1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/AssumptionCache.h"
69 #include "llvm/Analysis/IVUsers.h"
70 #include "llvm/Analysis/LoopAnalysisManager.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/LoopPass.h"
73 #include "llvm/Analysis/MemorySSA.h"
74 #include "llvm/Analysis/MemorySSAUpdater.h"
75 #include "llvm/Analysis/ScalarEvolution.h"
76 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
77 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/Analysis/TargetTransformInfo.h"
80 #include "llvm/Analysis/ValueTracking.h"
81 #include "llvm/Config/llvm-config.h"
82 #include "llvm/IR/BasicBlock.h"
83 #include "llvm/IR/Constant.h"
84 #include "llvm/IR/Constants.h"
85 #include "llvm/IR/DebugInfoMetadata.h"
86 #include "llvm/IR/DerivedTypes.h"
87 #include "llvm/IR/Dominators.h"
88 #include "llvm/IR/GlobalValue.h"
89 #include "llvm/IR/IRBuilder.h"
90 #include "llvm/IR/InstrTypes.h"
91 #include "llvm/IR/Instruction.h"
92 #include "llvm/IR/Instructions.h"
93 #include "llvm/IR/IntrinsicInst.h"
94 #include "llvm/IR/Intrinsics.h"
95 #include "llvm/IR/Module.h"
96 #include "llvm/IR/OperandTraits.h"
97 #include "llvm/IR/Operator.h"
98 #include "llvm/IR/PassManager.h"
99 #include "llvm/IR/Type.h"
100 #include "llvm/IR/Use.h"
101 #include "llvm/IR/User.h"
102 #include "llvm/IR/Value.h"
103 #include "llvm/IR/ValueHandle.h"
104 #include "llvm/InitializePasses.h"
105 #include "llvm/Pass.h"
106 #include "llvm/Support/Casting.h"
107 #include "llvm/Support/CommandLine.h"
108 #include "llvm/Support/Compiler.h"
109 #include "llvm/Support/Debug.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Transforms/Scalar.h"
114 #include "llvm/Transforms/Utils.h"
115 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
116 #include "llvm/Transforms/Utils/Local.h"
117 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <cstddef>
121 #include <cstdint>
122 #include <cstdlib>
123 #include <iterator>
124 #include <limits>
125 #include <map>
126 #include <numeric>
127 #include <utility>
128 
129 using namespace llvm;
130 
131 #define DEBUG_TYPE "loop-reduce"
132 
133 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
134 /// bail out. This threshold is far beyond the number of users that LSR can
135 /// conceivably solve, so it should not affect generated code, but catches the
136 /// worst cases before LSR burns too much compile time and stack space.
137 static const unsigned MaxIVUsers = 200;
138 
139 // Temporary flag to cleanup congruent phis after LSR phi expansion.
140 // It's currently disabled until we can determine whether it's truly useful or
141 // not. The flag should be removed after the v3.0 release.
142 // This is now needed for ivchains.
143 static cl::opt<bool> EnablePhiElim(
144   "enable-lsr-phielim", cl::Hidden, cl::init(true),
145   cl::desc("Enable LSR phi elimination"));
146 
147 // The flag adds instruction count to solutions cost comparision.
148 static cl::opt<bool> InsnsCost(
149   "lsr-insns-cost", cl::Hidden, cl::init(true),
150   cl::desc("Add instruction count to a LSR cost model"));
151 
152 // Flag to choose how to narrow complex lsr solution
153 static cl::opt<bool> LSRExpNarrow(
154   "lsr-exp-narrow", cl::Hidden, cl::init(false),
155   cl::desc("Narrow LSR complex solution using"
156            " expectation of registers number"));
157 
158 // Flag to narrow search space by filtering non-optimal formulae with
159 // the same ScaledReg and Scale.
160 static cl::opt<bool> FilterSameScaledReg(
161     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
162     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
163              " with the same ScaledReg and Scale"));
164 
165 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode(
166   "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None),
167    cl::desc("A flag that overrides the target's preferred addressing mode."),
168    cl::values(clEnumValN(TTI::AMK_None,
169                          "none",
170                          "Don't prefer any addressing mode"),
171               clEnumValN(TTI::AMK_PreIndexed,
172                          "preindexed",
173                          "Prefer pre-indexed addressing mode"),
174               clEnumValN(TTI::AMK_PostIndexed,
175                          "postindexed",
176                          "Prefer post-indexed addressing mode")));
177 
178 static cl::opt<unsigned> ComplexityLimit(
179   "lsr-complexity-limit", cl::Hidden,
180   cl::init(std::numeric_limits<uint16_t>::max()),
181   cl::desc("LSR search space complexity limit"));
182 
183 static cl::opt<unsigned> SetupCostDepthLimit(
184     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
185     cl::desc("The limit on recursion depth for LSRs setup cost"));
186 
187 #ifndef NDEBUG
188 // Stress test IV chain generation.
189 static cl::opt<bool> StressIVChain(
190   "stress-ivchain", cl::Hidden, cl::init(false),
191   cl::desc("Stress test LSR IV chains"));
192 #else
193 static bool StressIVChain = false;
194 #endif
195 
196 namespace {
197 
198 struct MemAccessTy {
199   /// Used in situations where the accessed memory type is unknown.
200   static const unsigned UnknownAddressSpace =
201       std::numeric_limits<unsigned>::max();
202 
203   Type *MemTy = nullptr;
204   unsigned AddrSpace = UnknownAddressSpace;
205 
206   MemAccessTy() = default;
MemAccessTy__anon2d9bc56f0111::MemAccessTy207   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
208 
operator ==__anon2d9bc56f0111::MemAccessTy209   bool operator==(MemAccessTy Other) const {
210     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
211   }
212 
operator !=__anon2d9bc56f0111::MemAccessTy213   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
214 
getUnknown__anon2d9bc56f0111::MemAccessTy215   static MemAccessTy getUnknown(LLVMContext &Ctx,
216                                 unsigned AS = UnknownAddressSpace) {
217     return MemAccessTy(Type::getVoidTy(Ctx), AS);
218   }
219 
getType__anon2d9bc56f0111::MemAccessTy220   Type *getType() { return MemTy; }
221 };
222 
223 /// This class holds data which is used to order reuse candidates.
224 class RegSortData {
225 public:
226   /// This represents the set of LSRUse indices which reference
227   /// a particular register.
228   SmallBitVector UsedByIndices;
229 
230   void print(raw_ostream &OS) const;
231   void dump() const;
232 };
233 
234 } // end anonymous namespace
235 
236 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const237 void RegSortData::print(raw_ostream &OS) const {
238   OS << "[NumUses=" << UsedByIndices.count() << ']';
239 }
240 
dump() const241 LLVM_DUMP_METHOD void RegSortData::dump() const {
242   print(errs()); errs() << '\n';
243 }
244 #endif
245 
246 namespace {
247 
248 /// Map register candidates to information about how they are used.
249 class RegUseTracker {
250   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
251 
252   RegUsesTy RegUsesMap;
253   SmallVector<const SCEV *, 16> RegSequence;
254 
255 public:
256   void countRegister(const SCEV *Reg, size_t LUIdx);
257   void dropRegister(const SCEV *Reg, size_t LUIdx);
258   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
259 
260   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
261 
262   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
263 
264   void clear();
265 
266   using iterator = SmallVectorImpl<const SCEV *>::iterator;
267   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
268 
begin()269   iterator begin() { return RegSequence.begin(); }
end()270   iterator end()   { return RegSequence.end(); }
begin() const271   const_iterator begin() const { return RegSequence.begin(); }
end() const272   const_iterator end() const   { return RegSequence.end(); }
273 };
274 
275 } // end anonymous namespace
276 
277 void
countRegister(const SCEV * Reg,size_t LUIdx)278 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
279   std::pair<RegUsesTy::iterator, bool> Pair =
280     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
281   RegSortData &RSD = Pair.first->second;
282   if (Pair.second)
283     RegSequence.push_back(Reg);
284   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
285   RSD.UsedByIndices.set(LUIdx);
286 }
287 
288 void
dropRegister(const SCEV * Reg,size_t LUIdx)289 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
290   RegUsesTy::iterator It = RegUsesMap.find(Reg);
291   assert(It != RegUsesMap.end());
292   RegSortData &RSD = It->second;
293   assert(RSD.UsedByIndices.size() > LUIdx);
294   RSD.UsedByIndices.reset(LUIdx);
295 }
296 
297 void
swapAndDropUse(size_t LUIdx,size_t LastLUIdx)298 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
299   assert(LUIdx <= LastLUIdx);
300 
301   // Update RegUses. The data structure is not optimized for this purpose;
302   // we must iterate through it and update each of the bit vectors.
303   for (auto &Pair : RegUsesMap) {
304     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
305     if (LUIdx < UsedByIndices.size())
306       UsedByIndices[LUIdx] =
307         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
308     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
309   }
310 }
311 
312 bool
isRegUsedByUsesOtherThan(const SCEV * Reg,size_t LUIdx) const313 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
314   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
315   if (I == RegUsesMap.end())
316     return false;
317   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
318   int i = UsedByIndices.find_first();
319   if (i == -1) return false;
320   if ((size_t)i != LUIdx) return true;
321   return UsedByIndices.find_next(i) != -1;
322 }
323 
getUsedByIndices(const SCEV * Reg) const324 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
325   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
326   assert(I != RegUsesMap.end() && "Unknown register!");
327   return I->second.UsedByIndices;
328 }
329 
clear()330 void RegUseTracker::clear() {
331   RegUsesMap.clear();
332   RegSequence.clear();
333 }
334 
335 namespace {
336 
337 /// This class holds information that describes a formula for computing
338 /// satisfying a use. It may include broken-out immediates and scaled registers.
339 struct Formula {
340   /// Global base address used for complex addressing.
341   GlobalValue *BaseGV = nullptr;
342 
343   /// Base offset for complex addressing.
344   int64_t BaseOffset = 0;
345 
346   /// Whether any complex addressing has a base register.
347   bool HasBaseReg = false;
348 
349   /// The scale of any complex addressing.
350   int64_t Scale = 0;
351 
352   /// The list of "base" registers for this use. When this is non-empty. The
353   /// canonical representation of a formula is
354   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
355   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
356   /// 3. The reg containing recurrent expr related with currect loop in the
357   /// formula should be put in the ScaledReg.
358   /// #1 enforces that the scaled register is always used when at least two
359   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
360   /// #2 enforces that 1 * reg is reg.
361   /// #3 ensures invariant regs with respect to current loop can be combined
362   /// together in LSR codegen.
363   /// This invariant can be temporarily broken while building a formula.
364   /// However, every formula inserted into the LSRInstance must be in canonical
365   /// form.
366   SmallVector<const SCEV *, 4> BaseRegs;
367 
368   /// The 'scaled' register for this use. This should be non-null when Scale is
369   /// not zero.
370   const SCEV *ScaledReg = nullptr;
371 
372   /// An additional constant offset which added near the use. This requires a
373   /// temporary register, but the offset itself can live in an add immediate
374   /// field rather than a register.
375   int64_t UnfoldedOffset = 0;
376 
377   Formula() = default;
378 
379   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
380 
381   bool isCanonical(const Loop &L) const;
382 
383   void canonicalize(const Loop &L);
384 
385   bool unscale();
386 
387   bool hasZeroEnd() const;
388 
389   size_t getNumRegs() const;
390   Type *getType() const;
391 
392   void deleteBaseReg(const SCEV *&S);
393 
394   bool referencesReg(const SCEV *S) const;
395   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
396                                   const RegUseTracker &RegUses) const;
397 
398   void print(raw_ostream &OS) const;
399   void dump() const;
400 };
401 
402 } // end anonymous namespace
403 
404 /// Recursion helper for initialMatch.
DoInitialMatch(const SCEV * S,Loop * L,SmallVectorImpl<const SCEV * > & Good,SmallVectorImpl<const SCEV * > & Bad,ScalarEvolution & SE)405 static void DoInitialMatch(const SCEV *S, Loop *L,
406                            SmallVectorImpl<const SCEV *> &Good,
407                            SmallVectorImpl<const SCEV *> &Bad,
408                            ScalarEvolution &SE) {
409   // Collect expressions which properly dominate the loop header.
410   if (SE.properlyDominates(S, L->getHeader())) {
411     Good.push_back(S);
412     return;
413   }
414 
415   // Look at add operands.
416   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
417     for (const SCEV *S : Add->operands())
418       DoInitialMatch(S, L, Good, Bad, SE);
419     return;
420   }
421 
422   // Look at addrec operands.
423   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
424     if (!AR->getStart()->isZero() && AR->isAffine()) {
425       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
426       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
427                                       AR->getStepRecurrence(SE),
428                                       // FIXME: AR->getNoWrapFlags()
429                                       AR->getLoop(), SCEV::FlagAnyWrap),
430                      L, Good, Bad, SE);
431       return;
432     }
433 
434   // Handle a multiplication by -1 (negation) if it didn't fold.
435   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
436     if (Mul->getOperand(0)->isAllOnesValue()) {
437       SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands()));
438       const SCEV *NewMul = SE.getMulExpr(Ops);
439 
440       SmallVector<const SCEV *, 4> MyGood;
441       SmallVector<const SCEV *, 4> MyBad;
442       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
443       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
444         SE.getEffectiveSCEVType(NewMul->getType())));
445       for (const SCEV *S : MyGood)
446         Good.push_back(SE.getMulExpr(NegOne, S));
447       for (const SCEV *S : MyBad)
448         Bad.push_back(SE.getMulExpr(NegOne, S));
449       return;
450     }
451 
452   // Ok, we can't do anything interesting. Just stuff the whole thing into a
453   // register and hope for the best.
454   Bad.push_back(S);
455 }
456 
457 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
458 /// all loop-invariant and loop-computable values in a single base register.
initialMatch(const SCEV * S,Loop * L,ScalarEvolution & SE)459 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
460   SmallVector<const SCEV *, 4> Good;
461   SmallVector<const SCEV *, 4> Bad;
462   DoInitialMatch(S, L, Good, Bad, SE);
463   if (!Good.empty()) {
464     const SCEV *Sum = SE.getAddExpr(Good);
465     if (!Sum->isZero())
466       BaseRegs.push_back(Sum);
467     HasBaseReg = true;
468   }
469   if (!Bad.empty()) {
470     const SCEV *Sum = SE.getAddExpr(Bad);
471     if (!Sum->isZero())
472       BaseRegs.push_back(Sum);
473     HasBaseReg = true;
474   }
475   canonicalize(*L);
476 }
477 
478 /// Check whether or not this formula satisfies the canonical
479 /// representation.
480 /// \see Formula::BaseRegs.
isCanonical(const Loop & L) const481 bool Formula::isCanonical(const Loop &L) const {
482   if (!ScaledReg)
483     return BaseRegs.size() <= 1;
484 
485   if (Scale != 1)
486     return true;
487 
488   if (Scale == 1 && BaseRegs.empty())
489     return false;
490 
491   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
492   if (SAR && SAR->getLoop() == &L)
493     return true;
494 
495   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
496   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
497   // loop, we want to swap the reg in BaseRegs with ScaledReg.
498   auto I = find_if(BaseRegs, [&](const SCEV *S) {
499     return isa<const SCEVAddRecExpr>(S) &&
500            (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
501   });
502   return I == BaseRegs.end();
503 }
504 
505 /// Helper method to morph a formula into its canonical representation.
506 /// \see Formula::BaseRegs.
507 /// Every formula having more than one base register, must use the ScaledReg
508 /// field. Otherwise, we would have to do special cases everywhere in LSR
509 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
510 /// On the other hand, 1*reg should be canonicalized into reg.
canonicalize(const Loop & L)511 void Formula::canonicalize(const Loop &L) {
512   if (isCanonical(L))
513     return;
514 
515   if (BaseRegs.empty()) {
516     // No base reg? Use scale reg with scale = 1 as such.
517     assert(ScaledReg && "Expected 1*reg => reg");
518     assert(Scale == 1 && "Expected 1*reg => reg");
519     BaseRegs.push_back(ScaledReg);
520     Scale = 0;
521     ScaledReg = nullptr;
522     return;
523   }
524 
525   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
526   if (!ScaledReg) {
527     ScaledReg = BaseRegs.pop_back_val();
528     Scale = 1;
529   }
530 
531   // If ScaledReg is an invariant with respect to L, find the reg from
532   // BaseRegs containing the recurrent expr related with Loop L. Swap the
533   // reg with ScaledReg.
534   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
535   if (!SAR || SAR->getLoop() != &L) {
536     auto I = find_if(BaseRegs, [&](const SCEV *S) {
537       return isa<const SCEVAddRecExpr>(S) &&
538              (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
539     });
540     if (I != BaseRegs.end())
541       std::swap(ScaledReg, *I);
542   }
543   assert(isCanonical(L) && "Failed to canonicalize?");
544 }
545 
546 /// Get rid of the scale in the formula.
547 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
548 /// \return true if it was possible to get rid of the scale, false otherwise.
549 /// \note After this operation the formula may not be in the canonical form.
unscale()550 bool Formula::unscale() {
551   if (Scale != 1)
552     return false;
553   Scale = 0;
554   BaseRegs.push_back(ScaledReg);
555   ScaledReg = nullptr;
556   return true;
557 }
558 
hasZeroEnd() const559 bool Formula::hasZeroEnd() const {
560   if (UnfoldedOffset || BaseOffset)
561     return false;
562   if (BaseRegs.size() != 1 || ScaledReg)
563     return false;
564   return true;
565 }
566 
567 /// Return the total number of register operands used by this formula. This does
568 /// not include register uses implied by non-constant addrec strides.
getNumRegs() const569 size_t Formula::getNumRegs() const {
570   return !!ScaledReg + BaseRegs.size();
571 }
572 
573 /// Return the type of this formula, if it has one, or null otherwise. This type
574 /// is meaningless except for the bit size.
getType() const575 Type *Formula::getType() const {
576   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
577          ScaledReg ? ScaledReg->getType() :
578          BaseGV ? BaseGV->getType() :
579          nullptr;
580 }
581 
582 /// Delete the given base reg from the BaseRegs list.
deleteBaseReg(const SCEV * & S)583 void Formula::deleteBaseReg(const SCEV *&S) {
584   if (&S != &BaseRegs.back())
585     std::swap(S, BaseRegs.back());
586   BaseRegs.pop_back();
587 }
588 
589 /// Test if this formula references the given register.
referencesReg(const SCEV * S) const590 bool Formula::referencesReg(const SCEV *S) const {
591   return S == ScaledReg || is_contained(BaseRegs, S);
592 }
593 
594 /// Test whether this formula uses registers which are used by uses other than
595 /// the use with the given index.
hasRegsUsedByUsesOtherThan(size_t LUIdx,const RegUseTracker & RegUses) const596 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
597                                          const RegUseTracker &RegUses) const {
598   if (ScaledReg)
599     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
600       return true;
601   for (const SCEV *BaseReg : BaseRegs)
602     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
603       return true;
604   return false;
605 }
606 
607 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const608 void Formula::print(raw_ostream &OS) const {
609   bool First = true;
610   if (BaseGV) {
611     if (!First) OS << " + "; else First = false;
612     BaseGV->printAsOperand(OS, /*PrintType=*/false);
613   }
614   if (BaseOffset != 0) {
615     if (!First) OS << " + "; else First = false;
616     OS << BaseOffset;
617   }
618   for (const SCEV *BaseReg : BaseRegs) {
619     if (!First) OS << " + "; else First = false;
620     OS << "reg(" << *BaseReg << ')';
621   }
622   if (HasBaseReg && BaseRegs.empty()) {
623     if (!First) OS << " + "; else First = false;
624     OS << "**error: HasBaseReg**";
625   } else if (!HasBaseReg && !BaseRegs.empty()) {
626     if (!First) OS << " + "; else First = false;
627     OS << "**error: !HasBaseReg**";
628   }
629   if (Scale != 0) {
630     if (!First) OS << " + "; else First = false;
631     OS << Scale << "*reg(";
632     if (ScaledReg)
633       OS << *ScaledReg;
634     else
635       OS << "<unknown>";
636     OS << ')';
637   }
638   if (UnfoldedOffset != 0) {
639     if (!First) OS << " + ";
640     OS << "imm(" << UnfoldedOffset << ')';
641   }
642 }
643 
dump() const644 LLVM_DUMP_METHOD void Formula::dump() const {
645   print(errs()); errs() << '\n';
646 }
647 #endif
648 
649 /// Return true if the given addrec can be sign-extended without changing its
650 /// value.
isAddRecSExtable(const SCEVAddRecExpr * AR,ScalarEvolution & SE)651 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
652   Type *WideTy =
653     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
654   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
655 }
656 
657 /// Return true if the given add can be sign-extended without changing its
658 /// value.
isAddSExtable(const SCEVAddExpr * A,ScalarEvolution & SE)659 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
660   Type *WideTy =
661     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
662   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
663 }
664 
665 /// Return true if the given mul can be sign-extended without changing its
666 /// value.
isMulSExtable(const SCEVMulExpr * M,ScalarEvolution & SE)667 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
668   Type *WideTy =
669     IntegerType::get(SE.getContext(),
670                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
671   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
672 }
673 
674 /// Return an expression for LHS /s RHS, if it can be determined and if the
675 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
676 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that
677 /// the multiplication may overflow, which is useful when the result will be
678 /// used in a context where the most significant bits are ignored.
getExactSDiv(const SCEV * LHS,const SCEV * RHS,ScalarEvolution & SE,bool IgnoreSignificantBits=false)679 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
680                                 ScalarEvolution &SE,
681                                 bool IgnoreSignificantBits = false) {
682   // Handle the trivial case, which works for any SCEV type.
683   if (LHS == RHS)
684     return SE.getConstant(LHS->getType(), 1);
685 
686   // Handle a few RHS special cases.
687   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
688   if (RC) {
689     const APInt &RA = RC->getAPInt();
690     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
691     // some folding.
692     if (RA.isAllOnesValue()) {
693       if (LHS->getType()->isPointerTy())
694         return nullptr;
695       return SE.getMulExpr(LHS, RC);
696     }
697     // Handle x /s 1 as x.
698     if (RA == 1)
699       return LHS;
700   }
701 
702   // Check for a division of a constant by a constant.
703   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
704     if (!RC)
705       return nullptr;
706     const APInt &LA = C->getAPInt();
707     const APInt &RA = RC->getAPInt();
708     if (LA.srem(RA) != 0)
709       return nullptr;
710     return SE.getConstant(LA.sdiv(RA));
711   }
712 
713   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
714   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
715     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
716       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
717                                       IgnoreSignificantBits);
718       if (!Step) return nullptr;
719       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
720                                        IgnoreSignificantBits);
721       if (!Start) return nullptr;
722       // FlagNW is independent of the start value, step direction, and is
723       // preserved with smaller magnitude steps.
724       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
725       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
726     }
727     return nullptr;
728   }
729 
730   // Distribute the sdiv over add operands, if the add doesn't overflow.
731   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
732     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
733       SmallVector<const SCEV *, 8> Ops;
734       for (const SCEV *S : Add->operands()) {
735         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
736         if (!Op) return nullptr;
737         Ops.push_back(Op);
738       }
739       return SE.getAddExpr(Ops);
740     }
741     return nullptr;
742   }
743 
744   // Check for a multiply operand that we can pull RHS out of.
745   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
746     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
747       // Handle special case C1*X*Y /s C2*X*Y.
748       if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) {
749         if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) {
750           const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
751           const SCEVConstant *RC =
752               dyn_cast<SCEVConstant>(MulRHS->getOperand(0));
753           if (LC && RC) {
754             SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands()));
755             SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands()));
756             if (LOps == ROps)
757               return getExactSDiv(LC, RC, SE, IgnoreSignificantBits);
758           }
759         }
760       }
761 
762       SmallVector<const SCEV *, 4> Ops;
763       bool Found = false;
764       for (const SCEV *S : Mul->operands()) {
765         if (!Found)
766           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
767                                            IgnoreSignificantBits)) {
768             S = Q;
769             Found = true;
770           }
771         Ops.push_back(S);
772       }
773       return Found ? SE.getMulExpr(Ops) : nullptr;
774     }
775     return nullptr;
776   }
777 
778   // Otherwise we don't know.
779   return nullptr;
780 }
781 
782 /// If S involves the addition of a constant integer value, return that integer
783 /// value, and mutate S to point to a new SCEV with that value excluded.
ExtractImmediate(const SCEV * & S,ScalarEvolution & SE)784 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
785   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
786     if (C->getAPInt().getMinSignedBits() <= 64) {
787       S = SE.getConstant(C->getType(), 0);
788       return C->getValue()->getSExtValue();
789     }
790   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
791     SmallVector<const SCEV *, 8> NewOps(Add->operands());
792     int64_t Result = ExtractImmediate(NewOps.front(), SE);
793     if (Result != 0)
794       S = SE.getAddExpr(NewOps);
795     return Result;
796   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
797     SmallVector<const SCEV *, 8> NewOps(AR->operands());
798     int64_t Result = ExtractImmediate(NewOps.front(), SE);
799     if (Result != 0)
800       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
801                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
802                            SCEV::FlagAnyWrap);
803     return Result;
804   }
805   return 0;
806 }
807 
808 /// If S involves the addition of a GlobalValue address, return that symbol, and
809 /// mutate S to point to a new SCEV with that value excluded.
ExtractSymbol(const SCEV * & S,ScalarEvolution & SE)810 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
811   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
812     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
813       S = SE.getConstant(GV->getType(), 0);
814       return GV;
815     }
816   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
817     SmallVector<const SCEV *, 8> NewOps(Add->operands());
818     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
819     if (Result)
820       S = SE.getAddExpr(NewOps);
821     return Result;
822   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
823     SmallVector<const SCEV *, 8> NewOps(AR->operands());
824     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
825     if (Result)
826       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
827                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
828                            SCEV::FlagAnyWrap);
829     return Result;
830   }
831   return nullptr;
832 }
833 
834 /// Returns true if the specified instruction is using the specified value as an
835 /// address.
isAddressUse(const TargetTransformInfo & TTI,Instruction * Inst,Value * OperandVal)836 static bool isAddressUse(const TargetTransformInfo &TTI,
837                          Instruction *Inst, Value *OperandVal) {
838   bool isAddress = isa<LoadInst>(Inst);
839   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
840     if (SI->getPointerOperand() == OperandVal)
841       isAddress = true;
842   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
843     // Addressing modes can also be folded into prefetches and a variety
844     // of intrinsics.
