1 #[doc = include_str!("panic.md")]
2 #[macro_export]
3 #[rustc_builtin_macro(core_panic)]
4 #[allow_internal_unstable(edition_panic)]
5 #[stable(feature = "core", since = "1.6.0")]
6 #[rustc_diagnostic_item = "core_panic_macro"]
7 macro_rules! panic {
8     // Expands to either `$crate::panic::panic_2015` or `$crate::panic::panic_2021`
9     // depending on the edition of the caller.
10     ($($arg:tt)*) => {
11         /* compiler built-in */
12     };
13 }
14 
15 /// Asserts that two expressions are equal to each other (using [`PartialEq`]).
16 ///
17 /// On panic, this macro will print the values of the expressions with their
18 /// debug representations.
19 ///
20 /// Like [`assert!`], this macro has a second form, where a custom
21 /// panic message can be provided.
22 ///
23 /// # Examples
24 ///
25 /// ```
26 /// let a = 3;
27 /// let b = 1 + 2;
28 /// assert_eq!(a, b);
29 ///
30 /// assert_eq!(a, b, "we are testing addition with {} and {}", a, b);
31 /// ```
32 #[macro_export]
33 #[stable(feature = "rust1", since = "1.0.0")]
34 #[allow_internal_unstable(core_panic)]
35 macro_rules! assert_eq {
36     ($left:expr, $right:expr $(,)?) => ({
37         match (&$left, &$right) {
38             (left_val, right_val) => {
39                 if !(*left_val == *right_val) {
40                     let kind = $crate::panicking::AssertKind::Eq;
41                     // The reborrows below are intentional. Without them, the stack slot for the
42                     // borrow is initialized even before the values are compared, leading to a
43                     // noticeable slow down.
44                     $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
45                 }
46             }
47         }
48     });
49     ($left:expr, $right:expr, $($arg:tt)+) => ({
50         match (&$left, &$right) {
51             (left_val, right_val) => {
52                 if !(*left_val == *right_val) {
53                     let kind = $crate::panicking::AssertKind::Eq;
54                     // The reborrows below are intentional. Without them, the stack slot for the
55                     // borrow is initialized even before the values are compared, leading to a
56                     // noticeable slow down.
57                     $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
58                 }
59             }
60         }
61     });
62 }
63 
64 /// Asserts that two expressions are not equal to each other (using [`PartialEq`]).
65 ///
66 /// On panic, this macro will print the values of the expressions with their
67 /// debug representations.
68 ///
69 /// Like [`assert!`], this macro has a second form, where a custom
70 /// panic message can be provided.
71 ///
72 /// # Examples
73 ///
74 /// ```
75 /// let a = 3;
76 /// let b = 2;
77 /// assert_ne!(a, b);
78 ///
79 /// assert_ne!(a, b, "we are testing that the values are not equal");
80 /// ```
81 #[macro_export]
82 #[stable(feature = "assert_ne", since = "1.13.0")]
83 #[allow_internal_unstable(core_panic)]
84 macro_rules! assert_ne {
85     ($left:expr, $right:expr $(,)?) => ({
86         match (&$left, &$right) {
87             (left_val, right_val) => {
88                 if *left_val == *right_val {
89                     let kind = $crate::panicking::AssertKind::Ne;
90                     // The reborrows below are intentional. Without them, the stack slot for the
91                     // borrow is initialized even before the values are compared, leading to a
92                     // noticeable slow down.
93                     $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
94                 }
95             }
96         }
97     });
98     ($left:expr, $right:expr, $($arg:tt)+) => ({
99         match (&($left), &($right)) {
100             (left_val, right_val) => {
101                 if *left_val == *right_val {
102                     let kind = $crate::panicking::AssertKind::Ne;
103                     // The reborrows below are intentional. Without them, the stack slot for the
104                     // borrow is initialized even before the values are compared, leading to a
105                     // noticeable slow down.
106                     $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
107                 }
108             }
109         }
110     });
111 }
112 
113 /// Asserts that an expression matches any of the given patterns.
114 ///
115 /// Like in a `match` expression, the pattern can be optionally followed by `if`
116 /// and a guard expression that has access to names bound by the pattern.
117 ///
118 /// On panic, this macro will print the value of the expression with its
119 /// debug representation.
120 ///
121 /// Like [`assert!`], this macro has a second form, where a custom
122 /// panic message can be provided.
123 ///
124 /// # Examples
125 ///
126 /// ```
127 /// #![feature(assert_matches)]
128 ///
129 /// use std::assert_matches::assert_matches;
130 ///
131 /// let a = 1u32.checked_add(2);
132 /// let b = 1u32.checked_sub(2);
133 /// assert_matches!(a, Some(_));
134 /// assert_matches!(b, None);
135 ///
136 /// let c = Ok("abc".to_string());
137 /// assert_matches!(c, Ok(x) | Err(x) if x.len() < 100);
138 /// ```
139 #[unstable(feature = "assert_matches", issue = "82775")]
140 #[allow_internal_unstable(core_panic)]
141 #[rustc_macro_transparency = "semitransparent"]
142 pub macro assert_matches {
143     ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) => ({
144         match $left {
145             $( $pattern )|+ $( if $guard )? => {}
146             ref left_val => {
147                 $crate::panicking::assert_matches_failed(
148                     left_val,
149                     $crate::stringify!($($pattern)|+ $(if $guard)?),
150                     $crate::option::Option::None
151                 );
152             }
153         }
154     }),
155     ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $($arg:tt)+) => ({
156         match $left {
157             $( $pattern )|+ $( if $guard )? => {}
158             ref left_val => {
159                 $crate::panicking::assert_matches_failed(
160                     left_val,
161                     $crate::stringify!($($pattern)|+ $(if $guard)?),
162                     $crate::option::Option::Some($crate::format_args!($($arg)+))
163                 );
164             }
165         }
166     }),
167 }
168 
169 /// Asserts that a boolean expression is `true` at runtime.
170 ///
171 /// This will invoke the [`panic!`] macro if the provided expression cannot be
172 /// evaluated to `true` at runtime.
173 ///
174 /// Like [`assert!`], this macro also has a second version, where a custom panic
175 /// message can be provided.
176 ///
177 /// # Uses
178 ///
179 /// Unlike [`assert!`], `debug_assert!` statements are only enabled in non
180 /// optimized builds by default. An optimized build will not execute
181 /// `debug_assert!` statements unless `-C debug-assertions` is passed to the
182 /// compiler. This makes `debug_assert!` useful for checks that are too
183 /// expensive to be present in a release build but may be helpful during
184 /// development. The result of expanding `debug_assert!` is always type checked.
185 ///
186 /// An unchecked assertion allows a program in an inconsistent state to keep
187 /// running, which might have unexpected consequences but does not introduce
188 /// unsafety as long as this only happens in safe code. The performance cost
189 /// of assertions, however, is not measurable in general. Replacing [`assert!`]
190 /// with `debug_assert!` is thus only encouraged after thorough profiling, and
191 /// more importantly, only in safe code!
