1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 *
6 *   Copyright (C) 2005-2016, International Business Machines
7 *   Corporation and others.  All Rights Reserved.
8 *
9 *******************************************************************************
10 *   file name:  utext.cpp
11 *   encoding:   UTF-8
12 *   tab size:   8 (not used)
13 *   indentation:4
14 *
15 *   created on: 2005apr12
16 *   created by: Markus W. Scherer
17 */
18 
19 #include "unicode/utypes.h"
20 #include "unicode/ustring.h"
21 #include "unicode/unistr.h"
22 #include "unicode/chariter.h"
23 #include "unicode/utext.h"
24 #include "unicode/utf.h"
25 #include "unicode/utf8.h"
26 #include "unicode/utf16.h"
27 #include "ustr_imp.h"
28 #include "cmemory.h"
29 #include "cstring.h"
30 #include "uassert.h"
31 #include "putilimp.h"
32 
33 U_NAMESPACE_USE
34 
35 #define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex))
36 
37 
38 static UBool
utext_access(UText * ut,int64_t index,UBool forward)39 utext_access(UText *ut, int64_t index, UBool forward) {
40     return ut->pFuncs->access(ut, index, forward);
41 }
42 
43 
44 
45 U_CAPI UBool U_EXPORT2
utext_moveIndex32(UText * ut,int32_t delta)46 utext_moveIndex32(UText *ut, int32_t delta) {
47     UChar32  c;
48     if (delta > 0) {
49         do {
50             if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, TRUE)) {
51                 return FALSE;
52             }
53             c = ut->chunkContents[ut->chunkOffset];
54             if (U16_IS_SURROGATE(c)) {
55                 c = utext_next32(ut);
56                 if (c == U_SENTINEL) {
57                     return FALSE;
58                 }
59             } else {
60                 ut->chunkOffset++;
61             }
62         } while(--delta>0);
63 
64     } else if (delta<0) {
65         do {
66             if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, FALSE)) {
67                 return FALSE;
68             }
69             c = ut->chunkContents[ut->chunkOffset-1];
70             if (U16_IS_SURROGATE(c)) {
71                 c = utext_previous32(ut);
72                 if (c == U_SENTINEL) {
73                     return FALSE;
74                 }
75             } else {
76                 ut->chunkOffset--;
77             }
78         } while(++delta<0);
79     }
80 
81     return TRUE;
82 }
83 
84 
85 U_CAPI int64_t U_EXPORT2
utext_nativeLength(UText * ut)86 utext_nativeLength(UText *ut) {
87     return ut->pFuncs->nativeLength(ut);
88 }
89 
90 
91 U_CAPI UBool U_EXPORT2
utext_isLengthExpensive(const UText * ut)92 utext_isLengthExpensive(const UText *ut) {
93     UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0;
94     return r;
95 }
96 
97 
98 U_CAPI int64_t U_EXPORT2
utext_getNativeIndex(const UText * ut)99 utext_getNativeIndex(const UText *ut) {
100     if(ut->chunkOffset <= ut->nativeIndexingLimit) {
101         return ut->chunkNativeStart+ut->chunkOffset;
102     } else {
103         return ut->pFuncs->mapOffsetToNative(ut);
104     }
105 }
106 
107 
108 U_CAPI void U_EXPORT2
utext_setNativeIndex(UText * ut,int64_t index)109 utext_setNativeIndex(UText *ut, int64_t index) {
110     if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
111         // The desired position is outside of the current chunk.
112         // Access the new position.  Assume a forward iteration from here,
113         // which will also be optimimum for a single random access.
114         // Reverse iterations may suffer slightly.
115         ut->pFuncs->access(ut, index, TRUE);
116     } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) {
117         // utf-16 indexing.
118         ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart);
119     } else {
120          ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
121     }
122     // The convention is that the index must always be on a code point boundary.
123     // Adjust the index position if it is in the middle of a surrogate pair.
124     if (ut->chunkOffset<ut->chunkLength) {
125         UChar c= ut->chunkContents[ut->chunkOffset];
126         if (U16_IS_TRAIL(c)) {
127             if (ut->chunkOffset==0) {
128                 ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE);
129             }
130             if (ut->chunkOffset>0) {
131                 UChar lead = ut->chunkContents[ut->chunkOffset-1];
132                 if (U16_IS_LEAD(lead)) {
133                     ut->chunkOffset--;
134                 }
135             }
136         }
137     }
138 }
139 
140 
141 
142 U_CAPI int64_t U_EXPORT2
utext_getPreviousNativeIndex(UText * ut)143 utext_getPreviousNativeIndex(UText *ut) {
144     //
145     //  Fast-path the common case.
146     //     Common means current position is not at the beginning of a chunk
147     //     and the preceding character is not supplementary.
148     //
149     int32_t i = ut->chunkOffset - 1;
150     int64_t result;
151     if (i >= 0) {
152         UChar c = ut->chunkContents[i];
153         if (U16_IS_TRAIL(c) == FALSE) {
154             if (i <= ut->nativeIndexingLimit) {
155                 result = ut->chunkNativeStart + i;
156             } else {
157                 ut->chunkOffset = i;
158                 result = ut->pFuncs->mapOffsetToNative(ut);
159                 ut->chunkOffset++;
160             }
161             return result;
162         }
163     }
164 
165     // If at the start of text, simply return 0.
166     if (ut->chunkOffset==0 && ut->chunkNativeStart==0) {
167         return 0;
168     }
169 
170     // Harder, less common cases.  We are at a chunk boundary, or on a surrogate.
171     //    Keep it simple, use other functions to handle the edges.
172     //
173     utext_previous32(ut);
174     result = UTEXT_GETNATIVEINDEX(ut);
175     utext_next32(ut);
176     return result;
177 }
178 
179 
180 //
181 //  utext_current32.  Get the UChar32 at the current position.
182 //                    UText iteration position is always on a code point boundary,
183 //                    never on the trail half of a surrogate pair.
184 //
185 U_CAPI UChar32 U_EXPORT2
utext_current32(UText * ut)186 utext_current32(UText *ut) {
187     UChar32  c;
188     if (ut->chunkOffset==ut->chunkLength) {
189         // Current position is just off the end of the chunk.
190         if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
191             // Off the end of the text.
192             return U_SENTINEL;
193         }
194     }
195 
196     c = ut->chunkContents[ut->chunkOffset];
197     if (U16_IS_LEAD(c) == FALSE) {
198         // Normal, non-supplementary case.
199         return c;
200     }
201 
202     //
203     //  Possible supplementary char.
204     //
205     UChar32   trail = 0;
206     UChar32   supplementaryC = c;
207     if ((ut->chunkOffset+1) < ut->chunkLength) {
208         // The trail surrogate is in the same chunk.
209         trail = ut->chunkContents[ut->chunkOffset+1];
210     } else {
211         //  The trail surrogate is in a different chunk.
