1 //! The arena, a fast but limited type of allocator.
2 //!
3 //! Arenas are a type of allocator that destroy the objects within, all at
4 //! once, once the arena itself is destroyed. They do not support deallocation
5 //! of individual objects while the arena itself is still alive. The benefit
6 //! of an arena is very fast allocation; just a pointer bump.
7 //!
8 //! This crate implements several kinds of arena.
9 
10 #![doc(
11     html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/",
12     test(no_crate_inject, attr(deny(warnings)))
13 )]
14 #![feature(dropck_eyepatch)]
15 #![feature(new_uninit)]
16 #![feature(maybe_uninit_slice)]
17 #![feature(min_specialization)]
18 #![feature(decl_macro)]
19 #![feature(rustc_attrs)]
20 #![cfg_attr(test, feature(test))]
21 
22 use smallvec::SmallVec;
23 
24 use std::alloc::Layout;
25 use std::cell::{Cell, RefCell};
26 use std::cmp;
27 use std::marker::{PhantomData, Send};
28 use std::mem::{self, MaybeUninit};
29 use std::ptr;
30 use std::slice;
31 
32 #[inline(never)]
33 #[cold]
cold_path<F: FnOnce() -> R, R>(f: F) -> R34 fn cold_path<F: FnOnce() -> R, R>(f: F) -> R {
35     f()
36 }
37 
38 /// An arena that can hold objects of only one type.
39 pub struct TypedArena<T> {
40     /// A pointer to the next object to be allocated.
41     ptr: Cell<*mut T>,
42 
43     /// A pointer to the end of the allocated area. When this pointer is
44     /// reached, a new chunk is allocated.
45     end: Cell<*mut T>,
46 
47     /// A vector of arena chunks.
48     chunks: RefCell<Vec<TypedArenaChunk<T>>>,
49 
50     /// Marker indicating that dropping the arena causes its owned
51     /// instances of `T` to be dropped.
52     _own: PhantomData<T>,
53 }
54 
55 struct TypedArenaChunk<T> {
56     /// The raw storage for the arena chunk.
57     storage: Box<[MaybeUninit<T>]>,
58     /// The number of valid entries in the chunk.
59     entries: usize,
60 }
61 
62 impl<T> TypedArenaChunk<T> {
63     #[inline]
new(capacity: usize) -> TypedArenaChunk<T>64     unsafe fn new(capacity: usize) -> TypedArenaChunk<T> {
65         TypedArenaChunk { storage: Box::new_uninit_slice(capacity), entries: 0 }
66     }
67 
68     /// Destroys this arena chunk.
69     #[inline]
destroy(&mut self, len: usize)70     unsafe fn destroy(&mut self, len: usize) {
71         // The branch on needs_drop() is an -O1 performance optimization.
72         // Without the branch, dropping TypedArena<u8> takes linear time.
73         if mem::needs_drop::<T>() {
74             ptr::drop_in_place(MaybeUninit::slice_assume_init_mut(&mut self.storage[..len]));
75         }
76     }
77 
78     // Returns a pointer to the first allocated object.
79     #[inline]
start(&mut self) -> *mut T80     fn start(&mut self) -> *mut T {
81         MaybeUninit::slice_as_mut_ptr(&mut self.storage)
82     }
83 
84     // Returns a pointer to the end of the allocated space.
85     #[inline]
end(&mut self) -> *mut T86     fn end(&mut self) -> *mut T {
87         unsafe {
88             if mem::size_of::<T>() == 0 {
89                 // A pointer as large as possible for zero-sized elements.
90                 !0 as *mut T
91             } else {
92                 self.start().add(self.storage.len())
93             }
94         }
95     }
96 }
97 
98 // The arenas start with PAGE-sized chunks, and then each new chunk is twice as
99 // big as its predecessor, up until we reach HUGE_PAGE-sized chunks, whereupon
100 // we stop growing. This scales well, from arenas that are barely used up to
101 // arenas that are used for 100s of MiBs. Note also that the chosen sizes match
102 // the usual sizes of pages and huge pages on Linux.
