1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the abstract interface that implements execution support
10 // for LLVM.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
15 #define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
16 
17 #include "llvm-c/ExecutionEngine.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ExecutionEngine/JITSymbol.h"
24 #include "llvm/ExecutionEngine/OrcV1Deprecation.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Object/Binary.h"
28 #include "llvm/Support/CBindingWrapping.h"
29 #include "llvm/Support/CodeGen.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/Mutex.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include <algorithm>
35 #include <cstdint>
36 #include <functional>
37 #include <map>
38 #include <memory>
39 #include <string>
40 #include <vector>
41 
42 namespace llvm {
43 
44 class Constant;
45 class Function;
46 struct GenericValue;
47 class GlobalValue;
48 class GlobalVariable;
49 class JITEventListener;
50 class MCJITMemoryManager;
51 class ObjectCache;
52 class RTDyldMemoryManager;
53 class Triple;
54 class Type;
55 
56 namespace object {
57 
58 class Archive;
59 class ObjectFile;
60 
61 } // end namespace object
62 
63 /// Helper class for helping synchronize access to the global address map
64 /// table.  Access to this class should be serialized under a mutex.
65 class ExecutionEngineState {
66 public:
67   using GlobalAddressMapTy = StringMap<uint64_t>;
68 
69 private:
70   /// GlobalAddressMap - A mapping between LLVM global symbol names values and
71   /// their actualized version...
72   GlobalAddressMapTy GlobalAddressMap;
73 
74   /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
75   /// used to convert raw addresses into the LLVM global value that is emitted
76   /// at the address.  This map is not computed unless getGlobalValueAtAddress
77   /// is called at some point.
78   std::map<uint64_t, std::string> GlobalAddressReverseMap;
79 
80 public:
getGlobalAddressMap()81   GlobalAddressMapTy &getGlobalAddressMap() {
82     return GlobalAddressMap;
83   }
84 
getGlobalAddressReverseMap()85   std::map<uint64_t, std::string> &getGlobalAddressReverseMap() {
86     return GlobalAddressReverseMap;
87   }
88 
89   /// Erase an entry from the mapping table.
90   ///
91   /// \returns The address that \p ToUnmap was happed to.
92   uint64_t RemoveMapping(StringRef Name);
93 };
94 
95 using FunctionCreator = std::function<void *(const std::string &)>;
96 
97 /// Abstract interface for implementation execution of LLVM modules,
98 /// designed to support both interpreter and just-in-time (JIT) compiler
99 /// implementations.
100 class ExecutionEngine {
101   /// The state object holding the global address mapping, which must be
102   /// accessed synchronously.
103   //
104   // FIXME: There is no particular need the entire map needs to be
105   // synchronized.  Wouldn't a reader-writer design be better here?
106   ExecutionEngineState EEState;
107 
108   /// The target data for the platform for which execution is being performed.
109   ///
110   /// Note: the DataLayout is LLVMContext specific because it has an
111   /// internal cache based on type pointers. It makes unsafe to reuse the
112   /// ExecutionEngine across context, we don't enforce this rule but undefined
113   /// behavior can occurs if the user tries to do it.
114   const DataLayout DL;
115 
116   /// Whether lazy JIT compilation is enabled.
117   bool CompilingLazily;
118 
119   /// Whether JIT compilation of external global variables is allowed.
120   bool GVCompilationDisabled;
121 
122   /// Whether the JIT should perform lookups of external symbols (e.g.,
123   /// using dlsym).
124   bool SymbolSearchingDisabled;
125 
126   /// Whether the JIT should verify IR modules during compilation.
127   bool VerifyModules;
128 
129   friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
130 
131 protected:
132   /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
133   /// optimize for the case where there is only one module.
134   SmallVector<std::unique_ptr<Module>, 1> Modules;
135 
136   /// getMemoryforGV - Allocate memory for a global variable.
137   virtual char *getMemoryForGV(const GlobalVariable *GV);
138 
139   static ExecutionEngine *(*MCJITCtor)(
140       std::unique_ptr<Module> M, std::string *ErrorStr,
141       std::shared_ptr<MCJITMemoryManager> MM,
142       std::shared_ptr<LegacyJITSymbolResolver> SR,
143       std::unique_ptr<TargetMachine> TM);
144 
145   static ExecutionEngine *(*InterpCtor)(std::unique_ptr<Module> M,
146                                         std::string *ErrorStr);
147 
148   /// LazyFunctionCreator - If an unknown function is needed, this function
149   /// pointer is invoked to create it.  If this returns null, the JIT will
150   /// abort.