845     switch (II->getIntrinsicID()) {
846     case Intrinsic::memset:
847     case Intrinsic::prefetch:
848     case Intrinsic::masked_load:
849       if (II->getArgOperand(0) == OperandVal)
850         isAddress = true;
851       break;
852     case Intrinsic::masked_store:
853       if (II->getArgOperand(1) == OperandVal)
854         isAddress = true;
855       break;
856     case Intrinsic::memmove:
857     case Intrinsic::memcpy:
858       if (II->getArgOperand(0) == OperandVal ||
859           II->getArgOperand(1) == OperandVal)
860         isAddress = true;
861       break;
862     default: {
863       MemIntrinsicInfo IntrInfo;
864       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
865         if (IntrInfo.PtrVal == OperandVal)
866           isAddress = true;
867       }
868     }
869     }
870   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
871     if (RMW->getPointerOperand() == OperandVal)
872       isAddress = true;
873   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
874     if (CmpX->getPointerOperand() == OperandVal)
875       isAddress = true;
876   }
877   return isAddress;
878 }
879 
880 /// Return the type of the memory being accessed.
getAccessType(const TargetTransformInfo & TTI,Instruction * Inst,Value * OperandVal)881 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
882                                  Instruction *Inst, Value *OperandVal) {
883   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
884   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
885     AccessTy.MemTy = SI->getOperand(0)->getType();
886     AccessTy.AddrSpace = SI->getPointerAddressSpace();
887   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
888     AccessTy.AddrSpace = LI->getPointerAddressSpace();
889   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
890     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
891   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
892     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
893   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
894     switch (II->getIntrinsicID()) {
895     case Intrinsic::prefetch:
896     case Intrinsic::memset:
897       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
898       AccessTy.MemTy = OperandVal->getType();
899       break;
900     case Intrinsic::memmove:
901     case Intrinsic::memcpy:
902       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
903       AccessTy.MemTy = OperandVal->getType();
904       break;
905     case Intrinsic::masked_load:
906       AccessTy.AddrSpace =
907           II->getArgOperand(0)->getType()->getPointerAddressSpace();
908       break;
909     case Intrinsic::masked_store:
910       AccessTy.MemTy = II->getOperand(0)->getType();
911       AccessTy.AddrSpace =
912           II->getArgOperand(1)->getType()->getPointerAddressSpace();
913       break;
914     default: {
915       MemIntrinsicInfo IntrInfo;
916       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
917         AccessTy.AddrSpace
918           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
919       }
920 
921       break;
922     }
923     }
924   }
925 
926   // All pointers have the same requirements, so canonicalize them to an
927   // arbitrary pointer type to minimize variation.
928   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
929     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
930                                       PTy->getAddressSpace());
931 
932   return AccessTy;
933 }
934 
935 /// Return true if this AddRec is already a phi in its loop.
isExistingPhi(const SCEVAddRecExpr * AR,ScalarEvolution & SE)936 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
937   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
938     if (SE.isSCEVable(PN.getType()) &&
939         (SE.getEffectiveSCEVType(PN.getType()) ==
940          SE.getEffectiveSCEVType(AR->getType())) &&
941         SE.getSCEV(&PN) == AR)
942       return true;
943   }
944   return false;
945 }
946 
947 /// Check if expanding this expression is likely to incur significant cost. This
948 /// is tricky because SCEV doesn't track which expressions are actually computed
949 /// by the current IR.
950 ///
951 /// We currently allow expansion of IV increments that involve adds,
952 /// multiplication by constants, and AddRecs from existing phis.
953 ///
954 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
955 /// obvious multiple of the UDivExpr.
isHighCostExpansion(const SCEV * S,SmallPtrSetImpl<const SCEV * > & Processed,ScalarEvolution & SE)956 static bool isHighCostExpansion(const SCEV *S,
957                                 SmallPtrSetImpl<const SCEV*> &Processed,
958                                 ScalarEvolution &SE) {
959   // Zero/One operand expressions
960   switch (S->getSCEVType()) {
961   case scUnknown:
962   case scConstant:
963     return false;
964   case scTruncate:
965     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
966                                Processed, SE);
967   case scZeroExtend:
968     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
969                                Processed, SE);
970   case scSignExtend:
971     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
972                                Processed, SE);
973   default:
974     break;
975   }
976 
977   if (!Processed.insert(S).second)
978     return false;
979 
980   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
981     for (const SCEV *S : Add->operands()) {
982       if (isHighCostExpansion(S, Processed, SE))
983         return true;
984     }
985     return false;
986   }
987 
988   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
989     if (Mul->getNumOperands() == 2) {
990       // Multiplication by a constant is ok
991       if (isa<SCEVConstant>(Mul->getOperand(0)))
992         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
993 
994       // If we have the value of one operand, check if an existing
995       // multiplication already generates this expression.
996       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
997         Value *UVal = U->getValue();
998         for (User *UR : UVal->users()) {
999           // If U is a constant, it may be used by a ConstantExpr.
1000           Instruction *UI = dyn_cast<Instruction>(UR);
1001           if (UI && UI->getOpcode() == Instruction::Mul &&
1002               SE.isSCEVable(UI->getType())) {
1003             return SE.getSCEV(UI) == Mul;
1004           }
1005         }
1006       }
1007     }
1008   }
1009 
1010   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1011     if (isExistingPhi(AR, SE))
1012       return false;
1013   }
1014 
1015   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
1016   return true;
1017 }
1018 
1019 namespace {
1020 
1021 class LSRUse;
1022 
1023 } // end anonymous namespace
1024 
1025 /// Check if the addressing mode defined by \p F is completely
1026 /// folded in \p LU at isel time.
1027 /// This includes address-mode folding and special icmp tricks.
1028 /// This function returns true if \p LU can accommodate what \p F
1029 /// defines and up to 1 base + 1 scaled + offset.
1030 /// In other words, if \p F has several base registers, this function may
1031 /// still return true. Therefore, users still need to account for
1032 /// additional base registers and/or unfolded offsets to derive an
1033 /// accurate cost model.
1034 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1035                                  const LSRUse &LU, const Formula &F);
1036 
1037 // Get the cost of the scaling factor used in F for LU.
1038 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1039                                             const LSRUse &LU, const Formula &F,
1040                                             const Loop &L);
1041 
1042 namespace {
1043 
1044 /// This class is used to measure and compare candidate formulae.
1045 class Cost {
1046   const Loop *L = nullptr;
1047   ScalarEvolution *SE = nullptr;
1048   const TargetTransformInfo *TTI = nullptr;
1049   TargetTransformInfo::LSRCost C;
1050   TTI::AddressingModeKind AMK = TTI::AMK_None;
1051 
1052 public:
1053   Cost() = delete;
Cost(const Loop * L,ScalarEvolution & SE,const TargetTransformInfo & TTI,TTI::AddressingModeKind AMK)1054   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
1055        TTI::AddressingModeKind AMK) :
1056     L(L), SE(&SE), TTI(&TTI), AMK(AMK) {
1057     C.Insns = 0;
1058     C.NumRegs = 0;
1059     C.AddRecCost = 0;
1060     C.NumIVMuls = 0;
1061     C.NumBaseAdds = 0;
1062     C.ImmCost = 0;
1063     C.SetupCost = 0;
1064     C.ScaleCost = 0;
1065   }
1066 
1067   bool isLess(Cost &Other);
1068 
1069   void Lose();
1070 
1071 #ifndef NDEBUG
1072   // Once any of the metrics loses, they must all remain losers.
isValid()1073   bool isValid() {
1074     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1075              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1076       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1077            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1078   }
1079 #endif
1080 
isLoser()1081   bool isLoser() {
1082     assert(isValid() && "invalid cost");
1083     return C.NumRegs == ~0u;
1084   }
1085 
1086   void RateFormula(const Formula &F,
1087                    SmallPtrSetImpl<const SCEV *> &Regs,
1088                    const DenseSet<const SCEV *> &VisitedRegs,
1089                    const LSRUse &LU,
1090                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1091 
1092   void print(raw_ostream &OS) const;
1093   void dump() const;
1094 
1095 private:
1096   void RateRegister(const Formula &F, const SCEV *Reg,
1097                     SmallPtrSetImpl<const SCEV *> &Regs);
1098   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1099                            SmallPtrSetImpl<const SCEV *> &Regs,
1100                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1101 };
1102 
1103 /// An operand value in an instruction which is to be replaced with some
1104 /// equivalent, possibly strength-reduced, replacement.
1105 struct LSRFixup {
1106   /// The instruction which will be updated.
1107   Instruction *UserInst = nullptr;
1108 
1109   /// The operand of the instruction which will be replaced. The operand may be
1110   /// used more than once; every instance will be replaced.
1111   Value *OperandValToReplace = nullptr;
1112 
1113   /// If this user is to use the post-incremented value of an induction
1114   /// variable, this set is non-empty and holds the loops associated with the
1115   /// induction variable.
1116   PostIncLoopSet PostIncLoops;
1117 
1118   /// A constant offset to be added to the LSRUse expression.  This allows
1119   /// multiple fixups to share the same LSRUse with different offsets, for
1120   /// example in an unrolled loop.
1121   int64_t Offset = 0;
1122 
1123   LSRFixup() = default;
1124 
1125   bool isUseFullyOutsideLoop(const Loop *L) const;
1126 
1127   void print(raw_ostream &OS) const;
1128   void dump() const;
1129 };
1130 
1131 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1132 /// SmallVectors of const SCEV*.
1133 struct UniquifierDenseMapInfo {
getEmptyKey__anon2d9bc56f0711::UniquifierDenseMapInfo1134   static SmallVector<const SCEV *, 4> getEmptyKey() {
1135     SmallVector<const SCEV *, 4>  V;
1136     V.push_back(reinterpret_cast<const SCEV *>(-1));
1137     return V;
1138   }
1139 
getTombstoneKey__anon2d9bc56f0711::UniquifierDenseMapInfo1140   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1141     SmallVector<const SCEV *, 4> V;
1142     V.push_back(reinterpret_cast<const SCEV *>(-2));
1143     return V;
1144   }
1145 
getHashValue__anon2d9bc56f0711::UniquifierDenseMapInfo1146   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1147     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1148   }
1149 
isEqual__anon2d9bc56f0711::UniquifierDenseMapInfo1150   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1151                       const SmallVector<const SCEV *, 4> &RHS) {
1152     return LHS == RHS;
1153   }
1154 };
1155 
1156 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1157 /// as uses invented by LSR itself. It includes information about what kinds of
1158 /// things can be folded into the user, information about the user itself, and
1159 /// information about how the use may be satisfied.  TODO: Represent multiple
1160 /// users of the same expression in common?
1161 class LSRUse {
1162   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1163 
1164 public:
1165   /// An enum for a kind of use, indicating what types of scaled and immediate
1166   /// operands it might support.
1167   enum KindType {
1168     Basic,   ///< A normal use, with no folding.
1169     Special, ///< A special case of basic, allowing -1 scales.
1170     Address, ///< An address use; folding according to TargetLowering
1171     ICmpZero ///< An equality icmp with both operands folded into one.
1172     // TODO: Add a generic icmp too?
1173   };
1174 
1175   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1176 
1177   KindType Kind;
1178   MemAccessTy AccessTy;
1179 
1180   /// The list of operands which are to be replaced.
1181   SmallVector<LSRFixup, 8> Fixups;
1182 
1183   /// Keep track of the min and max offsets of the fixups.
1184   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1185   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1186 
1187   /// This records whether all of the fixups using this LSRUse are outside of
1188   /// the loop, in which case some special-case heuristics may be used.
1189   bool AllFixupsOutsideLoop = true;
1190 
1191   /// RigidFormula is set to true to guarantee that this use will be associated
1192   /// with a single formula--the one that initially matched. Some SCEV
1193   /// expressions cannot be expanded. This allows LSR to consider the registers
1194   /// used by those expressions without the need to expand them later after
1195   /// changing the formula.
1196   bool RigidFormula = false;
1197 
1198   /// This records the widest use type for any fixup using this
1199   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1200   /// fixup widths to be equivalent, because the narrower one may be relying on
1201   /// the implicit truncation to truncate away bogus bits.
1202   Type *WidestFixupType = nullptr;
1203 
1204   /// A list of ways to build a value that can satisfy this user.  After the
1205   /// list is populated, one of these is selected heuristically and used to
1206   /// formulate a replacement for OperandValToReplace in UserInst.
1207   SmallVector<Formula, 12> Formulae;
1208 
1209   /// The set of register candidates used by all formulae in this LSRUse.
1210   SmallPtrSet<const SCEV *, 4> Regs;
1211 
LSRUse(KindType K,MemAccessTy AT)1212   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1213 
getNewFixup()1214   LSRFixup &getNewFixup() {
1215     Fixups.push_back(LSRFixup());
1216     return Fixups.back();
1217   }
1218 
pushFixup(LSRFixup & f)1219   void pushFixup(LSRFixup &f) {
1220     Fixups.push_back(f);
1221     if (f.Offset > MaxOffset)
1222       MaxOffset = f.Offset;
1223     if (f.Offset < MinOffset)
1224       MinOffset = f.Offset;
1225   }
1226 
1227   bool HasFormulaWithSameRegs(const Formula &F) const;
1228   float getNotSelectedProbability(const SCEV *Reg) const;
1229   bool InsertFormula(const Formula &F, const Loop &L);
1230   void DeleteFormula(Formula &F);
1231   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1232 
1233   void print(raw_ostream &OS) const;
1234   void dump() const;
1235 };
1236 
1237 } // end anonymous namespace
1238 
1239 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1240                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1241                                  GlobalValue *BaseGV, int64_t BaseOffset,
1242                                  bool HasBaseReg, int64_t Scale,
1243                                  Instruction *Fixup = nullptr);
1244 
getSetupCost(const SCEV * Reg,unsigned Depth)1245 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1246   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1247     return 1;
1248   if (Depth == 0)
1249     return 0;
1250   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1251     return getSetupCost(S->getStart(), Depth - 1);
1252   if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1253     return getSetupCost(S->getOperand(), Depth - 1);
1254   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1255     return std::accumulate(S->op_begin(), S->op_end(), 0,
1256                            [&](unsigned i, const SCEV *Reg) {
1257                              return i + getSetupCost(Reg, Depth - 1);
1258                            });
1259   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1260     return getSetupCost(S->getLHS(), Depth - 1) +
1261            getSetupCost(S->getRHS(), Depth - 1);
1262   return 0;
1263 }
1264 
1265 /// Tally up interesting quantities from the given register.
RateRegister(const Formula & F,const SCEV * Reg,SmallPtrSetImpl<const SCEV * > & Regs)1266 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1267                         SmallPtrSetImpl<const SCEV *> &Regs) {
1268   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1269     // If this is an addrec for another loop, it should be an invariant
1270     // with respect to L since L is the innermost loop (at least
1271     // for now LSR only handles innermost loops).
1272     if (AR->getLoop() != L) {
1273       // If the AddRec exists, consider it's register free and leave it alone.
1274       if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed)
1275         return;
1276 
1277       // It is bad to allow LSR for current loop to add induction variables
1278       // for its sibling loops.
1279       if (!AR->getLoop()->contains(L)) {
1280         Lose();
1281         return;
1282       }
1283 
1284       // Otherwise, it will be an invariant with respect to Loop L.
1285       ++C.NumRegs;
1286       return;
1287     }
1288 
1289     unsigned LoopCost = 1;
1290     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1291         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1292 
1293       // If the step size matches the base offset, we could use pre-indexed
1294       // addressing.
1295       if (AMK == TTI::AMK_PreIndexed) {
1296         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1297           if (Step->getAPInt() == F.BaseOffset)
1298             LoopCost = 0;
1299       } else if (AMK == TTI::AMK_PostIndexed) {
1300         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1301         if (isa<SCEVConstant>(LoopStep)) {
1302           const SCEV *LoopStart = AR->getStart();
1303           if (!isa<SCEVConstant>(LoopStart) &&
1304               SE->isLoopInvariant(LoopStart, L))
1305             LoopCost = 0;
1306         }
1307       }
1308     }
1309     C.AddRecCost += LoopCost;
1310 
1311     // Add the step value register, if it needs one.
1312     // TODO: The non-affine case isn't precisely modeled here.
1313     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1314       if (!Regs.count(AR->getOperand(1))) {
1315         RateRegister(F, AR->getOperand(1), Regs);
1316         if (isLoser())
1317           return;
1318       }
1319     }
1320   }
1321   ++C.NumRegs;
1322 
1323   // Rough heuristic; favor registers which don't require extra setup
1324   // instructions in the preheader.
1325   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1326   // Ensure we don't, even with the recusion limit, produce invalid costs.
1327   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1328 
1329   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1330                SE->hasComputableLoopEvolution(Reg, L);
1331 }
1332 
1333 /// Record this register in the set. If we haven't seen it before, rate
1334 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1335 /// one of those regs an instant loser.
RatePrimaryRegister(const Formula & F,const SCEV * Reg,SmallPtrSetImpl<const SCEV * > & Regs,SmallPtrSetImpl<const SCEV * > * LoserRegs)1336 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1337                                SmallPtrSetImpl<const SCEV *> &Regs,
1338                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1339   if (LoserRegs && LoserRegs->count(Reg)) {
1340     Lose();
1341     return;
1342   }
1343   if (Regs.insert(Reg).second) {
1344     RateRegister(F, Reg, Regs);
1345     if (LoserRegs && isLoser())
1346       LoserRegs->insert(Reg);
1347   }
1348 }
1349 
RateFormula(const Formula & F,SmallPtrSetImpl<const SCEV * > & Regs,const DenseSet<const SCEV * > & VisitedRegs,const LSRUse & LU,SmallPtrSetImpl<const SCEV * > * LoserRegs)1350 void Cost::RateFormula(const Formula &F,
1351                        SmallPtrSetImpl<const SCEV *> &Regs,
1352                        const DenseSet<const SCEV *> &VisitedRegs,
1353                        const LSRUse &LU,
1354                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1355   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1356   // Tally up the registers.
1357   unsigned PrevAddRecCost = C.AddRecCost;
1358   unsigned PrevNumRegs = C.NumRegs;
1359   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1360   if (const SCEV *ScaledReg = F.ScaledReg) {
1361     if (VisitedRegs.count(ScaledReg)) {
1362       Lose();
1363       return;
1364     }
1365     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1366     if (isLoser())
1367       return;
1368   }
1369   for (const SCEV *BaseReg : F.BaseRegs) {
1370     if (VisitedRegs.count(BaseReg)) {
1371       Lose();
1372       return;
1373     }
1374     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1375     if (isLoser())
1376       return;
1377   }
1378 
1379   // Determine how many (unfolded) adds we'll need inside the loop.
1380   size_t NumBaseParts = F.getNumRegs();
1381   if (NumBaseParts > 1)
1382     // Do not count the base and a possible second register if the target
1383     // allows to fold 2 registers.
1384     C.NumBaseAdds +=
1385         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1386   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1387 
1388   // Accumulate non-free scaling amounts.
1389   C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue();
1390 
1391   // Tally up the non-zero immediates.
1392   for (const LSRFixup &Fixup : LU.Fixups) {
1393     int64_t O = Fixup.Offset;
1394     int64_t Offset = (uint64_t)O + F.BaseOffset;
1395     if (F.BaseGV)
1396       C.ImmCost += 64; // Handle symbolic values conservatively.
1397                      // TODO: This should probably be the pointer size.
1398     else if (Offset != 0)
1399       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1400 
1401     // Check with target if this offset with this instruction is
1402     // specifically not supported.
1403     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1404         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1405                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1406       C.NumBaseAdds++;
1407   }
1408 
1409   // If we don't count instruction cost exit here.
1410   if (!InsnsCost) {
1411     assert(isValid() && "invalid cost");
1412     return;
1413   }
1414 
1415   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1416   // additional instruction (at least fill).
1417   // TODO: Need distinguish register class?
1418   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1419                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1420   if (C.NumRegs > TTIRegNum) {
1421     // Cost already exceeded TTIRegNum, then only newly added register can add
1422     // new instructions.
1423     if (PrevNumRegs > TTIRegNum)
1424       C.Insns += (C.NumRegs - PrevNumRegs);
1425     else
1426       C.Insns += (C.NumRegs - TTIRegNum);
1427   }
1428 
1429   // If ICmpZero formula ends with not 0, it could not be replaced by
1430   // just add or sub. We'll need to compare final result of AddRec.
1431   // That means we'll need an additional instruction. But if the target can
1432   // macro-fuse a compare with a branch, don't count this extra instruction.
1433   // For -10 + {0, +, 1}:
1434   // i = i + 1;
1435   // cmp i, 10
1436   //
1437   // For {-10, +, 1}:
1438   // i = i + 1;
1439   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1440       !TTI->canMacroFuseCmp())
1441     C.Insns++;
1442   // Each new AddRec adds 1 instruction to calculation.
1443   C.Insns += (C.AddRecCost - PrevAddRecCost);
1444 
1445   // BaseAdds adds instructions for unfolded registers.
1446   if (LU.Kind != LSRUse::ICmpZero)
1447     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1448   assert(isValid() && "invalid cost");
1449 }
1450 
1451 /// Set this cost to a losing value.
Lose()1452 void Cost::Lose() {
1453   C.Insns = std::numeric_limits<unsigned>::max();
1454   C.NumRegs = std::numeric_limits<unsigned>::max();
1455   C.AddRecCost = std::numeric_limits<unsigned>::max();
1456   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1457   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1458   C.ImmCost = std::numeric_limits<unsigned>::max();
1459   C.SetupCost = std::numeric_limits<unsigned>::max();
1460   C.ScaleCost = std::numeric_limits<unsigned>::max();
1461 }
1462 
1463 /// Choose the lower cost.
isLess(Cost & Other)1464 bool Cost::isLess(Cost &Other) {
1465   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1466       C.Insns != Other.C.Insns)
1467     return C.Insns < Other.C.Insns;
1468   return TTI->isLSRCostLess(C, Other.C);
1469 }
1470 
1471 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const1472 void Cost::print(raw_ostream &OS) const {
1473   if (InsnsCost)
1474     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1475   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1476   if (C.AddRecCost != 0)
1477     OS << ", with addrec cost " << C.AddRecCost;
1478   if (C.NumIVMuls != 0)
1479     OS << ", plus " << C.NumIVMuls << " IV mul"
1480        << (C.NumIVMuls == 1 ? "" : "s");
1481   if (C.NumBaseAdds != 0)
1482     OS << ", plus " << C.NumBaseAdds << " base add"
1483        << (C.NumBaseAdds == 1 ? "" : "s");
1484   if (C.ScaleCost != 0)
1485     OS << ", plus " << C.ScaleCost << " scale cost";
1486   if (C.ImmCost != 0)
1487     OS << ", plus " << C.ImmCost << " imm cost";
1488   if (C.SetupCost != 0)
1489     OS << ", plus " << C.SetupCost << " setup cost";
1490 }
1491 
dump() const1492 LLVM_DUMP_METHOD void Cost::dump() const {
1493   print(errs()); errs() << '\n';
1494 }
1495 #endif
1496 
1497 /// Test whether this fixup always uses its value outside of the given loop.
isUseFullyOutsideLoop(const Loop * L) const1498 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1499   // PHI nodes use their value in their incoming blocks.
1500   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1501     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1502       if (PN->getIncomingValue(i) == OperandValToReplace &&
1503           L->contains(PN->getIncomingBlock(i)))
1504         return false;
1505     return true;
1506   }
1507 
1508   return !L->contains(UserInst);
1509 }
1510 
1511 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const1512 void LSRFixup::print(raw_ostream &OS) const {
1513   OS << "UserInst=";
1514   // Store is common and interesting enough to be worth special-casing.
1515   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1516     OS << "store ";
1517     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1518   } else if (UserInst->getType()->isVoidTy())
1519     OS << UserInst->getOpcodeName();
1520   else
1521     UserInst->printAsOperand(OS, /*PrintType=*/false);
1522 
1523   OS << ", OperandValToReplace=";
1524   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1525 
1526   for (const Loop *PIL : PostIncLoops) {
1527     OS << ", PostIncLoop=";
1528     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1529   }
1530 
1531   if (Offset != 0)
1532     OS << ", Offset=" << Offset;
1533 }
1534 
dump() const1535 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1536   print(errs()); errs() << '\n';
1537 }
1538 #endif
1539 
1540 /// Test whether this use as a formula which has the same registers as the given
1541 /// formula.
HasFormulaWithSameRegs(const Formula & F) const1542 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1543   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1544   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1545   // Unstable sort by host order ok, because this is only used for uniquifying.
1546   llvm::sort(Key);
1547   return Uniquifier.count(Key);
1548 }
1549 
1550 /// The function returns a probability of selecting formula without Reg.
getNotSelectedProbability(const SCEV * Reg) const1551 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1552   unsigned FNum = 0;
1553   for (const Formula &F : Formulae)
1554     if (F.referencesReg(Reg))
1555       FNum++;
1556   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1557 }
1558 
1559 /// If the given formula has not yet been inserted, add it to the list, and
1560 /// return true. Return false otherwise.  The formula must be in canonical form.
InsertFormula(const Formula & F,const Loop & L)1561 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1562   assert(F.isCanonical(L) && "Invalid canonical representation");
1563 
1564   if (!Formulae.empty() && RigidFormula)
1565     return false;
1566 
1567   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1568   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1569   // Unstable sort by host order ok, because this is only used for uniquifying.
1570   llvm::sort(Key);
1571 
1572   if (!Uniquifier.insert(Key).second)
1573     return false;
1574 
1575   // Using a register to hold the value of 0 is not profitable.
1576   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1577          "Zero allocated in a scaled register!");
1578 #ifndef NDEBUG
1579   for (const SCEV *BaseReg : F.BaseRegs)
1580     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1581 #endif
1582 
1583   // Add the formula to the list.
1584   Formulae.push_back(F);
1585 
1586   // Record registers now being used by this use.
1587   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1588   if (F.ScaledReg)
1589     Regs.insert(F.ScaledReg);
1590 
1591   return true;
1592 }
1593 
1594 /// Remove the given formula from this use's list.
DeleteFormula(Formula & F)1595 void LSRUse::DeleteFormula(Formula &F) {
1596   if (&F != &Formulae.back())
1597     std::swap(F, Formulae.back());
1598   Formulae.pop_back();
1599 }
1600 
1601 /// Recompute the Regs field, and update RegUses.
RecomputeRegs(size_t LUIdx,RegUseTracker & RegUses)1602 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1603   // Now that we've filtered out some formulae, recompute the Regs set.
1604   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1605   Regs.clear();
1606   for (const Formula &F : Formulae) {
1607     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1608     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1609   }
1610 
1611   // Update the RegTracker.
1612   for (const SCEV *S : OldRegs)
1613     if (!Regs.count(S))
1614       RegUses.dropRegister(S, LUIdx);
1615 }
1616 
1617 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const1618 void LSRUse::print(raw_ostream &OS) const {
1619   OS << "LSR Use: Kind=";
1620   switch (Kind) {
1621   case Basic:    OS << "Basic"; break;
1622   case Special:  OS << "Special"; break;
1623   case ICmpZero: OS << "ICmpZero"; break;
1624   case Address:
1625     OS << "Address of ";
1626     if (AccessTy.MemTy->isPointerTy())
1627       OS << "pointer"; // the full pointer type could be really verbose
1628     else {
1629       OS << *AccessTy.MemTy;
1630     }
1631 
1632     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1633   }
1634 
1635   OS << ", Offsets={";
1636   bool NeedComma = false;
1637   for (const LSRFixup &Fixup : Fixups) {
1638     if (NeedComma) OS << ',';
1639     OS << Fixup.Offset;
1640     NeedComma = true;
1641   }
1642   OS << '}';
1643 
1644   if (AllFixupsOutsideLoop)
1645     OS << ", all-fixups-outside-loop";
1646 
1647   if (WidestFixupType)
1648     OS << ", widest fixup type: " << *WidestFixupType;
1649 }
1650 
dump() const1651 LLVM_DUMP_METHOD void LSRUse::dump() const {
1652   print(errs()); errs() << '\n';
1653 }
1654 #endif
1655 
isAMCompletelyFolded(const TargetTransformInfo & TTI,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,Instruction * Fixup)1656 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1657                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1658                                  GlobalValue *BaseGV, int64_t BaseOffset,
1659                                  bool HasBaseReg, int64_t Scale,
1660                                  Instruction *Fixup/*= nullptr*/) {
1661   switch (Kind) {
1662   case LSRUse::Address:
1663     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1664                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1665 
1666   case LSRUse::ICmpZero:
1667     // There's not even a target hook for querying whether it would be legal to
1668     // fold a GV into an ICmp.