103 const PAGE: usize = 4096;
104 const HUGE_PAGE: usize = 2 * 1024 * 1024;
105 
106 impl<T> Default for TypedArena<T> {
107     /// Creates a new `TypedArena`.
default() -> TypedArena<T>108     fn default() -> TypedArena<T> {
109         TypedArena {
110             // We set both `ptr` and `end` to 0 so that the first call to
111             // alloc() will trigger a grow().
112             ptr: Cell::new(ptr::null_mut()),
113             end: Cell::new(ptr::null_mut()),
114             chunks: Default::default(),
115             _own: PhantomData,
116         }
117     }
118 }
119 
120 trait IterExt<T> {
alloc_from_iter(self, arena: &TypedArena<T>) -> &mut [T]121     fn alloc_from_iter(self, arena: &TypedArena<T>) -> &mut [T];
122 }
123 
124 impl<I, T> IterExt<T> for I
125 where
126     I: IntoIterator<Item = T>,
127 {
128     #[inline]
alloc_from_iter(self, arena: &TypedArena<T>) -> &mut [T]129     default fn alloc_from_iter(self, arena: &TypedArena<T>) -> &mut [T] {
130         let vec: SmallVec<[_; 8]> = self.into_iter().collect();
131         vec.alloc_from_iter(arena)
132     }
133 }
134 
135 impl<T, const N: usize> IterExt<T> for std::array::IntoIter<T, N> {
136     #[inline]
alloc_from_iter(self, arena: &TypedArena<T>) -> &mut [T]137     fn alloc_from_iter(self, arena: &TypedArena<T>) -> &mut [T] {
138         let len = self.len();
139         if len == 0 {
140             return &mut [];
141         }
142         // Move the content to the arena by copying and then forgetting it
143         unsafe {
144             let start_ptr = arena.alloc_raw_slice(len);
145             self.as_slice().as_ptr().copy_to_nonoverlapping(start_ptr, len);
146             mem::forget(self);
147             slice::from_raw_parts_mut(start_ptr, len)
148         }
149     }
150 }
151 
152 impl<T> IterExt<T> for Vec<T> {
153     #[inline]
alloc_from_iter(mut self, arena: &TypedArena<T>) -> &mut [T]154     fn alloc_from_iter(mut self, arena: &TypedArena<T>) -> &mut [T] {
155         let len = self.len();
156         if len == 0 {
157             return &mut [];
158         }
159         // Move the content to the arena by copying and then forgetting it
160         unsafe {
161             let start_ptr = arena.alloc_raw_slice(len);
162             self.as_ptr().copy_to_nonoverlapping(start_ptr, len);
163             self.set_len(0);
164             slice::from_raw_parts_mut(start_ptr, len)
165         }
166     }
167 }
168 
169 impl<A: smallvec::Array> IterExt<A::Item> for SmallVec<A> {
170     #[inline]
alloc_from_iter(mut self, arena: &TypedArena<A::Item>) -> &mut [A::Item]171     fn alloc_from_iter(mut self, arena: &TypedArena<A::Item>) -> &mut [A::Item] {
172         let len = self.len();
173         if len == 0 {
174             return &mut [];
175         }
176         // Move the content to the arena by copying and then forgetting it
177         unsafe {
178             let start_ptr = arena.alloc_raw_slice(len);
179             self.as_ptr().copy_to_nonoverlapping(start_ptr, len);
180             self.set_len(0);
181             slice::from_raw_parts_mut(start_ptr, len)
182         }
183     }
184 }
185 
186 impl<T> TypedArena<T> {
187     /// Allocates an object in the `TypedArena`, returning a reference to it.
188     #[inline]
alloc(&self, object: T) -> &mut T189     pub fn alloc(&self, object: T) -> &mut T {
190         if self.ptr == self.end {
191             self.grow(1)
192         }
193 
194         unsafe {
195             if mem::size_of::<T>() == 0 {
196                 self.ptr.set((self.ptr.get() as *mut u8).wrapping_offset(1) as *mut T);
197                 let ptr = mem::align_of::<T>() as *mut T;
198                 // Don't drop the object. This `write` is equivalent to `forget`.
199                 ptr::write(ptr, object);
200                 &mut *ptr
201             } else {
202                 let ptr = self.ptr.get();
203                 // Advance the pointer.