151   FunctionCreator LazyFunctionCreator;
152 
153   /// getMangledName - Get mangled name.
154   std::string getMangledName(const GlobalValue *GV);
155 
156   std::string ErrMsg;
157 
158 public:
159   /// lock - This lock protects the ExecutionEngine and MCJIT classes. It must
160   /// be held while changing the internal state of any of those classes.
161   sys::Mutex lock;
162 
163   //===--------------------------------------------------------------------===//
164   //  ExecutionEngine Startup
165   //===--------------------------------------------------------------------===//
166 
167   virtual ~ExecutionEngine();
168 
169   /// Add a Module to the list of modules that we can JIT from.
addModule(std::unique_ptr<Module> M)170   virtual void addModule(std::unique_ptr<Module> M) {
171     Modules.push_back(std::move(M));
172   }
173 
174   /// addObjectFile - Add an ObjectFile to the execution engine.
175   ///
176   /// This method is only supported by MCJIT.  MCJIT will immediately load the
177   /// object into memory and adds its symbols to the list used to resolve
178   /// external symbols while preparing other objects for execution.
179   ///
180   /// Objects added using this function will not be made executable until
181   /// needed by another object.
182   ///
183   /// MCJIT will take ownership of the ObjectFile.
184   virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O);
185   virtual void addObjectFile(object::OwningBinary<object::ObjectFile> O);
186 
187   /// addArchive - Add an Archive to the execution engine.
188   ///
189   /// This method is only supported by MCJIT.  MCJIT will use the archive to
190   /// resolve external symbols in objects it is loading.  If a symbol is found
191   /// in the Archive the contained object file will be extracted (in memory)
192   /// and loaded for possible execution.
193   virtual void addArchive(object::OwningBinary<object::Archive> A);
194 
195   //===--------------------------------------------------------------------===//
196 
getDataLayout()197   const DataLayout &getDataLayout() const { return DL; }
198 
199   /// removeModule - Removes a Module from the list of modules, but does not
200   /// free the module's memory. Returns true if M is found, in which case the
201   /// caller assumes responsibility for deleting the module.
202   //
203   // FIXME: This stealth ownership transfer is horrible. This will probably be
204   //        fixed by deleting ExecutionEngine.
205   virtual bool removeModule(Module *M);
206 
207   /// FindFunctionNamed - Search all of the active modules to find the function that
208   /// defines FnName.  This is very slow operation and shouldn't be used for
209   /// general code.
210   virtual Function *FindFunctionNamed(StringRef FnName);
211 
212   /// FindGlobalVariableNamed - Search all of the active modules to find the global variable
213   /// that defines Name.  This is very slow operation and shouldn't be used for
214   /// general code.
215   virtual GlobalVariable *FindGlobalVariableNamed(StringRef Name, bool AllowInternal = false);
216 
217   /// runFunction - Execute the specified function with the specified arguments,
218   /// and return the result.
219   ///
220   /// For MCJIT execution engines, clients are encouraged to use the
221   /// "GetFunctionAddress" method (rather than runFunction) and cast the
222   /// returned uint64_t to the desired function pointer type. However, for
223   /// backwards compatibility MCJIT's implementation can execute 'main-like'
224   /// function (i.e. those returning void or int, and taking either no
225   /// arguments or (int, char*[])).
226   virtual GenericValue runFunction(Function *F,
227                                    ArrayRef<GenericValue> ArgValues) = 0;
228 
229   /// getPointerToNamedFunction - This method returns the address of the
230   /// specified function by using the dlsym function call.  As such it is only
231   /// useful for resolving library symbols, not code generated symbols.
232   ///
233   /// If AbortOnFailure is false and no function with the given name is
234   /// found, this function silently returns a null pointer. Otherwise,
235   /// it prints a message to stderr and aborts.
236   ///
237   /// This function is deprecated for the MCJIT execution engine.
238   virtual void *getPointerToNamedFunction(StringRef Name,
239                                           bool AbortOnFailure = true) = 0;
240 
241   /// mapSectionAddress - map a section to its target address space value.
242   /// Map the address of a JIT section as returned from the memory manager
243   /// to the address in the target process as the running code will see it.
