1 #![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")]
2 
3 use core::alloc::LayoutError;
4 use core::cmp;
5 use core::intrinsics;
6 use core::mem::{self, ManuallyDrop, MaybeUninit};
7 use core::ops::Drop;
8 use core::ptr::{self, NonNull, Unique};
9 use core::slice;
10 
11 #[cfg(not(no_global_oom_handling))]
12 use crate::alloc::handle_alloc_error;
13 use crate::alloc::{Allocator, Global, Layout};
14 use crate::boxed::Box;
15 use crate::collections::TryReserveError;
16 use crate::collections::TryReserveErrorKind::*;
17 
18 #[cfg(test)]
19 mod tests;
20 
21 #[cfg(not(no_global_oom_handling))]
22 enum AllocInit {
23     /// The contents of the new memory are uninitialized.
24     Uninitialized,
25     /// The new memory is guaranteed to be zeroed.
26     Zeroed,
27 }
28 
29 /// A low-level utility for more ergonomically allocating, reallocating, and deallocating
30 /// a buffer of memory on the heap without having to worry about all the corner cases
31 /// involved. This type is excellent for building your own data structures like Vec and VecDeque.
32 /// In particular:
33 ///
34 /// * Produces `Unique::dangling()` on zero-sized types.
35 /// * Produces `Unique::dangling()` on zero-length allocations.
36 /// * Avoids freeing `Unique::dangling()`.
37 /// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics).
38 /// * Guards against 32-bit systems allocating more than isize::MAX bytes.
39 /// * Guards against overflowing your length.
40 /// * Calls `handle_alloc_error` for fallible allocations.
41 /// * Contains a `ptr::Unique` and thus endows the user with all related benefits.
42 /// * Uses the excess returned from the allocator to use the largest available capacity.
43 ///
44 /// This type does not in anyway inspect the memory that it manages. When dropped it *will*
45 /// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec`
46 /// to handle the actual things *stored* inside of a `RawVec`.
47 ///
48 /// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns
49 /// `usize::MAX`. This means that you need to be careful when round-tripping this type with a
50 /// `Box<[T]>`, since `capacity()` won't yield the length.
51 #[allow(missing_debug_implementations)]
52 pub(crate) struct RawVec<T, A: Allocator = Global> {
53     ptr: Unique<T>,
54     cap: usize,
55     alloc: A,
56 }
57 
58 impl<T> RawVec<T, Global> {
59     /// HACK(Centril): This exists because stable `const fn` can only call stable `const fn`, so
60     /// they cannot call `Self::new()`.
61     ///
62     /// If you change `RawVec<T>::new` or dependencies, please take care to not introduce anything
63     /// that would truly const-call something unstable.
64     pub const NEW: Self = Self::new();
65 
66     /// Creates the biggest possible `RawVec` (on the system heap)
67     /// without allocating. If `T` has positive size, then this makes a
68     /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
69     /// `RawVec` with capacity `usize::MAX`. Useful for implementing
70     /// delayed allocation.
71     #[must_use]
new() -> Self72     pub const fn new() -> Self {
73         Self::new_in(Global)
74     }
75 
76     /// Creates a `RawVec` (on the system heap) with exactly the
77     /// capacity and alignment requirements for a `[T; capacity]`. This is
78     /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is
79     /// zero-sized. Note that if `T` is zero-sized this means you will
80     /// *not* get a `RawVec` with the requested capacity.
81     ///
82     /// # Panics
83     ///
84     /// Panics if the requested capacity exceeds `isize::MAX` bytes.
85     ///
86     /// # Aborts
87     ///
88     /// Aborts on OOM.
89     #[cfg(not(any(no_global_oom_handling, test)))]
90     #[must_use]
91     #[inline]
with_capacity(capacity: usize) -> Self92     pub fn with_capacity(capacity: usize) -> Self {
93         Self::with_capacity_in(capacity, Global)
94     }
95 
96     /// Like `with_capacity`, but guarantees the buffer is zeroed.