212         //     Because we must maintain the iteration position, we need to switch forward
213         //     into the new chunk, get the trail surrogate, then revert the chunk back to the
214         //     original one.
215         //     An edge case to be careful of:  the entire text may end with an unpaired
216         //        leading surrogate.  The attempt to access the trail will fail, but
217         //        the original position before the unpaired lead still needs to be restored.
218         int64_t  nativePosition = ut->chunkNativeLimit;
219         int32_t  originalOffset = ut->chunkOffset;
220         if (ut->pFuncs->access(ut, nativePosition, TRUE)) {
221             trail = ut->chunkContents[ut->chunkOffset];
222         }
223         UBool r = ut->pFuncs->access(ut, nativePosition, FALSE);  // reverse iteration flag loads preceding chunk
224         U_ASSERT(r==TRUE);
225         ut->chunkOffset = originalOffset;
226         if(!r) {
227             return U_SENTINEL;
228         }
229     }
230 
231     if (U16_IS_TRAIL(trail)) {
232         supplementaryC = U16_GET_SUPPLEMENTARY(c, trail);
233     }
234     return supplementaryC;
235 
236 }
237 
238 
239 U_CAPI UChar32 U_EXPORT2
utext_char32At(UText * ut,int64_t nativeIndex)240 utext_char32At(UText *ut, int64_t nativeIndex) {
241     UChar32 c = U_SENTINEL;
242 
243     // Fast path the common case.
244     if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) {
245         ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart);
246         c = ut->chunkContents[ut->chunkOffset];
247         if (U16_IS_SURROGATE(c) == FALSE) {
248             return c;
249         }
250     }
251 
252 
253     utext_setNativeIndex(ut, nativeIndex);
254     if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) {
255         c = ut->chunkContents[ut->chunkOffset];
256         if (U16_IS_SURROGATE(c)) {
257             // For surrogates, let current32() deal with the complications
258             //    of supplementaries that may span chunk boundaries.
259             c = utext_current32(ut);
260         }
261     }
262     return c;
263 }
264 
265 
266 U_CAPI UChar32 U_EXPORT2
utext_next32(UText * ut)267 utext_next32(UText *ut) {
268     UChar32       c;
269 
270     if (ut->chunkOffset >= ut->chunkLength) {
271         if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
272             return U_SENTINEL;
273         }
274     }
275 
276     c = ut->chunkContents[ut->chunkOffset++];
277     if (U16_IS_LEAD(c) == FALSE) {
278         // Normal case, not supplementary.
279         //   (A trail surrogate seen here is just returned as is, as a surrogate value.
280         //    It cannot be part of a pair.)
281         return c;
282     }
283 
284     if (ut->chunkOffset >= ut->chunkLength) {
285         if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
286             // c is an unpaired lead surrogate at the end of the text.
287             // return it as it is.
288             return c;
289         }
290     }
291     UChar32 trail = ut->chunkContents[ut->chunkOffset];
292     if (U16_IS_TRAIL(trail) == FALSE) {
293         // c was an unpaired lead surrogate, not at the end of the text.
294         // return it as it is (unpaired).  Iteration position is on the
295         // following character, possibly in the next chunk, where the
296         //  trail surrogate would have been if it had existed.
297         return c;
298     }
299 
300     UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail);
301     ut->chunkOffset++;   // move iteration position over the trail surrogate.
302     return supplementary;
303     }
304 
305 
306 U_CAPI UChar32 U_EXPORT2
utext_previous32(UText * ut)307 utext_previous32(UText *ut) {
308     UChar32       c;
309 
310     if (ut->chunkOffset <= 0) {
311         if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) {
312             return U_SENTINEL;
313         }
314     }
315     ut->chunkOffset--;
316     c = ut->chunkContents[ut->chunkOffset];
317     if (U16_IS_TRAIL(c) == FALSE) {
318         // Normal case, not supplementary.
319         //   (A lead surrogate seen here is just returned as is, as a surrogate value.
320         //    It cannot be part of a pair.)
321         return c;
322     }
323 
324     if (ut->chunkOffset <= 0) {
325         if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) {
326             // c is an unpaired trail surrogate at the start of the text.
327             // return it as it is.
328             return c;
329         }
330     }
331 
332     UChar32 lead = ut->chunkContents[ut->chunkOffset-1];
333     if (U16_IS_LEAD(lead) == FALSE) {
334         // c was an unpaired trail surrogate, not at the end of the text.
335         // return it as it is (unpaired).  Iteration position is at c
336         return c;
337     }
338 
339     UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c);
340     ut->chunkOffset--;   // move iteration position over the lead surrogate.
341     return supplementary;
342 }
343 
344 
345 
346 U_CAPI UChar32 U_EXPORT2
utext_next32From(UText * ut,int64_t index)347 utext_next32From(UText *ut, int64_t index) {
348     UChar32       c      = U_SENTINEL;
349 
350     if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
351         // Desired position is outside of the current chunk.
352         if(!ut->pFuncs->access(ut, index, TRUE)) {
353             // no chunk available here
354             return U_SENTINEL;
355         }
356     } else if (index - ut->chunkNativeStart  <= (int64_t)ut->nativeIndexingLimit) {
357         // Desired position is in chunk, with direct 1:1 native to UTF16 indexing
358         ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
359     } else {
360         // Desired position is in chunk, with non-UTF16 indexing.
361         ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index);
362     }
363 
364     c = ut->chunkContents[ut->chunkOffset++];
365     if (U16_IS_SURROGATE(c)) {
366         // Surrogates.  Many edge cases.  Use other functions that already
367         //              deal with the problems.
368         utext_setNativeIndex(ut, index);
369         c = utext_next32(ut);
370     }
371     return c;
372 }
373 
374 
375 U_CAPI UChar32 U_EXPORT2
utext_previous32From(UText * ut,int64_t index)376 utext_previous32From(UText *ut, int64_t index) {
377     //
378     //  Return the character preceding the specified index.
379     //  Leave the iteration position at the start of the character that was returned.
380     //
381     UChar32     cPrev;    // The character preceding cCurr, which is what we will return.
382 
383     // Address the chunk containg the position preceding the incoming index
384     // A tricky edge case:
385     //   We try to test the requested native index against the chunkNativeStart to determine
386     //    whether the character preceding the one at the index is in the current chunk.
387     //    BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the
388     //    requested index is on something other than the first position of the first char.
389     //
390     if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) {
391         // Requested native index is outside of the current chunk.
392         if(!ut->pFuncs->access(ut, index, FALSE)) {
393             // no chunk available here
394             return U_SENTINEL;
395         }
396     } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) {
397         // Direct UTF-16 indexing.
398         ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
399     } else {
400         ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
401         if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, FALSE)) {
402             // no chunk available here
403             return U_SENTINEL;
404         }
405     }
406 
407     //
408     // Simple case with no surrogates.