244   /// This is the address which will be used for relocation resolution.
mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)245   virtual void mapSectionAddress(const void *LocalAddress,
246                                  uint64_t TargetAddress) {
247     llvm_unreachable("Re-mapping of section addresses not supported with this "
248                      "EE!");
249   }
250 
251   /// generateCodeForModule - Run code generation for the specified module and
252   /// load it into memory.
253   ///
254   /// When this function has completed, all code and data for the specified
255   /// module, and any module on which this module depends, will be generated
256   /// and loaded into memory, but relocations will not yet have been applied
257   /// and all memory will be readable and writable but not executable.
258   ///
259   /// This function is primarily useful when generating code for an external
260   /// target, allowing the client an opportunity to remap section addresses
261   /// before relocations are applied.  Clients that intend to execute code
262   /// locally can use the getFunctionAddress call, which will generate code
263   /// and apply final preparations all in one step.
264   ///
265   /// This method has no effect for the interpeter.
generateCodeForModule(Module * M)266   virtual void generateCodeForModule(Module *M) {}
267 
268   /// finalizeObject - ensure the module is fully processed and is usable.
269   ///
270   /// It is the user-level function for completing the process of making the
271   /// object usable for execution.  It should be called after sections within an
272   /// object have been relocated using mapSectionAddress.  When this method is
273   /// called the MCJIT execution engine will reapply relocations for a loaded
274   /// object.  This method has no effect for the interpeter.
275   ///
276   /// Returns true on success, false on failure. Error messages can be retrieved
277   /// by calling getError();
finalizeObject()278   virtual void finalizeObject() {}
279 
280   /// Returns true if an error has been recorded.
hasError()281   bool hasError() const { return !ErrMsg.empty(); }
282 
283   /// Clear the error message.
clearErrorMessage()284   void clearErrorMessage() { ErrMsg.clear(); }
285 
286   /// Returns the most recent error message.
getErrorMessage()287   const std::string &getErrorMessage() const { return ErrMsg; }
288 
289   /// runStaticConstructorsDestructors - This method is used to execute all of
290   /// the static constructors or destructors for a program.
291   ///
292   /// \param isDtors - Run the destructors instead of constructors.
293   virtual void runStaticConstructorsDestructors(bool isDtors);
294 
295   /// This method is used to execute all of the static constructors or
296   /// destructors for a particular module.
297   ///
298   /// \param isDtors - Run the destructors instead of constructors.
299   void runStaticConstructorsDestructors(Module &module, bool isDtors);
300 
301 
302   /// runFunctionAsMain - This is a helper function which wraps runFunction to
303   /// handle the common task of starting up main with the specified argc, argv,
304   /// and envp parameters.
305   int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
306                         const char * const * envp);
307 
308 
309   /// addGlobalMapping - Tell the execution engine that the specified global is
310   /// at the specified location.  This is used internally as functions are JIT'd
311   /// and as global variables are laid out in memory.  It can and should also be
312   /// used by clients of the EE that want to have an LLVM global overlay
313   /// existing data in memory. Values to be mapped should be named, and have
314   /// external or weak linkage. Mappings are automatically removed when their
315   /// GlobalValue is destroyed.
316   void addGlobalMapping(const GlobalValue *GV, void *Addr);
317   void addGlobalMapping(StringRef Name, uint64_t Addr);
318 
319   /// clearAllGlobalMappings - Clear all global mappings and start over again,
320   /// for use in dynamic compilation scenarios to move globals.
321   void clearAllGlobalMappings();
322 
323   /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
324   /// particular module, because it has been removed from the JIT.
325   void clearGlobalMappingsFromModule(Module *M);
326 
327   /// updateGlobalMapping - Replace an existing mapping for GV with a new
328   /// address.  This updates both maps as required.  If "Addr" is null, the
329   /// entry for the global is removed from the mappings.  This returns the old
330   /// value of the pointer, or null if it was not in the map.
331   uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr);
332   uint64_t updateGlobalMapping(StringRef Name, uint64_t Addr);
333 
334   /// getAddressToGlobalIfAvailable - This returns the address of the specified
335   /// global symbol.
336   uint64_t getAddressToGlobalIfAvailable(StringRef S);
337 
338   /// getPointerToGlobalIfAvailable - This returns the address of the specified
339   /// global value if it is has already been codegen'd, otherwise it returns
340   /// null.
341   void *getPointerToGlobalIfAvailable(StringRef S);
342   void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
343 
344   /// getPointerToGlobal - This returns the address of the specified global
345   /// value. This may involve code generation if it's a function.