204                 self.ptr.set(self.ptr.get().offset(1));
205                 // Write into uninitialized memory.
206                 ptr::write(ptr, object);
207                 &mut *ptr
208             }
209         }
210     }
211 
212     #[inline]
can_allocate(&self, additional: usize) -> bool213     fn can_allocate(&self, additional: usize) -> bool {
214         let available_bytes = self.end.get() as usize - self.ptr.get() as usize;
215         let additional_bytes = additional.checked_mul(mem::size_of::<T>()).unwrap();
216         available_bytes >= additional_bytes
217     }
218 
219     /// Ensures there's enough space in the current chunk to fit `len` objects.
220     #[inline]
ensure_capacity(&self, additional: usize)221     fn ensure_capacity(&self, additional: usize) {
222         if !self.can_allocate(additional) {
223             self.grow(additional);
224             debug_assert!(self.can_allocate(additional));
225         }
226     }
227 
228     #[inline]
alloc_raw_slice(&self, len: usize) -> *mut T229     unsafe fn alloc_raw_slice(&self, len: usize) -> *mut T {
230         assert!(mem::size_of::<T>() != 0);
231         assert!(len != 0);
232 
233         self.ensure_capacity(len);
234 
235         let start_ptr = self.ptr.get();
236         self.ptr.set(start_ptr.add(len));
237         start_ptr
238     }
239 
240     #[inline]
alloc_from_iter<I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T]241     pub fn alloc_from_iter<I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
242         assert!(mem::size_of::<T>() != 0);
243         iter.alloc_from_iter(self)
244     }
245 
246     /// Grows the arena.
247     #[inline(never)]
248     #[cold]
grow(&self, additional: usize)249     fn grow(&self, additional: usize) {
250         unsafe {
251             // We need the element size to convert chunk sizes (ranging from
252             // PAGE to HUGE_PAGE bytes) to element counts.
253             let elem_size = cmp::max(1, mem::size_of::<T>());
254             let mut chunks = self.chunks.borrow_mut();
255             let mut new_cap;
256             if let Some(last_chunk) = chunks.last_mut() {
257                 // If a type is `!needs_drop`, we don't need to keep track of how many elements
258                 // the chunk stores - the field will be ignored anyway.
259                 if mem::needs_drop::<T>() {
260                     let used_bytes = self.ptr.get() as usize - last_chunk.start() as usize;
261                     last_chunk.entries = used_bytes / mem::size_of::<T>();
262                 }
263 
264                 // If the previous chunk's len is less than HUGE_PAGE
265                 // bytes, then this chunk will be least double the previous
266                 // chunk's size.
267                 new_cap = last_chunk.storage.len().min(HUGE_PAGE / elem_size / 2);
268                 new_cap *= 2;
269             } else {
270                 new_cap = PAGE / elem_size;
271             }
272             // Also ensure that this chunk can fit `additional`.
273             new_cap = cmp::max(additional, new_cap);
274 
275             let mut chunk = TypedArenaChunk::<T>::new(new_cap);
276             self.ptr.set(chunk.start());
277             self.end.set(chunk.end());
278             chunks.push(chunk);
279         }
280     }
281 
282     // Drops the contents of the last chunk. The last chunk is partially empty, unlike all other
283     // chunks.
clear_last_chunk(&self, last_chunk: &mut TypedArenaChunk<T>)284     fn clear_last_chunk(&self, last_chunk: &mut TypedArenaChunk<T>) {
285         // Determine how much was filled.
286         let start = last_chunk.start() as usize;
287         // We obtain the value of the pointer to the first uninitialized element.
288         let end = self.ptr.get() as usize;
289         // We then calculate the number of elements to be dropped in the last chunk,
290         // which is the filled area's length.
291         let diff = if mem::size_of::<T>() == 0 {
292             // `T` is ZST. It can't have a drop flag, so the value here doesn't matter. We get
293             // the number of zero-sized values in the last and only chunk, just out of caution.
294             // Recall that `end` was incremented for each allocated value.
295             end - start
296         } else {
297             (end - start) / mem::size_of::<T>()
298         };
299         // Pass that to the `destroy` method.