409     //
410     ut->chunkOffset--;
411     cPrev = ut->chunkContents[ut->chunkOffset];
412 
413     if (U16_IS_SURROGATE(cPrev)) {
414         // Possible supplementary.  Many edge cases.
415         // Let other functions do the heavy lifting.
416         utext_setNativeIndex(ut, index);
417         cPrev = utext_previous32(ut);
418     }
419     return cPrev;
420 }
421 
422 
423 U_CAPI int32_t U_EXPORT2
utext_extract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * status)424 utext_extract(UText *ut,
425              int64_t start, int64_t limit,
426              UChar *dest, int32_t destCapacity,
427              UErrorCode *status) {
428                  return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status);
429              }
430 
431 
432 
433 U_CAPI UBool U_EXPORT2
utext_equals(const UText * a,const UText * b)434 utext_equals(const UText *a, const UText *b) {
435     if (a==NULL || b==NULL ||
436         a->magic != UTEXT_MAGIC ||
437         b->magic != UTEXT_MAGIC) {
438             // Null or invalid arguments don't compare equal to anything.
439             return FALSE;
440     }
441 
442     if (a->pFuncs != b->pFuncs) {
443         // Different types of text providers.
444         return FALSE;
445     }
446 
447     if (a->context != b->context) {
448         // Different sources (different strings)
449         return FALSE;
450     }
451     if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) {
452         // Different current position in the string.
453         return FALSE;
454     }
455 
456     return TRUE;
457 }
458 
459 U_CAPI UBool U_EXPORT2
utext_isWritable(const UText * ut)460 utext_isWritable(const UText *ut)
461 {
462     UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0;
463     return b;
464 }
465 
466 
467 U_CAPI void U_EXPORT2
utext_freeze(UText * ut)468 utext_freeze(UText *ut) {
469     // Zero out the WRITABLE flag.
470     ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE));
471 }
472 
473 
474 U_CAPI UBool U_EXPORT2
utext_hasMetaData(const UText * ut)475 utext_hasMetaData(const UText *ut)
476 {
477     UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0;
478     return b;
479 }
480 
481 
482 
483 U_CAPI int32_t U_EXPORT2
utext_replace(UText * ut,int64_t nativeStart,int64_t nativeLimit,const UChar * replacementText,int32_t replacementLength,UErrorCode * status)484 utext_replace(UText *ut,
485              int64_t nativeStart, int64_t nativeLimit,
486              const UChar *replacementText, int32_t replacementLength,
487              UErrorCode *status)
488 {
489     if (U_FAILURE(*status)) {
490         return 0;
491     }
492     if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
493         *status = U_NO_WRITE_PERMISSION;
494         return 0;
495     }
496     int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status);
497     return i;
498 }
499 
500 U_CAPI void U_EXPORT2
utext_copy(UText * ut,int64_t nativeStart,int64_t nativeLimit,int64_t destIndex,UBool move,UErrorCode * status)501 utext_copy(UText *ut,
502           int64_t nativeStart, int64_t nativeLimit,
503           int64_t destIndex,
504           UBool move,
505           UErrorCode *status)
506 {
507     if (U_FAILURE(*status)) {
508         return;
509     }
510     if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
511         *status = U_NO_WRITE_PERMISSION;
512         return;
513     }
514     ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status);
515 }
516 
517 
518 
519 U_CAPI UText * U_EXPORT2
utext_clone(UText * dest,const UText * src,UBool deep,UBool readOnly,UErrorCode * status)520 utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) {
521     if (U_FAILURE(*status)) {
522         return dest;
523     }
524     UText *result = src->pFuncs->clone(dest, src, deep, status);
525     if (U_FAILURE(*status)) {
526         return result;
527     }
528     if (result == NULL) {
529         *status = U_MEMORY_ALLOCATION_ERROR;
530         return result;
531     }
532     if (readOnly) {
533         utext_freeze(result);
534     }
535     return result;
536 }
537 
538 
539 
540 //------------------------------------------------------------------------------
541 //
542 //   UText common functions implementation
543 //
544 //------------------------------------------------------------------------------
545 
546 //
547 //  UText.flags bit definitions
548 //
549 enum {
550     UTEXT_HEAP_ALLOCATED  = 1,      //  1 if ICU has allocated this UText struct on the heap.
551                                     //  0 if caller provided storage for the UText.
552 
553     UTEXT_EXTRA_HEAP_ALLOCATED = 2, //  1 if ICU has allocated extra storage as a separate
554                                     //     heap block.
555                                     //  0 if there is no separate allocation.  Either no extra
556                                     //     storage was requested, or it is appended to the end
557                                     //     of the main UText storage.
558 
559     UTEXT_OPEN = 4                  //  1 if this UText is currently open
560                                     //  0 if this UText is not open.
561 };
562 
563 
564 //
565 //  Extended form of a UText.  The purpose is to aid in computing the total size required
566 //    when a provider asks for a UText to be allocated with extra storage.
567 
568 struct ExtendedUText {
569     UText          ut;
570     UAlignedMemory extension;
571 };
572 
573 static const UText emptyText = UTEXT_INITIALIZER;
574 
575 U_CAPI UText * U_EXPORT2
utext_setup(UText * ut,int32_t extraSpace,UErrorCode * status)576 utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) {
577     if (U_FAILURE(*status)) {
578         return ut;
579     }
580 
581     if (ut == NULL) {
582         // We need to heap-allocate storage for the new UText
583         int32_t spaceRequired = sizeof(UText);
584         if (extraSpace > 0) {
585             spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(UAlignedMemory);
586         }
587         ut = (UText *)uprv_malloc(spaceRequired);
588         if (ut == NULL) {
589             *status = U_MEMORY_ALLOCATION_ERROR;
590             return NULL;
591         } else {
592             *ut = emptyText;
593             ut->flags |= UTEXT_HEAP_ALLOCATED;
594             if (spaceRequired>0) {
595                 ut->extraSize = extraSpace;
596                 ut->pExtra    = &((ExtendedUText *)ut)->extension;
597             }
598         }
599     } else {
600         // We have been supplied with an already existing UText.
601         // Verify that it really appears to be a UText.
602         if (ut->magic != UTEXT_MAGIC) {
603             *status = U_ILLEGAL_ARGUMENT_ERROR;
604             return ut;
605         }
606         // If the ut is already open and there's a provider supplied close
607         //   function, call it.
608         if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != NULL)  {
609             ut->pFuncs->close(ut);
610         }
611         ut->flags &= ~UTEXT_OPEN;
612 
613         // If extra space was requested by our caller, check whether
614         //   sufficient already exists, and allocate new if needed.
615         if (extraSpace > ut->extraSize) {
616             // Need more space.  If there is existing separately allocated space,
617             //   delete it first, then allocate new space.