346   ///
347   /// This function is deprecated for the MCJIT execution engine.  Use
348   /// getGlobalValueAddress instead.
349   void *getPointerToGlobal(const GlobalValue *GV);
350 
351   /// getPointerToFunction - The different EE's represent function bodies in
352   /// different ways.  They should each implement this to say what a function
353   /// pointer should look like.  When F is destroyed, the ExecutionEngine will
354   /// remove its global mapping and free any machine code.  Be sure no threads
355   /// are running inside F when that happens.
356   ///
357   /// This function is deprecated for the MCJIT execution engine.  Use
358   /// getFunctionAddress instead.
359   virtual void *getPointerToFunction(Function *F) = 0;
360 
361   /// getPointerToFunctionOrStub - If the specified function has been
362   /// code-gen'd, return a pointer to the function.  If not, compile it, or use
363   /// a stub to implement lazy compilation if available.  See
364   /// getPointerToFunction for the requirements on destroying F.
365   ///
366   /// This function is deprecated for the MCJIT execution engine.  Use
367   /// getFunctionAddress instead.
getPointerToFunctionOrStub(Function * F)368   virtual void *getPointerToFunctionOrStub(Function *F) {
369     // Default implementation, just codegen the function.
370     return getPointerToFunction(F);
371   }
372 
373   /// getGlobalValueAddress - Return the address of the specified global
374   /// value. This may involve code generation.
375   ///
376   /// This function should not be called with the interpreter engine.
getGlobalValueAddress(const std::string & Name)377   virtual uint64_t getGlobalValueAddress(const std::string &Name) {
378     // Default implementation for the interpreter.  MCJIT will override this.
379     // JIT and interpreter clients should use getPointerToGlobal instead.
380     return 0;
381   }
382 
383   /// getFunctionAddress - Return the address of the specified function.
384   /// This may involve code generation.
getFunctionAddress(const std::string & Name)385   virtual uint64_t getFunctionAddress(const std::string &Name) {
386     // Default implementation for the interpreter.  MCJIT will override this.
387     // Interpreter clients should use getPointerToFunction instead.
388     return 0;
389   }
390 
391   /// getGlobalValueAtAddress - Return the LLVM global value object that starts
392   /// at the specified address.
393   ///
394   const GlobalValue *getGlobalValueAtAddress(void *Addr);
395 
396   /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
397   /// Ptr is the address of the memory at which to store Val, cast to
398   /// GenericValue *.  It is not a pointer to a GenericValue containing the
399   /// address at which to store Val.
400   void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
401                           Type *Ty);
402 
403   void InitializeMemory(const Constant *Init, void *Addr);
404 
405   /// getOrEmitGlobalVariable - Return the address of the specified global
406   /// variable, possibly emitting it to memory if needed.  This is used by the
407   /// Emitter.
408   ///
409   /// This function is deprecated for the MCJIT execution engine.  Use
410   /// getGlobalValueAddress instead.
getOrEmitGlobalVariable(const GlobalVariable * GV)411   virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
412     return getPointerToGlobal((const GlobalValue *)GV);
413   }
414 
415   /// Registers a listener to be called back on various events within
416   /// the JIT.  See JITEventListener.h for more details.  Does not
417   /// take ownership of the argument.  The argument may be NULL, in
418   /// which case these functions do nothing.
RegisterJITEventListener(JITEventListener *)419   virtual void RegisterJITEventListener(JITEventListener *) {}
UnregisterJITEventListener(JITEventListener *)420   virtual void UnregisterJITEventListener(JITEventListener *) {}
421 
422   /// Sets the pre-compiled object cache.  The ownership of the ObjectCache is
423   /// not changed.  Supported by MCJIT but not the interpreter.
setObjectCache(ObjectCache *)424   virtual void setObjectCache(ObjectCache *) {
425     llvm_unreachable("No support for an object cache");
426   }
427 
428   /// setProcessAllSections (MCJIT Only): By default, only sections that are
429   /// "required for execution" are passed to the RTDyldMemoryManager, and other
430   /// sections are discarded. Passing 'true' to this method will cause
431   /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless
432   /// of whether they are "required to execute" in the usual sense.