192 ///
193 /// # Examples
194 ///
195 /// ```
196 /// // the panic message for these assertions is the stringified value of the
197 /// // expression given.
198 /// debug_assert!(true);
199 ///
200 /// fn some_expensive_computation() -> bool { true } // a very simple function
201 /// debug_assert!(some_expensive_computation());
202 ///
203 /// // assert with a custom message
204 /// let x = true;
205 /// debug_assert!(x, "x wasn't true!");
206 ///
207 /// let a = 3; let b = 27;
208 /// debug_assert!(a + b == 30, "a = {}, b = {}", a, b);
209 /// ```
210 #[macro_export]
211 #[stable(feature = "rust1", since = "1.0.0")]
212 #[rustc_diagnostic_item = "debug_assert_macro"]
213 #[allow_internal_unstable(edition_panic)]
214 macro_rules! debug_assert {
215     ($($arg:tt)*) => (if $crate::cfg!(debug_assertions) { $crate::assert!($($arg)*); })
216 }
217 
218 /// Asserts that two expressions are equal to each other.
219 ///
220 /// On panic, this macro will print the values of the expressions with their
221 /// debug representations.
222 ///
223 /// Unlike [`assert_eq!`], `debug_assert_eq!` statements are only enabled in non
224 /// optimized builds by default. An optimized build will not execute
225 /// `debug_assert_eq!` statements unless `-C debug-assertions` is passed to the
226 /// compiler. This makes `debug_assert_eq!` useful for checks that are too
227 /// expensive to be present in a release build but may be helpful during
228 /// development. The result of expanding `debug_assert_eq!` is always type checked.
229 ///
230 /// # Examples
231 ///
232 /// ```
233 /// let a = 3;
234 /// let b = 1 + 2;
235 /// debug_assert_eq!(a, b);
236 /// ```
237 #[macro_export]
238 #[stable(feature = "rust1", since = "1.0.0")]
239 macro_rules! debug_assert_eq {
240     ($($arg:tt)*) => (if $crate::cfg!(debug_assertions) { $crate::assert_eq!($($arg)*); })
241 }
242 
243 /// Asserts that two expressions are not equal to each other.
244 ///
245 /// On panic, this macro will print the values of the expressions with their
246 /// debug representations.
247 ///
248 /// Unlike [`assert_ne!`], `debug_assert_ne!` statements are only enabled in non
249 /// optimized builds by default. An optimized build will not execute
250 /// `debug_assert_ne!` statements unless `-C debug-assertions` is passed to the
251 /// compiler. This makes `debug_assert_ne!` useful for checks that are too
252 /// expensive to be present in a release build but may be helpful during
253 /// development. The result of expanding `debug_assert_ne!` is always type checked.
254 ///
255 /// # Examples
256 ///
257 /// ```
258 /// let a = 3;
259 /// let b = 2;
260 /// debug_assert_ne!(a, b);
261 /// ```
262 #[macro_export]
263 #[stable(feature = "assert_ne", since = "1.13.0")]
264 macro_rules! debug_assert_ne {
265     ($($arg:tt)*) => (if $crate::cfg!(debug_assertions) { $crate::assert_ne!($($arg)*); })
266 }
267 
268 /// Asserts that an expression matches any of the given patterns.
269 ///
270 /// Like in a `match` expression, the pattern can be optionally followed by `if`
271 /// and a guard expression that has access to names bound by the pattern.
272 ///
273 /// On panic, this macro will print the value of the expression with its
274 /// debug representation.
275 ///
276 /// Unlike [`assert_matches!`], `debug_assert_matches!` statements are only
277 /// enabled in non optimized builds by default. An optimized build will not
278 /// execute `debug_assert_matches!` statements unless `-C debug-assertions` is
279 /// passed to the compiler. This makes `debug_assert_matches!` useful for
280 /// checks that are too expensive to be present in a release build but may be
281 /// helpful during development. The result of expanding `debug_assert_matches!`
282 /// is always type checked.
283 ///
284 /// # Examples
285 ///
286 /// ```
287 /// #![feature(assert_matches)]
288 ///
289 /// use std::assert_matches::debug_assert_matches;
290 ///
291 /// let a = 1u32.checked_add(2);
292 /// let b = 1u32.checked_sub(2);
293 /// debug_assert_matches!(a, Some(_));
294 /// debug_assert_matches!(b, None);
295 ///
296 /// let c = Ok("abc".to_string());
297 /// debug_assert_matches!(c, Ok(x) | Err(x) if x.len() < 100);
298 /// ```
299 #[macro_export]
300 #[unstable(feature = "assert_matches", issue = "82775")]
301 #[allow_internal_unstable(assert_matches)]
302 #[rustc_macro_transparency = "semitransparent"]
303 pub macro debug_assert_matches($($arg:tt)*) {
304     if $crate::cfg!(debug_assertions) { $crate::assert_matches::assert_matches!($($arg)*); }
305 }
306 
307 /// Returns whether the given expression matches any of the given patterns.
308 ///
309 /// Like in a `match` expression, the pattern can be optionally followed by `if`
310 /// and a guard expression that has access to names bound by the pattern.
311 ///
312 /// # Examples
313 ///
314 /// ```
315 /// let foo = 'f';
316 /// assert!(matches!(foo, 'A'..='Z' | 'a'..='z'));
317 ///
318 /// let bar = Some(4);
319 /// assert!(matches!(bar, Some(x) if x > 2));
320 /// ```
321 #[macro_export]
322 #[stable(feature = "matches_macro", since = "1.42.0")]
323 macro_rules! matches {
324     ($expression:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) => {
325         match $expression {
326             $( $pattern )|+ $( if $guard )? => true,
327             _ => false
328         }
329     }
330 }
331 
332 /// Unwraps a result or propagates its error.
333 ///
334 /// The `?` operator was added to replace `try!` and should be used instead.
335 /// Furthermore, `try` is a reserved word in Rust 2018, so if you must use
336 /// it, you will need to use the [raw-identifier syntax][ris]: `r#try`.
337 ///
338 /// [ris]: https://doc.rust-lang.org/nightly/rust-by-example/compatibility/raw_identifiers.html
339 ///
340 /// `try!` matches the given [`Result`]. In case of the `Ok` variant, the
341 /// expression has the value of the wrapped value.
342 ///
343 /// In case of the `Err` variant, it retrieves the inner error. `try!` then
344 /// performs conversion using `From`. This provides automatic conversion
345 /// between specialized errors and more general ones. The resulting
346 /// error is then immediately returned.
347 ///
348 /// Because of the early return, `try!` can only be used in functions that
349 /// return [`Result`].