618             if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
619                 uprv_free(ut->pExtra);
620                 ut->extraSize = 0;
621             }
622             ut->pExtra = uprv_malloc(extraSpace);
623             if (ut->pExtra == NULL) {
624                 *status = U_MEMORY_ALLOCATION_ERROR;
625             } else {
626                 ut->extraSize = extraSpace;
627                 ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED;
628             }
629         }
630     }
631     if (U_SUCCESS(*status)) {
632         ut->flags |= UTEXT_OPEN;
633 
634         // Initialize all remaining fields of the UText.
635         //
636         ut->context             = NULL;
637         ut->chunkContents       = NULL;
638         ut->p                   = NULL;
639         ut->q                   = NULL;
640         ut->r                   = NULL;
641         ut->a                   = 0;
642         ut->b                   = 0;
643         ut->c                   = 0;
644         ut->chunkOffset         = 0;
645         ut->chunkLength         = 0;
646         ut->chunkNativeStart    = 0;
647         ut->chunkNativeLimit    = 0;
648         ut->nativeIndexingLimit = 0;
649         ut->providerProperties  = 0;
650         ut->privA               = 0;
651         ut->privB               = 0;
652         ut->privC               = 0;
653         ut->privP               = NULL;
654         if (ut->pExtra!=NULL && ut->extraSize>0)
655             uprv_memset(ut->pExtra, 0, ut->extraSize);
656 
657     }
658     return ut;
659 }
660 
661 
662 U_CAPI UText * U_EXPORT2
utext_close(UText * ut)663 utext_close(UText *ut) {
664     if (ut==NULL ||
665         ut->magic != UTEXT_MAGIC ||
666         (ut->flags & UTEXT_OPEN) == 0)
667     {
668         // The supplied ut is not an open UText.
669         // Do nothing.
670         return ut;
671     }
672 
673     // If the provider gave us a close function, call it now.
674     // This will clean up anything allocated specifically by the provider.
675     if (ut->pFuncs->close != NULL) {
676         ut->pFuncs->close(ut);
677     }
678     ut->flags &= ~UTEXT_OPEN;
679 
680     // If we (the framework) allocated the UText or subsidiary storage,
681     //   delete it.
682     if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
683         uprv_free(ut->pExtra);
684         ut->pExtra = NULL;
685         ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED;
686         ut->extraSize = 0;
687     }
688 
689     // Zero out function table of the closed UText.  This is a defensive move,
690     //   inteded to cause applications that inadvertantly use a closed
691     //   utext to crash with null pointer errors.
692     ut->pFuncs        = NULL;
693 
694     if (ut->flags & UTEXT_HEAP_ALLOCATED) {
695         // This UText was allocated by UText setup.  We need to free it.
696         // Clear magic, so we can detect if the user messes up and immediately
697         //  tries to reopen another UText using the deleted storage.
698         ut->magic = 0;
699         uprv_free(ut);
700         ut = NULL;
701     }
702     return ut;
703 }
704 
705 
706 
707 
708 //
709 // invalidateChunk   Reset a chunk to have no contents, so that the next call
710 //                   to access will cause new data to load.
711 //                   This is needed when copy/move/replace operate directly on the
712 //                   backing text, potentially putting it out of sync with the
713 //                   contents in the chunk.
714 //
715 static void
invalidateChunk(UText * ut)716 invalidateChunk(UText *ut) {
717     ut->chunkLength = 0;
718     ut->chunkNativeLimit = 0;
719     ut->chunkNativeStart = 0;
720     ut->chunkOffset = 0;
721     ut->nativeIndexingLimit = 0;
722 }
723 
724 //
725 // pinIndex        Do range pinning on a native index parameter.
726 //                 64 bit pinning is done in place.
727 //                 32 bit truncated result is returned as a convenience for
728 //                        use in providers that don't need 64 bits.
729 static int32_t
pinIndex(int64_t & index,int64_t limit)730 pinIndex(int64_t &index, int64_t limit) {
731     if (index<0) {
732         index = 0;
733     } else if (index > limit) {
734         index = limit;
735     }
736     return (int32_t)index;
737 }
738 
739 
740 U_CDECL_BEGIN
741 
742 //
743 // Pointer relocation function,
744 //   a utility used by shallow clone.
745 //   Adjust a pointer that refers to something within one UText (the source)
746 //   to refer to the same relative offset within a another UText (the target)
747 //
adjustPointer(UText * dest,const void ** destPtr,const UText * src)748 static void adjustPointer(UText *dest, const void **destPtr, const UText *src) {
749     // convert all pointers to (char *) so that byte address arithmetic will work.
750     char  *dptr = (char *)*destPtr;
751     char  *dUText = (char *)dest;
752     char  *sUText = (char *)src;
753 
754     if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) {
755         // target ptr was to something within the src UText's pExtra storage.
756         //   relocate it into the target UText's pExtra region.
757         *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra);
758     } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) {
759         // target ptr was pointing to somewhere within the source UText itself.
760         //   Move it to the same offset within the target UText.
761         *destPtr = dUText + (dptr-sUText);
762     }
763 }
764 
765 
766 //
767 //  Clone.  This is a generic copy-the-utext-by-value clone function that can be
768 //          used as-is with some utext types, and as a helper by other clones.
769 //
770 static UText * U_CALLCONV
shallowTextClone(UText * dest,const UText * src,UErrorCode * status)771 shallowTextClone(UText * dest, const UText * src, UErrorCode * status) {
772     if (U_FAILURE(*status)) {
773         return NULL;
774     }
775     int32_t  srcExtraSize = src->extraSize;
776 
777     //
778     // Use the generic text_setup to allocate storage if required.
779     //
780     dest = utext_setup(dest, srcExtraSize, status);
781     if (U_FAILURE(*status)) {
782         return dest;
783     }
784 
785     //
786     //  flags (how the UText was allocated) and the pointer to the
787     //   extra storage must retain the values in the cloned utext that
788     //   were set up by utext_setup.  Save them separately before
789     //   copying the whole struct.
790     //
791     void *destExtra = dest->pExtra;
792     int32_t flags   = dest->flags;
793 
794 
795     //
796     //  Copy the whole UText struct by value.
797     //  Any "Extra" storage is copied also.
798     //
799     int sizeToCopy = src->sizeOfStruct;
800     if (sizeToCopy > dest->sizeOfStruct) {
801         sizeToCopy = dest->sizeOfStruct;
802     }
803     uprv_memcpy(dest, src, sizeToCopy);
804     dest->pExtra = destExtra;
805     dest->flags  = flags;
806     if (srcExtraSize > 0) {
807         uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize);
808     }
809 
810     //
811     // Relocate any pointers in the target that refer to the UText itself
812     //   to point to the cloned copy rather than the original source.
813     //
814     adjustPointer(dest, &dest->context, src);
815     adjustPointer(dest, &dest->p, src);
816     adjustPointer(dest, &dest->q, src);
817     adjustPointer(dest, &dest->r, src);
818     adjustPointer(dest, (const void **)&dest->chunkContents, src);
819 
820     // The newly shallow-cloned UText does _not_ own the underlying storage for the text.
