functions. So,
3173instead of reading C<Name.pl> - which may disappear without notice in the
3174future - directly, as with
3175
3176  my (%name, %cp);
3177  for (split m/\s*\n/ => do "unicore/Name.pl") {
3178      my ($cp, $name) = split m/\t/ => $_;
3179      $cp{$name} = $cp;
3180      $name{$cp} = $name unless $cp =~ m/ /;
3181  }
3182
3183You ought to use L</prop_invmap()> like this:
3184
3185  my (%name, %cp, %cps, $n);
3186  # All codepoints
3187  foreach my $cat (qw( Name Name_Alias )) {
3188      my ($codepoints, $names, $format, $default) = prop_invmap($cat);
3189      # $format => "n", $default => ""
3190      foreach my $i (0 .. @$codepoints - 2) {
3191          my ($cp, $n) = ($codepoints->[$i], $names->[$i]);
3192          # If $n is a ref, the same codepoint has multiple names
3193          foreach my $name (ref $n ? @$n : $n) {
3194              $name{$cp} //= $name;
3195              $cp{$name} //= $cp;
3196          }
3197      }
3198  }
3199  # Named sequences
3200  {   my %ns = namedseq();
3201      foreach my $name (sort { $ns{$a} cmp $ns{$b} } keys %ns) {
3202          $cp{$name} //= [ map { ord } split "" => $ns{$name} ];
3203      }
3204  }
3205
3206=cut
3207
3208# User-defined properties could be handled with some changes to utf8_heavy.pl;
3209# if done, consideration should be given to the fact that the user subroutine
3210# could return different results with each call, which could lead to some
3211# security issues.
3212
3213# One could store things in memory so they don't have to be recalculated, but
3214# it is unlikely this will be called often, and some properties would take up
3215# significant memory.
3216
3217# These are created by mktables for this routine and stored in unicore/UCD.pl
3218# where their structures are described.
3219our @algorithmic_named_code_points;
3220our $HANGUL_BEGIN;
3221our $HANGUL_COUNT;
3222
3223sub prop_invmap ($;$) {
3224
3225    croak __PACKAGE__, "::prop_invmap: must be called in list context" unless wantarray;
3226
3227    my $prop = $_[0];
3228    return unless defined $prop;
3229
3230    # Undocumented way to get at Perl internal properties; it may be changed
3231    # or removed without notice at any time.  It currently also changes the
3232    # output to use the format specified in the file rather than the one we
3233    # normally compute and return
3234    my $internal_ok = defined $_[1] && $_[1] eq '_perl_core_internal_ok';
3235
3236    # Fail internal properties
3237    return if $prop =~ /^_/ && ! $internal_ok;
3238
3239    # The values returned by this function.
3240    my (@invlist, @invmap, $format, $missing);
3241
3242    # The swash has two components we look at, the base list, and a hash,
3243    # named 'SPECIALS', containing any additional members whose mappings don't
3244    # fit into the base list scheme of things.  These generally 'override'
3245    # any value in the base list for the same code point.
3246    my $overrides;
3247
3248    require "utf8_heavy.pl";
3249    require "unicore/UCD.pl";
3250
3251RETRY:
3252
3253    # If there are multiple entries for a single code point
3254    my $has_multiples = 0;
3255
3256    # Try to get the map swash for the property.  They have 'To' prepended to
3257    # the property name, and 32 means we will accept 32 bit return values.
3258    # The 0 means we aren't calling this from tr///.
3259    my $swash = utf8::SWASHNEW(__PACKAGE__, "To$prop", undef, 32, 0);
3260
3261    # If didn't find it, could be because needs a proxy.  And if was the
3262    # 'Block' or 'Name' property, use a proxy even if did find it.  Finding it
3263    # in these cases would be the result of the installation changing mktables
3264    # to output the Block or Name tables.  The Block table gives block names
3265    # in the new-style, and this routine is supposed to return old-style block
3266    # names.  The Name table is valid, but we need to execute the special code
3267    # below to add in the algorithmic-defined name entries.
3268    # And NFKCCF needs conversion, so handle that here too.
3269    if (ref $swash eq ""
3270        || $swash->{'TYPE'} =~ / ^ To (?: Blk | Na | NFKCCF ) $ /x)
3271    {
3272
3273        # Get the short name of the input property, in standard form
3274        my ($second_try) = prop_aliases($prop);
3275        return unless $second_try;
3276        $second_try = utf8::_loose_name(lc $second_try);
3277
3278        if ($second_try eq "in") {
3279
3280            # This property is identical to age for inversion map purposes
3281            $prop = "age";
3282            goto RETRY;
3283        }
3284        elsif ($second_try =~ / ^ s ( cf | fc | [ltu] c ) $ /x) {
3285
3286            # These properties use just the LIST part of the full mapping,
3287            # which includes the simple maps that are otherwise overridden by
3288            # the SPECIALS.  So all we need do is to not look at the SPECIALS;
3289            # set $overrides to indicate that
3290            $overrides = -1;
3291
3292            # The full name is the simple name stripped of its initial 's'
3293            $prop = $1;
3294
3295            # .. except for this case
3296            $prop = 'cf' if $prop eq 'fc';
3297
3298            goto RETRY;
3299        }
3300        elsif ($second_try eq "blk") {
3301
3302            # We use the old block names.  Just create a fake swash from its
3303            # data.