1669     if (BaseGV)
1670       return false;
1671 
1672     // ICmp only has two operands; don't allow more than two non-trivial parts.
1673     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1674       return false;
1675 
1676     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1677     // putting the scaled register in the other operand of the icmp.
1678     if (Scale != 0 && Scale != -1)
1679       return false;
1680 
1681     // If we have low-level target information, ask the target if it can fold an
1682     // integer immediate on an icmp.
1683     if (BaseOffset != 0) {
1684       // We have one of:
1685       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1686       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1687       // Offs is the ICmp immediate.
1688       if (Scale == 0)
1689         // The cast does the right thing with
1690         // std::numeric_limits<int64_t>::min().
1691         BaseOffset = -(uint64_t)BaseOffset;
1692       return TTI.isLegalICmpImmediate(BaseOffset);
1693     }
1694 
1695     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1696     return true;
1697 
1698   case LSRUse::Basic:
1699     // Only handle single-register values.
1700     return !BaseGV && Scale == 0 && BaseOffset == 0;
1701 
1702   case LSRUse::Special:
1703     // Special case Basic to handle -1 scales.
1704     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1705   }
1706 
1707   llvm_unreachable("Invalid LSRUse Kind!");
1708 }
1709 
isAMCompletelyFolded(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale)1710 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1711                                  int64_t MinOffset, int64_t MaxOffset,
1712                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1713                                  GlobalValue *BaseGV, int64_t BaseOffset,
1714                                  bool HasBaseReg, int64_t Scale) {
1715   // Check for overflow.
1716   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1717       (MinOffset > 0))
1718     return false;
1719   MinOffset = (uint64_t)BaseOffset + MinOffset;
1720   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1721       (MaxOffset > 0))
1722     return false;
1723   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1724 
1725   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1726                               HasBaseReg, Scale) &&
1727          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1728                               HasBaseReg, Scale);
1729 }
1730 
isAMCompletelyFolded(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,const Formula & F,const Loop & L)1731 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1732                                  int64_t MinOffset, int64_t MaxOffset,
1733                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1734                                  const Formula &F, const Loop &L) {
1735   // For the purpose of isAMCompletelyFolded either having a canonical formula
1736   // or a scale not equal to zero is correct.
1737   // Problems may arise from non canonical formulae having a scale == 0.
1738   // Strictly speaking it would best to just rely on canonical formulae.
1739   // However, when we generate the scaled formulae, we first check that the
1740   // scaling factor is profitable before computing the actual ScaledReg for
1741   // compile time sake.
1742   assert((F.isCanonical(L) || F.Scale != 0));
1743   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1744                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1745 }
1746 
1747 /// Test whether we know how to expand the current formula.
isLegalUse(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale)1748 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1749                        int64_t MaxOffset, LSRUse::KindType Kind,
1750                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1751                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1752   // We know how to expand completely foldable formulae.
1753   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1754                               BaseOffset, HasBaseReg, Scale) ||
1755          // Or formulae that use a base register produced by a sum of base
1756          // registers.
1757          (Scale == 1 &&
1758           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1759                                BaseGV, BaseOffset, true, 0));
1760 }
1761 
isLegalUse(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,const Formula & F)1762 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1763                        int64_t MaxOffset, LSRUse::KindType Kind,
1764                        MemAccessTy AccessTy, const Formula &F) {
1765   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1766                     F.BaseOffset, F.HasBaseReg, F.Scale);
1767 }
1768 
isAMCompletelyFolded(const TargetTransformInfo & TTI,const LSRUse & LU,const Formula & F)1769 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1770                                  const LSRUse &LU, const Formula &F) {
1771   // Target may want to look at the user instructions.
1772   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1773     for (const LSRFixup &Fixup : LU.Fixups)
1774       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1775                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1776                                 F.Scale, Fixup.UserInst))
1777         return false;
1778     return true;
1779   }
1780 
1781   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1782                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1783                               F.Scale);
1784 }
1785 
getScalingFactorCost(const TargetTransformInfo & TTI,const LSRUse & LU,const Formula & F,const Loop & L)1786 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1787                                             const LSRUse &LU, const Formula &F,
1788                                             const Loop &L) {
1789   if (!F.Scale)
1790     return 0;
1791 
1792   // If the use is not completely folded in that instruction, we will have to
1793   // pay an extra cost only for scale != 1.
1794   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1795                             LU.AccessTy, F, L))
1796     return F.Scale != 1;
1797 
1798   switch (LU.Kind) {
1799   case LSRUse::Address: {
1800     // Check the scaling factor cost with both the min and max offsets.
1801     InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost(
1802         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1803         F.Scale, LU.AccessTy.AddrSpace);
1804     InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost(
1805         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1806         F.Scale, LU.AccessTy.AddrSpace);
1807 
1808     assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() &&
1809            "Legal addressing mode has an illegal cost!");
1810     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1811   }
1812   case LSRUse::ICmpZero:
1813   case LSRUse::Basic:
1814   case LSRUse::Special:
1815     // The use is completely folded, i.e., everything is folded into the
1816     // instruction.
1817     return 0;
1818   }
1819 
1820   llvm_unreachable("Invalid LSRUse Kind!");
1821 }
1822 
isAlwaysFoldable(const TargetTransformInfo & TTI,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg)1823 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1824                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1825                              GlobalValue *BaseGV, int64_t BaseOffset,
1826                              bool HasBaseReg) {
1827   // Fast-path: zero is always foldable.
1828   if (BaseOffset == 0 && !BaseGV) return true;
1829 
1830   // Conservatively, create an address with an immediate and a
1831   // base and a scale.
1832   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1833 
1834   // Canonicalize a scale of 1 to a base register if the formula doesn't
1835   // already have a base register.
1836   if (!HasBaseReg && Scale == 1) {
1837     Scale = 0;
1838     HasBaseReg = true;
1839   }
1840 
1841   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1842                               HasBaseReg, Scale);
1843 }
1844 
isAlwaysFoldable(const TargetTransformInfo & TTI,ScalarEvolution & SE,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,const SCEV * S,bool HasBaseReg)1845 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1846                              ScalarEvolution &SE, int64_t MinOffset,
1847                              int64_t MaxOffset, LSRUse::KindType Kind,
1848                              MemAccessTy AccessTy, const SCEV *S,
1849                              bool HasBaseReg) {
1850   // Fast-path: zero is always foldable.
1851   if (S->isZero()) return true;
1852 
1853   // Conservatively, create an address with an immediate and a
1854   // base and a scale.
1855   int64_t BaseOffset = ExtractImmediate(S, SE);
1856   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1857 
1858   // If there's anything else involved, it's not foldable.
1859   if (!S->isZero()) return false;
1860 
1861   // Fast-path: zero is always foldable.
1862   if (BaseOffset == 0 && !BaseGV) return true;
1863 
1864   // Conservatively, create an address with an immediate and a
1865   // base and a scale.
1866   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1867 
1868   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1869                               BaseOffset, HasBaseReg, Scale);
1870 }
1871 
1872 namespace {
1873 
1874 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1875 /// an expression that computes the IV it uses from the IV used by the previous
1876 /// link in the Chain.
1877 ///
1878 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1879 /// original IVOperand. The head of the chain's IVOperand is only valid during
1880 /// chain collection, before LSR replaces IV users. During chain generation,
1881 /// IncExpr can be used to find the new IVOperand that computes the same
1882 /// expression.
1883 struct IVInc {
1884   Instruction *UserInst;
1885   Value* IVOperand;
1886   const SCEV *IncExpr;
1887 
IVInc__anon2d9bc56f0911::IVInc1888   IVInc(Instruction *U, Value *O, const SCEV *E)
1889       : UserInst(U), IVOperand(O), IncExpr(E) {}
1890 };
1891 
1892 // The list of IV increments in program order.  We typically add the head of a
1893 // chain without finding subsequent links.
1894 struct IVChain {
1895   SmallVector<IVInc, 1> Incs;
1896   const SCEV *ExprBase = nullptr;
1897 
1898   IVChain() = default;
IVChain__anon2d9bc56f0911::IVChain1899   IVChain(const IVInc &Head, const SCEV *Base)
1900       : Incs(1, Head), ExprBase(Base) {}
1901 
1902   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1903 
1904   // Return the first increment in the chain.
begin__anon2d9bc56f0911::IVChain1905   const_iterator begin() const {
1906     assert(!Incs.empty());
1907     return std::next(Incs.begin());
1908   }
end__anon2d9bc56f0911::IVChain1909   const_iterator end() const {
1910     return Incs.end();
1911   }
1912 
1913   // Returns true if this chain contains any increments.
hasIncs__anon2d9bc56f0911::IVChain1914   bool hasIncs() const { return Incs.size() >= 2; }
1915 
1916   // Add an IVInc to the end of this chain.
add__anon2d9bc56f0911::IVChain1917   void add(const IVInc &X) { Incs.push_back(X); }
1918 
1919   // Returns the last UserInst in the chain.
tailUserInst__anon2d9bc56f0911::IVChain1920   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1921 
1922   // Returns true if IncExpr can be profitably added to this chain.
1923   bool isProfitableIncrement(const SCEV *OperExpr,
1924                              const SCEV *IncExpr,
1925                              ScalarEvolution&);
1926 };
1927 
1928 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1929 /// between FarUsers that definitely cross IV increments and NearUsers that may
1930 /// be used between IV increments.
1931 struct ChainUsers {
1932   SmallPtrSet<Instruction*, 4> FarUsers;
1933   SmallPtrSet<Instruction*, 4> NearUsers;
1934 };
1935 
1936 /// This class holds state for the main loop strength reduction logic.
1937 class LSRInstance {
1938   IVUsers &IU;
1939   ScalarEvolution &SE;
1940   DominatorTree &DT;
1941   LoopInfo &LI;
1942   AssumptionCache &AC;
1943   TargetLibraryInfo &TLI;
1944   const TargetTransformInfo &TTI;
1945   Loop *const L;
1946   MemorySSAUpdater *MSSAU;
1947   TTI::AddressingModeKind AMK;
1948   bool Changed = false;
1949 
1950   /// This is the insert position that the current loop's induction variable
1951   /// increment should be placed. In simple loops, this is the latch block's
1952   /// terminator. But in more complicated cases, this is a position which will
1953   /// dominate all the in-loop post-increment users.
1954   Instruction *IVIncInsertPos = nullptr;
1955 
1956   /// Interesting factors between use strides.
1957   ///
1958   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1959   /// default, a SmallDenseSet, because we need to use the full range of
1960   /// int64_ts, and there's currently no good way of doing that with
1961   /// SmallDenseSet.
1962   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1963 
1964   /// Interesting use types, to facilitate truncation reuse.
1965   SmallSetVector<Type *, 4> Types;
1966 
1967   /// The list of interesting uses.
1968   mutable SmallVector<LSRUse, 16> Uses;
1969 
1970   /// Track which uses use which register candidates.
1971   RegUseTracker RegUses;
1972 
1973   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1974   // have more than a few IV increment chains in a loop. Missing a Chain falls
1975   // back to normal LSR behavior for those uses.
1976   static const unsigned MaxChains = 8;
1977 
1978   /// IV users can form a chain of IV increments.
1979   SmallVector<IVChain, MaxChains> IVChainVec;
1980 
1981   /// IV users that belong to profitable IVChains.
1982   SmallPtrSet<Use*, MaxChains> IVIncSet;
1983 
1984   /// Induction variables that were generated and inserted by the SCEV Expander.
1985   SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs;
1986 
1987   void OptimizeShadowIV();
1988   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1989   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1990   void OptimizeLoopTermCond();
1991 
1992   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1993                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1994   void FinalizeChain(IVChain &Chain);
1995   void CollectChains();
1996   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1997                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1998 
1999   void CollectInterestingTypesAndFactors();
2000   void CollectFixupsAndInitialFormulae();
2001 
2002   // Support for sharing of LSRUses between LSRFixups.
2003   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
2004   UseMapTy UseMap;
2005 
2006   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2007                           LSRUse::KindType Kind, MemAccessTy AccessTy);
2008 
2009   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
2010                                     MemAccessTy AccessTy);
2011 
2012   void DeleteUse(LSRUse &LU, size_t LUIdx);
2013 
2014   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
2015 
2016   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2017   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2018   void CountRegisters(const Formula &F, size_t LUIdx);
2019   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
2020 
2021   void CollectLoopInvariantFixupsAndFormulae();
2022 
2023   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
2024                               unsigned Depth = 0);
2025 
2026   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
2027                                   const Formula &Base, unsigned Depth,
2028                                   size_t Idx, bool IsScaledReg = false);
2029   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
2030   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2031                                    const Formula &Base, size_t Idx,
2032                                    bool IsScaledReg = false);
2033   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2034   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2035                                    const Formula &Base,
2036                                    const SmallVectorImpl<int64_t> &Worklist,
2037                                    size_t Idx, bool IsScaledReg = false);
2038   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2039   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2040   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2041   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2042   void GenerateCrossUseConstantOffsets();
2043   void GenerateAllReuseFormulae();
2044 
2045   void FilterOutUndesirableDedicatedRegisters();
2046 
2047   size_t EstimateSearchSpaceComplexity() const;
2048   void NarrowSearchSpaceByDetectingSupersets();
2049   void NarrowSearchSpaceByCollapsingUnrolledCode();
2050   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2051   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2052   void NarrowSearchSpaceByFilterPostInc();
2053   void NarrowSearchSpaceByDeletingCostlyFormulas();
2054   void NarrowSearchSpaceByPickingWinnerRegs();
2055   void NarrowSearchSpaceUsingHeuristics();
2056 
2057   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2058                     Cost &SolutionCost,
2059                     SmallVectorImpl<const Formula *> &Workspace,
2060                     const Cost &CurCost,
2061                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2062                     DenseSet<const SCEV *> &VisitedRegs) const;
2063   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2064 
2065   BasicBlock::iterator
2066     HoistInsertPosition(BasicBlock::iterator IP,
2067                         const SmallVectorImpl<Instruction *> &Inputs) const;
2068   BasicBlock::iterator
2069     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2070                                   const LSRFixup &LF,
2071                                   const LSRUse &LU,
2072                                   SCEVExpander &Rewriter) const;
2073 
2074   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2075                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2076                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2077   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2078                      const Formula &F, SCEVExpander &Rewriter,
2079                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2080   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2081                SCEVExpander &Rewriter,
2082                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2083   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2084 
2085 public:
2086   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2087               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2088               TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2089 
getChanged() const2090   bool getChanged() const { return Changed; }
getScalarEvolutionIVs() const2091   const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const {
2092     return ScalarEvolutionIVs;
2093   }
2094 
2095   void print_factors_and_types(raw_ostream &OS) const;
2096   void print_fixups(raw_ostream &OS) const;
2097   void print_uses(raw_ostream &OS) const;
2098   void print(raw_ostream &OS) const;
2099   void dump() const;
2100 };
2101 
2102 } // end anonymous namespace
2103 
2104 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2105 /// the cast operation.
OptimizeShadowIV()2106 void LSRInstance::OptimizeShadowIV() {
2107   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2108   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2109     return;
2110 
2111   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2112        UI != E; /* empty */) {
2113     IVUsers::const_iterator CandidateUI = UI;
2114     ++UI;
2115     Instruction *ShadowUse = CandidateUI->getUser();
2116     Type *DestTy = nullptr;
2117     bool IsSigned = false;
2118 
2119     /* If shadow use is a int->float cast then insert a second IV
2120        to eliminate this cast.
2121 
2122          for (unsigned i = 0; i < n; ++i)
2123            foo((double)i);
2124 
2125        is transformed into
2126 
2127          double d = 0.0;
2128          for (unsigned i = 0; i < n; ++i, ++d)
2129            foo(d);
2130     */
2131     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2132       IsSigned = false;
2133       DestTy = UCast->getDestTy();
2134     }
2135     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2136       IsSigned = true;
2137       DestTy = SCast->getDestTy();
2138     }
2139     if (!DestTy) continue;
2140 
2141     // If target does not support DestTy natively then do not apply
2142     // this transformation.
2143     if (!TTI.isTypeLegal(DestTy)) continue;
2144 
2145     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2146     if (!PH) continue;
2147     if (PH->getNumIncomingValues() != 2) continue;
2148 
2149     // If the calculation in integers overflows, the result in FP type will
2150     // differ. So we only can do this transformation if we are guaranteed to not
2151     // deal with overflowing values
2152     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2153     if (!AR) continue;
2154     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2155     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2156 
2157     Type *SrcTy = PH->getType();
2158     int Mantissa = DestTy->getFPMantissaWidth();
2159     if (Mantissa == -1) continue;
2160     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2161       continue;
2162 
2163     unsigned Entry, Latch;
2164     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2165       Entry = 0;
2166       Latch = 1;
2167     } else {
2168       Entry = 1;
2169       Latch = 0;
2170     }
2171 
2172     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2173     if (!Init) continue;
2174     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2175                                         (double)Init->getSExtValue() :
2176                                         (double)Init->getZExtValue());
2177 
2178     BinaryOperator *Incr =
2179       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2180     if (!Incr) continue;
2181     if (Incr->getOpcode() != Instruction::Add
2182         && Incr->getOpcode() != Instruction::Sub)
2183       continue;
2184 
2185     /* Initialize new IV, double d = 0.0 in above example. */
2186     ConstantInt *C = nullptr;
2187     if (Incr->getOperand(0) == PH)
2188       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2189     else if (Incr->getOperand(1) == PH)
2190       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2191     else
2192       continue;
2193 
2194     if (!C) continue;
2195 
2196     // Ignore negative constants, as the code below doesn't handle them
2197     // correctly. TODO: Remove this restriction.
2198     if (!C->getValue().isStrictlyPositive()) continue;
2199 
2200     /* Add new PHINode. */
2201     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2202 
2203     /* create new increment. '++d' in above example. */
2204     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2205     BinaryOperator *NewIncr =
2206       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2207                                Instruction::FAdd : Instruction::FSub,
2208                              NewPH, CFP, "IV.S.next.", Incr);
2209 
2210     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2211     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2212 
2213     /* Remove cast operation */
2214     ShadowUse->replaceAllUsesWith(NewPH);
2215     ShadowUse->eraseFromParent();
2216     Changed = true;
2217     break;
2218   }
2219 }
2220 
2221 /// If Cond has an operand that is an expression of an IV, set the IV user and
2222 /// stride information and return true, otherwise return false.
FindIVUserForCond(ICmpInst * Cond,IVStrideUse * & CondUse)2223 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2224   for (IVStrideUse &U : IU)
2225     if (U.getUser() == Cond) {
2226       // NOTE: we could handle setcc instructions with multiple uses here, but
2227       // InstCombine does it as well for simple uses, it's not clear that it
2228       // occurs enough in real life to handle.
2229       CondUse = &U;
2230       return true;
2231     }
2232   return false;
2233 }
2234 
2235 /// Rewrite the loop's terminating condition if it uses a max computation.
2236 ///
2237 /// This is a narrow solution to a specific, but acute, problem. For loops
2238 /// like this:
2239 ///
2240 ///   i = 0;
2241 ///   do {
2242 ///     p[i] = 0.0;
2243 ///   } while (++i < n);
2244 ///
2245 /// the trip count isn't just 'n', because 'n' might not be positive. And
2246 /// unfortunately this can come up even for loops where the user didn't use
2247 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2248 /// will commonly be lowered like this:
2249 ///
2250 ///   if (n > 0) {
2251 ///     i = 0;
2252 ///     do {
2253 ///       p[i] = 0.0;
2254 ///     } while (++i < n);
2255 ///   }
2256 ///
2257 /// and then it's possible for subsequent optimization to obscure the if
2258 /// test in such a way that indvars can't find it.
2259 ///
2260 /// When indvars can't find the if test in loops like this, it creates a
2261 /// max expression, which allows it to give the loop a canonical
2262 /// induction variable:
2263 ///
2264 ///   i = 0;
2265 ///   max = n < 1 ? 1 : n;
2266 ///   do {
2267 ///     p[i] = 0.0;
2268 ///   } while (++i != max);
2269 ///
2270 /// Canonical induction variables are necessary because the loop passes
2271 /// are designed around them. The most obvious example of this is the
2272 /// LoopInfo analysis, which doesn't remember trip count values. It
2273 /// expects to be able to rediscover the trip count each time it is
2274 /// needed, and it does this using a simple analysis that only succeeds if
2275 /// the loop has a canonical induction variable.
2276 ///
2277 /// However, when it comes time to generate code, the maximum operation
2278 /// can be quite costly, especially if it's inside of an outer loop.
2279 ///
2280 /// This function solves this problem by detecting this type of loop and
2281 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2282 /// the instructions for the maximum computation.
OptimizeMax(ICmpInst * Cond,IVStrideUse * & CondUse)2283 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2284   // Check that the loop matches the pattern we're looking for.
2285   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2286       Cond->getPredicate() != CmpInst::ICMP_NE)
2287     return Cond;
2288 
2289   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2290   if (!Sel || !Sel->hasOneUse()) return Cond;
2291 
2292   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2293   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2294     return Cond;
2295   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2296 
2297   // Add one to the backedge-taken count to get the trip count.
2298   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2299   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2300 
2301   // Check for a max calculation that matches the pattern. There's no check
2302   // for ICMP_ULE here because the comparison would be with zero, which
2303   // isn't interesting.
2304   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2305   const SCEVNAryExpr *Max = nullptr;
2306   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2307     Pred = ICmpInst::ICMP_SLE;
2308     Max = S;
2309   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2310     Pred = ICmpInst::ICMP_SLT;
2311     Max = S;
2312   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2313     Pred = ICmpInst::ICMP_ULT;
2314     Max = U;
2315   } else {
2316     // No match; bail.
2317     return Cond;
2318   }
2319 
2320   // To handle a max with more than two operands, this optimization would
2321   // require additional checking and setup.
2322   if (Max->getNumOperands() != 2)
2323     return Cond;
2324 
2325   const SCEV *MaxLHS = Max->getOperand(0);
2326   const SCEV *MaxRHS = Max->getOperand(1);
2327 
2328   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2329   // for a comparison with 1. For <= and >=, a comparison with zero.
2330   if (!MaxLHS ||
2331       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2332     return Cond;
2333 
2334   // Check the relevant induction variable for conformance to
2335   // the pattern.
2336   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2337   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2338   if (!AR || !AR->isAffine() ||
2339       AR->getStart() != One ||
2340       AR->getStepRecurrence(SE) != One)
2341     return Cond;
2342 
2343   assert(AR->getLoop() == L &&
2344          "Loop condition operand is an addrec in a different loop!");
2345 
2346   // Check the right operand of the select, and remember it, as it will
2347   // be used in the new comparison instruction.
2348   Value *NewRHS = nullptr;
2349   if (ICmpInst::isTrueWhenEqual(Pred)) {
2350     // Look for n+1, and grab n.
2351     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2352       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2353          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2354            NewRHS = BO->getOperand(0);
2355     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2356       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2357         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2358           NewRHS = BO->getOperand(0);
2359     if (!NewRHS)
2360       return Cond;
2361   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2362     NewRHS = Sel->getOperand(1);
2363   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2364     NewRHS = Sel->getOperand(2);
2365   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2366     NewRHS = SU->getValue();
2367   else
2368     // Max doesn't match expected pattern.
2369     return Cond;
2370 
2371   // Determine the new comparison opcode. It may be signed or unsigned,
2372   // and the original comparison may be either equality or inequality.
2373   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2374     Pred = CmpInst::getInversePredicate(Pred);
2375 
2376   // Ok, everything looks ok to change the condition into an SLT or SGE and
2377   // delete the max calculation.
2378   ICmpInst *NewCond =
2379     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2380 
2381   // Delete the max calculation instructions.
2382   NewCond->setDebugLoc(Cond->getDebugLoc());
2383   Cond->replaceAllUsesWith(NewCond);
2384   CondUse->setUser(NewCond);
2385   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2386   Cond->eraseFromParent();
2387   Sel->eraseFromParent();
2388   if (Cmp->use_empty())
2389     Cmp->eraseFromParent();
2390   return NewCond;
2391 }
2392 
2393 /// Change loop terminating condition to use the postinc iv when possible.
2394 void
OptimizeLoopTermCond()2395 LSRInstance::OptimizeLoopTermCond() {
2396   SmallPtrSet<Instruction *, 4> PostIncs;
2397 
2398   // We need a different set of heuristics for rotated and non-rotated loops.
2399   // If a loop is rotated then the latch is also the backedge, so inserting
2400   // post-inc expressions just before the latch is ideal. To reduce live ranges
2401   // it also makes sense to rewrite terminating conditions to use post-inc
2402   // expressions.
2403   //
2404   // If the loop is not rotated then the latch is not a backedge; the latch
2405   // check is done in the loop head. Adding post-inc expressions before the
2406   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2407   // in the loop body. In this case we do *not* want to use post-inc expressions
2408   // in the latch check, and we want to insert post-inc expressions before
2409   // the backedge.
2410   BasicBlock *LatchBlock = L->getLoopLatch();
2411   SmallVector<BasicBlock*, 8> ExitingBlocks;
2412   L->getExitingBlocks(ExitingBlocks);
2413   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2414         return LatchBlock != BB;
2415       })) {
2416     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2417     IVIncInsertPos = LatchBlock->getTerminator();
2418     return;
2419   }
2420 
2421   // Otherwise treat this as a rotated loop.
2422   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2423     // Get the terminating condition for the loop if possible.  If we
2424     // can, we want to change it to use a post-incremented version of its
2425     // induction variable, to allow coalescing the live ranges for the IV into
2426     // one register value.
2427 
2428     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2429     if (!TermBr)
2430       continue;
2431     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2432     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2433       continue;
2434 
2435     // Search IVUsesByStride to find Cond's IVUse if there is one.
2436     IVStrideUse *CondUse = nullptr;
2437     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2438     if (!FindIVUserForCond(Cond, CondUse))
2439       continue;
2440 
2441     // If the trip count is computed in terms of a max (due to ScalarEvolution
2442     // being unable to find a sufficient guard, for example), change the loop
2443     // comparison to use SLT or ULT instead of NE.
2444     // One consequence of doing this now is that it disrupts the count-down
2445     // optimization. That's not always a bad thing though, because in such
2446     // cases it may still be worthwhile to avoid a max.
2447     Cond = OptimizeMax(Cond, CondUse);
2448 
2449     // If this exiting block dominates the latch block, it may also use
2450     // the post-inc value if it won't be shared with other uses.
2451     // Check for dominance.
2452     if (!DT.dominates(ExitingBlock, LatchBlock))
2453       continue;
2454 
2455     // Conservatively avoid trying to use the post-inc value in non-latch
2456     // exits if there may be pre-inc users in intervening blocks.
2457     if (LatchBlock != ExitingBlock)
2458       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2459         // Test if the use is reachable from the exiting block. This dominator
2460         // query is a conservative approximation of reachability.
2461         if (&*UI != CondUse &&
2462             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2463           // Conservatively assume there may be reuse if the quotient of their
2464           // strides could be a legal scale.
2465           const SCEV *A = IU.getStride(*CondUse, L);
2466           const SCEV *B = IU.getStride(*UI, L);
2467           if (!A || !B) continue;
2468           if (SE.getTypeSizeInBits(A->getType()) !=
2469               SE.getTypeSizeInBits(B->getType())) {
2470             if (SE.getTypeSizeInBits(A->getType()) >
2471                 SE.getTypeSizeInBits(B->getType()))
2472               B = SE.getSignExtendExpr(B, A->getType());
2473             else
2474               A = SE.getSignExtendExpr(A, B->getType());
2475           }
2476           if (const SCEVConstant *D =
2477                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2478             const ConstantInt *C = D->getValue();
2479             // Stride of one or negative one can have reuse with non-addresses.