97     #[cfg(not(any(no_global_oom_handling, test)))]
98     #[must_use]
99     #[inline]
with_capacity_zeroed(capacity: usize) -> Self100     pub fn with_capacity_zeroed(capacity: usize) -> Self {
101         Self::with_capacity_zeroed_in(capacity, Global)
102     }
103 }
104 
105 impl<T, A: Allocator> RawVec<T, A> {
106     // Tiny Vecs are dumb. Skip to:
107     // - 8 if the element size is 1, because any heap allocators is likely
108     //   to round up a request of less than 8 bytes to at least 8 bytes.
109     // - 4 if elements are moderate-sized (<= 1 KiB).
110     // - 1 otherwise, to avoid wasting too much space for very short Vecs.
111     const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 {
112         8
113     } else if mem::size_of::<T>() <= 1024 {
114         4
115     } else {
116         1
117     };
118 
119     /// Like `new`, but parameterized over the choice of allocator for
120     /// the returned `RawVec`.
121     #[rustc_allow_const_fn_unstable(const_fn)]
new_in(alloc: A) -> Self122     pub const fn new_in(alloc: A) -> Self {
123         // `cap: 0` means "unallocated". zero-sized types are ignored.
124         Self { ptr: Unique::dangling(), cap: 0, alloc }
125     }
126 
127     /// Like `with_capacity`, but parameterized over the choice of
128     /// allocator for the returned `RawVec`.
129     #[cfg(not(no_global_oom_handling))]
130     #[inline]
with_capacity_in(capacity: usize, alloc: A) -> Self131     pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
132         Self::allocate_in(capacity, AllocInit::Uninitialized, alloc)
133     }
134 
135     /// Like `with_capacity_zeroed`, but parameterized over the choice
136     /// of allocator for the returned `RawVec`.
137     #[cfg(not(no_global_oom_handling))]
138     #[inline]
with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self139     pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self {
140         Self::allocate_in(capacity, AllocInit::Zeroed, alloc)
141     }
142 
143     /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
144     ///
145     /// Note that this will correctly reconstitute any `cap` changes
146     /// that may have been performed. (See description of type for details.)
147     ///
148     /// # Safety
149     ///
150     /// * `len` must be greater than or equal to the most recently requested capacity, and
151     /// * `len` must be less than or equal to `self.capacity()`.
152     ///
153     /// Note, that the requested capacity and `self.capacity()` could differ, as
154     /// an allocator could overallocate and return a greater memory block than requested.
into_box(self, len: usize) -> Box<[MaybeUninit<T>], A>155     pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> {
156         // Sanity-check one half of the safety requirement (we cannot check the other half).
157         debug_assert!(
158             len <= self.capacity(),
159             "`len` must be smaller than or equal to `self.capacity()`"
160         );
161 
162         let me = ManuallyDrop::new(self);
163         unsafe {
164             let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len);
165             Box::from_raw_in(slice, ptr::read(&me.alloc))
166         }
167     }
168 
169     #[cfg(not(no_global_oom_handling))]
allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self170     fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self {
171         if mem::size_of::<T>() == 0 {
172             Self::new_in(alloc)
173         } else {
174             // We avoid `unwrap_or_else` here because it bloats the amount of
175             // LLVM IR generated.
176             let layout = match Layout::array::<T>(capacity) {
177                 Ok(layout) => layout,
178                 Err(_) => capacity_overflow(),
179             };
180             match alloc_guard(layout.size()) {
181                 Ok(_) => {}
182                 Err(_) => capacity_overflow(),
183             }
184             let result = match init {
185                 AllocInit::Uninitialized => alloc.allocate(layout),
186                 AllocInit::Zeroed => alloc.allocate_zeroed(layout),
187             };
188             let ptr = match result {
189                 Ok(ptr) => ptr,
190                 Err(_) => handle_alloc_error(layout),
191             };
192 
193             Self {
194                 ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
195                 cap: Self::capacity_from_bytes(ptr.len()),
196                 alloc,
197             }
198         }
199     }
200 
201     /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
202     ///
203     /// # Safety
204     ///
205     /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
206     /// `capacity`.