3304            _charblocks();
3305            my %blocks;
3306            $blocks{'LIST'} = "";
3307            $blocks{'TYPE'} = "ToBlk";
3308            $utf8::SwashInfo{ToBlk}{'missing'} = "No_Block";
3309            $utf8::SwashInfo{ToBlk}{'format'} = "s";
3310
3311            foreach my $block (@BLOCKS) {
3312                $blocks{'LIST'} .= sprintf "%x\t%x\t%s\n",
3313                                           $block->[0],
3314                                           $block->[1],
3315                                           $block->[2];
3316            }
3317            $swash = \%blocks;
3318        }
3319        elsif ($second_try eq "na") {
3320
3321            # Use the combo file that has all the Name-type properties in it,
3322            # extracting just the ones that are for the actual 'Name'
3323            # property.  And create a fake swash from it.
3324            my %names;
3325            $names{'LIST'} = "";
3326            my $original = do "unicore/Name.pl";
3327            my $algorithm_names = \@algorithmic_named_code_points;
3328
3329            # We need to remove the names from it that are aliases.  For that
3330            # we need to also read in that table.  Create a hash with the keys
3331            # being the code points, and the values being a list of the
3332            # aliases for the code point key.
3333            my ($aliases_code_points, $aliases_maps, undef, undef)
3334                  = &prop_invmap("_Perl_Name_Alias", '_perl_core_internal_ok');
3335            my %aliases;
3336            for (my $i = 0; $i < @$aliases_code_points; $i++) {
3337                my $code_point = $aliases_code_points->[$i];
3338                $aliases{$code_point} = $aliases_maps->[$i];
3339
3340                # If not already a list, make it into one, so that later we
3341                # can treat things uniformly
3342                if (! ref $aliases{$code_point}) {
3343                    $aliases{$code_point} = [ $aliases{$code_point} ];
3344                }
3345
3346                # Remove the alias type from the entry, retaining just the
3347                # name.
3348                map { s/:.*// } @{$aliases{$code_point}};
3349            }
3350
3351            my $i = 0;
3352            foreach my $line (split "\n", $original) {
3353                my ($hex_code_point, $name) = split "\t", $line;
3354
3355                # Weeds out all comments, blank lines, and named sequences
3356                next if $hex_code_point =~ /[^[:xdigit:]]/a;
3357
3358                my $code_point = hex $hex_code_point;
3359
3360                # The name of all controls is the default: the empty string.
3361                # The set of controls is immutable
3362                next if chr($code_point) =~ /[[:cntrl:]]/u;
3363
3364                # If this is a name_alias, it isn't a name
3365                next if grep { $_ eq $name } @{$aliases{$code_point}};
3366
3367                # If we are beyond where one of the special lines needs to
3368                # be inserted ...
3369                while ($i < @$algorithm_names
3370                    && $code_point > $algorithm_names->[$i]->{'low'})
3371                {
3372
3373                    # ... then insert it, ahead of what we were about to
3374                    # output
3375                    $names{'LIST'} .= sprintf "%x\t%x\t%s\n",
3376                                            $algorithm_names->[$i]->{'low'},
3377                                            $algorithm_names->[$i]->{'high'},
3378                                            $algorithm_names->[$i]->{'name'};
3379
3380                    # Done with this range.
3381                    $i++;
3382
3383                    # We loop until all special lines that precede the next
3384                    # regular one are output.
3385                }
3386
3387                # Here, is a normal name.
3388                $names{'LIST'} .= sprintf "%x\t\t%s\n", $code_point, $name;
3389            } # End of loop through all the names
3390
3391            $names{'TYPE'} = "ToNa";
3392            $utf8::SwashInfo{ToNa}{'missing'} = "";
3393            $utf8::SwashInfo{ToNa}{'format'} = "n";
3394            $swash = \%names;
3395        }
3396        elsif ($second_try =~ / ^ ( d [mt] ) $ /x) {
3397
3398            # The file is a combination of dt and dm properties.  Create a
3399            # fake swash from the portion that we want.
3400            my $original = do "unicore/Decomposition.pl";
3401            my %decomps;
3402
3403            if ($second_try eq 'dt') {
3404                $decomps{'TYPE'} = "ToDt";
3405                $utf8::SwashInfo{'ToDt'}{'missing'} = "None";
3406                $utf8::SwashInfo{'ToDt'}{'format'} = "s";
3407            }   # 'dm' is handled below, with 'nfkccf'
3408
3409            $decomps{'LIST'} = "";
3410
3411            # This property has one special range not in the file: for the
3412            # hangul syllables.  But not in Unicode version 1.
3413            UnicodeVersion() unless defined $v_unicode_version;
3414            my $done_hangul = ($v_unicode_version lt v2.0.0)
3415                              ? 1
3416                              : 0;    # Have we done the hangul range ?