821     // (The source for the clone may or may not have owned the text.)
822 
823     dest->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
824 
825     return dest;
826 }
827 
828 
829 U_CDECL_END
830 
831 
832 
833 //------------------------------------------------------------------------------
834 //
835 //     UText implementation for UTF-8 char * strings (read-only)
836 //     Limitation:  string length must be <= 0x7fffffff in length.
837 //                  (length must for in an int32_t variable)
838 //
839 //         Use of UText data members:
840 //              context    pointer to UTF-8 string
841 //              utext.b    is the input string length (bytes).
842 //              utext.c    Length scanned so far in string
843 //                           (for optimizing finding length of zero terminated strings.)
844 //              utext.p    pointer to the current buffer
845 //              utext.q    pointer to the other buffer.
846 //
847 //------------------------------------------------------------------------------
848 
849 // Chunk size.
850 //     Must be less than 85 (256/3), because of byte mapping from UChar indexes to native indexes.
851 //     Worst case is three native bytes to one UChar.  (Supplemenaries are 4 native bytes
852 //     to two UChars.)
853 //     The longest illegal byte sequence treated as a single error (and converted to U+FFFD)
854 //     is a three-byte sequence (truncated four-byte sequence).
855 //
856 enum { UTF8_TEXT_CHUNK_SIZE=32 };
857 
858 //
859 // UTF8Buf  Two of these structs will be set up in the UText's extra allocated space.
860 //          Each contains the UChar chunk buffer, the to and from native maps, and
861 //          header info.
862 //
863 //     because backwards iteration fills the buffers starting at the end and
864 //     working towards the front, the filled part of the buffers may not begin
865 //     at the start of the available storage for the buffers.
866 //
867 //     Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for
868 //     the last character added being a supplementary, and thus requiring a surrogate
869 //     pair.  Doing this is simpler than checking for the edge case.
870 //
871 
872 struct UTF8Buf {
873     int32_t   bufNativeStart;                        // Native index of first char in UChar buf
874     int32_t   bufNativeLimit;                        // Native index following last char in buf.
875     int32_t   bufStartIdx;                           // First filled position in buf.
876     int32_t   bufLimitIdx;                           // Limit of filled range in buf.
877     int32_t   bufNILimit;                            // Limit of native indexing part of buf
878     int32_t   toUCharsMapStart;                      // Native index corresponding to
879                                                      //   mapToUChars[0].
880                                                      //   Set to bufNativeStart when filling forwards.
881                                                      //   Set to computed value when filling backwards.
882 
883     UChar     buf[UTF8_TEXT_CHUNK_SIZE+4];           // The UChar buffer.  Requires one extra position beyond the
884                                                      //   the chunk size, to allow for surrogate at the end.
885                                                      //   Length must be identical to mapToNative array, below,
886                                                      //   because of the way indexing works when the array is
887                                                      //   filled backwards during a reverse iteration.  Thus,
888                                                      //   the additional extra size.
889     uint8_t   mapToNative[UTF8_TEXT_CHUNK_SIZE+4];   // map UChar index in buf to
890                                                      //  native offset from bufNativeStart.
891                                                      //  Requires two extra slots,
892                                                      //    one for a supplementary starting in the last normal position,
893                                                      //    and one for an entry for the buffer limit position.
894     uint8_t   mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from bufNativeStart to
895                                                      //   correspoding offset in filled part of buf.
896     int32_t   align;
897 };
898 
899 U_CDECL_BEGIN
900 
901 //
902 //   utf8TextLength
903 //
904 //        Get the length of the string.  If we don't already know it,
905 //              we'll need to scan for the trailing  nul.
906 //
907 static int64_t U_CALLCONV
utf8TextLength(UText * ut)908 utf8TextLength(UText *ut) {
909     if (ut->b < 0) {
910         // Zero terminated string, and we haven't scanned to the end yet.
911         // Scan it now.
912         const char *r = (const char *)ut->context + ut->c;
913         while (*r != 0) {
914             r++;
915         }
916         if ((r - (const char *)ut->context) < 0x7fffffff) {
917             ut->b = (int32_t)(r - (const char *)ut->context);
918         } else {
919             // Actual string was bigger (more than 2 gig) than we
920             //   can handle.  Clip it to 2 GB.
921             ut->b = 0x7fffffff;
922         }
923         ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
924     }
925     return ut->b;
926 }
927 
928 
929 
930 
931 
932 
933 static UBool U_CALLCONV
utf8TextAccess(UText * ut,int64_t index,UBool forward)934 utf8TextAccess(UText *ut, int64_t index, UBool forward) {
935     //
936     //  Apologies to those who are allergic to goto statements.
937     //    Consider each goto to a labelled block to be the equivalent of
938     //         call the named block as if it were a function();
939     //         return;
940     //
941     const uint8_t *s8=(const uint8_t *)ut->context;
942     UTF8Buf *u8b = NULL;
943     int32_t  length = ut->b;         // Length of original utf-8
944     int32_t  ix= (int32_t)index;     // Requested index, trimmed to 32 bits.
945     int32_t  mapIndex = 0;
946     if (index<0) {
947         ix=0;
948     } else if (index > 0x7fffffff) {
949         // Strings with 64 bit lengths not supported by this UTF-8 provider.
950         ix = 0x7fffffff;
951     }
952 
953     // Pin requested index to the string length.
954     if (ix>length) {
955         if (length>=0) {
956             ix=length;
957         } else if (ix>=ut->c) {
958             // Zero terminated string, and requested index is beyond
959             //   the region that has already been scanned.
960             //   Scan up to either the end of the string or to the
961             //   requested position, whichever comes first.
962             while (ut->c<ix && s8[ut->c]!=0) {
963                 ut->c++;
964             }
965             //  TODO:  support for null terminated string length > 32 bits.
966             if (s8[ut->c] == 0) {
967                 // We just found the actual length of the string.
968                 //  Trim the requested index back to that.
969                 ix     = ut->c;
970                 ut->b  = ut->c;
971                 length = ut->c;
972                 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
973             }
974         }
975     }
976 
977     //
978     // Dispatch to the appropriate action for a forward iteration request.
979     //
980     if (forward) {
981         if (ix==ut->chunkNativeLimit) {
982             // Check for normal sequential iteration cases first.
983             if (ix==length) {
984                 // Just reached end of string
985                 // Don't swap buffers, but do set the
986                 //   current buffer position.
987                 ut->chunkOffset = ut->chunkLength;
988                 return FALSE;
989             } else {
990                 // End of current buffer.
991                 //   check whether other buffer already has what we need.
992                 UTF8Buf *altB = (UTF8Buf *)ut->q;
993                 if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) {
994                     goto swapBuffers;
995                 }
996             }
997         }
998 
999         // A random access.  Desired index could be in either or niether buf.