350 ///
351 /// # Examples
352 ///
353 /// ```
354 /// use std::io;
355 /// use std::fs::File;
356 /// use std::io::prelude::*;
357 ///
358 /// enum MyError {
359 ///     FileWriteError
360 /// }
361 ///
362 /// impl From<io::Error> for MyError {
363 ///     fn from(e: io::Error) -> MyError {
364 ///         MyError::FileWriteError
365 ///     }
366 /// }
367 ///
368 /// // The preferred method of quick returning Errors
369 /// fn write_to_file_question() -> Result<(), MyError> {
370 ///     let mut file = File::create("my_best_friends.txt")?;
371 ///     file.write_all(b"This is a list of my best friends.")?;
372 ///     Ok(())
373 /// }
374 ///
375 /// // The previous method of quick returning Errors
376 /// fn write_to_file_using_try() -> Result<(), MyError> {
377 ///     let mut file = r#try!(File::create("my_best_friends.txt"));
378 ///     r#try!(file.write_all(b"This is a list of my best friends."));
379 ///     Ok(())
380 /// }
381 ///
382 /// // This is equivalent to:
383 /// fn write_to_file_using_match() -> Result<(), MyError> {
384 ///     let mut file = r#try!(File::create("my_best_friends.txt"));
385 ///     match file.write_all(b"This is a list of my best friends.") {
386 ///         Ok(v) => v,
387 ///         Err(e) => return Err(From::from(e)),
388 ///     }
389 ///     Ok(())
390 /// }
391 /// ```
392 #[macro_export]
393 #[stable(feature = "rust1", since = "1.0.0")]
394 #[rustc_deprecated(since = "1.39.0", reason = "use the `?` operator instead")]
395 #[doc(alias = "?")]
396 macro_rules! r#try {
397     ($expr:expr $(,)?) => {
398         match $expr {
399             $crate::result::Result::Ok(val) => val,
400             $crate::result::Result::Err(err) => {
401                 return $crate::result::Result::Err($crate::convert::From::from(err));
402             }
403         }
404     };
405 }
406 
407 /// Writes formatted data into a buffer.
408 ///
409 /// This macro accepts a 'writer', a format string, and a list of arguments. Arguments will be
410 /// formatted according to the specified format string and the result will be passed to the writer.
411 /// The writer may be any value with a `write_fmt` method; generally this comes from an
412 /// implementation of either the [`fmt::Write`] or the [`io::Write`] trait. The macro
413 /// returns whatever the `write_fmt` method returns; commonly a [`fmt::Result`], or an
414 /// [`io::Result`].
415 ///
416 /// See [`std::fmt`] for more information on the format string syntax.
417 ///
418 /// [`std::fmt`]: ../std/fmt/index.html
419 /// [`fmt::Write`]: crate::fmt::Write
420 /// [`io::Write`]: ../std/io/trait.Write.html
421 /// [`fmt::Result`]: crate::fmt::Result
422 /// [`io::Result`]: ../std/io/type.Result.html
423 ///
424 /// # Examples
425 ///
426 /// ```
427 /// use std::io::Write;
428 ///
429 /// fn main() -> std::io::Result<()> {
430 ///     let mut w = Vec::new();
431 ///     write!(&mut w, "test")?;
432 ///     write!(&mut w, "formatted {}", "arguments")?;
433 ///
434 ///     assert_eq!(w, b"testformatted arguments");
435 ///     Ok(())
436 /// }
437 /// ```
438 ///
439 /// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects
440 /// implementing either, as objects do not typically implement both. However, the module must
441 /// import the traits qualified so their names do not conflict:
442 ///
443 /// ```
444 /// use std::fmt::Write as FmtWrite;
445 /// use std::io::Write as IoWrite;
446 ///
447 /// fn main() -> Result<(), Box<dyn std::error::Error>> {
448 ///     let mut s = String::new();
449 ///     let mut v = Vec::new();
450 ///
451 ///     write!(&mut s, "{} {}", "abc", 123)?; // uses fmt::Write::write_fmt
452 ///     write!(&mut v, "s = {:?}", s)?; // uses io::Write::write_fmt
453 ///     assert_eq!(v, b"s = \"abc 123\"");
454 ///     Ok(())
455 /// }
456 /// ```
457 ///
458 /// Note: This macro can be used in `no_std` setups as well.
459 /// In a `no_std` setup you are responsible for the implementation details of the components.
460 ///
461 /// ```no_run
462 /// # extern crate core;
463 /// use core::fmt::Write;
464 ///
465 /// struct Example;
466 ///
467 /// impl Write for Example {
468 ///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
469 ///          unimplemented!();
470 ///     }
471 /// }
472 ///
473 /// let mut m = Example{};
474 /// write!(&mut m, "Hello World").expect("Not written");
475 /// ```
476 #[macro_export]
477 #[stable(feature = "rust1", since = "1.0.0")]
478 macro_rules! write {
479     ($dst:expr, $($arg:tt)*) => ($dst.write_fmt($crate::format_args!($($arg)*)))
480 }
481 
482 /// Write formatted data into a buffer, with a newline appended.
483 ///
484 /// On all platforms, the newline is the LINE FEED character (`\n`/`U+000A`) alone
485 /// (no additional CARRIAGE RETURN (`\r`/`U+000D`).
486 ///
487 /// For more information, see [`write!`]. For information on the format string syntax, see
488 /// [`std::fmt`].
489 ///
490 /// [`std::fmt`]: ../std/fmt/index.html
491 ///
492 /// # Examples
493 ///
494 /// ```
495 /// use std::io::{Write, Result};
496 ///
497 /// fn main() -> Result<()> {
498 ///     let mut w = Vec::new();
499 ///     writeln!(&mut w)?;
500 ///     writeln!(&mut w, "test")?;
501 ///     writeln!(&mut w, "formatted {}", "arguments")?;
502 ///
503 ///     assert_eq!(&w[..], "\ntest\nformatted arguments\n".as_bytes());
504 ///     Ok(())
505 /// }
506 /// ```
507 ///
508 /// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects
509 /// implementing either, as objects do not typically implement both. However, the module must
510 /// import the traits qualified so their names do not conflict:
511 ///
512 /// ```
513 /// use std::fmt::Write as FmtWrite;
514 /// use std::io::Write as IoWrite;
515 ///
516 /// fn main() -> Result<(), Box<dyn std::error::Error>> {
517 ///     let mut s = String::new();
518 ///     let mut v = Vec::new();
519 ///
520 ///     writeln!(&mut s, "{} {}", "abc", 123)?; // uses fmt::Write::write_fmt
521 ///     writeln!(&mut v, "s = {:?}", s)?; // uses io::Write::write_fmt
522 ///     assert_eq!(v, b"s = \"abc 123\\n\"\n");
523 ///     Ok(())
524 /// }
525 /// ```
526 #[macro_export]
527 #[stable(feature = "rust1", since = "1.0.0")]
528 #[allow_internal_unstable(format_args_nl)]
529 macro_rules! writeln {
530     ($dst:expr $(,)?) => (
531         $crate::write!($dst, "\n")
532     );
533     ($dst:expr, $($arg:tt)*) => (
534         $dst.write_fmt($crate::format_args_nl!($($arg)*))
535     );
536 }
537 
538 /// Indicates unreachable code.
539 ///
540 /// This is useful any time that the compiler can't determine that some code is unreachable. For
541 /// example:
542 ///
543 /// * Match arms with guard conditions.