3417            foreach my $line (split "\n", $original) {
3418                my ($hex_lower, $hex_upper, $type_and_map) = split "\t", $line;
3419                my $code_point = hex $hex_lower;
3420                my $value;
3421                my $redo = 0;
3422
3423                # The type, enclosed in <...>, precedes the mapping separated
3424                # by blanks
3425                if ($type_and_map =~ / ^ < ( .* ) > \s+ (.*) $ /x) {
3426                    $value = ($second_try eq 'dt') ? $1 : $2
3427                }
3428                else {  # If there is no type specified, it's canonical
3429                    $value = ($second_try eq 'dt')
3430                             ? "Canonical" :
3431                             $type_and_map;
3432                }
3433
3434                # Insert the hangul range at the appropriate spot.
3435                if (! $done_hangul && $code_point > $HANGUL_BEGIN) {
3436                    $done_hangul = 1;
3437                    $decomps{'LIST'} .=
3438                                sprintf "%x\t%x\t%s\n",
3439                                        $HANGUL_BEGIN,
3440                                        $HANGUL_BEGIN + $HANGUL_COUNT - 1,
3441                                        ($second_try eq 'dt')
3442                                        ? "Canonical"
3443                                        : "<hangul syllable>";
3444                }
3445
3446                if ($value =~ / / && $hex_upper ne "" && $hex_upper ne $hex_lower) {
3447                    $line = sprintf("%04X\t%s\t%s", hex($hex_lower) + 1, $hex_upper, $value);
3448                    $hex_upper = "";
3449                    $redo = 1;
3450                }
3451
3452                # And append this to our constructed LIST.
3453                $decomps{'LIST'} .= "$hex_lower\t$hex_upper\t$value\n";
3454
3455                redo if $redo;
3456            }
3457            $swash = \%decomps;
3458        }
3459        elsif ($second_try ne 'nfkccf') { # Don't know this property. Fail.
3460            return;
3461        }
3462
3463        if ($second_try eq 'nfkccf' || $second_try eq 'dm') {
3464
3465            # The 'nfkccf' property is stored in the old format for backwards
3466            # compatibility for any applications that has read its file
3467            # directly before prop_invmap() existed.
3468            # And the code above has extracted the 'dm' property from its file
3469            # yielding the same format.  So here we convert them to adjusted
3470            # format for compatibility with the other properties similar to
3471            # them.
3472            my %revised_swash;
3473
3474            # We construct a new converted list.
3475            my $list = "";
3476
3477            my @ranges = split "\n", $swash->{'LIST'};
3478            for (my $i = 0; $i < @ranges; $i++) {
3479                my ($hex_begin, $hex_end, $map) = split "\t", $ranges[$i];
3480
3481                # The dm property has maps that are space separated sequences
3482                # of code points, as well as the special entry "<hangul
3483                # syllable>, which also contains a blank.
3484                my @map = split " ", $map;
3485                if (@map > 1) {
3486
3487                    # If it's just the special entry, append as-is.
3488                    if ($map eq '<hangul syllable>') {
3489                        $list .= "$ranges[$i]\n";
3490                    }
3491                    else {
3492
3493                        # These should all be single-element ranges.
3494                        croak __PACKAGE__, "::prop_invmap: Not expecting a mapping with multiple code points in a multi-element range, $ranges[$i]" if $hex_end ne "" && $hex_end ne $hex_begin;
3495
3496                        # Convert them to decimal, as that's what's expected.
3497                        $list .= "$hex_begin\t\t"
3498                            . join(" ", map { hex } @map)
3499                            . "\n";
3500                    }
3501                    next;
3502                }
3503
3504                # Here, the mapping doesn't have a blank, is for a single code
3505                # point.
3506                my $begin = hex $hex_begin;
3507                my $end = (defined $hex_end && $hex_end ne "")
3508                        ? hex $hex_end
3509                        : $begin;
3510
3511                # Again, the output is to be in decimal.
3512                my $decimal_map = hex $map;
3513
3514                # We know that multi-element ranges with the same mapping
3515                # should not be adjusted, as after the adjustment
3516                # multi-element ranges are for consecutive increasing code
3517                # points.  Further, the final element in the list won't be
3518                # adjusted, as there is nothing after it to include in the
3519                # adjustment
3520                if ($begin != $end || $i == @ranges -1) {
3521
3522                    # So just convert these to single-element ranges
3523                    foreach my $code_point ($begin .. $end) {
3524                        $list .= sprintf("%04X\t\t%d\n",
3525                                        $code_point, $decimal_map);
3526                    }
3527                }
3528                else {
3529
3530                    # Here, we have a candidate for adjusting.  What we do is
3531                    # look through the subsequent adjacent elements in the
3532                    # input.  If the map to the next one differs by 1 from the
3533                    # one before, then we combine into a larger range with the
3534                    # initial map.  Loop doing this until we find one that
3535                    # can't be combined.
3536
3537                    my $offset = 0;     # How far away are we from the initial
3538                                        # map
3539                    my $squished = 0;   # ? Did we squish at least two
3540                                        # elements together into one range
3541                    for ( ; $i < @ranges; $i++) {
3542                        my ($next_hex_begin, $next_hex_end, $next_map)
3543                                                = split "\t", $ranges[$i+1];
3544
3545                        # In the case of 'dm', the map may be a sequence of
3546                        # multiple code points, which are never combined with
3547                        # another range
3548                        last if $next_map =~ / /;
3549
3550                        $offset++;
3551                        my $next_decimal_map = hex $next_map;
3552
3553                        # If the next map is not next in sequence, it
3554                        # shouldn't be combined.