207     /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
208     /// systems). ZST vectors may have a capacity up to `usize::MAX`.
209     /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
210     /// guaranteed.
211     #[inline]
from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self212     pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
213         Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap: capacity, alloc }
214     }
215 
216     /// Gets a raw pointer to the start of the allocation. Note that this is
217     /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must
218     /// be careful.
219     #[inline]
ptr(&self) -> *mut T220     pub fn ptr(&self) -> *mut T {
221         self.ptr.as_ptr()
222     }
223 
224     /// Gets the capacity of the allocation.
225     ///
226     /// This will always be `usize::MAX` if `T` is zero-sized.
227     #[inline(always)]
capacity(&self) -> usize228     pub fn capacity(&self) -> usize {
229         if mem::size_of::<T>() == 0 { usize::MAX } else { self.cap }
230     }
231 
232     /// Returns a shared reference to the allocator backing this `RawVec`.
allocator(&self) -> &A233     pub fn allocator(&self) -> &A {
234         &self.alloc
235     }
236 
current_memory(&self) -> Option<(NonNull<u8>, Layout)>237     fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> {
238         if mem::size_of::<T>() == 0 || self.cap == 0 {
239             None
240         } else {
241             // We have an allocated chunk of memory, so we can bypass runtime
242             // checks to get our current layout.
243             unsafe {
244                 let align = mem::align_of::<T>();
245                 let size = mem::size_of::<T>() * self.cap;
246                 let layout = Layout::from_size_align_unchecked(size, align);
247                 Some((self.ptr.cast().into(), layout))
248             }
249         }
250     }
251 
252     /// Ensures that the buffer contains at least enough space to hold `len +
253     /// additional` elements. If it doesn't already have enough capacity, will
254     /// reallocate enough space plus comfortable slack space to get amortized
255     /// *O*(1) behavior. Will limit this behavior if it would needlessly cause
256     /// itself to panic.
257     ///
258     /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
259     /// the requested space. This is not really unsafe, but the unsafe
260     /// code *you* write that relies on the behavior of this function may break.
261     ///
262     /// This is ideal for implementing a bulk-push operation like `extend`.
263     ///
264     /// # Panics
265     ///
266     /// Panics if the new capacity exceeds `isize::MAX` bytes.
267     ///
268     /// # Aborts
269     ///
270     /// Aborts on OOM.
271     #[cfg(not(no_global_oom_handling))]
272     #[inline]
reserve(&mut self, len: usize, additional: usize)273     pub fn reserve(&mut self, len: usize, additional: usize) {
274         // Callers expect this function to be very cheap when there is already sufficient capacity.
275         // Therefore, we move all the resizing and error-handling logic from grow_amortized and
276         // handle_reserve behind a call, while making sure that this function is likely to be
277         // inlined as just a comparison and a call if the comparison fails.
278         #[cold]
279         fn do_reserve_and_handle<T, A: Allocator>(
280             slf: &mut RawVec<T, A>,
281             len: usize,
282             additional: usize,
283         ) {
284             handle_reserve(slf.grow_amortized(len, additional));
285         }
286 
287         if self.needs_to_grow(len, additional) {
288             do_reserve_and_handle(self, len, additional);
289         }
290     }
291 
292     /// The same as `reserve`, but returns on errors instead of panicking or aborting.
try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError>293     pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
294         if self.needs_to_grow(len, additional) {
295             self.grow_amortized(len, additional)
296         } else {
297             Ok(())
298         }
299     }
300 
301     /// Ensures that the buffer contains at least enough space to hold `len +
302     /// additional` elements. If it doesn't already, will reallocate the
303     /// minimum possible amount of memory necessary. Generally this will be
304     /// exactly the amount of memory necessary, but in principle the allocator
305     /// is free to give back more than we asked for.
306     ///
307     /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
308     /// the requested space. This is not really unsafe, but the unsafe code
309     /// *you* write that relies on the behavior of this function may break.
310     ///
311     /// # Panics
312     ///
313     /// Panics if the new capacity exceeds `isize::MAX` bytes.
314     ///
315     /// # Aborts
316     ///
317     /// Aborts on OOM.