544 /// * Loops that dynamically terminate.
545 /// * Iterators that dynamically terminate.
546 ///
547 /// If the determination that the code is unreachable proves incorrect, the
548 /// program immediately terminates with a [`panic!`].
549 ///
550 /// The unsafe counterpart of this macro is the [`unreachable_unchecked`] function, which
551 /// will cause undefined behavior if the code is reached.
552 ///
553 /// [`unreachable_unchecked`]: crate::hint::unreachable_unchecked
554 ///
555 /// # Panics
556 ///
557 /// This will always [`panic!`] because `unreachable!` is just a shorthand for `panic!` with a
558 /// fixed, specific message.
559 ///
560 /// Like `panic!`, this macro has a second form for displaying custom values.
561 ///
562 /// # Examples
563 ///
564 /// Match arms:
565 ///
566 /// ```
567 /// # #[allow(dead_code)]
568 /// fn foo(x: Option<i32>) {
569 ///     match x {
570 ///         Some(n) if n >= 0 => println!("Some(Non-negative)"),
571 ///         Some(n) if n <  0 => println!("Some(Negative)"),
572 ///         Some(_)           => unreachable!(), // compile error if commented out
573 ///         None              => println!("None")
574 ///     }
575 /// }
576 /// ```
577 ///
578 /// Iterators:
579 ///
580 /// ```
581 /// # #[allow(dead_code)]
582 /// fn divide_by_three(x: u32) -> u32 { // one of the poorest implementations of x/3
583 ///     for i in 0.. {
584 ///         if 3*i < i { panic!("u32 overflow"); }
585 ///         if x < 3*i { return i-1; }
586 ///     }
587 ///     unreachable!("The loop should always return");
588 /// }
589 /// ```
590 #[macro_export]
591 #[stable(feature = "rust1", since = "1.0.0")]
592 macro_rules! unreachable {
593     () => ({
594         $crate::panic!("internal error: entered unreachable code")
595     });
596     ($msg:expr $(,)?) => ({
597         $crate::unreachable!("{}", $msg)
598     });
599     ($fmt:expr, $($arg:tt)*) => ({
600         $crate::panic!($crate::concat!("internal error: entered unreachable code: ", $fmt), $($arg)*)
601     });
602 }
603 
604 /// Indicates unimplemented code by panicking with a message of "not implemented".
605 ///
606 /// This allows your code to type-check, which is useful if you are prototyping or
607 /// implementing a trait that requires multiple methods which you don't plan to use all of.
608 ///
609 /// The difference between `unimplemented!` and [`todo!`] is that while `todo!`
610 /// conveys an intent of implementing the functionality later and the message is "not yet
611 /// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
612 /// Also some IDEs will mark `todo!`s.
613 ///
614 /// # Panics
615 ///
616 /// This will always [`panic!`] because `unimplemented!` is just a shorthand for `panic!` with a
617 /// fixed, specific message.
618 ///
619 /// Like `panic!`, this macro has a second form for displaying custom values.
620 ///
621 /// # Examples
622 ///
623 /// Say we have a trait `Foo`:
624 ///
625 /// ```
626 /// trait Foo {
627 ///     fn bar(&self) -> u8;
628 ///     fn baz(&self);
629 ///     fn qux(&self) -> Result<u64, ()>;
630 /// }
631 /// ```
632 ///
633 /// We want to implement `Foo` for 'MyStruct', but for some reason it only makes sense
634 /// to implement the `bar()` function. `baz()` and `qux()` will still need to be defined
635 /// in our implementation of `Foo`, but we can use `unimplemented!` in their definitions
636 /// to allow our code to compile.
637 ///
638 /// We still want to have our program stop running if the unimplemented methods are
639 /// reached.
640 ///
641 /// ```
642 /// # trait Foo {
643 /// #     fn bar(&self) -> u8;
644 /// #     fn baz(&self);
645 /// #     fn qux(&self) -> Result<u64, ()>;
646 /// # }
647 /// struct MyStruct;
648 ///
649 /// impl Foo for MyStruct {
650 ///     fn bar(&self) -> u8 {
651 ///         1 + 1
652 ///     }
653 ///
654 ///     fn baz(&self) {
655 ///         // It makes no sense to `baz` a `MyStruct`, so we have no logic here
656 ///         // at all.
657 ///         // This will display "thread 'main' panicked at 'not implemented'".
658 ///         unimplemented!();
659 ///     }
660 ///
661 ///     fn qux(&self) -> Result<u64, ()> {
662 ///         // We have some logic here,
663 ///         // We can add a message to unimplemented! to display our omission.
664 ///         // This will display:
665 ///         // "thread 'main' panicked at 'not implemented: MyStruct isn't quxable'".
666 ///         unimplemented!("MyStruct isn't quxable");
667 ///     }
668 /// }
669 ///
670 /// fn main() {
671 ///     let s = MyStruct;
672 ///     s.bar();
673 /// }
674 /// ```
675 #[macro_export]
676 #[stable(feature = "rust1", since = "1.0.0")]
677 macro_rules! unimplemented {
678     () => ($crate::panic!("not implemented"));
679     ($($arg:tt)+) => ($crate::panic!("not implemented: {}", $crate::format_args!($($arg)+)));
680 }
681 
682 /// Indicates unfinished code.
683 ///
684 /// This can be useful if you are prototyping and are just looking to have your
685 /// code typecheck.
686 ///
687 /// The difference between [`unimplemented!`] and `todo!` is that while `todo!` conveys
688 /// an intent of implementing the functionality later and the message is "not yet
689 /// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
690 /// Also some IDEs will mark `todo!`s.
691 ///
692 /// # Panics
693 ///
694 /// This will always [`panic!`].
695 ///
696 /// # Examples
697 ///
698 /// Here's an example of some in-progress code. We have a trait `Foo`:
699 ///
700 /// ```
701 /// trait Foo {
702 ///     fn bar(&self);
703 ///     fn baz(&self);
704 /// }
705 /// ```
706 ///
707 /// We want to implement `Foo` on one of our types, but we also want to work on
708 /// just `bar()` first. In order for our code to compile, we need to implement
709 /// `baz()`, so we can use `todo!`:
710 ///
711 /// ```
712 /// # trait Foo {
713 /// #     fn bar(&self);
714 /// #     fn baz(&self);
715 /// # }
716 /// struct MyStruct;
717 ///
718 /// impl Foo for MyStruct {
719 ///     fn bar(&self) {
720 ///         // implementation goes here
721 ///     }
722 ///
723 ///     fn baz(&self) {
724 ///         // let's not worry about implementing baz() for now
725 ///         todo!();
726 ///     }
727 /// }
728 ///
729 /// fn main() {
730 ///     let s = MyStruct;
731 ///     s.bar();
732 ///
733 ///     // we aren't even using baz(), so this is fine.
734 /// }
735 /// ```
736 #[macro_export]
737 #[stable(feature = "todo_macro", since = "1.40.0")]
738 macro_rules! todo {
739     () => ($crate::panic!("not yet implemented"));
740     ($($arg:tt)+) => ($crate::panic!("not yet implemented: {}", $crate::format_args!($($arg)+)));
741 }
742 
743 /// Definitions of built-in macros.