3555                        last if $next_decimal_map != $decimal_map + $offset;
3556
3557                        my $next_begin = hex $next_hex_begin;
3558
3559                        # Likewise, if the next element isn't adjacent to the
3560                        # previous one, it shouldn't be combined.
3561                        last if $next_begin != $begin + $offset;
3562
3563                        my $next_end = (defined $next_hex_end
3564                                        && $next_hex_end ne "")
3565                                            ? hex $next_hex_end
3566                                            : $next_begin;
3567
3568                        # And finally, if the next element is a multi-element
3569                        # range, it shouldn't be combined.
3570                        last if $next_end != $next_begin;
3571
3572                        # Here, we will combine.  Loop to see if we should
3573                        # combine the next element too.
3574                        $squished = 1;
3575                    }
3576
3577                    if ($squished) {
3578
3579                        # Here, 'i' is the element number of the last element to
3580                        # be combined, and the range is single-element, or we
3581                        # wouldn't be combining.  Get it's code point.
3582                        my ($hex_end, undef, undef) = split "\t", $ranges[$i];
3583                        $list .= "$hex_begin\t$hex_end\t$decimal_map\n";
3584                    } else {
3585
3586                        # Here, no combining done.  Just append the initial
3587                        # (and current) values.
3588                        $list .= "$hex_begin\t\t$decimal_map\n";
3589                    }
3590                }
3591            } # End of loop constructing the converted list
3592
3593            # Finish up the data structure for our converted swash
3594            my $type = ($second_try eq 'nfkccf') ? 'ToNFKCCF' : 'ToDm';
3595            $revised_swash{'LIST'} = $list;
3596            $revised_swash{'TYPE'} = $type;
3597            $revised_swash{'SPECIALS'} = $swash->{'SPECIALS'};
3598            $swash = \%revised_swash;
3599
3600            $utf8::SwashInfo{$type}{'missing'} = 0;
3601            $utf8::SwashInfo{$type}{'format'} = 'a';
3602        }
3603    }
3604
3605    if ($swash->{'EXTRAS'}) {
3606        carp __PACKAGE__, "::prop_invmap: swash returned for $prop unexpectedly has EXTRAS magic";
3607        return;
3608    }
3609
3610    # Here, have a valid swash return.  Examine it.
3611    my $returned_prop = $swash->{'TYPE'};
3612
3613    # All properties but binary ones should have 'missing' and 'format'
3614    # entries
3615    $missing = $utf8::SwashInfo{$returned_prop}{'missing'};
3616    $missing = 'N' unless defined $missing;
3617
3618    $format = $utf8::SwashInfo{$returned_prop}{'format'};
3619    $format = 'b' unless defined $format;
3620
3621    my $requires_adjustment = $format =~ /^a/;
3622
3623    if ($swash->{'LIST'} =~ /^V/) {
3624        @invlist = split "\n", $swash->{'LIST'} =~ s/ \s* (?: \# .* )? $ //xmgr;
3625
3626        shift @invlist;     # Get rid of 'V';
3627
3628        # Could need to be inverted: add or subtract a 0 at the beginning of
3629        # the list.
3630        if ($swash->{'INVERT_IT'}) {
3631            if (@invlist && $invlist[0] == 0) {
3632                shift @invlist;
3633            }
3634            else {
3635                unshift @invlist, 0;
3636            }
3637        }
3638
3639        if (@invlist) {
3640            foreach my $i (0 .. @invlist - 1) {
3641                $invmap[$i] = ($i % 2 == 0) ? 'Y' : 'N'
3642            }
3643
3644            # The map includes lines for all code points; add one for the range
3645            # from 0 to the first Y.
3646            if ($invlist[0] != 0) {
3647                unshift @invlist, 0;
3648                unshift @invmap, 'N';
3649            }
3650        }
3651    }
3652    else {
3653        if ($swash->{'INVERT_IT'}) {
3654            croak __PACKAGE__, ":prop_invmap: Don't know how to deal with inverted";
3655        }
3656
3657        # The LIST input lines look like:
3658        # ...
3659        # 0374\t\tCommon
3660        # 0375\t0377\tGreek   # [3]
3661        # 037A\t037D\tGreek   # [4]
3662        # 037E\t\tCommon
3663        # 0384\t\tGreek
3664        # ...
3665        #
3666        # Convert them to like
3667        # 0374 => Common
3668        # 0375 => Greek
3669        # 0378 => $missing
3670        # 037A => Greek
3671        # 037E => Common
3672        # 037F => $missing
3673        # 0384 => Greek
3674        #
3675        # For binary properties, the final non-comment column is absent, and
3676        # assumed to be 'Y'.