300         unsafe {
301             last_chunk.destroy(diff);
302         }
303         // Reset the chunk.
304         self.ptr.set(last_chunk.start());
305     }
306 }
307 
308 unsafe impl<#[may_dangle] T> Drop for TypedArena<T> {
drop(&mut self)309     fn drop(&mut self) {
310         unsafe {
311             // Determine how much was filled.
312             let mut chunks_borrow = self.chunks.borrow_mut();
313             if let Some(mut last_chunk) = chunks_borrow.pop() {
314                 // Drop the contents of the last chunk.
315                 self.clear_last_chunk(&mut last_chunk);
316                 // The last chunk will be dropped. Destroy all other chunks.
317                 for chunk in chunks_borrow.iter_mut() {
318                     chunk.destroy(chunk.entries);
319                 }
320             }
321             // Box handles deallocation of `last_chunk` and `self.chunks`.
322         }
323     }
324 }
325 
326 unsafe impl<T: Send> Send for TypedArena<T> {}
327 
328 /// An arena that can hold objects of multiple different types that impl `Copy`
329 /// and/or satisfy `!mem::needs_drop`.
330 pub struct DroplessArena {
331     /// A pointer to the start of the free space.
332     start: Cell<*mut u8>,
333 
334     /// A pointer to the end of free space.
335     ///
336     /// The allocation proceeds downwards from the end of the chunk towards the
337     /// start. (This is slightly simpler and faster than allocating upwards,
338     /// see <https://fitzgeraldnick.com/2019/11/01/always-bump-downwards.html>.)
339     /// When this pointer crosses the start pointer, a new chunk is allocated.
340     end: Cell<*mut u8>,
341 
342     /// A vector of arena chunks.
343     chunks: RefCell<Vec<TypedArenaChunk<u8>>>,
344 }
345 
346 unsafe impl Send for DroplessArena {}
347 
348 impl Default for DroplessArena {
349     #[inline]
default() -> DroplessArena350     fn default() -> DroplessArena {
351         DroplessArena {
352             start: Cell::new(ptr::null_mut()),
353             end: Cell::new(ptr::null_mut()),
354             chunks: Default::default(),
355         }
356     }
357 }
358 
359 impl DroplessArena {
360     #[inline(never)]
361     #[cold]
grow(&self, additional: usize)362     fn grow(&self, additional: usize) {
363         unsafe {
364             let mut chunks = self.chunks.borrow_mut();
365             let mut new_cap;
366             if let Some(last_chunk) = chunks.last_mut() {
367                 // There is no need to update `last_chunk.entries` because that
368                 // field isn't used by `DroplessArena`.
369 
370                 // If the previous chunk's len is less than HUGE_PAGE
371                 // bytes, then this chunk will be least double the previous
372                 // chunk's size.
373                 new_cap = last_chunk.storage.len().min(HUGE_PAGE / 2);
374                 new_cap *= 2;
375             } else {
376                 new_cap = PAGE;
377             }
378             // Also ensure that this chunk can fit `additional`.
379             new_cap = cmp::max(additional, new_cap);
380 
381             let mut chunk = TypedArenaChunk::<u8>::new(new_cap);
382             self.start.set(chunk.start());
383             self.end.set(chunk.end());
384             chunks.push(chunk);
385         }
386     }
387 
388     /// Allocates a byte slice with specified layout from the current memory
389     /// chunk. Returns `None` if there is no free space left to satisfy the
390     /// request.
391     #[inline]
alloc_raw_without_grow(&self, layout: Layout) -> Option<*mut u8>392     fn alloc_raw_without_grow(&self, layout: Layout) -> Option<*mut u8> {
393         let start = self.start.get() as usize;
394         let end = self.end.get() as usize;
395 
396         let align = layout.align();
397         let bytes = layout.size();
398 
399         let new_end = end.checked_sub(bytes)? & !(align - 1);
400         if start <= new_end {
401             let new_end = new_end as *mut u8;
402             self.end.set(new_end);
403             Some(new_end)
404         } else {
405             None
406         }
407     }
408 
409     #[inline]
alloc_raw(&self, layout: Layout) -> *mut u8410     pub fn alloc_raw(&self, layout: Layout) -> *mut u8 {
411         assert!(layout.size() != 0);
412         loop {
413             if let Some(a) = self.alloc_raw_without_grow(layout) {
414                 break a;
415             }
416             // No free space left. Allocate a new chunk to satisfy the request.