2480             if (C->isOne() || C->isMinusOne())
2481               goto decline_post_inc;
2482             // Avoid weird situations.
2483             if (C->getValue().getMinSignedBits() >= 64 ||
2484                 C->getValue().isMinSignedValue())
2485               goto decline_post_inc;
2486             // Check for possible scaled-address reuse.
2487             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2488               MemAccessTy AccessTy = getAccessType(
2489                   TTI, UI->getUser(), UI->getOperandValToReplace());
2490               int64_t Scale = C->getSExtValue();
2491               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2492                                             /*BaseOffset=*/0,
2493                                             /*HasBaseReg=*/false, Scale,
2494                                             AccessTy.AddrSpace))
2495                 goto decline_post_inc;
2496               Scale = -Scale;
2497               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2498                                             /*BaseOffset=*/0,
2499                                             /*HasBaseReg=*/false, Scale,
2500                                             AccessTy.AddrSpace))
2501                 goto decline_post_inc;
2502             }
2503           }
2504         }
2505 
2506     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2507                       << *Cond << '\n');
2508 
2509     // It's possible for the setcc instruction to be anywhere in the loop, and
2510     // possible for it to have multiple users.  If it is not immediately before
2511     // the exiting block branch, move it.
2512     if (Cond->getNextNonDebugInstruction() != TermBr) {
2513       if (Cond->hasOneUse()) {
2514         Cond->moveBefore(TermBr);
2515       } else {
2516         // Clone the terminating condition and insert into the loopend.
2517         ICmpInst *OldCond = Cond;
2518         Cond = cast<ICmpInst>(Cond->clone());
2519         Cond->setName(L->getHeader()->getName() + ".termcond");
2520         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2521 
2522         // Clone the IVUse, as the old use still exists!
2523         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2524         TermBr->replaceUsesOfWith(OldCond, Cond);
2525       }
2526     }
2527 
2528     // If we get to here, we know that we can transform the setcc instruction to
2529     // use the post-incremented version of the IV, allowing us to coalesce the
2530     // live ranges for the IV correctly.
2531     CondUse->transformToPostInc(L);
2532     Changed = true;
2533 
2534     PostIncs.insert(Cond);
2535   decline_post_inc:;
2536   }
2537 
2538   // Determine an insertion point for the loop induction variable increment. It
2539   // must dominate all the post-inc comparisons we just set up, and it must
2540   // dominate the loop latch edge.
2541   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2542   for (Instruction *Inst : PostIncs) {
2543     BasicBlock *BB =
2544       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2545                                     Inst->getParent());
2546     if (BB == Inst->getParent())
2547       IVIncInsertPos = Inst;
2548     else if (BB != IVIncInsertPos->getParent())
2549       IVIncInsertPos = BB->getTerminator();
2550   }
2551 }
2552 
2553 /// Determine if the given use can accommodate a fixup at the given offset and
2554 /// other details. If so, update the use and return true.
reconcileNewOffset(LSRUse & LU,int64_t NewOffset,bool HasBaseReg,LSRUse::KindType Kind,MemAccessTy AccessTy)2555 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2556                                      bool HasBaseReg, LSRUse::KindType Kind,
2557                                      MemAccessTy AccessTy) {
2558   int64_t NewMinOffset = LU.MinOffset;
2559   int64_t NewMaxOffset = LU.MaxOffset;
2560   MemAccessTy NewAccessTy = AccessTy;
2561 
2562   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2563   // something conservative, however this can pessimize in the case that one of
2564   // the uses will have all its uses outside the loop, for example.
2565   if (LU.Kind != Kind)
2566     return false;
2567 
2568   // Check for a mismatched access type, and fall back conservatively as needed.
2569   // TODO: Be less conservative when the type is similar and can use the same
2570   // addressing modes.
2571   if (Kind == LSRUse::Address) {
2572     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2573       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2574                                             AccessTy.AddrSpace);
2575     }
2576   }
2577 
2578   // Conservatively assume HasBaseReg is true for now.
2579   if (NewOffset < LU.MinOffset) {
2580     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2581                           LU.MaxOffset - NewOffset, HasBaseReg))
2582       return false;
2583     NewMinOffset = NewOffset;
2584   } else if (NewOffset > LU.MaxOffset) {
2585     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2586                           NewOffset - LU.MinOffset, HasBaseReg))
2587       return false;
2588     NewMaxOffset = NewOffset;
2589   }
2590 
2591   // Update the use.
2592   LU.MinOffset = NewMinOffset;
2593   LU.MaxOffset = NewMaxOffset;
2594   LU.AccessTy = NewAccessTy;
2595   return true;
2596 }
2597 
2598 /// Return an LSRUse index and an offset value for a fixup which needs the given
2599 /// expression, with the given kind and optional access type.  Either reuse an
2600 /// existing use or create a new one, as needed.
getUse(const SCEV * & Expr,LSRUse::KindType Kind,MemAccessTy AccessTy)2601 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2602                                                LSRUse::KindType Kind,
2603                                                MemAccessTy AccessTy) {
2604   const SCEV *Copy = Expr;
2605   int64_t Offset = ExtractImmediate(Expr, SE);
2606 
2607   // Basic uses can't accept any offset, for example.
2608   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2609                         Offset, /*HasBaseReg=*/ true)) {
2610     Expr = Copy;
2611     Offset = 0;
2612   }
2613 
2614   std::pair<UseMapTy::iterator, bool> P =
2615     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2616   if (!P.second) {
2617     // A use already existed with this base.
2618     size_t LUIdx = P.first->second;
2619     LSRUse &LU = Uses[LUIdx];
2620     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2621       // Reuse this use.
2622       return std::make_pair(LUIdx, Offset);
2623   }
2624 
2625   // Create a new use.
2626   size_t LUIdx = Uses.size();
2627   P.first->second = LUIdx;
2628   Uses.push_back(LSRUse(Kind, AccessTy));
2629   LSRUse &LU = Uses[LUIdx];
2630 
2631   LU.MinOffset = Offset;
2632   LU.MaxOffset = Offset;
2633   return std::make_pair(LUIdx, Offset);
2634 }
2635 
2636 /// Delete the given use from the Uses list.
DeleteUse(LSRUse & LU,size_t LUIdx)2637 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2638   if (&LU != &Uses.back())
2639     std::swap(LU, Uses.back());
2640   Uses.pop_back();
2641 
2642   // Update RegUses.
2643   RegUses.swapAndDropUse(LUIdx, Uses.size());
2644 }
2645 
2646 /// Look for a use distinct from OrigLU which is has a formula that has the same
2647 /// registers as the given formula.
2648 LSRUse *
FindUseWithSimilarFormula(const Formula & OrigF,const LSRUse & OrigLU)2649 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2650                                        const LSRUse &OrigLU) {
2651   // Search all uses for the formula. This could be more clever.
2652   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2653     LSRUse &LU = Uses[LUIdx];
2654     // Check whether this use is close enough to OrigLU, to see whether it's
2655     // worthwhile looking through its formulae.
2656     // Ignore ICmpZero uses because they may contain formulae generated by
2657     // GenerateICmpZeroScales, in which case adding fixup offsets may
2658     // be invalid.
2659     if (&LU != &OrigLU &&
2660         LU.Kind != LSRUse::ICmpZero &&
2661         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2662         LU.WidestFixupType == OrigLU.WidestFixupType &&
2663         LU.HasFormulaWithSameRegs(OrigF)) {
2664       // Scan through this use's formulae.
2665       for (const Formula &F : LU.Formulae) {
2666         // Check to see if this formula has the same registers and symbols
2667         // as OrigF.
2668         if (F.BaseRegs == OrigF.BaseRegs &&
2669             F.ScaledReg == OrigF.ScaledReg &&
2670             F.BaseGV == OrigF.BaseGV &&
2671             F.Scale == OrigF.Scale &&
2672             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2673           if (F.BaseOffset == 0)
2674             return &LU;
2675           // This is the formula where all the registers and symbols matched;
2676           // there aren't going to be any others. Since we declined it, we
2677           // can skip the rest of the formulae and proceed to the next LSRUse.
2678           break;
2679         }
2680       }
2681     }
2682   }
2683 
2684   // Nothing looked good.
2685   return nullptr;
2686 }
2687 
CollectInterestingTypesAndFactors()2688 void LSRInstance::CollectInterestingTypesAndFactors() {
2689   SmallSetVector<const SCEV *, 4> Strides;
2690 
2691   // Collect interesting types and strides.
2692   SmallVector<const SCEV *, 4> Worklist;
2693   for (const IVStrideUse &U : IU) {
2694     const SCEV *Expr = IU.getExpr(U);
2695 
2696     // Collect interesting types.
2697     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2698 
2699     // Add strides for mentioned loops.
2700     Worklist.push_back(Expr);
2701     do {
2702       const SCEV *S = Worklist.pop_back_val();
2703       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2704         if (AR->getLoop() == L)
2705           Strides.insert(AR->getStepRecurrence(SE));
2706         Worklist.push_back(AR->getStart());
2707       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2708         Worklist.append(Add->op_begin(), Add->op_end());
2709       }
2710     } while (!Worklist.empty());
2711   }
2712 
2713   // Compute interesting factors from the set of interesting strides.
2714   for (SmallSetVector<const SCEV *, 4>::const_iterator
2715        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2716     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2717          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2718       const SCEV *OldStride = *I;
2719       const SCEV *NewStride = *NewStrideIter;
2720 
2721       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2722           SE.getTypeSizeInBits(NewStride->getType())) {
2723         if (SE.getTypeSizeInBits(OldStride->getType()) >
2724             SE.getTypeSizeInBits(NewStride->getType()))
2725           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2726         else
2727           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2728       }
2729       if (const SCEVConstant *Factor =
2730             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2731                                                         SE, true))) {
2732         if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero())
2733           Factors.insert(Factor->getAPInt().getSExtValue());
2734       } else if (const SCEVConstant *Factor =
2735                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2736                                                                NewStride,
2737                                                                SE, true))) {
2738         if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero())
2739           Factors.insert(Factor->getAPInt().getSExtValue());
2740       }
2741     }
2742 
2743   // If all uses use the same type, don't bother looking for truncation-based
2744   // reuse.
2745   if (Types.size() == 1)
2746     Types.clear();
2747 
2748   LLVM_DEBUG(print_factors_and_types(dbgs()));
2749 }
2750 
2751 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2752 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2753 /// IVStrideUses, we could partially skip this.
2754 static User::op_iterator
findIVOperand(User::op_iterator OI,User::op_iterator OE,Loop * L,ScalarEvolution & SE)2755 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2756               Loop *L, ScalarEvolution &SE) {
2757   for(; OI != OE; ++OI) {
2758     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2759       if (!SE.isSCEVable(Oper->getType()))
2760         continue;
2761 
2762       if (const SCEVAddRecExpr *AR =
2763           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2764         if (AR->getLoop() == L)
2765           break;
2766       }
2767     }
2768   }
2769   return OI;
2770 }
2771 
2772 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2773 /// a convenient helper.
getWideOperand(Value * Oper)2774 static Value *getWideOperand(Value *Oper) {
2775   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2776     return Trunc->getOperand(0);
2777   return Oper;
2778 }
2779 
2780 /// Return true if we allow an IV chain to include both types.
isCompatibleIVType(Value * LVal,Value * RVal)2781 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2782   Type *LType = LVal->getType();
2783   Type *RType = RVal->getType();
2784   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2785                               // Different address spaces means (possibly)
2786                               // different types of the pointer implementation,
2787                               // e.g. i16 vs i32 so disallow that.
2788                               (LType->getPointerAddressSpace() ==
2789                                RType->getPointerAddressSpace()));
2790 }
2791 
2792 /// Return an approximation of this SCEV expression's "base", or NULL for any
2793 /// constant. Returning the expression itself is conservative. Returning a
2794 /// deeper subexpression is more precise and valid as long as it isn't less
2795 /// complex than another subexpression. For expressions involving multiple
2796 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2797 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2798 /// IVInc==b-a.
2799 ///
2800 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2801 /// SCEVUnknown, we simply return the rightmost SCEV operand.
getExprBase(const SCEV * S)2802 static const SCEV *getExprBase(const SCEV *S) {
2803   switch (S->getSCEVType()) {
2804   default: // uncluding scUnknown.
2805     return S;
2806   case scConstant:
2807     return nullptr;
2808   case scTruncate:
2809     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2810   case scZeroExtend:
2811     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2812   case scSignExtend:
2813     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2814   case scAddExpr: {
2815     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2816     // there's nothing more complex.
2817     // FIXME: not sure if we want to recognize negation.
2818     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2819     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2820            E(Add->op_begin()); I != E; ++I) {
2821       const SCEV *SubExpr = *I;
2822       if (SubExpr->getSCEVType() == scAddExpr)
2823         return getExprBase(SubExpr);
2824 
2825       if (SubExpr->getSCEVType() != scMulExpr)
2826         return SubExpr;
2827     }
2828     return S; // all operands are scaled, be conservative.
2829   }
2830   case scAddRecExpr:
2831     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2832   }
2833   llvm_unreachable("Unknown SCEV kind!");
2834 }
2835 
2836 /// Return true if the chain increment is profitable to expand into a loop
2837 /// invariant value, which may require its own register. A profitable chain
2838 /// increment will be an offset relative to the same base. We allow such offsets
2839 /// to potentially be used as chain increment as long as it's not obviously
2840 /// expensive to expand using real instructions.
isProfitableIncrement(const SCEV * OperExpr,const SCEV * IncExpr,ScalarEvolution & SE)2841 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2842                                     const SCEV *IncExpr,
2843                                     ScalarEvolution &SE) {
2844   // Aggressively form chains when -stress-ivchain.
2845   if (StressIVChain)
2846     return true;
2847 
2848   // Do not replace a constant offset from IV head with a nonconstant IV
2849   // increment.
2850   if (!isa<SCEVConstant>(IncExpr)) {
2851     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2852     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2853       return false;
2854   }
2855 
2856   SmallPtrSet<const SCEV*, 8> Processed;
2857   return !isHighCostExpansion(IncExpr, Processed, SE);
2858 }
2859 
2860 /// Return true if the number of registers needed for the chain is estimated to
2861 /// be less than the number required for the individual IV users. First prohibit
2862 /// any IV users that keep the IV live across increments (the Users set should
2863 /// be empty). Next count the number and type of increments in the chain.
2864 ///
2865 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2866 /// effectively use postinc addressing modes. Only consider it profitable it the
2867 /// increments can be computed in fewer registers when chained.
2868 ///
2869 /// TODO: Consider IVInc free if it's already used in another chains.
isProfitableChain(IVChain & Chain,SmallPtrSetImpl<Instruction * > & Users,ScalarEvolution & SE,const TargetTransformInfo & TTI)2870 static bool isProfitableChain(IVChain &Chain,
2871                               SmallPtrSetImpl<Instruction *> &Users,
2872                               ScalarEvolution &SE,
2873                               const TargetTransformInfo &TTI) {
2874   if (StressIVChain)
2875     return true;
2876 
2877   if (!Chain.hasIncs())
2878     return false;
2879 
2880   if (!Users.empty()) {
2881     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2882                for (Instruction *Inst
2883                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2884     return false;
2885   }
2886   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2887 
2888   // The chain itself may require a register, so intialize cost to 1.
2889   int cost = 1;
2890 
2891   // A complete chain likely eliminates the need for keeping the original IV in
2892   // a register. LSR does not currently know how to form a complete chain unless
2893   // the header phi already exists.
2894   if (isa<PHINode>(Chain.tailUserInst())
2895       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2896     --cost;
2897   }
2898   const SCEV *LastIncExpr = nullptr;
2899   unsigned NumConstIncrements = 0;
2900   unsigned NumVarIncrements = 0;
2901   unsigned NumReusedIncrements = 0;
2902 
2903   if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2904     return true;
2905 
2906   for (const IVInc &Inc : Chain) {
2907     if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2908       return true;
2909     if (Inc.IncExpr->isZero())
2910       continue;
2911 
2912     // Incrementing by zero or some constant is neutral. We assume constants can
2913     // be folded into an addressing mode or an add's immediate operand.
2914     if (isa<SCEVConstant>(Inc.IncExpr)) {
2915       ++NumConstIncrements;
2916       continue;
2917     }
2918 
2919     if (Inc.IncExpr == LastIncExpr)
2920       ++NumReusedIncrements;
2921     else
2922       ++NumVarIncrements;
2923 
2924     LastIncExpr = Inc.IncExpr;
2925   }
2926   // An IV chain with a single increment is handled by LSR's postinc
2927   // uses. However, a chain with multiple increments requires keeping the IV's
2928   // value live longer than it needs to be if chained.
2929   if (NumConstIncrements > 1)
2930     --cost;
2931 
2932   // Materializing increment expressions in the preheader that didn't exist in
2933   // the original code may cost a register. For example, sign-extended array
2934   // indices can produce ridiculous increments like this:
2935   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2936   cost += NumVarIncrements;
2937 
2938   // Reusing variable increments likely saves a register to hold the multiple of
2939   // the stride.
2940   cost -= NumReusedIncrements;
2941 
2942   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2943                     << "\n");
2944 
2945   return cost < 0;
2946 }
2947 
2948 /// Add this IV user to an existing chain or make it the head of a new chain.
ChainInstruction(Instruction * UserInst,Instruction * IVOper,SmallVectorImpl<ChainUsers> & ChainUsersVec)2949 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2950                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2951   // When IVs are used as types of varying widths, they are generally converted
2952   // to a wider type with some uses remaining narrow under a (free) trunc.
2953   Value *const NextIV = getWideOperand(IVOper);
2954   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2955   const SCEV *const OperExprBase = getExprBase(OperExpr);
2956 
2957   // Visit all existing chains. Check if its IVOper can be computed as a
2958   // profitable loop invariant increment from the last link in the Chain.
2959   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2960   const SCEV *LastIncExpr = nullptr;
2961   for (; ChainIdx < NChains; ++ChainIdx) {
2962     IVChain &Chain = IVChainVec[ChainIdx];
2963 
2964     // Prune the solution space aggressively by checking that both IV operands
2965     // are expressions that operate on the same unscaled SCEVUnknown. This
2966     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2967     // first avoids creating extra SCEV expressions.
2968     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2969       continue;
2970 
2971     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2972     if (!isCompatibleIVType(PrevIV, NextIV))
2973       continue;
2974 
2975     // A phi node terminates a chain.
2976     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2977       continue;
2978 
2979     // The increment must be loop-invariant so it can be kept in a register.
2980     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2981     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2982     if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L))
2983       continue;
2984 
2985     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2986       LastIncExpr = IncExpr;
2987       break;
2988     }
2989   }
2990   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2991   // bother for phi nodes, because they must be last in the chain.
2992   if (ChainIdx == NChains) {
2993     if (isa<PHINode>(UserInst))
2994       return;
2995     if (NChains >= MaxChains && !StressIVChain) {
2996       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2997       return;
2998     }
2999     LastIncExpr = OperExpr;
3000     // IVUsers may have skipped over sign/zero extensions. We don't currently
3001     // attempt to form chains involving extensions unless they can be hoisted
3002     // into this loop's AddRec.
3003     if (!isa<SCEVAddRecExpr>(LastIncExpr))
3004       return;
3005     ++NChains;
3006     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
3007                                  OperExprBase));
3008     ChainUsersVec.resize(NChains);
3009     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
3010                       << ") IV=" << *LastIncExpr << "\n");
3011   } else {
3012     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
3013                       << ") IV+" << *LastIncExpr << "\n");
3014     // Add this IV user to the end of the chain.
3015     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
3016   }
3017   IVChain &Chain = IVChainVec[ChainIdx];
3018 
3019   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
3020   // This chain's NearUsers become FarUsers.
3021   if (!LastIncExpr->isZero()) {
3022     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
3023                                             NearUsers.end());
3024     NearUsers.clear();
3025   }
3026 
3027   // All other uses of IVOperand become near uses of the chain.
3028   // We currently ignore intermediate values within SCEV expressions, assuming
3029   // they will eventually be used be the current chain, or can be computed
3030   // from one of the chain increments. To be more precise we could
3031   // transitively follow its user and only add leaf IV users to the set.
3032   for (User *U : IVOper->users()) {
3033     Instruction *OtherUse = dyn_cast<Instruction>(U);
3034     if (!OtherUse)
3035       continue;
3036     // Uses in the chain will no longer be uses if the chain is formed.
3037     // Include the head of the chain in this iteration (not Chain.begin()).
3038     IVChain::const_iterator IncIter = Chain.Incs.begin();
3039     IVChain::const_iterator IncEnd = Chain.Incs.end();
3040     for( ; IncIter != IncEnd; ++IncIter) {
3041       if (IncIter->UserInst == OtherUse)
3042         break;
3043     }
3044     if (IncIter != IncEnd)
3045       continue;
3046 
3047     if (SE.isSCEVable(OtherUse->getType())
3048         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3049         && IU.isIVUserOrOperand(OtherUse)) {
3050       continue;
3051     }
3052     NearUsers.insert(OtherUse);
3053   }
3054 
3055   // Since this user is part of the chain, it's no longer considered a use
3056   // of the chain.
3057   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3058 }
3059 
3060 /// Populate the vector of Chains.
3061 ///
3062 /// This decreases ILP at the architecture level. Targets with ample registers,
3063 /// multiple memory ports, and no register renaming probably don't want
3064 /// this. However, such targets should probably disable LSR altogether.
3065 ///
3066 /// The job of LSR is to make a reasonable choice of induction variables across
3067 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3068 /// ILP *within the loop* if the target wants it.
3069 ///
3070 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3071 /// will not reorder memory operations, it will recognize this as a chain, but
3072 /// will generate redundant IV increments. Ideally this would be corrected later
3073 /// by a smart scheduler:
3074 ///        = A[i]
3075 ///        = A[i+x]
3076 /// A[i]   =
3077 /// A[i+x] =
3078 ///
3079 /// TODO: Walk the entire domtree within this loop, not just the path to the
3080 /// loop latch. This will discover chains on side paths, but requires
3081 /// maintaining multiple copies of the Chains state.
CollectChains()3082 void LSRInstance::CollectChains() {
3083   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3084   SmallVector<ChainUsers, 8> ChainUsersVec;
3085 
3086   SmallVector<BasicBlock *,8> LatchPath;
3087   BasicBlock *LoopHeader = L->getHeader();
3088   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3089        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3090     LatchPath.push_back(Rung->getBlock());
3091   }
3092   LatchPath.push_back(LoopHeader);
3093 
3094   // Walk the instruction stream from the loop header to the loop latch.
3095   for (BasicBlock *BB : reverse(LatchPath)) {
3096     for (Instruction &I : *BB) {
3097       // Skip instructions that weren't seen by IVUsers analysis.
3098       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3099         continue;
3100 
3101       // Ignore users that are part of a SCEV expression. This way we only
3102       // consider leaf IV Users. This effectively rediscovers a portion of
3103       // IVUsers analysis but in program order this time.
3104       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3105           continue;
3106 
3107       // Remove this instruction from any NearUsers set it may be in.
3108       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3109            ChainIdx < NChains; ++ChainIdx) {
3110         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3111       }
3112       // Search for operands that can be chained.
3113       SmallPtrSet<Instruction*, 4> UniqueOperands;
3114       User::op_iterator IVOpEnd = I.op_end();
3115       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3116       while (IVOpIter != IVOpEnd) {
3117         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3118         if (UniqueOperands.insert(IVOpInst).second)
3119           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3120         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3121       }
3122     } // Continue walking down the instructions.
3123   } // Continue walking down the domtree.
3124   // Visit phi backedges to determine if the chain can generate the IV postinc.
3125   for (PHINode &PN : L->getHeader()->phis()) {
3126     if (!SE.isSCEVable(PN.getType()))
3127       continue;
3128 
3129     Instruction *IncV =
3130         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3131     if (IncV)
3132       ChainInstruction(&PN, IncV, ChainUsersVec);
3133   }
3134   // Remove any unprofitable chains.
3135   unsigned ChainIdx = 0;
3136   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3137        UsersIdx < NChains; ++UsersIdx) {
3138     if (!isProfitableChain(IVChainVec[UsersIdx],
3139                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3140       continue;
3141     // Preserve the chain at UsesIdx.
3142     if (ChainIdx != UsersIdx)
3143       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3144     FinalizeChain(IVChainVec[ChainIdx]);
3145     ++ChainIdx;
3146   }
3147   IVChainVec.resize(ChainIdx);
3148 }
3149 
FinalizeChain(IVChain & Chain)3150 void LSRInstance::FinalizeChain(IVChain &Chain) {
3151   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3152   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3153 
3154   for (const IVInc &Inc : Chain) {
3155     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3156     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3157     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3158     IVIncSet.insert(UseI);
3159   }
3160 }
3161 
3162 /// Return true if the IVInc can be folded into an addressing mode.
canFoldIVIncExpr(const SCEV * IncExpr,Instruction * UserInst,Value * Operand,const TargetTransformInfo & TTI)3163 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3164                              Value *Operand, const TargetTransformInfo &TTI) {
3165   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3166   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3167     return false;
3168 
3169   if (IncConst->getAPInt().getMinSignedBits() > 64)
3170     return false;
3171 
3172   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3173   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3174   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3175                         IncOffset, /*HasBaseReg=*/false))
3176     return false;
3177 
3178   return true;
3179 }
3180 
3181 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3182 /// user's operand from the previous IV user's operand.
GenerateIVChain(const IVChain & Chain,SCEVExpander & Rewriter,SmallVectorImpl<WeakTrackingVH> & DeadInsts)3183 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3184                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3185   // Find the new IVOperand for the head of the chain. It may have been replaced
3186   // by LSR.
3187   const IVInc &Head = Chain.Incs[0];
3188   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3189   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3190   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3191                                              IVOpEnd, L, SE);
3192   Value *IVSrc = nullptr;
3193   while (IVOpIter != IVOpEnd) {
3194     IVSrc = getWideOperand(*IVOpIter);
3195 
3196     // If this operand computes the expression that the chain needs, we may use
3197     // it. (Check this after setting IVSrc which is used below.)
3198     //
3199     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3200     // narrow for the chain, so we can no longer use it. We do allow using a
3201     // wider phi, assuming the LSR checked for free truncation. In that case we
3202     // should already have a truncate on this operand such that
3203     // getSCEV(IVSrc) == IncExpr.
3204     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3205         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3206       break;
3207     }
3208     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3209   }
3210   if (IVOpIter == IVOpEnd) {
3211     // Gracefully give up on this chain.
3212     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3213     return;
3214   }
3215   assert(IVSrc && "Failed to find IV chain source");
3216 
3217   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3218   Type *IVTy = IVSrc->getType();
3219   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3220   const SCEV *LeftOverExpr = nullptr;
3221   for (const IVInc &Inc : Chain) {
3222     Instruction *InsertPt = Inc.UserInst;
3223     if (isa<PHINode>(InsertPt))
3224       InsertPt = L->getLoopLatch()->getTerminator();
3225 
3226     // IVOper will replace the current IV User's operand. IVSrc is the IV
3227     // value currently held in a register.
3228     Value *IVOper = IVSrc;
3229     if (!Inc.IncExpr->isZero()) {
3230       // IncExpr was the result of subtraction of two narrow values, so must
3231       // be signed.