3677
3678        foreach my $range (split "\n", $swash->{'LIST'}) {
3679            $range =~ s/ \s* (?: \# .* )? $ //xg; # rmv trailing space, comments
3680
3681            # Find the beginning and end of the range on the line
3682            my ($hex_begin, $hex_end, $map) = split "\t", $range;
3683            my $begin = hex $hex_begin;
3684            no warnings 'portable';
3685            my $end = (defined $hex_end && $hex_end ne "")
3686                    ? hex $hex_end
3687                    : $begin;
3688
3689            # Each time through the loop (after the first):
3690            # $invlist[-2] contains the beginning of the previous range processed
3691            # $invlist[-1] contains the end+1 of the previous range processed
3692            # $invmap[-2] contains the value of the previous range processed
3693            # $invmap[-1] contains the default value for missing ranges
3694            #                                                       ($missing)
3695            #
3696            # Thus, things are set up for the typical case of a new
3697            # non-adjacent range of non-missings to be added.  But, if the new
3698            # range is adjacent, it needs to replace the [-1] element; and if
3699            # the new range is a multiple value of the previous one, it needs
3700            # to be added to the [-2] map element.
3701
3702            # The first time through, everything will be empty.  If the
3703            # property doesn't have a range that begins at 0, add one that
3704            # maps to $missing
3705            if (! @invlist) {
3706                if ($begin != 0) {
3707                    push @invlist, 0;
3708                    push @invmap, $missing;
3709                }
3710            }
3711            elsif (@invlist > 1 && $invlist[-2] == $begin) {
3712
3713                # Here we handle the case where the input has multiple entries
3714                # for each code point.  mktables should have made sure that
3715                # each such range contains only one code point.  At this
3716                # point, $invlist[-1] is the $missing that was added at the
3717                # end of the last loop iteration, and [-2] is the last real
3718                # input code point, and that code point is the same as the one
3719                # we are adding now, making the new one a multiple entry.  Add
3720                # it to the existing entry, either by pushing it to the
3721                # existing list of multiple entries, or converting the single
3722                # current entry into a list with both on it.  This is all we
3723                # need do for this iteration.
3724
3725                if ($end != $begin) {
3726                    croak __PACKAGE__, ":prop_invmap: Multiple maps per code point in '$prop' require single-element ranges: begin=$begin, end=$end, map=$map";
3727                }
3728                if (! ref $invmap[-2]) {
3729                    $invmap[-2] = [ $invmap[-2], $map ];
3730                }
3731                else {
3732                    push @{$invmap[-2]}, $map;
3733                }
3734                $has_multiples = 1;
3735                next;
3736            }
3737            elsif ($invlist[-1] == $begin) {
3738
3739                # If the input isn't in the most compact form, so that there
3740                # are two adjacent ranges that map to the same thing, they
3741                # should be combined (EXCEPT where the arrays require
3742                # adjustments, in which case everything is already set up
3743                # correctly).  This happens in our constructed dt mapping, as
3744                # Element [-2] is the map for the latest range so far
3745                # processed.  Just set the beginning point of the map to
3746                # $missing (in invlist[-1]) to 1 beyond where this range ends.
3747                # For example, in
3748                # 12\t13\tXYZ
3749                # 14\t17\tXYZ
3750                # we have set it up so that it looks like
3751                # 12 => XYZ
3752                # 14 => $missing
3753                #
3754                # We now see that it should be
3755                # 12 => XYZ
3756                # 18 => $missing
3757                if (! $requires_adjustment && @invlist > 1 && ( (defined $map)
3758                                    ? $invmap[-2] eq $map
3759                                    : $invmap[-2] eq 'Y'))
3760                {
3761                    $invlist[-1] = $end + 1;
3762                    next;
3763                }
3764
3765                # Here, the range started in the previous iteration that maps
3766                # to $missing starts at the same code point as this range.
3767                # That means there is no gap to fill that that range was
3768                # intended for, so we just pop it off the parallel arrays.
3769                pop @invlist;
3770                pop @invmap;
3771            }
3772
3773            # Add the range beginning, and the range's map.
3774            push @invlist, $begin;
3775            if ($returned_prop eq 'ToDm') {
3776
3777                # The decomposition maps are either a line like <hangul
3778                # syllable> which are to be taken as is; or a sequence of code
3779                # points in hex and separated by blanks.  Convert them to
3780                # decimal, and if there is more than one, use an anonymous
3781                # array as the map.
3782                if ($map =~ /^ < /x) {
3783                    push @invmap, $map;
3784                }
3785                else {
3786                    my @map = split " ", $map;
3787                    if (@map == 1) {
3788                        push @invmap, $map[0];
3789                    }
3790                    else {
3791                        push @invmap, \@map;
3792                    }
3793                }
3794            }
3795            else {
3796
3797                # Otherwise, convert hex formatted list entries to decimal;
3798                # add a 'Y' map for the missing value in binary properties, or
3799                # otherwise, use the input map unchanged.
3800                $map = ($format eq 'x' || $format eq 'ax')
3801                    ? hex $map
3802                    : $format eq 'b'
3803                    ? 'Y'
3804                    : $map;
3805                push @invmap, $map;
3806            }
3807
3808            # We just started a range.  It ends with $end.  The gap between it
3809            # and the next element in the list must be filled with a range
3810            # that maps to the default value.  If there is no gap, the next
3811            # iteration will pop this, unless there is no next iteration, and
3812            # we have filled all of the Unicode code space, so check for that
3813            # and skip.