744 ///
745 /// Most of the macro properties (stability, visibility, etc.) are taken from the source code here,
746 /// with exception of expansion functions transforming macro inputs into outputs,
747 /// those functions are provided by the compiler.
748 pub(crate) mod builtin {
749 
750     /// Causes compilation to fail with the given error message when encountered.
751     ///
752     /// This macro should be used when a crate uses a conditional compilation strategy to provide
753     /// better error messages for erroneous conditions. It's the compiler-level form of [`panic!`],
754     /// but emits an error during *compilation* rather than at *runtime*.
755     ///
756     /// # Examples
757     ///
758     /// Two such examples are macros and `#[cfg]` environments.
759     ///
760     /// Emit better compiler error if a macro is passed invalid values. Without the final branch,
761     /// the compiler would still emit an error, but the error's message would not mention the two
762     /// valid values.
763     ///
764     /// ```compile_fail
765     /// macro_rules! give_me_foo_or_bar {
766     ///     (foo) => {};
767     ///     (bar) => {};
768     ///     ($x:ident) => {
769     ///         compile_error!("This macro only accepts `foo` or `bar`");
770     ///     }
771     /// }
772     ///
773     /// give_me_foo_or_bar!(neither);
774     /// // ^ will fail at compile time with message "This macro only accepts `foo` or `bar`"
775     /// ```
776     ///
777     /// Emit compiler error if one of a number of features isn't available.
778     ///
779     /// ```compile_fail
780     /// #[cfg(not(any(feature = "foo", feature = "bar")))]
781     /// compile_error!("Either feature \"foo\" or \"bar\" must be enabled for this crate.");
782     /// ```
783     #[stable(feature = "compile_error_macro", since = "1.20.0")]
784     #[rustc_builtin_macro]
785     #[macro_export]
786     macro_rules! compile_error {
787         ($msg:expr $(,)?) => {{ /* compiler built-in */ }};
788     }
789 
790     /// Constructs parameters for the other string-formatting macros.
791     ///
792     /// This macro functions by taking a formatting string literal containing
793     /// `{}` for each additional argument passed. `format_args!` prepares the
794     /// additional parameters to ensure the output can be interpreted as a string
795     /// and canonicalizes the arguments into a single type. Any value that implements
796     /// the [`Display`] trait can be passed to `format_args!`, as can any
797     /// [`Debug`] implementation be passed to a `{:?}` within the formatting string.
798     ///
799     /// This macro produces a value of type [`fmt::Arguments`]. This value can be
800     /// passed to the macros within [`std::fmt`] for performing useful redirection.
801     /// All other formatting macros ([`format!`], [`write!`], [`println!`], etc) are
802     /// proxied through this one. `format_args!`, unlike its derived macros, avoids
803     /// heap allocations.
804     ///
805     /// You can use the [`fmt::Arguments`] value that `format_args!` returns
806     /// in `Debug` and `Display` contexts as seen below. The example also shows
807     /// that `Debug` and `Display` format to the same thing: the interpolated
808     /// format string in `format_args!`.
809     ///
810     /// ```rust
811     /// let debug = format!("{:?}", format_args!("{} foo {:?}", 1, 2));
812     /// let display = format!("{}", format_args!("{} foo {:?}", 1, 2));
813     /// assert_eq!("1 foo 2", display);
814     /// assert_eq!(display, debug);
815     /// ```
816     ///
817     /// For more information, see the documentation in [`std::fmt`].
818     ///
819     /// [`Display`]: crate::fmt::Display
820     /// [`Debug`]: crate::fmt::Debug
821     /// [`fmt::Arguments`]: crate::fmt::Arguments
822     /// [`std::fmt`]: ../std/fmt/index.html
823     /// [`format!`]: ../std/macro.format.html
824     /// [`println!`]: ../std/macro.println.html
825     ///
826     /// # Examples
827     ///
828     /// ```
829     /// use std::fmt;
830     ///
831     /// let s = fmt::format(format_args!("hello {}", "world"));
832     /// assert_eq!(s, format!("hello {}", "world"));
833     /// ```
834     #[stable(feature = "rust1", since = "1.0.0")]
835     #[allow_internal_unsafe]
836     #[allow_internal_unstable(fmt_internals)]
837     #[rustc_builtin_macro]
838     #[macro_export]
839     macro_rules! format_args {
840         ($fmt:expr) => {{ /* compiler built-in */ }};
841         ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
842     }
843 
844     /// Same as `format_args`, but can be used in some const contexts.
845     ///
846     /// This macro is used by the panic macros for the `const_panic` feature.
847     ///
848     /// This macro will be removed once `format_args` is allowed in const contexts.
849     #[unstable(feature = "const_format_args", issue = "none")]
850     #[allow_internal_unstable(fmt_internals, const_fmt_arguments_new)]
851     #[rustc_builtin_macro]
852     #[macro_export]
853     macro_rules! const_format_args {
854         ($fmt:expr) => {{ /* compiler built-in */ }};
855         ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
856     }
857 
858     /// Same as `format_args`, but adds a newline in the end.
859     #[unstable(
860         feature = "format_args_nl",
861         issue = "none",
862         reason = "`format_args_nl` is only for internal \
863                   language use and is subject to change"
864     )]
865     #[allow_internal_unstable(fmt_internals)]
866     #[doc(hidden)]
867     #[rustc_builtin_macro]
868     #[macro_export]
869     macro_rules! format_args_nl {
870         ($fmt:expr) => {{ /* compiler built-in */ }};
871         ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
872     }
873 
874     /// Inspects an environment variable at compile time.
875     ///
876     /// This macro will expand to the value of the named environment variable at
877     /// compile time, yielding an expression of type `&'static str`.
878     ///
879     /// If the environment variable is not defined, then a compilation error
880     /// will be emitted. To not emit a compile error, use the [`option_env!`]
881     /// macro instead.
882     ///
883     /// # Examples
884     ///
885     /// ```
886     /// let path: &'static str = env!("PATH");
887     /// println!("the $PATH variable at the time of compiling was: {}", path);
888     /// ```
889     ///
890     /// You can customize the error message by passing a string as the second
891     /// parameter:
892     ///
893     /// ```compile_fail
894     /// let doc: &'static str = env!("documentation", "what's that?!");
895     /// ```
896     ///
897     /// If the `documentation` environment variable is not defined, you'll get
898     /// the following error:
899     ///
900     /// ```text
901     /// error: what's that?!
902     /// ```
903     #[stable(feature = "rust1", since = "1.0.0")]
904     #[rustc_builtin_macro]
905     #[macro_export]
906     macro_rules! env {
907         ($name:expr $(,)?) => {{ /* compiler built-in */ }};
908         ($name:expr, $error_msg:expr $(,)?) => {{ /* compiler built-in */ }};
909     }
910 
911     /// Optionally inspects an environment variable at compile time.