3232       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3233       LeftOverExpr = LeftOverExpr ?
3234         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3235     }
3236     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3237       // Expand the IV increment.
3238       Rewriter.clearPostInc();
3239       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3240       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3241                                              SE.getUnknown(IncV));
3242       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3243 
3244       // If an IV increment can't be folded, use it as the next IV value.
3245       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3246         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3247         IVSrc = IVOper;
3248         LeftOverExpr = nullptr;
3249       }
3250     }
3251     Type *OperTy = Inc.IVOperand->getType();
3252     if (IVTy != OperTy) {
3253       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3254              "cannot extend a chained IV");
3255       IRBuilder<> Builder(InsertPt);
3256       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3257     }
3258     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3259     if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3260       DeadInsts.emplace_back(OperandIsInstr);
3261   }
3262   // If LSR created a new, wider phi, we may also replace its postinc. We only
3263   // do this if we also found a wide value for the head of the chain.
3264   if (isa<PHINode>(Chain.tailUserInst())) {
3265     for (PHINode &Phi : L->getHeader()->phis()) {
3266       if (!isCompatibleIVType(&Phi, IVSrc))
3267         continue;
3268       Instruction *PostIncV = dyn_cast<Instruction>(
3269           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3270       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3271         continue;
3272       Value *IVOper = IVSrc;
3273       Type *PostIncTy = PostIncV->getType();
3274       if (IVTy != PostIncTy) {
3275         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3276         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3277         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3278         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3279       }
3280       Phi.replaceUsesOfWith(PostIncV, IVOper);
3281       DeadInsts.emplace_back(PostIncV);
3282     }
3283   }
3284 }
3285 
CollectFixupsAndInitialFormulae()3286 void LSRInstance::CollectFixupsAndInitialFormulae() {
3287   BranchInst *ExitBranch = nullptr;
3288   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3289 
3290   for (const IVStrideUse &U : IU) {
3291     Instruction *UserInst = U.getUser();
3292     // Skip IV users that are part of profitable IV Chains.
3293     User::op_iterator UseI =
3294         find(UserInst->operands(), U.getOperandValToReplace());
3295     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3296     if (IVIncSet.count(UseI)) {
3297       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3298       continue;
3299     }
3300 
3301     LSRUse::KindType Kind = LSRUse::Basic;
3302     MemAccessTy AccessTy;
3303     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3304       Kind = LSRUse::Address;
3305       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3306     }
3307 
3308     const SCEV *S = IU.getExpr(U);
3309     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3310 
3311     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3312     // (N - i == 0), and this allows (N - i) to be the expression that we work
3313     // with rather than just N or i, so we can consider the register
3314     // requirements for both N and i at the same time. Limiting this code to
3315     // equality icmps is not a problem because all interesting loops use
3316     // equality icmps, thanks to IndVarSimplify.
3317     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3318       // If CI can be saved in some target, like replaced inside hardware loop
3319       // in PowerPC, no need to generate initial formulae for it.
3320       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3321         continue;
3322       if (CI->isEquality()) {
3323         // Swap the operands if needed to put the OperandValToReplace on the
3324         // left, for consistency.
3325         Value *NV = CI->getOperand(1);
3326         if (NV == U.getOperandValToReplace()) {
3327           CI->setOperand(1, CI->getOperand(0));
3328           CI->setOperand(0, NV);
3329           NV = CI->getOperand(1);
3330           Changed = true;
3331         }
3332 
3333         // x == y  -->  x - y == 0
3334         const SCEV *N = SE.getSCEV(NV);
3335         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE) &&
3336             (!NV->getType()->isPointerTy() ||
3337              SE.getPointerBase(N) == SE.getPointerBase(S))) {
3338           // S is normalized, so normalize N before folding it into S
3339           // to keep the result normalized.
3340           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3341           Kind = LSRUse::ICmpZero;
3342           S = SE.getMinusSCEV(N, S);
3343         }
3344 
3345         // -1 and the negations of all interesting strides (except the negation
3346         // of -1) are now also interesting.
3347         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3348           if (Factors[i] != -1)
3349             Factors.insert(-(uint64_t)Factors[i]);
3350         Factors.insert(-1);
3351       }
3352     }
3353 
3354     // Get or create an LSRUse.
3355     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3356     size_t LUIdx = P.first;
3357     int64_t Offset = P.second;
3358     LSRUse &LU = Uses[LUIdx];
3359 
3360     // Record the fixup.
3361     LSRFixup &LF = LU.getNewFixup();
3362     LF.UserInst = UserInst;
3363     LF.OperandValToReplace = U.getOperandValToReplace();
3364     LF.PostIncLoops = TmpPostIncLoops;
3365     LF.Offset = Offset;
3366     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3367 
3368     if (!LU.WidestFixupType ||
3369         SE.getTypeSizeInBits(LU.WidestFixupType) <
3370         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3371       LU.WidestFixupType = LF.OperandValToReplace->getType();
3372 
3373     // If this is the first use of this LSRUse, give it a formula.
3374     if (LU.Formulae.empty()) {
3375       InsertInitialFormula(S, LU, LUIdx);
3376       CountRegisters(LU.Formulae.back(), LUIdx);
3377     }
3378   }
3379 
3380   LLVM_DEBUG(print_fixups(dbgs()));
3381 }
3382 
3383 /// Insert a formula for the given expression into the given use, separating out
3384 /// loop-variant portions from loop-invariant and loop-computable portions.
3385 void
InsertInitialFormula(const SCEV * S,LSRUse & LU,size_t LUIdx)3386 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3387   // Mark uses whose expressions cannot be expanded.
3388   if (!isSafeToExpand(S, SE))
3389     LU.RigidFormula = true;
3390 
3391   Formula F;
3392   F.initialMatch(S, L, SE);
3393   bool Inserted = InsertFormula(LU, LUIdx, F);
3394   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3395 }
3396 
3397 /// Insert a simple single-register formula for the given expression into the
3398 /// given use.
3399 void
InsertSupplementalFormula(const SCEV * S,LSRUse & LU,size_t LUIdx)3400 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3401                                        LSRUse &LU, size_t LUIdx) {
3402   Formula F;
3403   F.BaseRegs.push_back(S);
3404   F.HasBaseReg = true;
3405   bool Inserted = InsertFormula(LU, LUIdx, F);
3406   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3407 }
3408 
3409 /// Note which registers are used by the given formula, updating RegUses.
CountRegisters(const Formula & F,size_t LUIdx)3410 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3411   if (F.ScaledReg)
3412     RegUses.countRegister(F.ScaledReg, LUIdx);
3413   for (const SCEV *BaseReg : F.BaseRegs)
3414     RegUses.countRegister(BaseReg, LUIdx);
3415 }
3416 
3417 /// If the given formula has not yet been inserted, add it to the list, and
3418 /// return true. Return false otherwise.
InsertFormula(LSRUse & LU,unsigned LUIdx,const Formula & F)3419 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3420   // Do not insert formula that we will not be able to expand.
3421   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3422          "Formula is illegal");
3423 
3424   if (!LU.InsertFormula(F, *L))
3425     return false;
3426 
3427   CountRegisters(F, LUIdx);
3428   return true;
3429 }
3430 
3431 /// Check for other uses of loop-invariant values which we're tracking. These
3432 /// other uses will pin these values in registers, making them less profitable
3433 /// for elimination.
3434 /// TODO: This currently misses non-constant addrec step registers.
3435 /// TODO: Should this give more weight to users inside the loop?
3436 void
CollectLoopInvariantFixupsAndFormulae()3437 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3438   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3439   SmallPtrSet<const SCEV *, 32> Visited;
3440 
3441   while (!Worklist.empty()) {
3442     const SCEV *S = Worklist.pop_back_val();
3443 
3444     // Don't process the same SCEV twice
3445     if (!Visited.insert(S).second)
3446       continue;
3447 
3448     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3449       Worklist.append(N->op_begin(), N->op_end());
3450     else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3451       Worklist.push_back(C->getOperand());
3452     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3453       Worklist.push_back(D->getLHS());
3454       Worklist.push_back(D->getRHS());
3455     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3456       const Value *V = US->getValue();
3457       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3458         // Look for instructions defined outside the loop.
3459         if (L->contains(Inst)) continue;
3460       } else if (isa<UndefValue>(V))
3461         // Undef doesn't have a live range, so it doesn't matter.
3462         continue;
3463       for (const Use &U : V->uses()) {
3464         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3465         // Ignore non-instructions.
3466         if (!UserInst)
3467           continue;
3468         // Don't bother if the instruction is an EHPad.
3469         if (UserInst->isEHPad())
3470           continue;
3471         // Ignore instructions in other functions (as can happen with
3472         // Constants).
3473         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3474           continue;
3475         // Ignore instructions not dominated by the loop.
3476         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3477           UserInst->getParent() :
3478           cast<PHINode>(UserInst)->getIncomingBlock(
3479             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3480         if (!DT.dominates(L->getHeader(), UseBB))
3481           continue;
3482         // Don't bother if the instruction is in a BB which ends in an EHPad.
3483         if (UseBB->getTerminator()->isEHPad())
3484           continue;
3485         // Don't bother rewriting PHIs in catchswitch blocks.
3486         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3487           continue;
3488         // Ignore uses which are part of other SCEV expressions, to avoid
3489         // analyzing them multiple times.
3490         if (SE.isSCEVable(UserInst->getType())) {
3491           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3492           // If the user is a no-op, look through to its uses.
3493           if (!isa<SCEVUnknown>(UserS))
3494             continue;
3495           if (UserS == US) {
3496             Worklist.push_back(
3497               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3498             continue;
3499           }
3500         }
3501         // Ignore icmp instructions which are already being analyzed.
3502         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3503           unsigned OtherIdx = !U.getOperandNo();
3504           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3505           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3506             continue;
3507         }
3508 
3509         std::pair<size_t, int64_t> P = getUse(
3510             S, LSRUse::Basic, MemAccessTy());
3511         size_t LUIdx = P.first;
3512         int64_t Offset = P.second;
3513         LSRUse &LU = Uses[LUIdx];
3514         LSRFixup &LF = LU.getNewFixup();
3515         LF.UserInst = const_cast<Instruction *>(UserInst);
3516         LF.OperandValToReplace = U;
3517         LF.Offset = Offset;
3518         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3519         if (!LU.WidestFixupType ||
3520             SE.getTypeSizeInBits(LU.WidestFixupType) <
3521             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3522           LU.WidestFixupType = LF.OperandValToReplace->getType();
3523         InsertSupplementalFormula(US, LU, LUIdx);
3524         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3525         break;
3526       }
3527     }
3528   }
3529 }
3530 
3531 /// Split S into subexpressions which can be pulled out into separate
3532 /// registers. If C is non-null, multiply each subexpression by C.
3533 ///
3534 /// Return remainder expression after factoring the subexpressions captured by
3535 /// Ops. If Ops is complete, return NULL.
CollectSubexprs(const SCEV * S,const SCEVConstant * C,SmallVectorImpl<const SCEV * > & Ops,const Loop * L,ScalarEvolution & SE,unsigned Depth=0)3536 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3537                                    SmallVectorImpl<const SCEV *> &Ops,
3538                                    const Loop *L,
3539                                    ScalarEvolution &SE,
3540                                    unsigned Depth = 0) {
3541   // Arbitrarily cap recursion to protect compile time.
3542   if (Depth >= 3)
3543     return S;
3544 
3545   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3546     // Break out add operands.
3547     for (const SCEV *S : Add->operands()) {
3548       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3549       if (Remainder)
3550         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3551     }
3552     return nullptr;
3553   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3554     // Split a non-zero base out of an addrec.
3555     if (AR->getStart()->isZero() || !AR->isAffine())
3556       return S;
3557 
3558     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3559                                             C, Ops, L, SE, Depth+1);
3560     // Split the non-zero AddRec unless it is part of a nested recurrence that
3561     // does not pertain to this loop.
3562     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3563       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3564       Remainder = nullptr;
3565     }
3566     if (Remainder != AR->getStart()) {
3567       if (!Remainder)
3568         Remainder = SE.getConstant(AR->getType(), 0);
3569       return SE.getAddRecExpr(Remainder,
3570                               AR->getStepRecurrence(SE),
3571                               AR->getLoop(),
3572                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3573                               SCEV::FlagAnyWrap);
3574     }
3575   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3576     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3577     if (Mul->getNumOperands() != 2)
3578       return S;
3579     if (const SCEVConstant *Op0 =
3580         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3581       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3582       const SCEV *Remainder =
3583         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3584       if (Remainder)
3585         Ops.push_back(SE.getMulExpr(C, Remainder));
3586       return nullptr;
3587     }
3588   }
3589   return S;
3590 }
3591 
3592 /// Return true if the SCEV represents a value that may end up as a
3593 /// post-increment operation.
mayUsePostIncMode(const TargetTransformInfo & TTI,LSRUse & LU,const SCEV * S,const Loop * L,ScalarEvolution & SE)3594 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3595                               LSRUse &LU, const SCEV *S, const Loop *L,
3596                               ScalarEvolution &SE) {
3597   if (LU.Kind != LSRUse::Address ||
3598       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3599     return false;
3600   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3601   if (!AR)
3602     return false;
3603   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3604   if (!isa<SCEVConstant>(LoopStep))
3605     return false;
3606   // Check if a post-indexed load/store can be used.
3607   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3608       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3609     const SCEV *LoopStart = AR->getStart();
3610     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3611       return true;
3612   }
3613   return false;
3614 }
3615 
3616 /// Helper function for LSRInstance::GenerateReassociations.
GenerateReassociationsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,unsigned Depth,size_t Idx,bool IsScaledReg)3617 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3618                                              const Formula &Base,
3619                                              unsigned Depth, size_t Idx,
3620                                              bool IsScaledReg) {
3621   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3622   // Don't generate reassociations for the base register of a value that
3623   // may generate a post-increment operator. The reason is that the
3624   // reassociations cause extra base+register formula to be created,
3625   // and possibly chosen, but the post-increment is more efficient.
3626   if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3627     return;
3628   SmallVector<const SCEV *, 8> AddOps;
3629   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3630   if (Remainder)
3631     AddOps.push_back(Remainder);
3632 
3633   if (AddOps.size() == 1)
3634     return;
3635 
3636   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3637                                                      JE = AddOps.end();
3638        J != JE; ++J) {
3639     // Loop-variant "unknown" values are uninteresting; we won't be able to
3640     // do anything meaningful with them.
3641     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3642       continue;
3643 
3644     // Don't pull a constant into a register if the constant could be folded
3645     // into an immediate field.
3646     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3647                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3648       continue;
3649 
3650     // Collect all operands except *J.
3651     SmallVector<const SCEV *, 8> InnerAddOps(
3652         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3653     InnerAddOps.append(std::next(J),
3654                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3655 
3656     // Don't leave just a constant behind in a register if the constant could
3657     // be folded into an immediate field.
3658     if (InnerAddOps.size() == 1 &&
3659         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3660                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3661       continue;
3662 
3663     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3664     if (InnerSum->isZero())
3665       continue;
3666     Formula F = Base;
3667 
3668     // Add the remaining pieces of the add back into the new formula.
3669     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3670     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3671         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3672                                 InnerSumSC->getValue()->getZExtValue())) {
3673       F.UnfoldedOffset =
3674           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3675       if (IsScaledReg)
3676         F.ScaledReg = nullptr;
3677       else
3678         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3679     } else if (IsScaledReg)
3680       F.ScaledReg = InnerSum;
3681     else
3682       F.BaseRegs[Idx] = InnerSum;
3683 
3684     // Add J as its own register, or an unfolded immediate.
3685     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3686     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3687         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3688                                 SC->getValue()->getZExtValue()))
3689       F.UnfoldedOffset =
3690           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3691     else
3692       F.BaseRegs.push_back(*J);
3693     // We may have changed the number of register in base regs, adjust the
3694     // formula accordingly.
3695     F.canonicalize(*L);
3696 
3697     if (InsertFormula(LU, LUIdx, F))
3698       // If that formula hadn't been seen before, recurse to find more like
3699       // it.
3700       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3701       // Because just Depth is not enough to bound compile time.
3702       // This means that every time AddOps.size() is greater 16^x we will add
3703       // x to Depth.
3704       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3705                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3706   }
3707 }
3708 
3709 /// Split out subexpressions from adds and the bases of addrecs.
GenerateReassociations(LSRUse & LU,unsigned LUIdx,Formula Base,unsigned Depth)3710 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3711                                          Formula Base, unsigned Depth) {
3712   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3713   // Arbitrarily cap recursion to protect compile time.
3714   if (Depth >= 3)
3715     return;
3716 
3717   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3718     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3719 
3720   if (Base.Scale == 1)
3721     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3722                                /* Idx */ -1, /* IsScaledReg */ true);
3723 }
3724 
3725 ///  Generate a formula consisting of all of the loop-dominating registers added
3726 /// into a single register.
GenerateCombinations(LSRUse & LU,unsigned LUIdx,Formula Base)3727 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3728                                        Formula Base) {
3729   // This method is only interesting on a plurality of registers.
3730   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3731       (Base.UnfoldedOffset != 0) <= 1)
3732     return;
3733 
3734   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3735   // processing the formula.
3736   Base.unscale();
3737   SmallVector<const SCEV *, 4> Ops;
3738   Formula NewBase = Base;
3739   NewBase.BaseRegs.clear();
3740   Type *CombinedIntegerType = nullptr;
3741   for (const SCEV *BaseReg : Base.BaseRegs) {
3742     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3743         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3744       if (!CombinedIntegerType)
3745         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3746       Ops.push_back(BaseReg);
3747     }
3748     else
3749       NewBase.BaseRegs.push_back(BaseReg);
3750   }
3751 
3752   // If no register is relevant, we're done.
3753   if (Ops.size() == 0)
3754     return;
3755 
3756   // Utility function for generating the required variants of the combined
3757   // registers.
3758   auto GenerateFormula = [&](const SCEV *Sum) {
3759     Formula F = NewBase;
3760 
3761     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3762     // opportunity to fold something. For now, just ignore such cases
3763     // rather than proceed with zero in a register.
3764     if (Sum->isZero())
3765       return;
3766 
3767     F.BaseRegs.push_back(Sum);
3768     F.canonicalize(*L);
3769     (void)InsertFormula(LU, LUIdx, F);
3770   };
3771 
3772   // If we collected at least two registers, generate a formula combining them.
3773   if (Ops.size() > 1) {
3774     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3775     GenerateFormula(SE.getAddExpr(OpsCopy));
3776   }
3777 
3778   // If we have an unfolded offset, generate a formula combining it with the
3779   // registers collected.
3780   if (NewBase.UnfoldedOffset) {
3781     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3782     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3783                                  true));
3784     NewBase.UnfoldedOffset = 0;
3785     GenerateFormula(SE.getAddExpr(Ops));
3786   }
3787 }
3788 
3789 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
GenerateSymbolicOffsetsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,size_t Idx,bool IsScaledReg)3790 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3791                                               const Formula &Base, size_t Idx,
3792                                               bool IsScaledReg) {
3793   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3794   GlobalValue *GV = ExtractSymbol(G, SE);
3795   if (G->isZero() || !GV)
3796     return;
3797   Formula F = Base;
3798   F.BaseGV = GV;
3799   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3800     return;
3801   if (IsScaledReg)
3802     F.ScaledReg = G;
3803   else
3804     F.BaseRegs[Idx] = G;
3805   (void)InsertFormula(LU, LUIdx, F);
3806 }
3807 
3808 /// Generate reuse formulae using symbolic offsets.
GenerateSymbolicOffsets(LSRUse & LU,unsigned LUIdx,Formula Base)3809 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3810                                           Formula Base) {
3811   // We can't add a symbolic offset if the address already contains one.
3812   if (Base.BaseGV) return;
3813 
3814   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3815     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3816   if (Base.Scale == 1)
3817     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3818                                 /* IsScaledReg */ true);
3819 }
3820 
3821 /// Helper function for LSRInstance::GenerateConstantOffsets.
GenerateConstantOffsetsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,const SmallVectorImpl<int64_t> & Worklist,size_t Idx,bool IsScaledReg)3822 void LSRInstance::GenerateConstantOffsetsImpl(
3823     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3824     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3825 
3826   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3827     Formula F = Base;
3828     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3829 
3830     if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) {
3831       // Add the offset to the base register.
3832       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3833       // If it cancelled out, drop the base register, otherwise update it.
3834       if (NewG->isZero()) {
3835         if (IsScaledReg) {
3836           F.Scale = 0;
3837           F.ScaledReg = nullptr;
3838         } else
3839           F.deleteBaseReg(F.BaseRegs[Idx]);
3840         F.canonicalize(*L);
3841       } else if (IsScaledReg)
3842         F.ScaledReg = NewG;
3843       else
3844         F.BaseRegs[Idx] = NewG;
3845 
3846       (void)InsertFormula(LU, LUIdx, F);
3847     }
3848   };
3849 
3850   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3851 
3852   // With constant offsets and constant steps, we can generate pre-inc
3853   // accesses by having the offset equal the step. So, for access #0 with a
3854   // step of 8, we generate a G - 8 base which would require the first access
3855   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3856   // for itself and hopefully becomes the base for other accesses. This means
3857   // means that a single pre-indexed access can be generated to become the new
3858   // base pointer for each iteration of the loop, resulting in no extra add/sub
3859   // instructions for pointer updating.
3860   if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) {
3861     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3862       if (auto *StepRec =
3863           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3864         const APInt &StepInt = StepRec->getAPInt();
3865         int64_t Step = StepInt.isNegative() ?
3866           StepInt.getSExtValue() : StepInt.getZExtValue();
3867 
3868         for (int64_t Offset : Worklist) {
3869           Offset -= Step;
3870           GenerateOffset(G, Offset);
3871         }
3872       }
3873     }
3874   }
3875   for (int64_t Offset : Worklist)
3876     GenerateOffset(G, Offset);
3877 
3878   int64_t Imm = ExtractImmediate(G, SE);
3879   if (G->isZero() || Imm == 0)
3880     return;
3881   Formula F = Base;
3882   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3883   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3884     return;
3885   if (IsScaledReg) {
3886     F.ScaledReg = G;
3887   } else {
3888     F.BaseRegs[Idx] = G;
3889     // We may generate non canonical Formula if G is a recurrent expr reg
3890     // related with current loop while F.ScaledReg is not.
3891     F.canonicalize(*L);
3892   }
3893   (void)InsertFormula(LU, LUIdx, F);
3894 }
3895 
3896 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
GenerateConstantOffsets(LSRUse & LU,unsigned LUIdx,Formula Base)3897 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3898                                           Formula Base) {
3899   // TODO: For now, just add the min and max offset, because it usually isn't
3900   // worthwhile looking at everything inbetween.
3901   SmallVector<int64_t, 2> Worklist;
3902   Worklist.push_back(LU.MinOffset);
3903   if (LU.MaxOffset != LU.MinOffset)
3904     Worklist.push_back(LU.MaxOffset);
3905 
3906   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3907     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3908   if (Base.Scale == 1)
3909     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3910                                 /* IsScaledReg */ true);
3911 }
3912 
3913 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3914 /// == y -> x*c == y*c.
GenerateICmpZeroScales(LSRUse & LU,unsigned LUIdx,Formula Base)3915 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3916                                          Formula Base) {
3917   if (LU.Kind != LSRUse::ICmpZero) return;
3918 
3919   // Determine the integer type for the base formula.
3920   Type *IntTy = Base.getType();
3921   if (!IntTy) return;
3922   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3923 
3924   // Don't do this if there is more than one offset.
3925   if (LU.MinOffset != LU.MaxOffset) return;
3926 
3927   // Check if transformation is valid. It is illegal to multiply pointer.
3928   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3929     return;
3930   for (const SCEV *BaseReg : Base.BaseRegs)
3931     if (BaseReg->getType()->isPointerTy())
3932       return;
3933   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3934 
3935   // Check each interesting stride.
3936   for (int64_t Factor : Factors) {
3937     // Check that the multiplication doesn't overflow.
3938     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3939       continue;
3940     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3941     assert(Factor != 0 && "Zero factor not expected!");
3942     if (NewBaseOffset / Factor != Base.BaseOffset)
3943       continue;
3944     // If the offset will be truncated at this use, check that it is in bounds.
3945     if (!IntTy->isPointerTy() &&
3946         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3947       continue;
3948 
3949     // Check that multiplying with the use offset doesn't overflow.
3950     int64_t Offset = LU.MinOffset;
3951     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3952       continue;
3953     Offset = (uint64_t)Offset * Factor;
3954     if (Offset / Factor != LU.MinOffset)
3955       continue;
3956     // If the offset will be truncated at this use, check that it is in bounds.
3957     if (!IntTy->isPointerTy() &&
3958         !ConstantInt::isValueValidForType(IntTy, Offset))
3959       continue;
3960 
3961     Formula F = Base;
3962     F.BaseOffset = NewBaseOffset;
3963 
3964     // Check that this scale is legal.
3965     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3966       continue;
3967 
3968     // Compensate for the use having MinOffset built into it.
3969     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3970 
3971     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3972 
3973     // Check that multiplying with each base register doesn't overflow.
3974     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3975       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3976       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3977         goto next;
3978     }
3979 
3980     // Check that multiplying with the scaled register doesn't overflow.
3981     if (F.ScaledReg) {
3982       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3983       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3984         continue;
3985     }
3986 
3987     // Check that multiplying with the unfolded offset doesn't overflow.
3988     if (F.UnfoldedOffset != 0) {
3989       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3990           Factor == -1)
3991         continue;
3992       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3993       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3994         continue;
3995       // If the offset will be truncated, check that it is in bounds.
3996       if (!IntTy->isPointerTy() &&
3997           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3998         continue;
3999     }
4000 
4001     // If we make it here and it's legal, add it.
4002     (void)InsertFormula(LU, LUIdx, F);
4003   next:;
4004   }
4005 }
4006 
4007 /// Generate stride factor reuse formulae by making use of scaled-offset address
4008 /// modes, for example.
GenerateScales(LSRUse & LU,unsigned LUIdx,Formula Base)4009 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
4010   // Determine the integer type for the base formula.
4011   Type *IntTy = Base.getType();
4012   if (!IntTy) return;
4013 
4014   // If this Formula already has a scaled register, we can't add another one.
4015   // Try to unscale the formula to generate a better scale.
4016   if (Base.Scale != 0 && !Base.unscale())
4017     return;
4018 
4019   assert(Base.Scale == 0 && "unscale did not did its job!");
4020 
4021   // Check each interesting stride.
4022   for (int64_t Factor : Factors) {
4023     Base.Scale = Factor;
4024     Base.HasBaseReg = Base.BaseRegs.size() > 1;
4025     // Check whether this scale is going to be legal.
4026     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4027                     Base)) {
4028       // As a special-case, handle special out-of-loop Basic users specially.
4029       // TODO: Reconsider this special case.
4030       if (LU.Kind == LSRUse::Basic &&
4031           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
4032                      LU.AccessTy, Base) &&
4033           LU.AllFixupsOutsideLoop)
4034         LU.Kind = LSRUse::Special;
4035       else
4036         continue;
4037     }
4038     // For an ICmpZero, negating a solitary base register won't lead to
4039     // new solutions.
4040     if (LU.Kind == LSRUse::ICmpZero &&
4041         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
4042       continue;
4043     // For each addrec base reg, if its loop is current loop, apply the scale.
4044     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
4045       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
4046       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4047         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4048         if (FactorS->isZero())
4049           continue;
4050         // Divide out the factor, ignoring high bits, since we'll be
4051         // scaling the value back up in the end.