3814            if ($end < $Unicode::UCD::MAX_CP) {
3815                push @invlist, $end + 1;
3816                push @invmap, $missing;
3817            }
3818        }
3819    }
3820
3821    # If the property is empty, make all code points use the value for missing
3822    # ones.
3823    if (! @invlist) {
3824        push @invlist, 0;
3825        push @invmap, $missing;
3826    }
3827
3828    # The final element is always for just the above-Unicode code points.  If
3829    # not already there, add it.  It merely splits the current final range
3830    # that extends to infinity into two elements, each with the same map.
3831    # (This is to conform with the API that says the final element is for
3832    # $MAX_UNICODE_CODEPOINT + 1 .. INFINITY.)
3833    if ($invlist[-1] != $MAX_UNICODE_CODEPOINT + 1) {
3834        push @invmap, $invmap[-1];
3835        push @invlist, $MAX_UNICODE_CODEPOINT + 1;
3836    }
3837
3838    # The second component of the map are those values that require
3839    # non-standard specification, stored in SPECIALS.  These override any
3840    # duplicate code points in LIST.  If we are using a proxy, we may have
3841    # already set $overrides based on the proxy.
3842    $overrides = $swash->{'SPECIALS'} unless defined $overrides;
3843    if ($overrides) {
3844
3845        # A negative $overrides implies that the SPECIALS should be ignored,
3846        # and a simple 'a' list is the value.
3847        if ($overrides < 0) {
3848            $format = 'a';
3849        }
3850        else {
3851
3852            # Currently, all overrides are for properties that normally map to
3853            # single code points, but now some will map to lists of code
3854            # points (but there is an exception case handled below).
3855            $format = 'al';
3856
3857            # Look through the overrides.
3858            foreach my $cp_maybe_utf8 (keys %$overrides) {
3859                my $cp;
3860                my @map;
3861
3862                # If the overrides came from SPECIALS, the code point keys are
3863                # packed UTF-8.
3864                if ($overrides == $swash->{'SPECIALS'}) {
3865                    $cp = $cp_maybe_utf8;
3866                    if (! utf8::decode($cp)) {
3867                        croak __PACKAGE__, "::prop_invmap: Malformed UTF-8: ",
3868                              map { sprintf("\\x{%02X}", unpack("C", $_)) }
3869                                                                split "", $cp;
3870                    }
3871
3872                    $cp = unpack("W", $cp);
3873                    @map = unpack "W*", $swash->{'SPECIALS'}{$cp_maybe_utf8};
3874
3875                    # The empty string will show up unpacked as an empty
3876                    # array.
3877                    $format = 'ale' if @map == 0;
3878                }
3879                else {
3880
3881                    # But if we generated the overrides, we didn't bother to
3882                    # pack them, and we, so far, do this only for properties
3883                    # that are 'a' ones.
3884                    $cp = $cp_maybe_utf8;
3885                    @map = hex $overrides->{$cp};
3886                    $format = 'a';
3887                }
3888
3889                # Find the range that the override applies to.
3890                my $i = search_invlist(\@invlist, $cp);
3891                if ($cp < $invlist[$i] || $cp >= $invlist[$i + 1]) {
3892                    croak __PACKAGE__, "::prop_invmap: wrong_range, cp=$cp; i=$i, current=$invlist[$i]; next=$invlist[$i + 1]"
3893                }
3894
3895                # And what that range currently maps to
3896                my $cur_map = $invmap[$i];
3897
3898                # If there is a gap between the next range and the code point
3899                # we are overriding, we have to add elements to both arrays to
3900                # fill that gap, using the map that applies to it, which is
3901                # $cur_map, since it is part of the current range.
3902                if ($invlist[$i + 1] > $cp + 1) {
3903                    #use feature 'say';
3904                    #say "Before splice:";
3905                    #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2;
3906                    #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1;
3907                    #say 'i  =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]);
3908                    #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1;
3909                    #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2;
3910
3911                    splice @invlist, $i + 1, 0, $cp + 1;
3912                    splice @invmap, $i + 1, 0, $cur_map;
3913
3914                    #say "After splice:";
3915                    #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2;
3916                    #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1;
3917                    #say 'i  =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]);
3918                    #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1;
3919                    #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2;
3920                }
3921
3922                # If the remaining portion of the range is multiple code
3923                # points (ending with the one we are replacing, guaranteed by
3924                # the earlier splice).  We must split it into two
3925                if ($invlist[$i] < $cp) {
3926                    $i++;   # Compensate for the new element
3927
3928                    #use feature 'say';
3929                    #say "Before splice:";
3930                    #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2;
3931                    #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1;
3932                    #say 'i  =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]);
3933                    #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1;
3934                    #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2;
3935
3936                    splice @invlist, $i, 0, $cp;
3937                    splice @invmap, $i, 0, 'dummy';
3938
3939                    #say "After splice:";
3940                    #say 'i-2=[', $i-2, ']', sprintf("%04X maps to %s", $invlist[$i-2], $invmap[$i-2]) if $i >= 2;
3941                    #say 'i-1=[', $i-1, ']', sprintf("%04X maps to %s", $invlist[$i-1], $invmap[$i-1]) if $i >= 1;
3942                    #say 'i  =[', $i, ']', sprintf("%04X maps to %s", $invlist[$i], $invmap[$i]);
3943                    #say 'i+1=[', $i+1, ']', sprintf("%04X maps to %s", $invlist[$i+1], $invmap[$i+1]) if $i < @invlist + 1;
3944                    #say 'i+2=[', $i+2, ']', sprintf("%04X maps to %s", $invlist[$i+2], $invmap[$i+2]) if $i < @invlist + 2;
3945                }
3946
3947                # Here, the range we are overriding contains a single code
3948                # point.  The result could be the empty string, a single
3949                # value, or a list.  If the last case, we use an anonymous
3950                # array.