1000         // For optimizing the order of testing, first check for the index
1001         //    being in the other buffer.  This will be the case for uses that
1002         //    move back and forth over a fairly limited range
1003         {
1004             u8b = (UTF8Buf *)ut->q;   // the alternate buffer
1005             if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) {
1006                 // Requested index is in the other buffer.
1007                 goto swapBuffers;
1008             }
1009             if (ix == length) {
1010                 // Requested index is end-of-string.
1011                 //   (this is the case of randomly seeking to the end.
1012                 //    The case of iterating off the end is handled earlier.)
1013                 if (ix == ut->chunkNativeLimit) {
1014                     // Current buffer extends up to the end of the string.
1015                     //   Leave it as the current buffer.
1016                     ut->chunkOffset = ut->chunkLength;
1017                     return FALSE;
1018                 }
1019                 if (ix == u8b->bufNativeLimit) {
1020                     // Alternate buffer extends to the end of string.
1021                     //   Swap it in as the current buffer.
1022                     goto swapBuffersAndFail;
1023                 }
1024 
1025                 // Neither existing buffer extends to the end of the string.
1026                 goto makeStubBuffer;
1027             }
1028 
1029             if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) {
1030                 // Requested index is in neither buffer.
1031                 goto fillForward;
1032             }
1033 
1034             // Requested index is in this buffer.
1035             u8b = (UTF8Buf *)ut->p;   // the current buffer
1036             mapIndex = ix - u8b->toUCharsMapStart;
1037             U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars));
1038             ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1039             return TRUE;
1040 
1041         }
1042     }
1043 
1044 
1045     //
1046     // Dispatch to the appropriate action for a
1047     //   Backwards Diretion iteration request.
1048     //
1049     if (ix==ut->chunkNativeStart) {
1050         // Check for normal sequential iteration cases first.
1051         if (ix==0) {
1052             // Just reached the start of string
1053             // Don't swap buffers, but do set the
1054             //   current buffer position.
1055             ut->chunkOffset = 0;
1056             return FALSE;
1057         } else {
1058             // Start of current buffer.
1059             //   check whether other buffer already has what we need.
1060             UTF8Buf *altB = (UTF8Buf *)ut->q;
1061             if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) {
1062                 goto swapBuffers;
1063             }
1064         }
1065     }
1066 
1067     // A random access.  Desired index could be in either or niether buf.
1068     // For optimizing the order of testing,
1069     //    Most likely case:  in the other buffer.
1070     //    Second most likely: in neither buffer.
1071     //    Unlikely, but must work:  in the current buffer.
1072     u8b = (UTF8Buf *)ut->q;   // the alternate buffer
1073     if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) {
1074         // Requested index is in the other buffer.
1075         goto swapBuffers;
1076     }
1077     // Requested index is start-of-string.
1078     //   (this is the case of randomly seeking to the start.
1079     //    The case of iterating off the start is handled earlier.)
1080     if (ix==0) {
1081         if (u8b->bufNativeStart==0) {
1082             // Alternate buffer contains the data for the start string.
1083             // Make it be the current buffer.
1084             goto swapBuffersAndFail;
1085         } else {
1086             // Request for data before the start of string,
1087             //   neither buffer is usable.
1088             //   set up a zero-length buffer.
1089             goto makeStubBuffer;
1090         }
1091     }
1092 
1093     if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) {
1094         // Requested index is in neither buffer.
1095         goto fillReverse;
1096     }
1097 
1098     // Requested index is in this buffer.
1099     //   Set the utf16 buffer index.
1100     u8b = (UTF8Buf *)ut->p;
1101     mapIndex = ix - u8b->toUCharsMapStart;
1102     ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1103     if (ut->chunkOffset==0) {
1104         // This occurs when the first character in the text is
1105         //   a multi-byte UTF-8 char, and the requested index is to
1106         //   one of the trailing bytes.  Because there is no preceding ,
1107         //   character, this access fails.  We can't pick up on the
1108         //   situation sooner because the requested index is not zero.
1109         return FALSE;
1110     } else {
1111         return TRUE;
1112     }
1113 
1114 
1115 
1116 swapBuffers:
1117     //  The alternate buffer (ut->q) has the string data that was requested.
1118     //  Swap the primary and alternate buffers, and set the
1119     //   chunk index into the new primary buffer.
1120     {
1121         u8b   = (UTF8Buf *)ut->q;
1122         ut->q = ut->p;
1123         ut->p = u8b;
1124         ut->chunkContents       = &u8b->buf[u8b->bufStartIdx];
1125         ut->chunkLength         = u8b->bufLimitIdx - u8b->bufStartIdx;
1126         ut->chunkNativeStart    = u8b->bufNativeStart;
1127         ut->chunkNativeLimit    = u8b->bufNativeLimit;
1128         ut->nativeIndexingLimit = u8b->bufNILimit;
1129 
1130         // Index into the (now current) chunk
1131         // Use the map to set the chunk index.  It's more trouble than it's worth
1132         //    to check whether native indexing can be used.
1133         U_ASSERT(ix>=u8b->bufNativeStart);
1134         U_ASSERT(ix<=u8b->bufNativeLimit);
1135         mapIndex = ix - u8b->toUCharsMapStart;
1136         U_ASSERT(mapIndex>=0);
1137         U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars));
1138         ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1139 
1140         return TRUE;
1141     }
1142 
1143 
1144  swapBuffersAndFail:
1145     // We got a request for either the start or end of the string,
1146     //  with iteration continuing in the out-of-bounds direction.
1147     // The alternate buffer already contains the data up to the
1148     //  start/end.
1149     // Swap the buffers, then return failure, indicating that we couldn't
1150     //  make things correct for continuing the iteration in the requested
1151     //  direction.  The position & buffer are correct should the
1152     //  user decide to iterate in the opposite direction.
1153     u8b   = (UTF8Buf *)ut->q;
1154     ut->q = ut->p;
1155     ut->p = u8b;
1156     ut->chunkContents       = &u8b->buf[u8b->bufStartIdx];
1157     ut->chunkLength         = u8b->bufLimitIdx - u8b->bufStartIdx;
1158     ut->chunkNativeStart    = u8b->bufNativeStart;
1159     ut->chunkNativeLimit    = u8b->bufNativeLimit;
1160     ut->nativeIndexingLimit = u8b->bufNILimit;
1161 
1162     // Index into the (now current) chunk
1163     //  For this function  (swapBuffersAndFail), the requested index
1164     //    will always be at either the start or end of the chunk.
1165     if (ix==u8b->bufNativeLimit) {
1166         ut->chunkOffset = ut->chunkLength;
1167     } else  {
1168         ut->chunkOffset = 0;
1169         U_ASSERT(ix == u8b->bufNativeStart);
1170     }
1171     return FALSE;
1172 
1173 makeStubBuffer:
1174     //   The user has done a seek/access past the start or end
1175     //   of the string.  Rather than loading data that is likely
1176     //   to never be used, just set up a zero-length buffer at
1177     //   the position.