4052         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
4053           // TODO: This could be optimized to avoid all the copying.
4054           Formula F = Base;
4055           F.ScaledReg = Quotient;
4056           F.deleteBaseReg(F.BaseRegs[i]);
4057           // The canonical representation of 1*reg is reg, which is already in
4058           // Base. In that case, do not try to insert the formula, it will be
4059           // rejected anyway.
4060           if (F.Scale == 1 && (F.BaseRegs.empty() ||
4061                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4062             continue;
4063           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4064           // non canonical Formula with ScaledReg's loop not being L.
4065           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4066             F.canonicalize(*L);
4067           (void)InsertFormula(LU, LUIdx, F);
4068         }
4069       }
4070     }
4071   }
4072 }
4073 
4074 /// Generate reuse formulae from different IV types.
GenerateTruncates(LSRUse & LU,unsigned LUIdx,Formula Base)4075 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4076   // Don't bother truncating symbolic values.
4077   if (Base.BaseGV) return;
4078 
4079   // Determine the integer type for the base formula.
4080   Type *DstTy = Base.getType();
4081   if (!DstTy) return;
4082   if (DstTy->isPointerTy())
4083     return;
4084 
4085   for (Type *SrcTy : Types) {
4086     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4087       Formula F = Base;
4088 
4089       // Sometimes SCEV is able to prove zero during ext transform. It may
4090       // happen if SCEV did not do all possible transforms while creating the
4091       // initial node (maybe due to depth limitations), but it can do them while
4092       // taking ext.
4093       if (F.ScaledReg) {
4094         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4095         if (NewScaledReg->isZero())
4096          continue;
4097         F.ScaledReg = NewScaledReg;
4098       }
4099       bool HasZeroBaseReg = false;
4100       for (const SCEV *&BaseReg : F.BaseRegs) {
4101         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4102         if (NewBaseReg->isZero()) {
4103           HasZeroBaseReg = true;
4104           break;
4105         }
4106         BaseReg = NewBaseReg;
4107       }
4108       if (HasZeroBaseReg)
4109         continue;
4110 
4111       // TODO: This assumes we've done basic processing on all uses and
4112       // have an idea what the register usage is.
4113       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4114         continue;
4115 
4116       F.canonicalize(*L);
4117       (void)InsertFormula(LU, LUIdx, F);
4118     }
4119   }
4120 }
4121 
4122 namespace {
4123 
4124 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4125 /// modifications so that the search phase doesn't have to worry about the data
4126 /// structures moving underneath it.
4127 struct WorkItem {
4128   size_t LUIdx;
4129   int64_t Imm;
4130   const SCEV *OrigReg;
4131 
WorkItem__anon2d9bc56f0d11::WorkItem4132   WorkItem(size_t LI, int64_t I, const SCEV *R)
4133       : LUIdx(LI), Imm(I), OrigReg(R) {}
4134 
4135   void print(raw_ostream &OS) const;
4136   void dump() const;
4137 };
4138 
4139 } // end anonymous namespace
4140 
4141 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const4142 void WorkItem::print(raw_ostream &OS) const {
4143   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4144      << " , add offset " << Imm;
4145 }
4146 
dump() const4147 LLVM_DUMP_METHOD void WorkItem::dump() const {
4148   print(errs()); errs() << '\n';
4149 }
4150 #endif
4151 
4152 /// Look for registers which are a constant distance apart and try to form reuse
4153 /// opportunities between them.
GenerateCrossUseConstantOffsets()4154 void LSRInstance::GenerateCrossUseConstantOffsets() {
4155   // Group the registers by their value without any added constant offset.
4156   using ImmMapTy = std::map<int64_t, const SCEV *>;
4157 
4158   DenseMap<const SCEV *, ImmMapTy> Map;
4159   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4160   SmallVector<const SCEV *, 8> Sequence;
4161   for (const SCEV *Use : RegUses) {
4162     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4163     int64_t Imm = ExtractImmediate(Reg, SE);
4164     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4165     if (Pair.second)
4166       Sequence.push_back(Reg);
4167     Pair.first->second.insert(std::make_pair(Imm, Use));
4168     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4169   }
4170 
4171   // Now examine each set of registers with the same base value. Build up
4172   // a list of work to do and do the work in a separate step so that we're
4173   // not adding formulae and register counts while we're searching.
4174   SmallVector<WorkItem, 32> WorkItems;
4175   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4176   for (const SCEV *Reg : Sequence) {
4177     const ImmMapTy &Imms = Map.find(Reg)->second;
4178 
4179     // It's not worthwhile looking for reuse if there's only one offset.
4180     if (Imms.size() == 1)
4181       continue;
4182 
4183     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4184                for (const auto &Entry
4185                     : Imms) dbgs()
4186                << ' ' << Entry.first;
4187                dbgs() << '\n');
4188 
4189     // Examine each offset.
4190     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4191          J != JE; ++J) {
4192       const SCEV *OrigReg = J->second;
4193 
4194       int64_t JImm = J->first;
4195       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4196 
4197       if (!isa<SCEVConstant>(OrigReg) &&
4198           UsedByIndicesMap[Reg].count() == 1) {
4199         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4200                           << '\n');
4201         continue;
4202       }
4203 
4204       // Conservatively examine offsets between this orig reg a few selected
4205       // other orig regs.
4206       int64_t First = Imms.begin()->first;
4207       int64_t Last = std::prev(Imms.end())->first;
4208       // Compute (First + Last)  / 2 without overflow using the fact that
4209       // First + Last = 2 * (First + Last) + (First ^ Last).
4210       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4211       // If the result is negative and First is odd and Last even (or vice versa),
4212       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4213       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4214       ImmMapTy::const_iterator OtherImms[] = {
4215           Imms.begin(), std::prev(Imms.end()),
4216          Imms.lower_bound(Avg)};
4217       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4218         ImmMapTy::const_iterator M = OtherImms[i];
4219         if (M == J || M == JE) continue;
4220 
4221         // Compute the difference between the two.
4222         int64_t Imm = (uint64_t)JImm - M->first;
4223         for (unsigned LUIdx : UsedByIndices.set_bits())
4224           // Make a memo of this use, offset, and register tuple.
4225           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4226             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4227       }
4228     }
4229   }
4230 
4231   Map.clear();
4232   Sequence.clear();
4233   UsedByIndicesMap.clear();
4234   UniqueItems.clear();
4235 
4236   // Now iterate through the worklist and add new formulae.
4237   for (const WorkItem &WI : WorkItems) {
4238     size_t LUIdx = WI.LUIdx;
4239     LSRUse &LU = Uses[LUIdx];
4240     int64_t Imm = WI.Imm;
4241     const SCEV *OrigReg = WI.OrigReg;
4242 
4243     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4244     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4245     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4246 
4247     // TODO: Use a more targeted data structure.
4248     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4249       Formula F = LU.Formulae[L];
4250       // FIXME: The code for the scaled and unscaled registers looks
4251       // very similar but slightly different. Investigate if they
4252       // could be merged. That way, we would not have to unscale the
4253       // Formula.
4254       F.unscale();
4255       // Use the immediate in the scaled register.
4256       if (F.ScaledReg == OrigReg) {
4257         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4258         // Don't create 50 + reg(-50).
4259         if (F.referencesReg(SE.getSCEV(
4260                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4261           continue;
4262         Formula NewF = F;
4263         NewF.BaseOffset = Offset;
4264         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4265                         NewF))
4266           continue;
4267         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4268 
4269         // If the new scale is a constant in a register, and adding the constant
4270         // value to the immediate would produce a value closer to zero than the
4271         // immediate itself, then the formula isn't worthwhile.
4272         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4273           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4274               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4275                   .ule(std::abs(NewF.BaseOffset)))
4276             continue;
4277 
4278         // OK, looks good.
4279         NewF.canonicalize(*this->L);
4280         (void)InsertFormula(LU, LUIdx, NewF);
4281       } else {
4282         // Use the immediate in a base register.
4283         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4284           const SCEV *BaseReg = F.BaseRegs[N];
4285           if (BaseReg != OrigReg)
4286             continue;
4287           Formula NewF = F;
4288           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4289           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4290                           LU.Kind, LU.AccessTy, NewF)) {
4291             if (AMK == TTI::AMK_PostIndexed &&
4292                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4293               continue;
4294             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4295               continue;
4296             NewF = F;
4297             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4298           }
4299           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4300 
4301           // If the new formula has a constant in a register, and adding the
4302           // constant value to the immediate would produce a value closer to
4303           // zero than the immediate itself, then the formula isn't worthwhile.
4304           for (const SCEV *NewReg : NewF.BaseRegs)
4305             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4306               if ((C->getAPInt() + NewF.BaseOffset)
4307                       .abs()
4308                       .slt(std::abs(NewF.BaseOffset)) &&
4309                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4310                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4311                 goto skip_formula;
4312 
4313           // Ok, looks good.
4314           NewF.canonicalize(*this->L);
4315           (void)InsertFormula(LU, LUIdx, NewF);
4316           break;
4317         skip_formula:;
4318         }
4319       }
4320     }
4321   }
4322 }
4323 
4324 /// Generate formulae for each use.
4325 void
GenerateAllReuseFormulae()4326 LSRInstance::GenerateAllReuseFormulae() {
4327   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4328   // queries are more precise.
4329   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4330     LSRUse &LU = Uses[LUIdx];
4331     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4332       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4333     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4334       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4335   }
4336   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4337     LSRUse &LU = Uses[LUIdx];
4338     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4339       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4340     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4341       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4342     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4343       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4344     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4345       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4346   }
4347   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4348     LSRUse &LU = Uses[LUIdx];
4349     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4350       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4351   }
4352 
4353   GenerateCrossUseConstantOffsets();
4354 
4355   LLVM_DEBUG(dbgs() << "\n"
4356                        "After generating reuse formulae:\n";
4357              print_uses(dbgs()));
4358 }
4359 
4360 /// If there are multiple formulae with the same set of registers used
4361 /// by other uses, pick the best one and delete the others.
FilterOutUndesirableDedicatedRegisters()4362 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4363   DenseSet<const SCEV *> VisitedRegs;
4364   SmallPtrSet<const SCEV *, 16> Regs;
4365   SmallPtrSet<const SCEV *, 16> LoserRegs;
4366 #ifndef NDEBUG
4367   bool ChangedFormulae = false;
4368 #endif
4369 
4370   // Collect the best formula for each unique set of shared registers. This
4371   // is reset for each use.
4372   using BestFormulaeTy =
4373       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4374 
4375   BestFormulaeTy BestFormulae;
4376 
4377   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4378     LSRUse &LU = Uses[LUIdx];
4379     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4380                dbgs() << '\n');
4381 
4382     bool Any = false;
4383     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4384          FIdx != NumForms; ++FIdx) {
4385       Formula &F = LU.Formulae[FIdx];
4386 
4387       // Some formulas are instant losers. For example, they may depend on
4388       // nonexistent AddRecs from other loops. These need to be filtered
4389       // immediately, otherwise heuristics could choose them over others leading
4390       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4391       // avoids the need to recompute this information across formulae using the
4392       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4393       // the corresponding bad register from the Regs set.
4394       Cost CostF(L, SE, TTI, AMK);
4395       Regs.clear();
4396       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4397       if (CostF.isLoser()) {
4398         // During initial formula generation, undesirable formulae are generated
4399         // by uses within other loops that have some non-trivial address mode or
4400         // use the postinc form of the IV. LSR needs to provide these formulae
4401         // as the basis of rediscovering the desired formula that uses an AddRec
4402         // corresponding to the existing phi. Once all formulae have been
4403         // generated, these initial losers may be pruned.
4404         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4405                    dbgs() << "\n");
4406       }
4407       else {
4408         SmallVector<const SCEV *, 4> Key;
4409         for (const SCEV *Reg : F.BaseRegs) {
4410           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4411             Key.push_back(Reg);
4412         }
4413         if (F.ScaledReg &&
4414             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4415           Key.push_back(F.ScaledReg);
4416         // Unstable sort by host order ok, because this is only used for
4417         // uniquifying.
4418         llvm::sort(Key);
4419 
4420         std::pair<BestFormulaeTy::const_iterator, bool> P =
4421           BestFormulae.insert(std::make_pair(Key, FIdx));
4422         if (P.second)
4423           continue;
4424 
4425         Formula &Best = LU.Formulae[P.first->second];
4426 
4427         Cost CostBest(L, SE, TTI, AMK);
4428         Regs.clear();
4429         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4430         if (CostF.isLess(CostBest))
4431           std::swap(F, Best);
4432         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4433                    dbgs() << "\n"
4434                              "    in favor of formula ";
4435                    Best.print(dbgs()); dbgs() << '\n');
4436       }
4437 #ifndef NDEBUG
4438       ChangedFormulae = true;
4439 #endif
4440       LU.DeleteFormula(F);
4441       --FIdx;
4442       --NumForms;
4443       Any = true;
4444     }
4445 
4446     // Now that we've filtered out some formulae, recompute the Regs set.
4447     if (Any)
4448       LU.RecomputeRegs(LUIdx, RegUses);
4449 
4450     // Reset this to prepare for the next use.
4451     BestFormulae.clear();
4452   }
4453 
4454   LLVM_DEBUG(if (ChangedFormulae) {
4455     dbgs() << "\n"
4456               "After filtering out undesirable candidates:\n";
4457     print_uses(dbgs());
4458   });
4459 }
4460 
4461 /// Estimate the worst-case number of solutions the solver might have to
4462 /// consider. It almost never considers this many solutions because it prune the
4463 /// search space, but the pruning isn't always sufficient.
EstimateSearchSpaceComplexity() const4464 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4465   size_t Power = 1;
4466   for (const LSRUse &LU : Uses) {
4467     size_t FSize = LU.Formulae.size();
4468     if (FSize >= ComplexityLimit) {
4469       Power = ComplexityLimit;
4470       break;
4471     }
4472     Power *= FSize;
4473     if (Power >= ComplexityLimit)
4474       break;
4475   }
4476   return Power;
4477 }
4478 
4479 /// When one formula uses a superset of the registers of another formula, it
4480 /// won't help reduce register pressure (though it may not necessarily hurt
4481 /// register pressure); remove it to simplify the system.
NarrowSearchSpaceByDetectingSupersets()4482 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4483   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4484     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4485 
4486     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4487                          "which use a superset of registers used by other "
4488                          "formulae.\n");
4489 
4490     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4491       LSRUse &LU = Uses[LUIdx];
4492       bool Any = false;
4493       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4494         Formula &F = LU.Formulae[i];
4495         // Look for a formula with a constant or GV in a register. If the use
4496         // also has a formula with that same value in an immediate field,
4497         // delete the one that uses a register.
4498         for (SmallVectorImpl<const SCEV *>::const_iterator
4499              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4500           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4501             Formula NewF = F;
4502             //FIXME: Formulas should store bitwidth to do wrapping properly.
4503             //       See PR41034.
4504             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4505             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4506                                 (I - F.BaseRegs.begin()));
4507             if (LU.HasFormulaWithSameRegs(NewF)) {
4508               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4509                          dbgs() << '\n');
4510               LU.DeleteFormula(F);
4511               --i;
4512               --e;
4513               Any = true;
4514               break;
4515             }
4516           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4517             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4518               if (!F.BaseGV) {
4519                 Formula NewF = F;
4520                 NewF.BaseGV = GV;
4521                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4522                                     (I - F.BaseRegs.begin()));
4523                 if (LU.HasFormulaWithSameRegs(NewF)) {
4524                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4525                              dbgs() << '\n');
4526                   LU.DeleteFormula(F);
4527                   --i;
4528                   --e;
4529                   Any = true;
4530                   break;
4531                 }
4532               }
4533           }
4534         }
4535       }
4536       if (Any)
4537         LU.RecomputeRegs(LUIdx, RegUses);
4538     }
4539 
4540     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4541   }
4542 }
4543 
4544 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4545 /// allocate a single register for them.
NarrowSearchSpaceByCollapsingUnrolledCode()4546 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4547   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4548     return;
4549 
4550   LLVM_DEBUG(
4551       dbgs() << "The search space is too complex.\n"
4552                 "Narrowing the search space by assuming that uses separated "
4553                 "by a constant offset will use the same registers.\n");
4554 
4555   // This is especially useful for unrolled loops.
4556 
4557   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4558     LSRUse &LU = Uses[LUIdx];
4559     for (const Formula &F : LU.Formulae) {
4560       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4561         continue;
4562 
4563       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4564       if (!LUThatHas)
4565         continue;
4566 
4567       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4568                               LU.Kind, LU.AccessTy))
4569         continue;
4570 
4571       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4572 
4573       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4574 
4575       // Transfer the fixups of LU to LUThatHas.
4576       for (LSRFixup &Fixup : LU.Fixups) {
4577         Fixup.Offset += F.BaseOffset;
4578         LUThatHas->pushFixup(Fixup);
4579         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4580       }
4581 
4582       // Delete formulae from the new use which are no longer legal.
4583       bool Any = false;
4584       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4585         Formula &F = LUThatHas->Formulae[i];
4586         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4587                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4588           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4589           LUThatHas->DeleteFormula(F);
4590           --i;
4591           --e;
4592           Any = true;
4593         }
4594       }
4595 
4596       if (Any)
4597         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4598 
4599       // Delete the old use.
4600       DeleteUse(LU, LUIdx);
4601       --LUIdx;
4602       --NumUses;
4603       break;
4604     }
4605   }
4606 
4607   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4608 }
4609 
4610 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4611 /// we've done more filtering, as it may be able to find more formulae to
4612 /// eliminate.
NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters()4613 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4614   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4615     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4616 
4617     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4618                          "undesirable dedicated registers.\n");
4619 
4620     FilterOutUndesirableDedicatedRegisters();
4621 
4622     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4623   }
4624 }
4625 
4626 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4627 /// Pick the best one and delete the others.
4628 /// This narrowing heuristic is to keep as many formulae with different
4629 /// Scale and ScaledReg pair as possible while narrowing the search space.
4630 /// The benefit is that it is more likely to find out a better solution
4631 /// from a formulae set with more Scale and ScaledReg variations than
4632 /// a formulae set with the same Scale and ScaledReg. The picking winner
4633 /// reg heuristic will often keep the formulae with the same Scale and
4634 /// ScaledReg and filter others, and we want to avoid that if possible.
NarrowSearchSpaceByFilterFormulaWithSameScaledReg()4635 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4636   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4637     return;
4638 
4639   LLVM_DEBUG(
4640       dbgs() << "The search space is too complex.\n"
4641                 "Narrowing the search space by choosing the best Formula "
4642                 "from the Formulae with the same Scale and ScaledReg.\n");
4643 
4644   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4645   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4646 
4647   BestFormulaeTy BestFormulae;
4648 #ifndef NDEBUG
4649   bool ChangedFormulae = false;
4650 #endif
4651   DenseSet<const SCEV *> VisitedRegs;
4652   SmallPtrSet<const SCEV *, 16> Regs;
4653 
4654   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4655     LSRUse &LU = Uses[LUIdx];
4656     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4657                dbgs() << '\n');
4658 
4659     // Return true if Formula FA is better than Formula FB.
4660     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4661       // First we will try to choose the Formula with fewer new registers.
4662       // For a register used by current Formula, the more the register is
4663       // shared among LSRUses, the less we increase the register number
4664       // counter of the formula.
4665       size_t FARegNum = 0;
4666       for (const SCEV *Reg : FA.BaseRegs) {
4667         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4668         FARegNum += (NumUses - UsedByIndices.count() + 1);
4669       }
4670       size_t FBRegNum = 0;
4671       for (const SCEV *Reg : FB.BaseRegs) {
4672         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4673         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4674       }
4675       if (FARegNum != FBRegNum)
4676         return FARegNum < FBRegNum;
4677 
4678       // If the new register numbers are the same, choose the Formula with
4679       // less Cost.
4680       Cost CostFA(L, SE, TTI, AMK);
4681       Cost CostFB(L, SE, TTI, AMK);
4682       Regs.clear();
4683       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4684       Regs.clear();
4685       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4686       return CostFA.isLess(CostFB);
4687     };
4688 
4689     bool Any = false;
4690     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4691          ++FIdx) {
4692       Formula &F = LU.Formulae[FIdx];
4693       if (!F.ScaledReg)
4694         continue;
4695       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4696       if (P.second)
4697         continue;
4698 
4699       Formula &Best = LU.Formulae[P.first->second];
4700       if (IsBetterThan(F, Best))
4701         std::swap(F, Best);
4702       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4703                  dbgs() << "\n"
4704                            "    in favor of formula ";
4705                  Best.print(dbgs()); dbgs() << '\n');
4706 #ifndef NDEBUG
4707       ChangedFormulae = true;
4708 #endif
4709       LU.DeleteFormula(F);
4710       --FIdx;
4711       --NumForms;
4712       Any = true;
4713     }
4714     if (Any)
4715       LU.RecomputeRegs(LUIdx, RegUses);
4716 
4717     // Reset this to prepare for the next use.
4718     BestFormulae.clear();
4719   }
4720 
4721   LLVM_DEBUG(if (ChangedFormulae) {
4722     dbgs() << "\n"
4723               "After filtering out undesirable candidates:\n";
4724     print_uses(dbgs());
4725   });
4726 }
4727 
4728 /// If we are over the complexity limit, filter out any post-inc prefering
4729 /// variables to only post-inc values.
NarrowSearchSpaceByFilterPostInc()4730 void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4731   if (AMK != TTI::AMK_PostIndexed)
4732     return;
4733   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4734     return;
4735 
4736   LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
4737                        "Narrowing the search space by choosing the lowest "
4738                        "register Formula for PostInc Uses.\n");
4739 
4740   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4741     LSRUse &LU = Uses[LUIdx];
4742 
4743     if (LU.Kind != LSRUse::Address)
4744       continue;
4745     if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4746         !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4747       continue;
4748 
4749     size_t MinRegs = std::numeric_limits<size_t>::max();
4750     for (const Formula &F : LU.Formulae)
4751       MinRegs = std::min(F.getNumRegs(), MinRegs);
4752 
4753     bool Any = false;
4754     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4755          ++FIdx) {
4756       Formula &F = LU.Formulae[FIdx];
4757       if (F.getNumRegs() > MinRegs) {
4758         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4759                    dbgs() << "\n");
4760         LU.DeleteFormula(F);
4761         --FIdx;
4762         --NumForms;
4763         Any = true;
4764       }
4765     }
4766     if (Any)
4767       LU.RecomputeRegs(LUIdx, RegUses);
4768 
4769     if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4770       break;
4771   }
4772 
4773   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4774 }
4775 
4776 /// The function delete formulas with high registers number expectation.
4777 /// Assuming we don't know the value of each formula (already delete
4778 /// all inefficient), generate probability of not selecting for each
4779 /// register.
4780 /// For example,
4781 /// Use1:
4782 ///  reg(a) + reg({0,+,1})
4783 ///  reg(a) + reg({-1,+,1}) + 1
4784 ///  reg({a,+,1})
4785 /// Use2:
4786 ///  reg(b) + reg({0,+,1})
4787 ///  reg(b) + reg({-1,+,1}) + 1
4788 ///  reg({b,+,1})
4789 /// Use3:
4790 ///  reg(c) + reg(b) + reg({0,+,1})
4791 ///  reg(c) + reg({b,+,1})
4792 ///
4793 /// Probability of not selecting
4794 ///                 Use1   Use2    Use3
4795 /// reg(a)         (1/3) *   1   *   1
4796 /// reg(b)           1   * (1/3) * (1/2)
4797 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4798 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4799 /// reg({a,+,1})   (2/3) *   1   *   1
4800 /// reg({b,+,1})     1   * (2/3) * (2/3)
4801 /// reg(c)           1   *   1   *   0
4802 ///
4803 /// Now count registers number mathematical expectation for each formula:
4804 /// Note that for each use we exclude probability if not selecting for the use.
4805 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4806 /// probabilty 1/3 of not selecting for Use1).
4807 /// Use1:
4808 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4809 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4810 ///  reg({a,+,1})                   1
4811 /// Use2:
4812 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4813 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4814 ///  reg({b,+,1})                   2/3
4815 /// Use3:
4816 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4817 ///  reg(c) + reg({b,+,1})          1 + 2/3
NarrowSearchSpaceByDeletingCostlyFormulas()4818 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4819   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4820     return;
4821   // Ok, we have too many of formulae on our hands to conveniently handle.
4822   // Use a rough heuristic to thin out the list.
4823 
4824   // Set of Regs wich will be 100% used in final solution.
4825   // Used in each formula of a solution (in example above this is reg(c)).
4826   // We can skip them in calculations.
4827   SmallPtrSet<const SCEV *, 4> UniqRegs;
4828   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4829 
4830   // Map each register to probability of not selecting
4831   DenseMap <const SCEV *, float> RegNumMap;
4832   for (const SCEV *Reg : RegUses) {
4833     if (UniqRegs.count(Reg))
4834       continue;
4835     float PNotSel = 1;
4836     for (const LSRUse &LU : Uses) {
4837       if (!LU.Regs.count(Reg))
4838         continue;
4839       float P = LU.getNotSelectedProbability(Reg);
4840       if (P != 0.0)
4841         PNotSel *= P;
4842       else
4843         UniqRegs.insert(Reg);
4844     }
4845     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4846   }
4847 
4848   LLVM_DEBUG(
4849       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4850 
4851   // Delete formulas where registers number expectation is high.
4852   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4853     LSRUse &LU = Uses[LUIdx];
4854     // If nothing to delete - continue.
4855     if (LU.Formulae.size() < 2)
4856       continue;
4857     // This is temporary solution to test performance. Float should be
4858     // replaced with round independent type (based on integers) to avoid
4859     // different results for different target builds.
4860     float FMinRegNum = LU.Formulae[0].getNumRegs();
4861     float FMinARegNum = LU.Formulae[0].getNumRegs();
4862     size_t MinIdx = 0;
4863     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4864       Formula &F = LU.Formulae[i];
4865       float FRegNum = 0;
4866       float FARegNum = 0;
4867       for (const SCEV *BaseReg : F.BaseRegs) {
4868         if (UniqRegs.count(BaseReg))
4869           continue;
4870         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4871         if (isa<SCEVAddRecExpr>(BaseReg))
4872           FARegNum +=
4873               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4874       }
4875       if (const SCEV *ScaledReg = F.ScaledReg) {
4876         if (!UniqRegs.count(ScaledReg)) {
4877           FRegNum +=
4878               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4879           if (isa<SCEVAddRecExpr>(ScaledReg))
4880             FARegNum +=
4881                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4882         }
4883       }
4884       if (FMinRegNum > FRegNum ||
4885           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4886         FMinRegNum = FRegNum;
4887         FMinARegNum = FARegNum;
4888         MinIdx = i;
4889       }
4890     }
4891     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4892                dbgs() << " with min reg num " << FMinRegNum << '\n');
4893     if (MinIdx != 0)
4894       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4895     while (LU.Formulae.size() != 1) {
4896       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4897                  dbgs() << '\n');
4898       LU.Formulae.pop_back();
4899     }
4900     LU.RecomputeRegs(LUIdx, RegUses);
4901     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4902     Formula &F = LU.Formulae[0];
4903     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4904     // When we choose the formula, the regs become unique.
4905     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4906     if (F.ScaledReg)
4907       UniqRegs.insert(F.ScaledReg);
4908   }
4909   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4910 }
4911 
4912 /// Pick a register which seems likely to be profitable, and then in any use
4913 /// which has any reference to that register, delete all formulae which do not
4914 /// reference that register.