912     ///
913     /// If the named environment variable is present at compile time, this will
914     /// expand into an expression of type `Option<&'static str>` whose value is
915     /// `Some` of the value of the environment variable. If the environment
916     /// variable is not present, then this will expand to `None`. See
917     /// [`Option<T>`][Option] for more information on this type.
918     ///
919     /// A compile time error is never emitted when using this macro regardless
920     /// of whether the environment variable is present or not.
921     ///
922     /// # Examples
923     ///
924     /// ```
925     /// let key: Option<&'static str> = option_env!("SECRET_KEY");
926     /// println!("the secret key might be: {:?}", key);
927     /// ```
928     #[stable(feature = "rust1", since = "1.0.0")]
929     #[rustc_builtin_macro]
930     #[macro_export]
931     macro_rules! option_env {
932         ($name:expr $(,)?) => {{ /* compiler built-in */ }};
933     }
934 
935     /// Concatenates identifiers into one identifier.
936     ///
937     /// This macro takes any number of comma-separated identifiers, and
938     /// concatenates them all into one, yielding an expression which is a new
939     /// identifier. Note that hygiene makes it such that this macro cannot
940     /// capture local variables. Also, as a general rule, macros are only
941     /// allowed in item, statement or expression position. That means while
942     /// you may use this macro for referring to existing variables, functions or
943     /// modules etc, you cannot define a new one with it.
944     ///
945     /// # Examples
946     ///
947     /// ```
948     /// #![feature(concat_idents)]
949     ///
950     /// # fn main() {
951     /// fn foobar() -> u32 { 23 }
952     ///
953     /// let f = concat_idents!(foo, bar);
954     /// println!("{}", f());
955     ///
956     /// // fn concat_idents!(new, fun, name) { } // not usable in this way!
957     /// # }
958     /// ```
959     #[unstable(
960         feature = "concat_idents",
961         issue = "29599",
962         reason = "`concat_idents` is not stable enough for use and is subject to change"
963     )]
964     #[rustc_builtin_macro]
965     #[macro_export]
966     macro_rules! concat_idents {
967         ($($e:ident),+ $(,)?) => {{ /* compiler built-in */ }};
968     }
969 
970     /// Concatenates literals into a static string slice.
971     ///
972     /// This macro takes any number of comma-separated literals, yielding an
973     /// expression of type `&'static str` which represents all of the literals
974     /// concatenated left-to-right.
975     ///
976     /// Integer and floating point literals are stringified in order to be
977     /// concatenated.
978     ///
979     /// # Examples
980     ///
981     /// ```
982     /// let s = concat!("test", 10, 'b', true);
983     /// assert_eq!(s, "test10btrue");
984     /// ```
985     #[stable(feature = "rust1", since = "1.0.0")]
986     #[rustc_builtin_macro]
987     #[macro_export]
988     macro_rules! concat {
989         ($($e:expr),* $(,)?) => {{ /* compiler built-in */ }};
990     }
991 
992     /// Expands to the line number on which it was invoked.
993     ///
994     /// With [`column!`] and [`file!`], these macros provide debugging information for
995     /// developers about the location within the source.
996     ///
997     /// The expanded expression has type `u32` and is 1-based, so the first line
998     /// in each file evaluates to 1, the second to 2, etc. This is consistent
999     /// with error messages by common compilers or popular editors.
1000     /// The returned line is *not necessarily* the line of the `line!` invocation itself,
1001     /// but rather the first macro invocation leading up to the invocation
1002     /// of the `line!` macro.
1003     ///
1004     /// # Examples
1005     ///
1006     /// ```
1007     /// let current_line = line!();
1008     /// println!("defined on line: {}", current_line);
1009     /// ```
1010     #[stable(feature = "rust1", since = "1.0.0")]
1011     #[rustc_builtin_macro]
1012     #[macro_export]
1013     macro_rules! line {
1014         () => {
1015             /* compiler built-in */
1016         };
1017     }
1018 
1019     /// Expands to the column number at which it was invoked.
1020     ///
1021     /// With [`line!`] and [`file!`], these macros provide debugging information for
1022     /// developers about the location within the source.
1023     ///
1024     /// The expanded expression has type `u32` and is 1-based, so the first column
1025     /// in each line evaluates to 1, the second to 2, etc. This is consistent
1026     /// with error messages by common compilers or popular editors.
1027     /// The returned column is *not necessarily* the line of the `column!` invocation itself,
1028     /// but rather the first macro invocation leading up to the invocation
1029     /// of the `column!` macro.
1030     ///
1031     /// # Examples
1032     ///
1033     /// ```
1034     /// let current_col = column!();
1035     /// println!("defined on column: {}", current_col);
1036     /// ```
1037     #[stable(feature = "rust1", since = "1.0.0")]
1038     #[rustc_builtin_macro]
1039     #[macro_export]
1040     macro_rules! column {
1041         () => {
1042             /* compiler built-in */
1043         };
1044     }
1045 
1046     /// Expands to the file name in which it was invoked.
1047     ///
1048     /// With [`line!`] and [`column!`], these macros provide debugging information for
1049     /// developers about the location within the source.
1050     ///
1051     /// The expanded expression has type `&'static str`, and the returned file
1052     /// is not the invocation of the `file!` macro itself, but rather the
1053     /// first macro invocation leading up to the invocation of the `file!`
1054     /// macro.
1055     ///
1056     /// # Examples
1057     ///
1058     /// ```
1059     /// let this_file = file!();
1060     /// println!("defined in file: {}", this_file);
1061     /// ```
1062     #[stable(feature = "rust1", since = "1.0.0")]
1063     #[rustc_builtin_macro]
1064     #[macro_export]
1065     macro_rules! file {
1066         () => {
1067             /* compiler built-in */
1068         };
1069     }
1070 
1071     /// Stringifies its arguments.
1072     ///
1073     /// This macro will yield an expression of type `&'static str` which is the
1074     /// stringification of all the tokens passed to the macro. No restrictions
1075     /// are placed on the syntax of the macro invocation itself.
1076     ///
1077     /// Note that the expanded results of the input tokens may change in the
1078     /// future. You should be careful if you rely on the output.
1079     ///
1080     /// # Examples
1081     ///
1082     /// ```
1083     /// let one_plus_one = stringify!(1 + 1);
1084     /// assert_eq!(one_plus_one, "1 + 1");
1085     /// ```
1086     #[stable(feature = "rust1", since = "1.0.0")]
1087     #[rustc_builtin_macro]
1088     #[macro_export]
1089     macro_rules! stringify {
1090         ($($t:tt)*) => {
1091             /* compiler built-in */
1092         };
1093     }
1094 
1095     /// Includes a UTF-8 encoded file as a string.
1096     ///
1097     /// The file is located relative to the current file (similarly to how
1098     /// modules are found). The provided path is interpreted in a platform-specific
1099     /// way at compile time. So, for instance, an invocation with a Windows path
1100     /// containing backslashes `\` would not compile correctly on Unix.
1101     ///
1102     /// This macro will yield an expression of type `&'static str` which is the
1103     /// contents of the file.