318     #[cfg(not(no_global_oom_handling))]
reserve_exact(&mut self, len: usize, additional: usize)319     pub fn reserve_exact(&mut self, len: usize, additional: usize) {
320         handle_reserve(self.try_reserve_exact(len, additional));
321     }
322 
323     /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
try_reserve_exact( &mut self, len: usize, additional: usize, ) -> Result<(), TryReserveError>324     pub fn try_reserve_exact(
325         &mut self,
326         len: usize,
327         additional: usize,
328     ) -> Result<(), TryReserveError> {
329         if self.needs_to_grow(len, additional) { self.grow_exact(len, additional) } else { Ok(()) }
330     }
331 
332     /// Shrinks the allocation down to the specified amount. If the given amount
333     /// is 0, actually completely deallocates.
334     ///
335     /// # Panics
336     ///
337     /// Panics if the given amount is *larger* than the current capacity.
338     ///
339     /// # Aborts
340     ///
341     /// Aborts on OOM.
342     #[cfg(not(no_global_oom_handling))]
shrink_to_fit(&mut self, amount: usize)343     pub fn shrink_to_fit(&mut self, amount: usize) {
344         handle_reserve(self.shrink(amount));
345     }
346 }
347 
348 impl<T, A: Allocator> RawVec<T, A> {
349     /// Returns if the buffer needs to grow to fulfill the needed extra capacity.
350     /// Mainly used to make inlining reserve-calls possible without inlining `grow`.
needs_to_grow(&self, len: usize, additional: usize) -> bool351     fn needs_to_grow(&self, len: usize, additional: usize) -> bool {
352         additional > self.capacity().wrapping_sub(len)
353     }
354 
capacity_from_bytes(excess: usize) -> usize355     fn capacity_from_bytes(excess: usize) -> usize {
356         debug_assert_ne!(mem::size_of::<T>(), 0);
357         excess / mem::size_of::<T>()
358     }
359 
set_ptr(&mut self, ptr: NonNull<[u8]>)360     fn set_ptr(&mut self, ptr: NonNull<[u8]>) {
361         self.ptr = unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) };
362         self.cap = Self::capacity_from_bytes(ptr.len());
363     }
364 
365     // This method is usually instantiated many times. So we want it to be as
366     // small as possible, to improve compile times. But we also want as much of
367     // its contents to be statically computable as possible, to make the
368     // generated code run faster. Therefore, this method is carefully written
369     // so that all of the code that depends on `T` is within it, while as much
370     // of the code that doesn't depend on `T` as possible is in functions that
371     // are non-generic over `T`.
grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError>372     fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
373         // This is ensured by the calling contexts.
374         debug_assert!(additional > 0);
375 
376         if mem::size_of::<T>() == 0 {
377             // Since we return a capacity of `usize::MAX` when `elem_size` is
378             // 0, getting to here necessarily means the `RawVec` is overfull.
379             return Err(CapacityOverflow.into());
380         }
381 
382         // Nothing we can really do about these checks, sadly.
383         let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
384 
385         // This guarantees exponential growth. The doubling cannot overflow
386         // because `cap <= isize::MAX` and the type of `cap` is `usize`.
387         let cap = cmp::max(self.cap * 2, required_cap);
388         let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap);
389 
390         let new_layout = Layout::array::<T>(cap);
391 
392         // `finish_grow` is non-generic over `T`.
393         let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
394         self.set_ptr(ptr);
395         Ok(())
396     }
397 
398     // The constraints on this method are much the same as those on
399     // `grow_amortized`, but this method is usually instantiated less often so
400     // it's less critical.
grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError>401     fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
402         if mem::size_of::<T>() == 0 {
403             // Since we return a capacity of `usize::MAX` when the type size is
404             // 0, getting to here necessarily means the `RawVec` is overfull.
405             return Err(CapacityOverflow.into());
406         }
407 
408         let cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
409         let new_layout = Layout::array::<T>(cap);
410 
411         // `finish_grow` is non-generic over `T`.