NarrowSearchSpaceByPickingWinnerRegs()4915 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4916   // With all other options exhausted, loop until the system is simple
4917   // enough to handle.
4918   SmallPtrSet<const SCEV *, 4> Taken;
4919   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4920     // Ok, we have too many of formulae on our hands to conveniently handle.
4921     // Use a rough heuristic to thin out the list.
4922     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4923 
4924     // Pick the register which is used by the most LSRUses, which is likely
4925     // to be a good reuse register candidate.
4926     const SCEV *Best = nullptr;
4927     unsigned BestNum = 0;
4928     for (const SCEV *Reg : RegUses) {
4929       if (Taken.count(Reg))
4930         continue;
4931       if (!Best) {
4932         Best = Reg;
4933         BestNum = RegUses.getUsedByIndices(Reg).count();
4934       } else {
4935         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4936         if (Count > BestNum) {
4937           Best = Reg;
4938           BestNum = Count;
4939         }
4940       }
4941     }
4942     assert(Best && "Failed to find best LSRUse candidate");
4943 
4944     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4945                       << " will yield profitable reuse.\n");
4946     Taken.insert(Best);
4947 
4948     // In any use with formulae which references this register, delete formulae
4949     // which don't reference it.
4950     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4951       LSRUse &LU = Uses[LUIdx];
4952       if (!LU.Regs.count(Best)) continue;
4953 
4954       bool Any = false;
4955       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4956         Formula &F = LU.Formulae[i];
4957         if (!F.referencesReg(Best)) {
4958           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4959           LU.DeleteFormula(F);
4960           --e;
4961           --i;
4962           Any = true;
4963           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4964           continue;
4965         }
4966       }
4967 
4968       if (Any)
4969         LU.RecomputeRegs(LUIdx, RegUses);
4970     }
4971 
4972     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4973   }
4974 }
4975 
4976 /// If there are an extraordinary number of formulae to choose from, use some
4977 /// rough heuristics to prune down the number of formulae. This keeps the main
4978 /// solver from taking an extraordinary amount of time in some worst-case
4979 /// scenarios.
NarrowSearchSpaceUsingHeuristics()4980 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4981   NarrowSearchSpaceByDetectingSupersets();
4982   NarrowSearchSpaceByCollapsingUnrolledCode();
4983   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4984   if (FilterSameScaledReg)
4985     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4986   NarrowSearchSpaceByFilterPostInc();
4987   if (LSRExpNarrow)
4988     NarrowSearchSpaceByDeletingCostlyFormulas();
4989   else
4990     NarrowSearchSpaceByPickingWinnerRegs();
4991 }
4992 
4993 /// This is the recursive solver.
SolveRecurse(SmallVectorImpl<const Formula * > & Solution,Cost & SolutionCost,SmallVectorImpl<const Formula * > & Workspace,const Cost & CurCost,const SmallPtrSet<const SCEV *,16> & CurRegs,DenseSet<const SCEV * > & VisitedRegs) const4994 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4995                                Cost &SolutionCost,
4996                                SmallVectorImpl<const Formula *> &Workspace,
4997                                const Cost &CurCost,
4998                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4999                                DenseSet<const SCEV *> &VisitedRegs) const {
5000   // Some ideas:
5001   //  - prune more:
5002   //    - use more aggressive filtering
5003   //    - sort the formula so that the most profitable solutions are found first
5004   //    - sort the uses too
5005   //  - search faster:
5006   //    - don't compute a cost, and then compare. compare while computing a cost
5007   //      and bail early.
5008   //    - track register sets with SmallBitVector
5009 
5010   const LSRUse &LU = Uses[Workspace.size()];
5011 
5012   // If this use references any register that's already a part of the
5013   // in-progress solution, consider it a requirement that a formula must
5014   // reference that register in order to be considered. This prunes out
5015   // unprofitable searching.
5016   SmallSetVector<const SCEV *, 4> ReqRegs;
5017   for (const SCEV *S : CurRegs)
5018     if (LU.Regs.count(S))
5019       ReqRegs.insert(S);
5020 
5021   SmallPtrSet<const SCEV *, 16> NewRegs;
5022   Cost NewCost(L, SE, TTI, AMK);
5023   for (const Formula &F : LU.Formulae) {
5024     // Ignore formulae which may not be ideal in terms of register reuse of
5025     // ReqRegs.  The formula should use all required registers before
5026     // introducing new ones.
5027     // This can sometimes (notably when trying to favour postinc) lead to
5028     // sub-optimial decisions. There it is best left to the cost modelling to
5029     // get correct.
5030     if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) {
5031       int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
5032       for (const SCEV *Reg : ReqRegs) {
5033         if ((F.ScaledReg && F.ScaledReg == Reg) ||
5034             is_contained(F.BaseRegs, Reg)) {
5035           --NumReqRegsToFind;
5036           if (NumReqRegsToFind == 0)
5037             break;
5038         }
5039       }
5040       if (NumReqRegsToFind != 0) {
5041         // If none of the formulae satisfied the required registers, then we could
5042         // clear ReqRegs and try again. Currently, we simply give up in this case.
5043         continue;
5044       }
5045     }
5046 
5047     // Evaluate the cost of the current formula. If it's already worse than
5048     // the current best, prune the search at that point.
5049     NewCost = CurCost;
5050     NewRegs = CurRegs;
5051     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5052     if (NewCost.isLess(SolutionCost)) {
5053       Workspace.push_back(&F);
5054       if (Workspace.size() != Uses.size()) {
5055         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5056                      NewRegs, VisitedRegs);
5057         if (F.getNumRegs() == 1 && Workspace.size() == 1)
5058           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5059       } else {
5060         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5061                    dbgs() << ".\nRegs:\n";
5062                    for (const SCEV *S : NewRegs) dbgs()
5063                       << "- " << *S << "\n";
5064                    dbgs() << '\n');
5065 
5066         SolutionCost = NewCost;
5067         Solution = Workspace;
5068       }
5069       Workspace.pop_back();
5070     }
5071   }
5072 }
5073 
5074 /// Choose one formula from each use. Return the results in the given Solution
5075 /// vector.
Solve(SmallVectorImpl<const Formula * > & Solution) const5076 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5077   SmallVector<const Formula *, 8> Workspace;
5078   Cost SolutionCost(L, SE, TTI, AMK);
5079   SolutionCost.Lose();
5080   Cost CurCost(L, SE, TTI, AMK);
5081   SmallPtrSet<const SCEV *, 16> CurRegs;
5082   DenseSet<const SCEV *> VisitedRegs;
5083   Workspace.reserve(Uses.size());
5084 
5085   // SolveRecurse does all the work.
5086   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5087                CurRegs, VisitedRegs);
5088   if (Solution.empty()) {
5089     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5090     return;
5091   }
5092 
5093   // Ok, we've now made all our decisions.
5094   LLVM_DEBUG(dbgs() << "\n"
5095                        "The chosen solution requires ";
5096              SolutionCost.print(dbgs()); dbgs() << ":\n";
5097              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5098                dbgs() << "  ";
5099                Uses[i].print(dbgs());
5100                dbgs() << "\n"
5101                          "    ";
5102                Solution[i]->print(dbgs());
5103                dbgs() << '\n';
5104              });
5105 
5106   assert(Solution.size() == Uses.size() && "Malformed solution!");
5107 }
5108 
5109 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5110 /// we can go while still being dominated by the input positions. This helps
5111 /// canonicalize the insert position, which encourages sharing.
5112 BasicBlock::iterator
HoistInsertPosition(BasicBlock::iterator IP,const SmallVectorImpl<Instruction * > & Inputs) const5113 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5114                                  const SmallVectorImpl<Instruction *> &Inputs)
5115                                                                          const {
5116   Instruction *Tentative = &*IP;
5117   while (true) {
5118     bool AllDominate = true;
5119     Instruction *BetterPos = nullptr;
5120     // Don't bother attempting to insert before a catchswitch, their basic block
5121     // cannot have other non-PHI instructions.
5122     if (isa<CatchSwitchInst>(Tentative))
5123       return IP;
5124 
5125     for (Instruction *Inst : Inputs) {
5126       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5127         AllDominate = false;
5128         break;
5129       }
5130       // Attempt to find an insert position in the middle of the block,
5131       // instead of at the end, so that it can be used for other expansions.
5132       if (Tentative->getParent() == Inst->getParent() &&
5133           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5134         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5135     }
5136     if (!AllDominate)
5137       break;
5138     if (BetterPos)
5139       IP = BetterPos->getIterator();
5140     else
5141       IP = Tentative->getIterator();
5142 
5143     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5144     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5145 
5146     BasicBlock *IDom;
5147     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5148       if (!Rung) return IP;
5149       Rung = Rung->getIDom();
5150       if (!Rung) return IP;
5151       IDom = Rung->getBlock();
5152 
5153       // Don't climb into a loop though.
5154       const Loop *IDomLoop = LI.getLoopFor(IDom);
5155       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5156       if (IDomDepth <= IPLoopDepth &&
5157           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5158         break;
5159     }
5160 
5161     Tentative = IDom->getTerminator();
5162   }
5163 
5164   return IP;
5165 }
5166 
5167 /// Determine an input position which will be dominated by the operands and
5168 /// which will dominate the result.
5169 BasicBlock::iterator
AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,const LSRFixup & LF,const LSRUse & LU,SCEVExpander & Rewriter) const5170 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5171                                            const LSRFixup &LF,
5172                                            const LSRUse &LU,
5173                                            SCEVExpander &Rewriter) const {
5174   // Collect some instructions which must be dominated by the
5175   // expanding replacement. These must be dominated by any operands that
5176   // will be required in the expansion.
5177   SmallVector<Instruction *, 4> Inputs;
5178   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5179     Inputs.push_back(I);
5180   if (LU.Kind == LSRUse::ICmpZero)
5181     if (Instruction *I =
5182           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5183       Inputs.push_back(I);
5184   if (LF.PostIncLoops.count(L)) {
5185     if (LF.isUseFullyOutsideLoop(L))
5186       Inputs.push_back(L->getLoopLatch()->getTerminator());
5187     else
5188       Inputs.push_back(IVIncInsertPos);
5189   }
5190   // The expansion must also be dominated by the increment positions of any
5191   // loops it for which it is using post-inc mode.
5192   for (const Loop *PIL : LF.PostIncLoops) {
5193     if (PIL == L) continue;
5194 
5195     // Be dominated by the loop exit.
5196     SmallVector<BasicBlock *, 4> ExitingBlocks;
5197     PIL->getExitingBlocks(ExitingBlocks);
5198     if (!ExitingBlocks.empty()) {
5199       BasicBlock *BB = ExitingBlocks[0];
5200       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5201         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5202       Inputs.push_back(BB->getTerminator());
5203     }
5204   }
5205 
5206   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5207          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5208          "Insertion point must be a normal instruction");
5209 
5210   // Then, climb up the immediate dominator tree as far as we can go while
5211   // still being dominated by the input positions.
5212   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5213 
5214   // Don't insert instructions before PHI nodes.
5215   while (isa<PHINode>(IP)) ++IP;
5216 
5217   // Ignore landingpad instructions.
5218   while (IP->isEHPad()) ++IP;
5219 
5220   // Ignore debug intrinsics.
5221   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5222 
5223   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5224   // IP consistent across expansions and allows the previously inserted
5225   // instructions to be reused by subsequent expansion.
5226   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5227     ++IP;
5228 
5229   return IP;
5230 }
5231 
5232 /// Emit instructions for the leading candidate expression for this LSRUse (this
5233 /// is called "expanding").
Expand(const LSRUse & LU,const LSRFixup & LF,const Formula & F,BasicBlock::iterator IP,SCEVExpander & Rewriter,SmallVectorImpl<WeakTrackingVH> & DeadInsts) const5234 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5235                            const Formula &F, BasicBlock::iterator IP,
5236                            SCEVExpander &Rewriter,
5237                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5238   if (LU.RigidFormula)
5239     return LF.OperandValToReplace;
5240 
5241   // Determine an input position which will be dominated by the operands and
5242   // which will dominate the result.
5243   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5244   Rewriter.setInsertPoint(&*IP);
5245 
5246   // Inform the Rewriter if we have a post-increment use, so that it can
5247   // perform an advantageous expansion.
5248   Rewriter.setPostInc(LF.PostIncLoops);
5249 
5250   // This is the type that the user actually needs.
5251   Type *OpTy = LF.OperandValToReplace->getType();
5252   // This will be the type that we'll initially expand to.
5253   Type *Ty = F.getType();
5254   if (!Ty)
5255     // No type known; just expand directly to the ultimate type.
5256     Ty = OpTy;
5257   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5258     // Expand directly to the ultimate type if it's the right size.
5259     Ty = OpTy;
5260   // This is the type to do integer arithmetic in.
5261   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5262 
5263   // Build up a list of operands to add together to form the full base.
5264   SmallVector<const SCEV *, 8> Ops;
5265 
5266   // Expand the BaseRegs portion.
5267   for (const SCEV *Reg : F.BaseRegs) {
5268     assert(!Reg->isZero() && "Zero allocated in a base register!");
5269 
5270     // If we're expanding for a post-inc user, make the post-inc adjustment.
5271     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5272     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5273   }
5274 
5275   // Expand the ScaledReg portion.
5276   Value *ICmpScaledV = nullptr;
5277   if (F.Scale != 0) {
5278     const SCEV *ScaledS = F.ScaledReg;
5279 
5280     // If we're expanding for a post-inc user, make the post-inc adjustment.
5281     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5282     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5283 
5284     if (LU.Kind == LSRUse::ICmpZero) {
5285       // Expand ScaleReg as if it was part of the base regs.
5286       if (F.Scale == 1)
5287         Ops.push_back(
5288             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5289       else {
5290         // An interesting way of "folding" with an icmp is to use a negated
5291         // scale, which we'll implement by inserting it into the other operand
5292         // of the icmp.
5293         assert(F.Scale == -1 &&
5294                "The only scale supported by ICmpZero uses is -1!");
5295         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5296       }
5297     } else {
5298       // Otherwise just expand the scaled register and an explicit scale,
5299       // which is expected to be matched as part of the address.
5300 
5301       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5302       // Unless the addressing mode will not be folded.
5303       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5304           isAMCompletelyFolded(TTI, LU, F)) {
5305         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5306         Ops.clear();
5307         Ops.push_back(SE.getUnknown(FullV));
5308       }
5309       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5310       if (F.Scale != 1)
5311         ScaledS =
5312             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5313       Ops.push_back(ScaledS);
5314     }
5315   }
5316 
5317   // Expand the GV portion.
5318   if (F.BaseGV) {
5319     // Flush the operand list to suppress SCEVExpander hoisting.
5320     if (!Ops.empty()) {
5321       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy);
5322       Ops.clear();
5323       Ops.push_back(SE.getUnknown(FullV));
5324     }
5325     Ops.push_back(SE.getUnknown(F.BaseGV));
5326   }
5327 
5328   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5329   // unfolded offsets. LSR assumes they both live next to their uses.
5330   if (!Ops.empty()) {
5331     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5332     Ops.clear();
5333     Ops.push_back(SE.getUnknown(FullV));
5334   }
5335 
5336   // Expand the immediate portion.
5337   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5338   if (Offset != 0) {
5339     if (LU.Kind == LSRUse::ICmpZero) {
5340       // The other interesting way of "folding" with an ICmpZero is to use a
5341       // negated immediate.
5342       if (!ICmpScaledV)
5343         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5344       else {
5345         Ops.push_back(SE.getUnknown(ICmpScaledV));
5346         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5347       }
5348     } else {
5349       // Just add the immediate values. These again are expected to be matched
5350       // as part of the address.
5351       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5352     }
5353   }
5354 
5355   // Expand the unfolded offset portion.
5356   int64_t UnfoldedOffset = F.UnfoldedOffset;
5357   if (UnfoldedOffset != 0) {
5358     // Just add the immediate values.
5359     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5360                                                        UnfoldedOffset)));
5361   }
5362 
5363   // Emit instructions summing all the operands.
5364   const SCEV *FullS = Ops.empty() ?
5365                       SE.getConstant(IntTy, 0) :
5366                       SE.getAddExpr(Ops);
5367   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5368 
5369   // We're done expanding now, so reset the rewriter.
5370   Rewriter.clearPostInc();
5371 
5372   // An ICmpZero Formula represents an ICmp which we're handling as a
5373   // comparison against zero. Now that we've expanded an expression for that
5374   // form, update the ICmp's other operand.
5375   if (LU.Kind == LSRUse::ICmpZero) {
5376     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5377     if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5378       DeadInsts.emplace_back(OperandIsInstr);
5379     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5380                            "a scale at the same time!");
5381     if (F.Scale == -1) {
5382       if (ICmpScaledV->getType() != OpTy) {
5383         Instruction *Cast =
5384           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5385                                                    OpTy, false),
5386                            ICmpScaledV, OpTy, "tmp", CI);
5387         ICmpScaledV = Cast;
5388       }
5389       CI->setOperand(1, ICmpScaledV);
5390     } else {
5391       // A scale of 1 means that the scale has been expanded as part of the
5392       // base regs.
5393       assert((F.Scale == 0 || F.Scale == 1) &&
5394              "ICmp does not support folding a global value and "
5395              "a scale at the same time!");
5396       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5397                                            -(uint64_t)Offset);
5398       if (C->getType() != OpTy)
5399         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5400                                                           OpTy, false),
5401                                   C, OpTy);
5402 
5403       CI->setOperand(1, C);
5404     }
5405   }
5406 
5407   return FullV;
5408 }
5409 
5410 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5411 /// effectively happens in their predecessor blocks, so the expression may need
5412 /// to be expanded in multiple places.
RewriteForPHI(PHINode * PN,const LSRUse & LU,const LSRFixup & LF,const Formula & F,SCEVExpander & Rewriter,SmallVectorImpl<WeakTrackingVH> & DeadInsts) const5413 void LSRInstance::RewriteForPHI(
5414     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5415     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5416   DenseMap<BasicBlock *, Value *> Inserted;
5417   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5418     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5419       bool needUpdateFixups = false;
5420       BasicBlock *BB = PN->getIncomingBlock(i);
5421 
5422       // If this is a critical edge, split the edge so that we do not insert
5423       // the code on all predecessor/successor paths.  We do this unless this
5424       // is the canonical backedge for this loop, which complicates post-inc
5425       // users.
5426       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5427           !isa<IndirectBrInst>(BB->getTerminator()) &&
5428           !isa<CatchSwitchInst>(BB->getTerminator())) {
5429         BasicBlock *Parent = PN->getParent();
5430         Loop *PNLoop = LI.getLoopFor(Parent);
5431         if (!PNLoop || Parent != PNLoop->getHeader()) {
5432           // Split the critical edge.
5433           BasicBlock *NewBB = nullptr;
5434           if (!Parent->isLandingPad()) {
5435             NewBB =
5436                 SplitCriticalEdge(BB, Parent,
5437                                   CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5438                                       .setMergeIdenticalEdges()
5439                                       .setKeepOneInputPHIs());
5440           } else {
5441             SmallVector<BasicBlock*, 2> NewBBs;
5442             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5443             NewBB = NewBBs[0];
5444           }
5445           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5446           // phi predecessors are identical. The simple thing to do is skip
5447           // splitting in this case rather than complicate the API.
5448           if (NewBB) {
5449             // If PN is outside of the loop and BB is in the loop, we want to
5450             // move the block to be immediately before the PHI block, not
5451             // immediately after BB.
5452             if (L->contains(BB) && !L->contains(PN))
5453               NewBB->moveBefore(PN->getParent());
5454 
5455             // Splitting the edge can reduce the number of PHI entries we have.
5456             e = PN->getNumIncomingValues();
5457             BB = NewBB;
5458             i = PN->getBasicBlockIndex(BB);
5459 
5460             needUpdateFixups = true;
5461           }
5462         }
5463       }
5464 
5465       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5466         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5467       if (!Pair.second)
5468         PN->setIncomingValue(i, Pair.first->second);
5469       else {
5470         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5471                               Rewriter, DeadInsts);
5472 
5473         // If this is reuse-by-noop-cast, insert the noop cast.
5474         Type *OpTy = LF.OperandValToReplace->getType();
5475         if (FullV->getType() != OpTy)
5476           FullV =
5477             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5478                                                      OpTy, false),
5479                              FullV, LF.OperandValToReplace->getType(),
5480                              "tmp", BB->getTerminator());
5481 
5482         PN->setIncomingValue(i, FullV);
5483         Pair.first->second = FullV;
5484       }
5485 
5486       // If LSR splits critical edge and phi node has other pending
5487       // fixup operands, we need to update those pending fixups. Otherwise
5488       // formulae will not be implemented completely and some instructions
5489       // will not be eliminated.
5490       if (needUpdateFixups) {
5491         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5492           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5493             // If fixup is supposed to rewrite some operand in the phi
5494             // that was just updated, it may be already moved to
5495             // another phi node. Such fixup requires update.
5496             if (Fixup.UserInst == PN) {
5497               // Check if the operand we try to replace still exists in the
5498               // original phi.
5499               bool foundInOriginalPHI = false;
5500               for (const auto &val : PN->incoming_values())
5501                 if (val == Fixup.OperandValToReplace) {
5502                   foundInOriginalPHI = true;
5503                   break;
5504                 }
5505 
5506               // If fixup operand found in original PHI - nothing to do.
5507               if (foundInOriginalPHI)
5508                 continue;
5509 
5510               // Otherwise it might be moved to another PHI and requires update.
5511               // If fixup operand not found in any of the incoming blocks that
5512               // means we have already rewritten it - nothing to do.
5513               for (const auto &Block : PN->blocks())
5514                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5515                      ++I) {
5516                   PHINode *NewPN = cast<PHINode>(I);
5517                   for (const auto &val : NewPN->incoming_values())
5518                     if (val == Fixup.OperandValToReplace)
5519                       Fixup.UserInst = NewPN;
5520                 }
5521             }
5522       }
5523     }
5524 }
5525 
5526 /// Emit instructions for the leading candidate expression for this LSRUse (this
5527 /// is called "expanding"), and update the UserInst to reference the newly
5528 /// expanded value.
Rewrite(const LSRUse & LU,const LSRFixup & LF,const Formula & F,SCEVExpander & Rewriter,SmallVectorImpl<WeakTrackingVH> & DeadInsts) const5529 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5530                           const Formula &F, SCEVExpander &Rewriter,
5531                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5532   // First, find an insertion point that dominates UserInst. For PHI nodes,
5533   // find the nearest block which dominates all the relevant uses.
5534   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5535     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5536   } else {
5537     Value *FullV =
5538       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5539 
5540     // If this is reuse-by-noop-cast, insert the noop cast.
5541     Type *OpTy = LF.OperandValToReplace->getType();
5542     if (FullV->getType() != OpTy) {
5543       Instruction *Cast =
5544         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5545                          FullV, OpTy, "tmp", LF.UserInst);
5546       FullV = Cast;
5547     }
5548 
5549     // Update the user. ICmpZero is handled specially here (for now) because
5550     // Expand may have updated one of the operands of the icmp already, and
5551     // its new value may happen to be equal to LF.OperandValToReplace, in
5552     // which case doing replaceUsesOfWith leads to replacing both operands
5553     // with the same value. TODO: Reorganize this.
5554     if (LU.Kind == LSRUse::ICmpZero)
5555       LF.UserInst->setOperand(0, FullV);
5556     else
5557       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5558   }
5559 
5560   if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5561     DeadInsts.emplace_back(OperandIsInstr);
5562 }
5563 
5564 /// Rewrite all the fixup locations with new values, following the chosen
5565 /// solution.
ImplementSolution(const SmallVectorImpl<const Formula * > & Solution)5566 void LSRInstance::ImplementSolution(
5567     const SmallVectorImpl<const Formula *> &Solution) {
5568   // Keep track of instructions we may have made dead, so that
5569   // we can remove them after we are done working.
5570   SmallVector<WeakTrackingVH, 16> DeadInsts;
5571 
5572   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr",
5573                         false);
5574 #ifndef NDEBUG
5575   Rewriter.setDebugType(DEBUG_TYPE);
5576 #endif
5577   Rewriter.disableCanonicalMode();
5578   Rewriter.enableLSRMode();
5579   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5580 
5581   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5582   for (const IVChain &Chain : IVChainVec) {
5583     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5584       Rewriter.setChainedPhi(PN);
5585   }
5586 
5587   // Expand the new value definitions and update the users.
5588   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5589     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5590       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5591       Changed = true;
5592     }
5593 
5594   for (const IVChain &Chain : IVChainVec) {
5595     GenerateIVChain(Chain, Rewriter, DeadInsts);
5596     Changed = true;
5597   }
5598 
5599   for (const WeakVH &IV : Rewriter.getInsertedIVs())
5600     if (IV && dyn_cast<Instruction>(&*IV)->getParent())
5601       ScalarEvolutionIVs.push_back(IV);
5602 
5603   // Clean up after ourselves. This must be done before deleting any
5604   // instructions.
5605   Rewriter.clear();
5606 
5607   Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5608                                                                   &TLI, MSSAU);
5609 
5610   // In our cost analysis above, we assume that each addrec consumes exactly
5611   // one register, and arrange to have increments inserted just before the
5612   // latch to maximimize the chance this is true.  However, if we reused
5613   // existing IVs, we now need to move the increments to match our
5614   // expectations.  Otherwise, our cost modeling results in us having a
5615   // chosen a non-optimal result for the actual schedule.  (And yes, this
5616   // scheduling decision does impact later codegen.)
5617   for (PHINode &PN : L->getHeader()->phis()) {
5618     BinaryOperator *BO = nullptr;
5619     Value *Start = nullptr, *Step = nullptr;
5620     if (!matchSimpleRecurrence(&PN, BO, Start, Step))
5621       continue;
5622 
5623     switch (BO->getOpcode()) {
5624     case Instruction::Sub:
5625       if (BO->getOperand(0) != &PN)
5626         // sub is non-commutative - match handling elsewhere in LSR
5627         continue;
5628       break;
5629     case Instruction::Add:
5630       break;
5631     default:
5632       continue;
5633     };
5634 
5635     if (!isa<Constant>(Step))
5636       // If not a constant step, might increase register pressure
5637       // (We assume constants have been canonicalized to RHS)
5638       continue;
5639 
5640     if (BO->getParent() == IVIncInsertPos->getParent())
5641       // Only bother moving across blocks.  Isel can handle block local case.
5642       continue;
5643 
5644     // Can we legally schedule inc at the desired point?
5645     if (!llvm::all_of(BO->uses(),
5646                       [&](Use &U) {return DT.dominates(IVIncInsertPos, U);}))
5647       continue;
5648     BO->moveBefore(IVIncInsertPos);
5649     Changed = true;
5650   }
5651 
5652 
5653 }
5654 
LSRInstance(Loop * L,IVUsers & IU,ScalarEvolution & SE,DominatorTree & DT,LoopInfo & LI,const TargetTransformInfo & TTI,AssumptionCache & AC,TargetLibraryInfo & TLI,MemorySSAUpdater * MSSAU)5655 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5656                          DominatorTree &DT, LoopInfo &LI,
5657                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5658                          TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5659     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5660       MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 ?
5661         PreferredAddresingMode : TTI.getPreferredAddressingMode(L, &SE)) {
5662   // If LoopSimplify form is not available, stay out of trouble.
5663   if (!L->isLoopSimplifyForm())
5664     return;
5665 
5666   // If there's no interesting work to be done, bail early.