433   ///
434   /// Rationale: Some MCJIT clients want to be able to inspect metadata
435   /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze
436   /// performance. Passing these sections to the memory manager allows the
437   /// client to make policy about the relevant sections, rather than having
438   /// MCJIT do it.
setProcessAllSections(bool ProcessAllSections)439   virtual void setProcessAllSections(bool ProcessAllSections) {
440     llvm_unreachable("No support for ProcessAllSections option");
441   }
442 
443   /// Return the target machine (if available).
getTargetMachine()444   virtual TargetMachine *getTargetMachine() { return nullptr; }
445 
446   /// DisableLazyCompilation - When lazy compilation is off (the default), the
447   /// JIT will eagerly compile every function reachable from the argument to
448   /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
449   /// compile the one function and emit stubs to compile the rest when they're
450   /// first called.  If lazy compilation is turned off again while some lazy
451   /// stubs are still around, and one of those stubs is called, the program will
452   /// abort.
453   ///
454   /// In order to safely compile lazily in a threaded program, the user must
455   /// ensure that 1) only one thread at a time can call any particular lazy
456   /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
457   /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
458   /// lazy stub.  See http://llvm.org/PR5184 for details.
459   void DisableLazyCompilation(bool Disabled = true) {
460     CompilingLazily = !Disabled;
461   }
isCompilingLazily()462   bool isCompilingLazily() const {
463     return CompilingLazily;
464   }
465 
466   /// DisableGVCompilation - If called, the JIT will abort if it's asked to
467   /// allocate space and populate a GlobalVariable that is not internal to
468   /// the module.
469   void DisableGVCompilation(bool Disabled = true) {
470     GVCompilationDisabled = Disabled;
471   }
isGVCompilationDisabled()472   bool isGVCompilationDisabled() const {
473     return GVCompilationDisabled;
474   }
475 
476   /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
477   /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
478   /// resolve symbols in a custom way.
479   void DisableSymbolSearching(bool Disabled = true) {
480     SymbolSearchingDisabled = Disabled;
481   }
isSymbolSearchingDisabled()482   bool isSymbolSearchingDisabled() const {
483     return SymbolSearchingDisabled;
484   }
485 
486   /// Enable/Disable IR module verification.
487   ///
488   /// Note: Module verification is enabled by default in Debug builds, and
489   /// disabled by default in Release. Use this method to override the default.
setVerifyModules(bool Verify)490   void setVerifyModules(bool Verify) {
491     VerifyModules = Verify;
492   }
getVerifyModules()493   bool getVerifyModules() const {
494     return VerifyModules;
495   }
496 
497   /// InstallLazyFunctionCreator - If an unknown function is needed, the
498   /// specified function pointer is invoked to create it.  If it returns null,
499   /// the JIT will abort.
InstallLazyFunctionCreator(FunctionCreator C)500   void InstallLazyFunctionCreator(FunctionCreator C) {
501     LazyFunctionCreator = std::move(C);
502   }
503 
504 protected:
ExecutionEngine(DataLayout DL)505   ExecutionEngine(DataLayout DL) : DL(std::move(DL)) {}
506   explicit ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M);
507   explicit ExecutionEngine(std::unique_ptr<Module> M);
508 
509   void emitGlobals();
510 
511   void emitGlobalVariable(const GlobalVariable *GV);
512 
513   GenericValue getConstantValue(const Constant *C);
514   void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
515                            Type *Ty);
516 
517 private:
518   void Init(std::unique_ptr<Module> M);
519 };
520 
521 namespace EngineKind {
522 
523   // These are actually bitmasks that get or-ed together.
524   enum Kind {
525     JIT         = 0x1,
526     Interpreter = 0x2
527   };
528   const static Kind Either = (Kind)(JIT | Interpreter);
529 
530 } // end namespace EngineKind
531 
532 /// Builder class for ExecutionEngines. Use this by stack-allocating a builder,
533 /// chaining the various set* methods, and terminating it with a .create()
534 /// call.
535 class EngineBuilder {
536 private:
537   std::unique_ptr<Module> M;
538   EngineKind::Kind WhichEngine;
539   std::string *ErrorStr;
540   CodeGenOpt::Level OptLevel;
541   std::shared_ptr<MCJITMemoryManager> MemMgr;
542   std::shared_ptr<LegacyJITSymbolResolver> Resolver;
543   TargetOptions Options;
544   Optional<Reloc::Model> RelocModel;
545   Optional<CodeModel::Model> CMModel;
546   std::string MArch;
547   std::string MCPU;
548   SmallVector<std::string, 4> MAttrs;
549   bool VerifyModules;
550   bool EmulatedTLS = true;
551 
552 public:
553   /// Default constructor for EngineBuilder.
554   EngineBuilder();
555 
556   /// Constructor for EngineBuilder.