1104     ///
1105     /// # Examples
1106     ///
1107     /// Assume there are two files in the same directory with the following
1108     /// contents:
1109     ///
1110     /// File 'spanish.in':
1111     ///
1112     /// ```text
1113     /// adiós
1114     /// ```
1115     ///
1116     /// File 'main.rs':
1117     ///
1118     /// ```ignore (cannot-doctest-external-file-dependency)
1119     /// fn main() {
1120     ///     let my_str = include_str!("spanish.in");
1121     ///     assert_eq!(my_str, "adiós\n");
1122     ///     print!("{}", my_str);
1123     /// }
1124     /// ```
1125     ///
1126     /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1127     #[stable(feature = "rust1", since = "1.0.0")]
1128     #[rustc_builtin_macro]
1129     #[macro_export]
1130     macro_rules! include_str {
1131         ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1132     }
1133 
1134     /// Includes a file as a reference to a byte array.
1135     ///
1136     /// The file is located relative to the current file (similarly to how
1137     /// modules are found). The provided path is interpreted in a platform-specific
1138     /// way at compile time. So, for instance, an invocation with a Windows path
1139     /// containing backslashes `\` would not compile correctly on Unix.
1140     ///
1141     /// This macro will yield an expression of type `&'static [u8; N]` which is
1142     /// the contents of the file.
1143     ///
1144     /// # Examples
1145     ///
1146     /// Assume there are two files in the same directory with the following
1147     /// contents:
1148     ///
1149     /// File 'spanish.in':
1150     ///
1151     /// ```text
1152     /// adiós
1153     /// ```
1154     ///
1155     /// File 'main.rs':
1156     ///
1157     /// ```ignore (cannot-doctest-external-file-dependency)
1158     /// fn main() {
1159     ///     let bytes = include_bytes!("spanish.in");
1160     ///     assert_eq!(bytes, b"adi\xc3\xb3s\n");
1161     ///     print!("{}", String::from_utf8_lossy(bytes));
1162     /// }
1163     /// ```
1164     ///
1165     /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1166     #[stable(feature = "rust1", since = "1.0.0")]
1167     #[rustc_builtin_macro]
1168     #[macro_export]
1169     macro_rules! include_bytes {
1170         ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1171     }
1172 
1173     /// Expands to a string that represents the current module path.
1174     ///
1175     /// The current module path can be thought of as the hierarchy of modules
1176     /// leading back up to the crate root. The first component of the path
1177     /// returned is the name of the crate currently being compiled.
1178     ///
1179     /// # Examples
1180     ///
1181     /// ```
1182     /// mod test {
1183     ///     pub fn foo() {
1184     ///         assert!(module_path!().ends_with("test"));
1185     ///     }
1186     /// }
1187     ///
1188     /// test::foo();
1189     /// ```
1190     #[stable(feature = "rust1", since = "1.0.0")]
1191     #[rustc_builtin_macro]
1192     #[macro_export]
1193     macro_rules! module_path {
1194         () => {
1195             /* compiler built-in */
1196         };
1197     }
1198 
1199     /// Evaluates boolean combinations of configuration flags at compile-time.
1200     ///
1201     /// In addition to the `#[cfg]` attribute, this macro is provided to allow
1202     /// boolean expression evaluation of configuration flags. This frequently
1203     /// leads to less duplicated code.
1204     ///
1205     /// The syntax given to this macro is the same syntax as the [`cfg`]
1206     /// attribute.
1207     ///
1208     /// `cfg!`, unlike `#[cfg]`, does not remove any code and only evaluates to true or false. For
1209     /// example, all blocks in an if/else expression need to be valid when `cfg!` is used for
1210     /// the condition, regardless of what `cfg!` is evaluating.
1211     ///
1212     /// [`cfg`]: ../reference/conditional-compilation.html#the-cfg-attribute
1213     ///
1214     /// # Examples
1215     ///
1216     /// ```
1217     /// let my_directory = if cfg!(windows) {
1218     ///     "windows-specific-directory"
1219     /// } else {
1220     ///     "unix-directory"
1221     /// };
1222     /// ```
1223     #[stable(feature = "rust1", since = "1.0.0")]
1224     #[rustc_builtin_macro]
1225     #[macro_export]
1226     macro_rules! cfg {
1227         ($($cfg:tt)*) => {
1228             /* compiler built-in */
1229         };
1230     }
1231 
1232     /// Parses a file as an expression or an item according to the context.
1233     ///
1234     /// The file is located relative to the current file (similarly to how
1235     /// modules are found). The provided path is interpreted in a platform-specific
1236     /// way at compile time. So, for instance, an invocation with a Windows path
1237     /// containing backslashes `\` would not compile correctly on Unix.
1238     ///
1239     /// Using this macro is often a bad idea, because if the file is
1240     /// parsed as an expression, it is going to be placed in the
1241     /// surrounding code unhygienically. This could result in variables
1242     /// or functions being different from what the file expected if
1243     /// there are variables or functions that have the same name in
1244     /// the current file.
1245     ///
1246     /// # Examples
1247     ///
1248     /// Assume there are two files in the same directory with the following
1249     /// contents:
1250     ///
1251     /// File 'monkeys.in':
1252     ///
1253     /// ```ignore (only-for-syntax-highlight)
1254     /// ['��', '��', '��']
1255     ///     .iter()
1256     ///     .cycle()
1257     ///     .take(6)
1258     ///     .collect::<String>()
1259     /// ```
1260     ///
1261     /// File 'main.rs':
1262     ///
1263     /// ```ignore (cannot-doctest-external-file-dependency)
1264     /// fn main() {
1265     ///     let my_string = include!("monkeys.in");
1266     ///     assert_eq!("������������", my_string);
1267     ///     println!("{}", my_string);
1268     /// }
1269     /// ```
1270     ///
1271     /// Compiling 'main.rs' and running the resulting binary will print
1272     /// "������������".
1273     #[stable(feature = "rust1", since = "1.0.0")]
1274     #[rustc_builtin_macro]
1275     #[macro_export]
1276     macro_rules! include {
1277         ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1278     }
1279 
1280     /// Asserts that a boolean expression is `true` at runtime.
1281     ///
1282     /// This will invoke the [`panic!`] macro if the provided expression cannot be
1283     /// evaluated to `true` at runtime.
1284     ///
1285     /// # Uses
1286     ///
1287     /// Assertions are always checked in both debug and release builds, and cannot
1288     /// be disabled. See [`debug_assert!`] for assertions that are not enabled in
1289     /// release builds by default.
1290     ///
1291     /// Unsafe code may rely on `assert!` to enforce run-time invariants that, if
1292     /// violated could lead to unsafety.
1293     ///
1294     /// Other use-cases of `assert!` include testing and enforcing run-time
1295     /// invariants in safe code (whose violation cannot result in unsafety).
1296     ///
1297     /// # Custom Messages
1298     ///
1299     /// This macro has a second form, where a custom panic message can
1300     /// be provided with or without arguments for formatting. See [`std::fmt`]
1301     /// for syntax for this form. Expressions used as format arguments will only
1302     /// be evaluated if the assertion fails.