5667   if (IU.empty()) return;
5668 
5669   // If there's too much analysis to be done, bail early. We won't be able to
5670   // model the problem anyway.
5671   unsigned NumUsers = 0;
5672   for (const IVStrideUse &U : IU) {
5673     if (++NumUsers > MaxIVUsers) {
5674       (void)U;
5675       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5676                         << "\n");
5677       return;
5678     }
5679     // Bail out if we have a PHI on an EHPad that gets a value from a
5680     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5681     // no good place to stick any instructions.
5682     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5683        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5684        if (isa<FuncletPadInst>(FirstNonPHI) ||
5685            isa<CatchSwitchInst>(FirstNonPHI))
5686          for (BasicBlock *PredBB : PN->blocks())
5687            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5688              return;
5689     }
5690   }
5691 
5692 #ifndef NDEBUG
5693   // All dominating loops must have preheaders, or SCEVExpander may not be able
5694   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5695   //
5696   // IVUsers analysis should only create users that are dominated by simple loop
5697   // headers. Since this loop should dominate all of its users, its user list
5698   // should be empty if this loop itself is not within a simple loop nest.
5699   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5700        Rung; Rung = Rung->getIDom()) {
5701     BasicBlock *BB = Rung->getBlock();
5702     const Loop *DomLoop = LI.getLoopFor(BB);
5703     if (DomLoop && DomLoop->getHeader() == BB) {
5704       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5705     }
5706   }
5707 #endif // DEBUG
5708 
5709   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5710              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5711              dbgs() << ":\n");
5712 
5713   // First, perform some low-level loop optimizations.
5714   OptimizeShadowIV();
5715   OptimizeLoopTermCond();
5716 
5717   // If loop preparation eliminates all interesting IV users, bail.
5718   if (IU.empty()) return;
5719 
5720   // Skip nested loops until we can model them better with formulae.
5721   if (!L->isInnermost()) {
5722     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5723     return;
5724   }
5725 
5726   // Start collecting data and preparing for the solver.
5727   // If number of registers is not the major cost, we cannot benefit from the
5728   // current profitable chain optimization which is based on number of
5729   // registers.
5730   // FIXME: add profitable chain optimization for other kinds major cost, for
5731   // example number of instructions.
5732   if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain)
5733     CollectChains();
5734   CollectInterestingTypesAndFactors();
5735   CollectFixupsAndInitialFormulae();
5736   CollectLoopInvariantFixupsAndFormulae();
5737 
5738   if (Uses.empty())
5739     return;
5740 
5741   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5742              print_uses(dbgs()));
5743 
5744   // Now use the reuse data to generate a bunch of interesting ways
5745   // to formulate the values needed for the uses.
5746   GenerateAllReuseFormulae();
5747 
5748   FilterOutUndesirableDedicatedRegisters();
5749   NarrowSearchSpaceUsingHeuristics();
5750 
5751   SmallVector<const Formula *, 8> Solution;
5752   Solve(Solution);
5753 
5754   // Release memory that is no longer needed.
5755   Factors.clear();
5756   Types.clear();
5757   RegUses.clear();
5758 
5759   if (Solution.empty())
5760     return;
5761 
5762 #ifndef NDEBUG
5763   // Formulae should be legal.
5764   for (const LSRUse &LU : Uses) {
5765     for (const Formula &F : LU.Formulae)
5766       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5767                         F) && "Illegal formula generated!");
5768   };
5769 #endif
5770 
5771   // Now that we've decided what we want, make it so.
5772   ImplementSolution(Solution);
5773 }
5774 
5775 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print_factors_and_types(raw_ostream & OS) const5776 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5777   if (Factors.empty() && Types.empty()) return;
5778 
5779   OS << "LSR has identified the following interesting factors and types: ";
5780   bool First = true;
5781 
5782   for (int64_t Factor : Factors) {
5783     if (!First) OS << ", ";
5784     First = false;
5785     OS << '*' << Factor;
5786   }
5787 
5788   for (Type *Ty : Types) {
5789     if (!First) OS << ", ";
5790     First = false;
5791     OS << '(' << *Ty << ')';
5792   }
5793   OS << '\n';
5794 }
5795 
print_fixups(raw_ostream & OS) const5796 void LSRInstance::print_fixups(raw_ostream &OS) const {
5797   OS << "LSR is examining the following fixup sites:\n";
5798   for (const LSRUse &LU : Uses)
5799     for (const LSRFixup &LF : LU.Fixups) {
5800       dbgs() << "  ";
5801       LF.print(OS);
5802       OS << '\n';
5803     }
5804 }
5805 
print_uses(raw_ostream & OS) const5806 void LSRInstance::print_uses(raw_ostream &OS) const {
5807   OS << "LSR is examining the following uses:\n";
5808   for (const LSRUse &LU : Uses) {
5809     dbgs() << "  ";
5810     LU.print(OS);
5811     OS << '\n';
5812     for (const Formula &F : LU.Formulae) {
5813       OS << "    ";
5814       F.print(OS);
5815       OS << '\n';
5816     }
5817   }
5818 }
5819 
print(raw_ostream & OS) const5820 void LSRInstance::print(raw_ostream &OS) const {
5821   print_factors_and_types(OS);
5822   print_fixups(OS);
5823   print_uses(OS);
5824 }
5825 
dump() const5826 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5827   print(errs()); errs() << '\n';
5828 }
5829 #endif
5830 
5831 namespace {
5832 
5833 class LoopStrengthReduce : public LoopPass {
5834 public:
5835   static char ID; // Pass ID, replacement for typeid
5836 
5837   LoopStrengthReduce();
5838 
5839 private:
5840   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5841   void getAnalysisUsage(AnalysisUsage &AU) const override;
5842 };
5843 
5844 } // end anonymous namespace
5845 
LoopStrengthReduce()5846 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5847   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5848 }
5849 
getAnalysisUsage(AnalysisUsage & AU) const5850 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5851   // We split critical edges, so we change the CFG.  However, we do update
5852   // many analyses if they are around.
5853   AU.addPreservedID(LoopSimplifyID);
5854 
5855   AU.addRequired<LoopInfoWrapperPass>();
5856   AU.addPreserved<LoopInfoWrapperPass>();
5857   AU.addRequiredID(LoopSimplifyID);
5858   AU.addRequired<DominatorTreeWrapperPass>();
5859   AU.addPreserved<DominatorTreeWrapperPass>();
5860   AU.addRequired<ScalarEvolutionWrapperPass>();
5861   AU.addPreserved<ScalarEvolutionWrapperPass>();
5862   AU.addRequired<AssumptionCacheTracker>();
5863   AU.addRequired<TargetLibraryInfoWrapperPass>();
5864   // Requiring LoopSimplify a second time here prevents IVUsers from running
5865   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5866   AU.addRequiredID(LoopSimplifyID);
5867   AU.addRequired<IVUsersWrapperPass>();
5868   AU.addPreserved<IVUsersWrapperPass>();
5869   AU.addRequired<TargetTransformInfoWrapperPass>();
5870   AU.addPreserved<MemorySSAWrapperPass>();
5871 }
5872 
5873 struct SCEVDbgValueBuilder {
5874   SCEVDbgValueBuilder() = default;
SCEVDbgValueBuilderSCEVDbgValueBuilder5875   SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) {
5876     Values = Base.Values;
5877     Expr = Base.Expr;
5878   }
5879 
5880   /// The DIExpression as we translate the SCEV.
5881   SmallVector<uint64_t, 6> Expr;
5882   /// The location ops of the DIExpression.
5883   SmallVector<llvm::ValueAsMetadata *, 2> Values;
5884 
pushOperatorSCEVDbgValueBuilder5885   void pushOperator(uint64_t Op) { Expr.push_back(Op); }
pushUIntSCEVDbgValueBuilder5886   void pushUInt(uint64_t Operand) { Expr.push_back(Operand); }
5887 
5888   /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value
5889   /// in the set of values referenced by the expression.
pushValueSCEVDbgValueBuilder5890   void pushValue(llvm::Value *V) {
5891     Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg);
5892     auto *It =
5893         std::find(Values.begin(), Values.end(), llvm::ValueAsMetadata::get(V));
5894     unsigned ArgIndex = 0;
5895     if (It != Values.end()) {
5896       ArgIndex = std::distance(Values.begin(), It);
5897     } else {
5898       ArgIndex = Values.size();
5899       Values.push_back(llvm::ValueAsMetadata::get(V));
5900     }
5901     Expr.push_back(ArgIndex);
5902   }
5903 
pushValueSCEVDbgValueBuilder5904   void pushValue(const SCEVUnknown *U) {
5905     llvm::Value *V = cast<SCEVUnknown>(U)->getValue();
5906     pushValue(V);
5907   }
5908 
pushConstSCEVDbgValueBuilder5909   bool pushConst(const SCEVConstant *C) {
5910     if (C->getAPInt().getMinSignedBits() > 64)
5911       return false;
5912     Expr.push_back(llvm::dwarf::DW_OP_consts);
5913     Expr.push_back(C->getAPInt().getSExtValue());
5914     return true;
5915   }
5916 
5917   /// Several SCEV types are sequences of the same arithmetic operator applied
5918   /// to constants and values that may be extended or truncated.
pushArithmeticExprSCEVDbgValueBuilder5919   bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr,
5920                           uint64_t DwarfOp) {
5921     assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) &&
5922            "Expected arithmetic SCEV type");
5923     bool Success = true;
5924     unsigned EmitOperator = 0;
5925     for (auto &Op : CommExpr->operands()) {
5926       Success &= pushSCEV(Op);
5927 
5928       if (EmitOperator >= 1)
5929         pushOperator(DwarfOp);
5930       ++EmitOperator;
5931     }
5932     return Success;
5933   }
5934 
5935   // TODO: Identify and omit noop casts.
pushCastSCEVDbgValueBuilder5936   bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) {
5937     const llvm::SCEV *Inner = C->getOperand(0);
5938     const llvm::Type *Type = C->getType();
5939     uint64_t ToWidth = Type->getIntegerBitWidth();
5940     bool Success = pushSCEV(Inner);
5941     uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth,
5942                           IsSigned ? llvm::dwarf::DW_ATE_signed
5943                                    : llvm::dwarf::DW_ATE_unsigned};
5944     for (const auto &Op : CastOps)
5945       pushOperator(Op);
5946     return Success;
5947   }
5948 
5949   // TODO: MinMax - although these haven't been encountered in the test suite.
pushSCEVSCEVDbgValueBuilder5950   bool pushSCEV(const llvm::SCEV *S) {
5951     bool Success = true;
5952     if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) {
5953       Success &= pushConst(StartInt);
5954 
5955     } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5956       if (!U->getValue())
5957         return false;
5958       pushValue(U->getValue());
5959 
5960     } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) {
5961       Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul);
5962 
5963     } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5964       Success &= pushSCEV(UDiv->getLHS());
5965       Success &= pushSCEV(UDiv->getRHS());
5966       pushOperator(llvm::dwarf::DW_OP_div);
5967 
5968     } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) {
5969       // Assert if a new and unknown SCEVCastEXpr type is encountered.
5970       assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) ||
5971               isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) &&
5972              "Unexpected cast type in SCEV.");
5973       Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast)));
5974 
5975     } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) {
5976       Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus);
5977 
5978     } else if (isa<SCEVAddRecExpr>(S)) {
5979       // Nested SCEVAddRecExpr are generated by nested loops and are currently
5980       // unsupported.
5981       return false;
5982 
5983     } else {
5984       return false;
5985     }
5986     return Success;
5987   }
5988 
setFinalExpressionSCEVDbgValueBuilder5989   void setFinalExpression(llvm::DbgValueInst &DI, const DIExpression *OldExpr) {
5990     // Re-state assumption that this dbg.value is not variadic. Any remaining
5991     // opcodes in its expression operate on a single value already on the
5992     // expression stack. Prepend our operations, which will re-compute and
5993     // place that value on the expression stack.
5994     assert(!DI.hasArgList());
5995     auto *NewExpr =
5996         DIExpression::prependOpcodes(OldExpr, Expr, /*StackValue*/ true);
5997     DI.setExpression(NewExpr);
5998 
5999     auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(Values);
6000     DI.setRawLocation(llvm::DIArgList::get(DI.getContext(), ValArrayRef));
6001   }
6002 
6003   /// If a DVI can be emitted without a DIArgList, omit DW_OP_llvm_arg and the
6004   /// location op index 0.
setShortFinalExpressionSCEVDbgValueBuilder6005   void setShortFinalExpression(llvm::DbgValueInst &DI,
6006                                const DIExpression *OldExpr) {
6007     assert((Expr[0] == llvm::dwarf::DW_OP_LLVM_arg && Expr[1] == 0) &&
6008            "Expected DW_OP_llvm_arg and 0.");
6009     DI.replaceVariableLocationOp(
6010         0u, llvm::MetadataAsValue::get(DI.getContext(), Values[0]));
6011 
6012     // See setFinalExpression: prepend our opcodes on the start of any old
6013     // expression opcodes.
6014     assert(!DI.hasArgList());
6015     llvm::SmallVector<uint64_t, 6> FinalExpr(Expr.begin() + 2, Expr.end());
6016     auto *NewExpr =
6017         DIExpression::prependOpcodes(OldExpr, FinalExpr, /*StackValue*/ true);
6018     DI.setExpression(NewExpr);
6019   }
6020 
6021   /// Once the IV and variable SCEV translation is complete, write it to the
6022   /// source DVI.
applyExprToDbgValueSCEVDbgValueBuilder6023   void applyExprToDbgValue(llvm::DbgValueInst &DI,
6024                            const DIExpression *OldExpr) {
6025     assert(!Expr.empty() && "Unexpected empty expression.");
6026     // Emit a simpler form if only a single location is referenced.
6027     if (Values.size() == 1 && Expr[0] == llvm::dwarf::DW_OP_LLVM_arg &&
6028         Expr[1] == 0) {
6029       setShortFinalExpression(DI, OldExpr);
6030     } else {
6031       setFinalExpression(DI, OldExpr);
6032     }
6033   }
6034 
6035   /// Return true if the combination of arithmetic operator and underlying
6036   /// SCEV constant value is an identity function.
isIdentityFunctionSCEVDbgValueBuilder6037   bool isIdentityFunction(uint64_t Op, const SCEV *S) {
6038     if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6039       if (C->getAPInt().getMinSignedBits() > 64)
6040         return false;
6041       int64_t I = C->getAPInt().getSExtValue();
6042       switch (Op) {
6043       case llvm::dwarf::DW_OP_plus:
6044       case llvm::dwarf::DW_OP_minus:
6045         return I == 0;
6046       case llvm::dwarf::DW_OP_mul:
6047       case llvm::dwarf::DW_OP_div:
6048         return I == 1;
6049       }
6050     }
6051     return false;
6052   }
6053 
6054   /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6055   /// builder's expression stack. The stack should already contain an
6056   /// expression for the iteration count, so that it can be multiplied by
6057   /// the stride and added to the start.
6058   /// Components of the expression are omitted if they are an identity function.
6059   /// Chain (non-affine) SCEVs are not supported.
SCEVToValueExprSCEVDbgValueBuilder6060   bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) {
6061     assert(SAR.isAffine() && "Expected affine SCEV");
6062     // TODO: Is this check needed?
6063     if (isa<SCEVAddRecExpr>(SAR.getStart()))
6064       return false;
6065 
6066     const SCEV *Start = SAR.getStart();
6067     const SCEV *Stride = SAR.getStepRecurrence(SE);
6068 
6069     // Skip pushing arithmetic noops.
6070     if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) {
6071       if (!pushSCEV(Stride))
6072         return false;
6073       pushOperator(llvm::dwarf::DW_OP_mul);
6074     }
6075     if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) {
6076       if (!pushSCEV(Start))
6077         return false;
6078       pushOperator(llvm::dwarf::DW_OP_plus);
6079     }
6080     return true;
6081   }
6082 
6083   /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6084   /// builder's expression stack. The stack should already contain an
6085   /// expression for the iteration count, so that it can be multiplied by
6086   /// the stride and added to the start.
6087   /// Components of the expression are omitted if they are an identity function.
SCEVToIterCountExprSCEVDbgValueBuilder6088   bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR,
6089                            ScalarEvolution &SE) {
6090     assert(SAR.isAffine() && "Expected affine SCEV");
6091     if (isa<SCEVAddRecExpr>(SAR.getStart())) {
6092       LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: "
6093                         << SAR << '\n');
6094       return false;
6095     }
6096     const SCEV *Start = SAR.getStart();
6097     const SCEV *Stride = SAR.getStepRecurrence(SE);
6098 
6099     // Skip pushing arithmetic noops.
6100     if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) {
6101       if (!pushSCEV(Start))
6102         return false;
6103       pushOperator(llvm::dwarf::DW_OP_minus);
6104     }
6105     if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) {
6106       if (!pushSCEV(Stride))
6107         return false;
6108       pushOperator(llvm::dwarf::DW_OP_div);
6109     }
6110     return true;
6111   }
6112 };
6113 
6114 struct DVIRecoveryRec {
6115   DbgValueInst *DVI;
6116   DIExpression *Expr;
6117   Metadata *LocationOp;
6118   const llvm::SCEV *SCEV;
6119 };
6120 
RewriteDVIUsingIterCount(DVIRecoveryRec CachedDVI,const SCEVDbgValueBuilder & IterationCount,ScalarEvolution & SE)6121 static bool RewriteDVIUsingIterCount(DVIRecoveryRec CachedDVI,
6122                                      const SCEVDbgValueBuilder &IterationCount,
6123                                      ScalarEvolution &SE) {
6124   // LSR may add locations to previously single location-op DVIs which
6125   // are currently not supported.
6126   if (CachedDVI.DVI->getNumVariableLocationOps() != 1)
6127     return false;
6128 
6129   // SCEVs for SSA values are most frquently of the form
6130   // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..).
6131   // This is because %a is a PHI node that is not the IV. However, these
6132   // SCEVs have not been observed to result in debuginfo-lossy optimisations,
6133   // so its not expected this point will be reached.
6134   if (!isa<SCEVAddRecExpr>(CachedDVI.SCEV))
6135     return false;
6136 
6137   LLVM_DEBUG(dbgs() << "scev-salvage: Value to salvage SCEV: "
6138                     << *CachedDVI.SCEV << '\n');
6139 
6140   const auto *Rec = cast<SCEVAddRecExpr>(CachedDVI.SCEV);
6141   if (!Rec->isAffine())
6142     return false;
6143 
6144   // Initialise a new builder with the iteration count expression. In
6145   // combination with the value's SCEV this enables recovery.
6146   SCEVDbgValueBuilder RecoverValue(IterationCount);
6147   if (!RecoverValue.SCEVToValueExpr(*Rec, SE))
6148     return false;
6149 
6150   LLVM_DEBUG(dbgs() << "scev-salvage: Updating: " << *CachedDVI.DVI << '\n');
6151   RecoverValue.applyExprToDbgValue(*CachedDVI.DVI, CachedDVI.Expr);
6152   LLVM_DEBUG(dbgs() << "scev-salvage: to: " << *CachedDVI.DVI << '\n');
6153   return true;
6154 }
6155 
6156 static bool
DbgRewriteSalvageableDVIs(llvm::Loop * L,ScalarEvolution & SE,llvm::PHINode * LSRInductionVar,SmallVector<DVIRecoveryRec,2> & DVIToUpdate)6157 DbgRewriteSalvageableDVIs(llvm::Loop *L, ScalarEvolution &SE,
6158                           llvm::PHINode *LSRInductionVar,
6159                           SmallVector<DVIRecoveryRec, 2> &DVIToUpdate) {
6160   if (DVIToUpdate.empty())
6161     return false;
6162 
6163   const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar);
6164   assert(SCEVInductionVar &&
6165          "Anticipated a SCEV for the post-LSR induction variable");
6166 
6167   bool Changed = false;
6168   if (const SCEVAddRecExpr *IVAddRec =
6169           dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) {
6170     if (!IVAddRec->isAffine())
6171       return false;
6172 
6173     SCEVDbgValueBuilder IterCountExpr;
6174     IterCountExpr.pushValue(LSRInductionVar);
6175     if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE))
6176       return false;
6177 
6178     LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar
6179                       << '\n');
6180 
6181     // Needn't salvage if the location op hasn't been undef'd by LSR.
6182     for (auto &DVIRec : DVIToUpdate) {
6183       if (!DVIRec.DVI->isUndef())
6184         continue;
6185 
6186       // Some DVIs that were single location-op when cached are now multi-op,
6187       // due to LSR optimisations. However, multi-op salvaging is not yet
6188       // supported by SCEV salvaging. But, we can attempt a salvage by restoring
6189       // the pre-LSR single-op expression.
6190       if (DVIRec.DVI->hasArgList()) {
6191         if (!DVIRec.DVI->getVariableLocationOp(0))
6192           continue;
6193         llvm::Type *Ty = DVIRec.DVI->getVariableLocationOp(0)->getType();
6194         DVIRec.DVI->setRawLocation(
6195             llvm::ValueAsMetadata::get(UndefValue::get(Ty)));
6196         DVIRec.DVI->setExpression(DVIRec.Expr);
6197       }
6198 
6199       Changed |= RewriteDVIUsingIterCount(DVIRec, IterCountExpr, SE);
6200     }
6201   }
6202   return Changed;
6203 }
6204 
6205 /// Identify and cache salvageable DVI locations and expressions along with the
6206 /// corresponding SCEV(s). Also ensure that the DVI is not deleted before
6207 static void
DbgGatherSalvagableDVI(Loop * L,ScalarEvolution & SE,SmallVector<DVIRecoveryRec,2> & SalvageableDVISCEVs,SmallSet<AssertingVH<DbgValueInst>,2> & DVIHandles)6208 DbgGatherSalvagableDVI(Loop *L, ScalarEvolution &SE,
6209                        SmallVector<DVIRecoveryRec, 2> &SalvageableDVISCEVs,
6210                        SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) {
6211   for (auto &B : L->getBlocks()) {
6212     for (auto &I : *B) {
6213       auto DVI = dyn_cast<DbgValueInst>(&I);
6214       if (!DVI)
6215         continue;
6216 
6217       if (DVI->hasArgList())
6218         continue;
6219 
6220       if (!DVI->getVariableLocationOp(0) ||
6221           !SE.isSCEVable(DVI->getVariableLocationOp(0)->getType()))
6222         continue;
6223 
6224       SalvageableDVISCEVs.push_back(
6225           {DVI, DVI->getExpression(), DVI->getRawLocation(),
6226            SE.getSCEV(DVI->getVariableLocationOp(0))});
6227       DVIHandles.insert(DVI);
6228     }
6229   }
6230 }
6231 
6232 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback
6233 /// any PHi from the loop header is usable, but may have less chance of
6234 /// surviving subsequent transforms.
GetInductionVariable(const Loop & L,ScalarEvolution & SE,const LSRInstance & LSR)6235 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE,
6236                                            const LSRInstance &LSR) {
6237   // For now, just pick the first IV generated and inserted. Ideally pick an IV
6238   // that is unlikely to be optimised away by subsequent transforms.
6239   for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) {
6240     if (!IV)
6241       continue;
6242 
6243     assert(isa<PHINode>(&*IV) && "Expected PhI node.");
6244     if (SE.isSCEVable((*IV).getType())) {
6245       PHINode *Phi = dyn_cast<PHINode>(&*IV);
6246       LLVM_DEBUG(dbgs() << "scev-salvage: IV : " << *IV
6247                         << "with SCEV: " << *SE.getSCEV(Phi) << "\n");
6248       return Phi;
6249     }
6250   }
6251 
6252   for (PHINode &Phi : L.getHeader()->phis()) {
6253     if (!SE.isSCEVable(Phi.getType()))
6254       continue;
6255 
6256     const llvm::SCEV *PhiSCEV = SE.getSCEV(&Phi);
6257     if (const llvm::SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(PhiSCEV))
6258       if (!Rec->isAffine())
6259         continue;
6260 
6261     LLVM_DEBUG(dbgs() << "scev-salvage: Selected IV from loop header: " << Phi
6262                       << " with SCEV: " << *PhiSCEV << "\n");
6263     return &Phi;
6264   }
6265   return nullptr;
6266 }
6267 
ReduceLoopStrength(Loop * L,IVUsers & IU,ScalarEvolution & SE,DominatorTree & DT,LoopInfo & LI,const TargetTransformInfo & TTI,AssumptionCache & AC,TargetLibraryInfo & TLI,MemorySSA * MSSA)6268 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
6269                                DominatorTree &DT, LoopInfo &LI,
6270                                const TargetTransformInfo &TTI,
6271                                AssumptionCache &AC, TargetLibraryInfo &TLI,
6272                                MemorySSA *MSSA) {
6273 
6274   // Debug preservation - before we start removing anything identify which DVI
6275   // meet the salvageable criteria and store their DIExpression and SCEVs.
6276   SmallVector<DVIRecoveryRec, 2> SalvageableDVI;
6277   SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles;
6278   DbgGatherSalvagableDVI(L, SE, SalvageableDVI, DVIHandles);
6279 
6280   bool Changed = false;
6281   std::unique_ptr<MemorySSAUpdater> MSSAU;
6282   if (MSSA)
6283     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
6284 
6285   // Run the main LSR transformation.
6286   const LSRInstance &Reducer =
6287       LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get());
6288   Changed |= Reducer.getChanged();
6289 
6290   // Remove any extra phis created by processing inner loops.
6291   Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6292   if (EnablePhiElim && L->isLoopSimplifyForm()) {
6293     SmallVector<WeakTrackingVH, 16> DeadInsts;
6294     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6295     SCEVExpander Rewriter(SE, DL, "lsr", false);
6296 #ifndef NDEBUG
6297     Rewriter.setDebugType(DEBUG_TYPE);
6298 #endif
6299     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
6300     if (numFolded) {
6301       Changed = true;
6302       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6303                                                            MSSAU.get());
6304       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6305     }
6306   }
6307 
6308   if (SalvageableDVI.empty())
6309     return Changed;
6310 
6311   // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with
6312   // expressions composed using the derived iteration count.
6313   // TODO: Allow for multiple IV references for nested AddRecSCEVs
6314   for (auto &L : LI) {
6315     if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer))
6316       DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVI);
6317     else {
6318       LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV "
6319                            "could not be identified.\n");
6320     }
6321   }
6322 
6323   DVIHandles.clear();
6324   return Changed;
6325 }
6326 
runOnLoop(Loop * L,LPPassManager &)6327 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
6328   if (skipLoop(L))
6329     return false;
6330 
6331   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
6332   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
6333   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6334   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
6335   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
6336       *L->getHeader()->getParent());
6337   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
6338       *L->getHeader()->getParent());
6339   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
6340       *L->getHeader()->getParent());
6341   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
6342   MemorySSA *MSSA = nullptr;
6343   if (MSSAAnalysis)
6344     MSSA = &MSSAAnalysis->getMSSA();
6345   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
6346 }
6347 
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)6348 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
6349                                               LoopStandardAnalysisResults &AR,
6350                                               LPMUpdater &) {
6351   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
6352                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
6353     return PreservedAnalyses::all();
6354 
6355   auto PA = getLoopPassPreservedAnalyses();
6356   if (AR.MSSA)
6357     PA.preserve<MemorySSAAnalysis>();
6358   return PA;
6359 }
6360 
6361 char LoopStrengthReduce::ID = 0;
6362 
6363 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
6364                       "Loop Strength Reduction", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)6365 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6366 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6367 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6368 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
6369 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6370 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
6371 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
6372                     "Loop Strength Reduction", false, false)
6373 
6374 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
6375