557   EngineBuilder(std::unique_ptr<Module> M);
558 
559   // Out-of-line since we don't have the def'n of RTDyldMemoryManager here.
560   ~EngineBuilder();
561 
562   /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
563   /// or whichever engine works.  This option defaults to EngineKind::Either.
setEngineKind(EngineKind::Kind w)564   EngineBuilder &setEngineKind(EngineKind::Kind w) {
565     WhichEngine = w;
566     return *this;
567   }
568 
569   /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
570   /// clients to customize their memory allocation policies for the MCJIT. This
571   /// is only appropriate for the MCJIT; setting this and configuring the builder
572   /// to create anything other than MCJIT will cause a runtime error. If create()
573   /// is called and is successful, the created engine takes ownership of the
574   /// memory manager. This option defaults to NULL.
575   EngineBuilder &setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
576 
577   EngineBuilder&
578   setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
579 
580   EngineBuilder &setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR);
581 
582   /// setErrorStr - Set the error string to write to on error.  This option
583   /// defaults to NULL.
setErrorStr(std::string * e)584   EngineBuilder &setErrorStr(std::string *e) {
585     ErrorStr = e;
586     return *this;
587   }
588 
589   /// setOptLevel - Set the optimization level for the JIT.  This option
590   /// defaults to CodeGenOpt::Default.
setOptLevel(CodeGenOpt::Level l)591   EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
592     OptLevel = l;
593     return *this;
594   }
595 
596   /// setTargetOptions - Set the target options that the ExecutionEngine
597   /// target is using. Defaults to TargetOptions().
setTargetOptions(const TargetOptions & Opts)598   EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
599     Options = Opts;
600     return *this;
601   }
602 
603   /// setRelocationModel - Set the relocation model that the ExecutionEngine
604   /// target is using. Defaults to target specific default "Reloc::Default".
setRelocationModel(Reloc::Model RM)605   EngineBuilder &setRelocationModel(Reloc::Model RM) {
606     RelocModel = RM;
607     return *this;
608   }
609 
610   /// setCodeModel - Set the CodeModel that the ExecutionEngine target
611   /// data is using. Defaults to target specific default
612   /// "CodeModel::JITDefault".
setCodeModel(CodeModel::Model M)613   EngineBuilder &setCodeModel(CodeModel::Model M) {
614     CMModel = M;
615     return *this;
616   }
617 
618   /// setMArch - Override the architecture set by the Module's triple.
setMArch(StringRef march)619   EngineBuilder &setMArch(StringRef march) {
620     MArch.assign(march.begin(), march.end());
621     return *this;
622   }
623 
624   /// setMCPU - Target a specific cpu type.
setMCPU(StringRef mcpu)625   EngineBuilder &setMCPU(StringRef mcpu) {
626     MCPU.assign(mcpu.begin(), mcpu.end());
627     return *this;
628   }
629 
630   /// setVerifyModules - Set whether the JIT implementation should verify
631   /// IR modules during compilation.
setVerifyModules(bool Verify)632   EngineBuilder &setVerifyModules(bool Verify) {
633     VerifyModules = Verify;
634     return *this;
635   }
636 
637   /// setMAttrs - Set cpu-specific attributes.
638   template<typename StringSequence>
setMAttrs(const StringSequence & mattrs)639   EngineBuilder &setMAttrs(const StringSequence &mattrs) {
640     MAttrs.clear();
641     MAttrs.append(mattrs.begin(), mattrs.end());
642     return *this;
643   }
644 
setEmulatedTLS(bool EmulatedTLS)645   void setEmulatedTLS(bool EmulatedTLS) {
646     this->EmulatedTLS = EmulatedTLS;
647   }
648 
649   TargetMachine *selectTarget();
650 
651   /// selectTarget - Pick a target either via -march or by guessing the native
652   /// arch.  Add any CPU features specified via -mcpu or -mattr.
653   TargetMachine *selectTarget(const Triple &TargetTriple,
654                               StringRef MArch,
655                               StringRef MCPU,
656                               const SmallVectorImpl<std::string>& MAttrs);
657 
create()658   ExecutionEngine *create() {
659     return create(selectTarget());
660   }
661 
662   ExecutionEngine *create(TargetMachine *TM);
663 };
664 
665 // Create wrappers for C Binding types (see CBindingWrapping.h).
666 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef)
667 
668 } // end namespace llvm
669 
670 #endif // LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
671