1178     u8b = (UTF8Buf *)ut->q;
1179     u8b->bufNativeStart   = ix;
1180     u8b->bufNativeLimit   = ix;
1181     u8b->bufStartIdx      = 0;
1182     u8b->bufLimitIdx      = 0;
1183     u8b->bufNILimit       = 0;
1184     u8b->toUCharsMapStart = ix;
1185     u8b->mapToNative[0]   = 0;
1186     u8b->mapToUChars[0]   = 0;
1187     goto swapBuffersAndFail;
1188 
1189 
1190 
1191 fillForward:
1192     {
1193         // Move the incoming index to a code point boundary.
1194         U8_SET_CP_START(s8, 0, ix);
1195 
1196         // Swap the UText buffers.
1197         //  We want to fill what was previously the alternate buffer,
1198         //  and make what was the current buffer be the new alternate.
1199         UTF8Buf *u8b = (UTF8Buf *)ut->q;
1200         ut->q = ut->p;
1201         ut->p = u8b;
1202 
1203         int32_t strLen = ut->b;
1204         UBool   nulTerminated = FALSE;
1205         if (strLen < 0) {
1206             strLen = 0x7fffffff;
1207             nulTerminated = TRUE;
1208         }
1209 
1210         UChar   *buf = u8b->buf;
1211         uint8_t *mapToNative  = u8b->mapToNative;
1212         uint8_t *mapToUChars  = u8b->mapToUChars;
1213         int32_t  destIx       = 0;
1214         int32_t  srcIx        = ix;
1215         UBool    seenNonAscii = FALSE;
1216         UChar32  c = 0;
1217 
1218         // Fill the chunk buffer and mapping arrays.
1219         while (destIx<UTF8_TEXT_CHUNK_SIZE) {
1220             c = s8[srcIx];
1221             if (c>0 && c<0x80) {
1222                 // Special case ASCII range for speed.
1223                 //   zero is excluded to simplify bounds checking.
1224                 buf[destIx] = (UChar)c;
1225                 mapToNative[destIx]    = (uint8_t)(srcIx - ix);
1226                 mapToUChars[srcIx-ix]  = (uint8_t)destIx;
1227                 srcIx++;
1228                 destIx++;
1229             } else {
1230                 // General case, handle everything.
1231                 if (seenNonAscii == FALSE) {
1232                     seenNonAscii = TRUE;
1233                     u8b->bufNILimit = destIx;
1234                 }
1235 
1236                 int32_t  cIx      = srcIx;
1237                 int32_t  dIx      = destIx;
1238                 int32_t  dIxSaved = destIx;
1239                 U8_NEXT_OR_FFFD(s8, srcIx, strLen, c);
1240                 if (c==0 && nulTerminated) {
1241                     srcIx--;
1242                     break;
1243                 }
1244 
1245                 U16_APPEND_UNSAFE(buf, destIx, c);
1246                 do {
1247                     mapToNative[dIx++] = (uint8_t)(cIx - ix);
1248                 } while (dIx < destIx);
1249 
1250                 do {
1251                     mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved;
1252                 } while (cIx < srcIx);
1253             }
1254             if (srcIx>=strLen) {
1255                 break;
1256             }
1257 
1258         }
1259 
1260         //  store Native <--> Chunk Map entries for the end of the buffer.
1261         //    There is no actual character here, but the index position is valid.
1262         mapToNative[destIx]     = (uint8_t)(srcIx - ix);
1263         mapToUChars[srcIx - ix] = (uint8_t)destIx;
1264 
1265         //  fill in Buffer descriptor
1266         u8b->bufNativeStart     = ix;
1267         u8b->bufNativeLimit     = srcIx;
1268         u8b->bufStartIdx        = 0;
1269         u8b->bufLimitIdx        = destIx;
1270         if (seenNonAscii == FALSE) {
1271             u8b->bufNILimit     = destIx;
1272         }
1273         u8b->toUCharsMapStart   = u8b->bufNativeStart;
1274 
1275         // Set UText chunk to refer to this buffer.
1276         ut->chunkContents       = buf;
1277         ut->chunkOffset         = 0;
1278         ut->chunkLength         = u8b->bufLimitIdx;
1279         ut->chunkNativeStart    = u8b->bufNativeStart;
1280         ut->chunkNativeLimit    = u8b->bufNativeLimit;
1281         ut->nativeIndexingLimit = u8b->bufNILimit;
1282 
1283         // For zero terminated strings, keep track of the maximum point
1284         //   scanned so far.
1285         if (nulTerminated && srcIx>ut->c) {
1286             ut->c = srcIx;
1287             if (c==0) {
1288                 // We scanned to the end.
1289                 //   Remember the actual length.
1290                 ut->b = srcIx;
1291                 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1292             }
1293         }
1294         return TRUE;
1295     }
1296 
1297 
1298 fillReverse:
1299     {
1300         // Move the incoming index to a code point boundary.
1301         // Can only do this if the incoming index is somewhere in the interior of the string.
1302         //   If index is at the end, there is no character there to look at.
1303         if (ix != ut->b) {
1304             // Note: this function will only move the index back if it is on a trail byte
1305             //       and there is a preceding lead byte and the sequence from the lead
1306             //       through this trail could be part of a valid UTF-8 sequence
1307             //       Otherwise the index remains unchanged.
1308             U8_SET_CP_START(s8, 0, ix);
1309         }
1310 
1311         // Swap the UText buffers.
1312         //  We want to fill what was previously the alternate buffer,
1313         //  and make what was the current buffer be the new alternate.
1314         UTF8Buf *u8b = (UTF8Buf *)ut->q;
1315         ut->q = ut->p;
1316         ut->p = u8b;
1317 
1318         UChar   *buf = u8b->buf;
1319         uint8_t *mapToNative = u8b->mapToNative;
1320         uint8_t *mapToUChars = u8b->mapToUChars;
1321         int32_t  toUCharsMapStart = ix - sizeof(UTF8Buf::mapToUChars) + 1;
1322         // Note that toUCharsMapStart can be negative. Happens when the remaining
1323         // text from current position to the beginning is less than the buffer size.
1324         // + 1 because mapToUChars must have a slot at the end for the bufNativeLimit entry.
1325         int32_t  destIx = UTF8_TEXT_CHUNK_SIZE+2;   // Start in the overflow region
1326                                                     //   at end of buffer to leave room
1327                                                     //   for a surrogate pair at the
1328                                                     //   buffer start.
1329         int32_t  srcIx  = ix;
1330         int32_t  bufNILimit = destIx;
1331         UChar32   c;
1332 
1333         // Map to/from Native Indexes, fill in for the position at the end of
1334         //   the buffer.
1335         //
1336         mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1337         mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1338 
1339         // Fill the chunk buffer
1340         // Work backwards, filling from the end of the buffer towards the front.