412         let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
413         self.set_ptr(ptr);
414         Ok(())
415     }
416 
shrink(&mut self, amount: usize) -> Result<(), TryReserveError>417     fn shrink(&mut self, amount: usize) -> Result<(), TryReserveError> {
418         assert!(amount <= self.capacity(), "Tried to shrink to a larger capacity");
419 
420         let (ptr, layout) = if let Some(mem) = self.current_memory() { mem } else { return Ok(()) };
421         let new_size = amount * mem::size_of::<T>();
422 
423         let ptr = unsafe {
424             let new_layout = Layout::from_size_align_unchecked(new_size, layout.align());
425             self.alloc
426                 .shrink(ptr, layout, new_layout)
427                 .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
428         };
429         self.set_ptr(ptr);
430         Ok(())
431     }
432 }
433 
434 // This function is outside `RawVec` to minimize compile times. See the comment
435 // above `RawVec::grow_amortized` for details. (The `A` parameter isn't
436 // significant, because the number of different `A` types seen in practice is
437 // much smaller than the number of `T` types.)
438 #[inline(never)]
finish_grow<A>( new_layout: Result<Layout, LayoutError>, current_memory: Option<(NonNull<u8>, Layout)>, alloc: &mut A, ) -> Result<NonNull<[u8]>, TryReserveError> where A: Allocator,439 fn finish_grow<A>(
440     new_layout: Result<Layout, LayoutError>,
441     current_memory: Option<(NonNull<u8>, Layout)>,
442     alloc: &mut A,
443 ) -> Result<NonNull<[u8]>, TryReserveError>
444 where
445     A: Allocator,
446 {
447     // Check for the error here to minimize the size of `RawVec::grow_*`.
448     let new_layout = new_layout.map_err(|_| CapacityOverflow)?;
449 
450     alloc_guard(new_layout.size())?;
451 
452     let memory = if let Some((ptr, old_layout)) = current_memory {
453         debug_assert_eq!(old_layout.align(), new_layout.align());
454         unsafe {
455             // The allocator checks for alignment equality
456             intrinsics::assume(old_layout.align() == new_layout.align());
457             alloc.grow(ptr, old_layout, new_layout)
458         }
459     } else {
460         alloc.allocate(new_layout)
461     };
462 
463     memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into())
464 }
465 
466 unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec<T, A> {
467     /// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
drop(&mut self)468     fn drop(&mut self) {
469         if let Some((ptr, layout)) = self.current_memory() {
470             unsafe { self.alloc.deallocate(ptr, layout) }
471         }
472     }
473 }
474 
475 // Central function for reserve error handling.
476 #[cfg(not(no_global_oom_handling))]
477 #[inline]
handle_reserve(result: Result<(), TryReserveError>)478 fn handle_reserve(result: Result<(), TryReserveError>) {
479     match result.map_err(|e| e.kind()) {
480         Err(CapacityOverflow) => capacity_overflow(),
481         Err(AllocError { layout, .. }) => handle_alloc_error(layout),
482         Ok(()) => { /* yay */ }
483     }
484 }
485 
486 // We need to guarantee the following:
487 // * We don't ever allocate `> isize::MAX` byte-size objects.
488 // * We don't overflow `usize::MAX` and actually allocate too little.
489 //
490 // On 64-bit we just need to check for overflow since trying to allocate
491 // `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
492 // an extra guard for this in case we're running on a platform which can use
493 // all 4GB in user-space, e.g., PAE or x32.
494 
495 #[inline]
alloc_guard(alloc_size: usize) -> Result<(), TryReserveError>496 fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> {
497     if usize::BITS < 64 && alloc_size > isize::MAX as usize {
498         Err(CapacityOverflow.into())
499     } else {
500         Ok(())
501     }
502 }
503 
504 // One central function responsible for reporting capacity overflows. This'll
505 // ensure that the code generation related to these panics is minimal as there's
506 // only one location which panics rather than a bunch throughout the module.
507 #[cfg(not(no_global_oom_handling))]
capacity_overflow() -> !508 fn capacity_overflow() -> ! {
509     panic!("capacity overflow");
510 }
511