417             // On failure the grow will panic or abort.
418             self.grow(layout.size());
419         }
420     }
421 
422     #[inline]
alloc<T>(&self, object: T) -> &mut T423     pub fn alloc<T>(&self, object: T) -> &mut T {
424         assert!(!mem::needs_drop::<T>());
425 
426         let mem = self.alloc_raw(Layout::for_value::<T>(&object)) as *mut T;
427 
428         unsafe {
429             // Write into uninitialized memory.
430             ptr::write(mem, object);
431             &mut *mem
432         }
433     }
434 
435     /// Allocates a slice of objects that are copied into the `DroplessArena`, returning a mutable
436     /// reference to it. Will panic if passed a zero-sized type.
437     ///
438     /// Panics:
439     ///
440     ///  - Zero-sized types
441     ///  - Zero-length slices
442     #[inline]
alloc_slice<T>(&self, slice: &[T]) -> &mut [T] where T: Copy,443     pub fn alloc_slice<T>(&self, slice: &[T]) -> &mut [T]
444     where
445         T: Copy,
446     {
447         assert!(!mem::needs_drop::<T>());
448         assert!(mem::size_of::<T>() != 0);
449         assert!(!slice.is_empty());
450 
451         let mem = self.alloc_raw(Layout::for_value::<[T]>(slice)) as *mut T;
452 
453         unsafe {
454             mem.copy_from_nonoverlapping(slice.as_ptr(), slice.len());
455             slice::from_raw_parts_mut(mem, slice.len())
456         }
457     }
458 
459     #[inline]
write_from_iter<T, I: Iterator<Item = T>>( &self, mut iter: I, len: usize, mem: *mut T, ) -> &mut [T]460     unsafe fn write_from_iter<T, I: Iterator<Item = T>>(
461         &self,
462         mut iter: I,
463         len: usize,
464         mem: *mut T,
465     ) -> &mut [T] {
466         let mut i = 0;
467         // Use a manual loop since LLVM manages to optimize it better for
468         // slice iterators
469         loop {
470             let value = iter.next();
471             if i >= len || value.is_none() {
472                 // We only return as many items as the iterator gave us, even
473                 // though it was supposed to give us `len`
474                 return slice::from_raw_parts_mut(mem, i);
475             }
476             ptr::write(mem.add(i), value.unwrap());
477             i += 1;
478         }
479     }
480 
481     #[inline]
alloc_from_iter<T, I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T]482     pub fn alloc_from_iter<T, I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
483         let iter = iter.into_iter();
484         assert!(mem::size_of::<T>() != 0);
485         assert!(!mem::needs_drop::<T>());
486 
487         let size_hint = iter.size_hint();
488 
489         match size_hint {
490             (min, Some(max)) if min == max => {
491                 // We know the exact number of elements the iterator will produce here
492                 let len = min;
493 
494                 if len == 0 {
495                     return &mut [];
496                 }
497 
498                 let mem = self.alloc_raw(Layout::array::<T>(len).unwrap()) as *mut T;
499                 unsafe { self.write_from_iter(iter, len, mem) }
500             }
501             (_, _) => {
502                 cold_path(move || -> &mut [T] {
503                     let mut vec: SmallVec<[_; 8]> = iter.collect();
504                     if vec.is_empty() {
505                         return &mut [];
506                     }
507                     // Move the content to the arena by copying it and then forgetting
508                     // the content of the SmallVec
509                     unsafe {
510                         let len = vec.len();
511                         let start_ptr =
512                             self.alloc_raw(Layout::for_value::<[T]>(vec.as_slice())) as *mut T;
513                         vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
514                         vec.set_len(0);
515                         slice::from_raw_parts_mut(start_ptr, len)
516                     }
517                 })
518             }
519         }
520     }
521 }
522 
523 // Declare an `Arena` containing one dropless arena and many typed arenas (the
524 // types of the typed arenas are specified by the arguments). The dropless
525 // arena will be used for any types that impl `Copy`, and also for any of the
526 // specified types that satisfy `!mem::needs_drop`.