3951                $invmap[$i] = (scalar @map == 0)
3952                               ? ""
3953                               : (scalar @map > 1)
3954                                  ? \@map
3955                                  : $map[0];
3956            }
3957        }
3958    }
3959    elsif ($format eq 'x') {
3960
3961        # All hex-valued properties are really to code points, and have been
3962        # converted to decimal.
3963        $format = 's';
3964    }
3965    elsif ($returned_prop eq 'ToDm') {
3966        $format = 'ad';
3967    }
3968    elsif ($format eq 'sw') { # blank-separated elements to form a list.
3969        map { $_ = [ split " ", $_  ] if $_ =~ / / } @invmap;
3970        $format = 'sl';
3971    }
3972    elsif ($returned_prop =~ / To ( _Perl )? NameAlias/x) {
3973
3974        # This property currently doesn't have any lists, but theoretically
3975        # could
3976        $format = 'sl';
3977    }
3978    elsif ($returned_prop eq 'ToPerlDecimalDigit') {
3979        $format = 'ae';
3980    }
3981    elsif ($returned_prop eq 'ToNv') {
3982
3983        # The one property that has this format is stored as a delta, so needs
3984        # to indicate that need to add code point to it.
3985        $format = 'ar';
3986    }
3987    elsif ($format eq 'ax') {
3988
3989        # Normally 'ax' properties have overrides, and will have been handled
3990        # above, but if not, they still need adjustment, and the hex values
3991        # have already been converted to decimal
3992        $format = 'a';
3993    }
3994    elsif ($format ne 'n' && $format !~ / ^ a /x) {
3995
3996        # All others are simple scalars
3997        $format = 's';
3998    }
3999    if ($has_multiples &&  $format !~ /l/) {
4000	croak __PACKAGE__, "::prop_invmap: Wrong format '$format' for prop_invmap('$prop'); should indicate has lists";
4001    }
4002
4003    return (\@invlist, \@invmap, $format, $missing);
4004}
4005
4006sub search_invlist {
4007
4008=pod
4009
4010=head2 B<search_invlist()>
4011
4012 use Unicode::UCD qw(prop_invmap prop_invlist);
4013 use Unicode::UCD 'search_invlist';
4014
4015 my @invlist = prop_invlist($property_name);
4016 print $code_point, ((search_invlist(\@invlist, $code_point) // -1) % 2)
4017                     ? " isn't"
4018                     : " is",
4019     " in $property_name\n";
4020
4021 my ($blocks_ranges_ref, $blocks_map_ref) = prop_invmap("Block");
4022 my $index = search_invlist($blocks_ranges_ref, $code_point);
4023 print "$code_point is in block ", $blocks_map_ref->[$index], "\n";
4024
4025C<search_invlist> is used to search an inversion list returned by
4026C<prop_invlist> or C<prop_invmap> for a particular L</code point argument>.
4027C<undef> is returned if the code point is not found in the inversion list
4028(this happens only when it is not a legal L<code point argument>, or is less
4029than the list's first element).  A warning is raised in the first instance.
4030
4031Otherwise, it returns the index into the list of the range that contains the
4032code point.; that is, find C<i> such that
4033
4034    list[i]<= code_point < list[i+1].
4035
4036As explained in L</prop_invlist()>, whether a code point is in the list or not
4037depends on if the index is even (in) or odd (not in).  And as explained in
4038L</prop_invmap()>, the index is used with the returned parallel array to find
4039the mapping.
4040
4041=cut
4042
4043
4044    my $list_ref = shift;
4045    my $input_code_point = shift;
4046    my $code_point = _getcode($input_code_point);
4047
4048    if (! defined $code_point) {
4049        carp __PACKAGE__, "::search_invlist: unknown code '$input_code_point'";
4050        return;
4051    }
4052
4053    my $max_element = @$list_ref - 1;
4054
4055    # Return undef if list is empty or requested item is before the first element.
4056    return if $max_element < 0;
4057    return if $code_point < $list_ref->[0];
4058
4059    # Short cut something at the far-end of the table.  This also allows us to
4060    # refer to element [$i+1] without fear of being out-of-bounds in the loop
4061    # below.