1303     ///
1304     /// [`std::fmt`]: ../std/fmt/index.html
1305     ///
1306     /// # Examples
1307     ///
1308     /// ```
1309     /// // the panic message for these assertions is the stringified value of the
1310     /// // expression given.
1311     /// assert!(true);
1312     ///
1313     /// fn some_computation() -> bool { true } // a very simple function
1314     ///
1315     /// assert!(some_computation());
1316     ///
1317     /// // assert with a custom message
1318     /// let x = true;
1319     /// assert!(x, "x wasn't true!");
1320     ///
1321     /// let a = 3; let b = 27;
1322     /// assert!(a + b == 30, "a = {}, b = {}", a, b);
1323     /// ```
1324     #[stable(feature = "rust1", since = "1.0.0")]
1325     #[rustc_builtin_macro]
1326     #[macro_export]
1327     #[rustc_diagnostic_item = "assert_macro"]
1328     #[allow_internal_unstable(core_panic, edition_panic)]
1329     macro_rules! assert {
1330         ($cond:expr $(,)?) => {{ /* compiler built-in */ }};
1331         ($cond:expr, $($arg:tt)+) => {{ /* compiler built-in */ }};
1332     }
1333 
1334     /// LLVM-style inline assembly.
1335     ///
1336     /// Read the [unstable book] for the usage.
1337     ///
1338     /// [unstable book]: ../unstable-book/library-features/llvm-asm.html
1339     #[unstable(
1340         feature = "llvm_asm",
1341         issue = "70173",
1342         reason = "prefer using the new asm! syntax instead"
1343     )]
1344     #[rustc_deprecated(
1345         since = "1.56",
1346         reason = "will be removed from the compiler, use asm! instead"
1347     )]
1348     #[rustc_builtin_macro]
1349     #[macro_export]
1350     macro_rules! llvm_asm {
1351         ("assembly template"
1352                         : $("output"(operand),)*
1353                         : $("input"(operand),)*
1354                         : $("clobbers",)*
1355                         : $("options",)*) => {
1356             /* compiler built-in */
1357         };
1358     }
1359 
1360     /// Prints passed tokens into the standard output.
1361     #[unstable(
1362         feature = "log_syntax",
1363         issue = "29598",
1364         reason = "`log_syntax!` is not stable enough for use and is subject to change"
1365     )]
1366     #[rustc_builtin_macro]
1367     #[macro_export]
1368     macro_rules! log_syntax {
1369         ($($arg:tt)*) => {
1370             /* compiler built-in */
1371         };
1372     }
1373 
1374     /// Enables or disables tracing functionality used for debugging other macros.
1375     #[unstable(
1376         feature = "trace_macros",
1377         issue = "29598",
1378         reason = "`trace_macros` is not stable enough for use and is subject to change"
1379     )]
1380     #[rustc_builtin_macro]
1381     #[macro_export]
1382     macro_rules! trace_macros {
1383         (true) => {{ /* compiler built-in */ }};
1384         (false) => {{ /* compiler built-in */ }};
1385     }
1386 
1387     /// Attribute macro used to apply derive macros.
1388     #[stable(feature = "rust1", since = "1.0.0")]
1389     #[rustc_builtin_macro]
1390     pub macro derive($item:item) {
1391         /* compiler built-in */
1392     }
1393 
1394     /// Attribute macro applied to a function to turn it into a unit test.
1395     #[stable(feature = "rust1", since = "1.0.0")]
1396     #[allow_internal_unstable(test, rustc_attrs)]
1397     #[rustc_builtin_macro]
1398     pub macro test($item:item) {
1399         /* compiler built-in */
1400     }
1401 
1402     /// Attribute macro applied to a function to turn it into a benchmark test.
1403     #[unstable(
1404         feature = "test",
1405         issue = "50297",
1406         soft,
1407         reason = "`bench` is a part of custom test frameworks which are unstable"
1408     )]
1409     #[allow_internal_unstable(test, rustc_attrs)]
1410     #[rustc_builtin_macro]
1411     pub macro bench($item:item) {
1412         /* compiler built-in */
1413     }
1414 
1415     /// An implementation detail of the `#[test]` and `#[bench]` macros.
1416     #[unstable(
1417         feature = "custom_test_frameworks",
1418         issue = "50297",
1419         reason = "custom test frameworks are an unstable feature"
1420     )]
1421     #[allow_internal_unstable(test, rustc_attrs)]
1422     #[rustc_builtin_macro]
1423     pub macro test_case($item:item) {
1424         /* compiler built-in */
1425     }
1426 
1427     /// Attribute macro applied to a static to register it as a global allocator.
1428     ///
1429     /// See also [`std::alloc::GlobalAlloc`](../std/alloc/trait.GlobalAlloc.html).
1430     #[stable(feature = "global_allocator", since = "1.28.0")]
1431     #[allow_internal_unstable(rustc_attrs)]
1432     #[rustc_builtin_macro]
1433     pub macro global_allocator($item:item) {
1434         /* compiler built-in */
1435     }
1436 
1437     /// Keeps the item it's applied to if the passed path is accessible, and removes it otherwise.
1438     #[unstable(
1439         feature = "cfg_accessible",
1440         issue = "64797",
1441         reason = "`cfg_accessible` is not fully implemented"
1442     )]
1443     #[rustc_builtin_macro]
1444     pub macro cfg_accessible($item:item) {
1445         /* compiler built-in */
1446     }
1447 
1448     /// Expands all `#[cfg]` and `#[cfg_attr]` attributes in the code fragment it's applied to.
1449     #[unstable(
1450         feature = "cfg_eval",
1451         issue = "82679",
1452         reason = "`cfg_eval` is a recently implemented feature"
1453     )]
1454     #[rustc_builtin_macro]
1455     pub macro cfg_eval($($tt:tt)*) {
1456         /* compiler built-in */
1457     }
1458 
1459     /// Unstable implementation detail of the `rustc` compiler, do not use.
1460     #[rustc_builtin_macro]
1461     #[stable(feature = "rust1", since = "1.0.0")]
1462     #[allow_internal_unstable(core_intrinsics, libstd_sys_internals)]
1463     #[rustc_deprecated(
1464         since = "1.52.0",
1465         reason = "rustc-serialize is deprecated and no longer supported"
1466     )]
1467     pub macro RustcDecodable($item:item) {
1468         /* compiler built-in */
1469     }
1470 
1471     /// Unstable implementation detail of the `rustc` compiler, do not use.
1472     #[rustc_builtin_macro]
1473     #[stable(feature = "rust1", since = "1.0.0")]
1474     #[allow_internal_unstable(core_intrinsics)]
1475     #[rustc_deprecated(
1476         since = "1.52.0",
1477         reason = "rustc-serialize is deprecated and no longer supported"
1478     )]
1479     pub macro RustcEncodable($item:item) {
1480         /* compiler built-in */
1481     }
1482 }
1483