527 #[rustc_macro_transparency = "semitransparent"]
528 pub macro declare_arena([$($a:tt $name:ident: $ty:ty,)*]) {
529     #[derive(Default)]
530     pub struct Arena<'tcx> {
531         pub dropless: $crate::DroplessArena,
532         $($name: $crate::TypedArena<$ty>,)*
533     }
534 
535     pub trait ArenaAllocatable<'tcx, T = Self>: Sized {
allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self536         fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self;
allocate_from_iter<'a>( arena: &'a Arena<'tcx>, iter: impl ::std::iter::IntoIterator<Item = Self>, ) -> &'a mut [Self]537         fn allocate_from_iter<'a>(
538             arena: &'a Arena<'tcx>,
539             iter: impl ::std::iter::IntoIterator<Item = Self>,
540         ) -> &'a mut [Self];
541     }
542 
543     // Any type that impls `Copy` can be arena-allocated in the `DroplessArena`.
544     impl<'tcx, T: Copy> ArenaAllocatable<'tcx, ()> for T {
545         #[inline]
allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self546         fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self {
547             arena.dropless.alloc(self)
548         }
549         #[inline]
allocate_from_iter<'a>( arena: &'a Arena<'tcx>, iter: impl ::std::iter::IntoIterator<Item = Self>, ) -> &'a mut [Self]550         fn allocate_from_iter<'a>(
551             arena: &'a Arena<'tcx>,
552             iter: impl ::std::iter::IntoIterator<Item = Self>,
553         ) -> &'a mut [Self] {
554             arena.dropless.alloc_from_iter(iter)
555         }
556     }
557     $(
558         impl<'tcx> ArenaAllocatable<'tcx, $ty> for $ty {
559             #[inline]
allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self560             fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self {
561                 if !::std::mem::needs_drop::<Self>() {
562                     arena.dropless.alloc(self)
563                 } else {
564                     arena.$name.alloc(self)
565                 }
566             }
567 
568             #[inline]
allocate_from_iter<'a>( arena: &'a Arena<'tcx>, iter: impl ::std::iter::IntoIterator<Item = Self>, ) -> &'a mut [Self]569             fn allocate_from_iter<'a>(
570                 arena: &'a Arena<'tcx>,
571                 iter: impl ::std::iter::IntoIterator<Item = Self>,
572             ) -> &'a mut [Self] {
573                 if !::std::mem::needs_drop::<Self>() {
574                     arena.dropless.alloc_from_iter(iter)
575                 } else {
576                     arena.$name.alloc_from_iter(iter)
577                 }
578             }
579         }
580     )*
581 
582     impl<'tcx> Arena<'tcx> {
583         #[inline]
alloc<T: ArenaAllocatable<'tcx, U>, U>(&self, value: T) -> &mut T584         pub fn alloc<T: ArenaAllocatable<'tcx, U>, U>(&self, value: T) -> &mut T {
585             value.allocate_on(self)
586         }
587 
588         // Any type that impls `Copy` can have slices be arena-allocated in the `DroplessArena`.
589         #[inline]
alloc_slice<T: ::std::marker::Copy>(&self, value: &[T]) -> &mut [T]590         pub fn alloc_slice<T: ::std::marker::Copy>(&self, value: &[T]) -> &mut [T] {
591             if value.is_empty() {
592                 return &mut [];
593             }
594             self.dropless.alloc_slice(value)
595         }
596 
alloc_from_iter<'a, T: ArenaAllocatable<'tcx, U>, U>( &'a self, iter: impl ::std::iter::IntoIterator<Item = T>, ) -> &'a mut [T]597         pub fn alloc_from_iter<'a, T: ArenaAllocatable<'tcx, U>, U>(
598             &'a self,
599             iter: impl ::std::iter::IntoIterator<Item = T>,
600         ) -> &'a mut [T] {
601             T::allocate_from_iter(self, iter)
602         }
603     }
604 }
605 
606 #[cfg(test)]
607 mod tests;
608