4062    return $max_element if $code_point >= $list_ref->[$max_element];
4063
4064    use integer;        # want integer division
4065
4066    my $i = $max_element / 2;
4067
4068    my $lower = 0;
4069    my $upper = $max_element;
4070    while (1) {
4071
4072        if ($code_point >= $list_ref->[$i]) {
4073
4074            # Here we have met the lower constraint.  We can quit if we
4075            # also meet the upper one.
4076            last if $code_point < $list_ref->[$i+1];
4077
4078            $lower = $i;        # Still too low.
4079
4080        }
4081        else {
4082
4083            # Here, $code_point < $list_ref[$i], so look lower down.
4084            $upper = $i;
4085        }
4086
4087        # Split search domain in half to try again.
4088        my $temp = ($upper + $lower) / 2;
4089
4090        # No point in continuing unless $i changes for next time
4091        # in the loop.
4092        return $i if $temp == $i;
4093        $i = $temp;
4094    } # End of while loop
4095
4096    # Here we have found the offset
4097    return $i;
4098}
4099
4100=head2 Unicode::UCD::UnicodeVersion
4101
4102This returns the version of the Unicode Character Database, in other words, the
4103version of the Unicode standard the database implements.  The version is a
4104string of numbers delimited by dots (C<'.'>).
4105
4106=cut
4107
4108my $UNICODEVERSION;
4109
4110sub UnicodeVersion {
4111    unless (defined $UNICODEVERSION) {
4112	my $versionfh = openunicode("version");
4113	local $/ = "\n";
4114	chomp($UNICODEVERSION = <$versionfh>);
4115	croak __PACKAGE__, "::VERSION: strange version '$UNICODEVERSION'"
4116	    unless $UNICODEVERSION =~ /^\d+(?:\.\d+)+$/;
4117    }
4118    $v_unicode_version = pack "C*", split /\./, $UNICODEVERSION;
4119    return $UNICODEVERSION;
4120}
4121
4122=head2 B<Blocks versus Scripts>
4123
4124The difference between a block and a script is that scripts are closer
4125to the linguistic notion of a set of code points required to represent
4126languages, while block is more of an artifact of the Unicode code point
4127numbering and separation into blocks of consecutive code points (so far the
4128size of a block is some multiple of 16, like 128 or 256).
4129
4130For example the Latin B<script> is spread over several B<blocks>, such
4131as C<Basic Latin>, C<Latin 1 Supplement>, C<Latin Extended-A>, and
4132C<Latin Extended-B>.  On the other hand, the Latin script does not
4133contain all the characters of the C<Basic Latin> block (also known as
4134ASCII): it includes only the letters, and not, for example, the digits
4135nor the punctuation.
4136
4137For blocks see L<http://www.unicode.org/Public/UNIDATA/Blocks.txt>
4138
4139For scripts see UTR #24: L<http://www.unicode.org/unicode/reports/tr24/>
4140
4141=head2 B<Matching Scripts and Blocks>
4142
4143Scripts are matched with the regular-expression construct
4144C<\p{...}> (e.g. C<\p{Tibetan}> matches characters of the Tibetan script),
4145while C<\p{Blk=...}> is used for blocks (e.g. C<\p{Blk=Tibetan}> matches
4146any of the 256 code points in the Tibetan block).
4147
4148=head2 Old-style versus new-style block names
4149
4150Unicode publishes the names of blocks in two different styles, though the two
4151are equivalent under Unicode's loose matching rules.
4152
4153The original style uses blanks and hyphens in the block names (except for
4154C<No_Block>), like so:
4155
4156 Miscellaneous Mathematical Symbols-B
4157
4158The newer style replaces these with underscores, like this:
4159
4160 Miscellaneous_Mathematical_Symbols_B
4161
4162This newer style is consistent with the values of other Unicode properties.
4163To preserve backward compatibility, all the functions in Unicode::UCD that
4164return block names (except as noted) return the old-style ones.
4165L</prop_value_aliases()> returns the new-style and can be used to convert from
4166old-style to new-style:
4167
4168 my $new_style = prop_values_aliases("block", $old_style);
4169
4170Perl also has single-form extensions that refer to blocks, C<In_Cyrillic>,
4171meaning C<Block=Cyrillic>.  These have always been written in the new style.
4172
4173To convert from new-style to old-style, follow this recipe:
4174
4175 $old_style = charblock((prop_invlist("block=$new_style"))[0]);
4176
4177(which finds the range of code points in the block using C<prop_invlist>,
4178gets the lower end of the range (0th element) and then looks up the old name
4179for its block using C<charblock>).
4180
4181Note that starting in Unicode 6.1, many of the block names have shorter
4182synonyms.  These are always given in the new style.
4183
4184=head2 Use with older Unicode versions
4185
4186The functions in this module work as well as can be expected when
4187used on earlier Unicode versions.  But, obviously, they use the available data
4188from that Unicode version.  For example, if the Unicode version predates the
4189definition of the script property (Unicode 3.1), then any function that deals
4190with scripts is going to return C<undef> for the script portion of the return
4191value.
4192
4193=head1 AUTHOR
4194
4195Jarkko Hietaniemi.  Now maintained by perl5 porters.
4196
4197=cut
4198
41991;
4200