1341         //
1342         while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) {
1343             srcIx--;
1344             destIx--;
1345 
1346             // Get last byte of the UTF-8 character
1347             c = s8[srcIx];
1348             if (c<0x80) {
1349                 // Special case ASCII range for speed.
1350                 buf[destIx] = (UChar)c;
1351                 U_ASSERT(toUCharsMapStart <= srcIx);
1352                 mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1353                 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1354             } else {
1355                 // General case, handle everything non-ASCII.
1356 
1357                 int32_t  sIx      = srcIx;  // ix of last byte of multi-byte u8 char
1358 
1359                 // Get the full character from the UTF8 string.
1360                 //   use code derived from tbe macros in utf8.h
1361                 //   Leaves srcIx pointing at the first byte of the UTF-8 char.
1362                 //
1363                 c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -3);
1364                 // leaves srcIx at first byte of the multi-byte char.
1365 
1366                 // Store the character in UTF-16 buffer.
1367                 if (c<0x10000) {
1368                     buf[destIx] = (UChar)c;
1369                     mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1370                 } else {
1371                     buf[destIx]         = U16_TRAIL(c);
1372                     mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1373                     buf[--destIx]       = U16_LEAD(c);
1374                     mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1375                 }
1376 
1377                 // Fill in the map from native indexes to UChars buf index.
1378                 do {
1379                     mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx;
1380                 } while (sIx >= srcIx);
1381                 U_ASSERT(toUCharsMapStart <= (srcIx+1));
1382 
1383                 // Set native indexing limit to be the current position.
1384                 //   We are processing a non-ascii, non-native-indexing char now;
1385                 //     the limit will be here if the rest of the chars to be
1386                 //     added to this buffer are ascii.
1387                 bufNILimit = destIx;
1388             }
1389         }
1390         u8b->bufNativeStart     = srcIx;
1391         u8b->bufNativeLimit     = ix;
1392         u8b->bufStartIdx        = destIx;
1393         u8b->bufLimitIdx        = UTF8_TEXT_CHUNK_SIZE+2;
1394         u8b->bufNILimit         = bufNILimit - u8b->bufStartIdx;
1395         u8b->toUCharsMapStart   = toUCharsMapStart;
1396 
1397         ut->chunkContents       = &buf[u8b->bufStartIdx];
1398         ut->chunkLength         = u8b->bufLimitIdx - u8b->bufStartIdx;
1399         ut->chunkOffset         = ut->chunkLength;
1400         ut->chunkNativeStart    = u8b->bufNativeStart;
1401         ut->chunkNativeLimit    = u8b->bufNativeLimit;
1402         ut->nativeIndexingLimit = u8b->bufNILimit;
1403         return TRUE;
1404     }
1405 
1406 }
1407 
1408 
1409 
1410 //
1411 //  This is a slightly modified copy of u_strFromUTF8,
1412 //     Inserts a Replacement Char rather than failing on invalid UTF-8
1413 //     Removes unnecessary features.
1414 //
1415 static UChar*
utext_strFromUTF8(UChar * dest,int32_t destCapacity,int32_t * pDestLength,const char * src,int32_t srcLength,UErrorCode * pErrorCode)1416 utext_strFromUTF8(UChar *dest,
1417               int32_t destCapacity,
1418               int32_t *pDestLength,
1419               const char* src,
1420               int32_t srcLength,        // required.  NUL terminated not supported.
1421               UErrorCode *pErrorCode
1422               )
1423 {
1424 
1425     UChar *pDest = dest;
1426     UChar *pDestLimit = (dest!=NULL)?(dest+destCapacity):NULL;
1427     UChar32 ch=0;
1428     int32_t index = 0;
1429     int32_t reqLength = 0;
1430     uint8_t* pSrc = (uint8_t*) src;
1431 
1432 
1433     while((index < srcLength)&&(pDest<pDestLimit)){
1434         ch = pSrc[index++];
1435         if(ch <=0x7f){
1436             *pDest++=(UChar)ch;
1437         }else{
1438             ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
1439             if(U_IS_BMP(ch)){
1440                 *(pDest++)=(UChar)ch;
1441             }else{
1442                 *(pDest++)=U16_LEAD(ch);
1443                 if(pDest<pDestLimit){
1444                     *(pDest++)=U16_TRAIL(ch);
1445                 }else{
1446                     reqLength++;
1447                     break;
1448                 }
1449             }
1450         }
1451     }
1452     /* donot fill the dest buffer just count the UChars needed */
1453     while(index < srcLength){
1454         ch = pSrc[index++];
1455         if(ch <= 0x7f){
1456             reqLength++;
1457         }else{
1458             ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
1459             reqLength+=U16_LENGTH(ch);
1460         }
1461     }
1462 
1463     reqLength+=(int32_t)(pDest - dest);
1464 
1465     if(pDestLength){
1466         *pDestLength = reqLength;
1467     }
1468 
1469     /* Terminate the buffer */
1470     u_terminateUChars(dest,destCapacity,reqLength,pErrorCode);
1471 
1472     return dest;
1473 }
1474 
1475 
1476 
1477 static int32_t U_CALLCONV
utf8TextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * pErrorCode)1478 utf8TextExtract(UText *ut,
1479                 int64_t start, int64_t limit,
1480                 UChar *dest, int32_t destCapacity,
1481                 UErrorCode *pErrorCode) {
1482     if(U_FAILURE(*pErrorCode)) {
1483         return 0;
1484     }
1485     if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
1486         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
1487         return 0;
1488     }
1489     int32_t  length  = ut->b;
1490     int32_t  start32 = pinIndex(start, length);
1491     int32_t  limit32 = pinIndex(limit, length);
1492 
1493     if(start32>limit32) {
1494         *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
1495         return 0;
1496     }
1497 
1498 
1499     // adjust the incoming indexes to land on code point boundaries if needed.
1500     //    adjust by no more than three, because that is the largest number of trail bytes
1501     //    in a well formed UTF8 character.
1502     const uint8_t *buf = (const uint8_t *)ut->context;
1503     int i;
1504     if (start32 < ut->chunkNativeLimit) {
1505         for (i=0; i<3; i++) {
1506             if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) {
1507                 break;
1508             }
1509             start32--;
1510         }
1511     }
1512 
1513     if (limit32 < ut->chunkNativeLimit) {
1514         for (i=0; i<3; i++) {
1515             if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) {
1516                 break;
1517             }
1518             limit32--;
1519         }
1520     }
1521 
1522     // Do the actual extract.
1523     int32_t destLength=0;
1524     utext_strFromUTF8(dest, destCapacity, &destLength,
1525                     (const char *)ut->context+start32, limit32-start32,
1526                     pErrorCode);
1527     utf8TextAccess(ut, limit32, TRUE);
1528     return destLength;
1529 }
1530 
1531 //
1532 // utf8TextMapOffsetToNative
1533 //
1534 // Map a chunk (UTF-16) offset to a native index.
1535 static int64_t U_CALLCONV
utf8TextMapOffsetToNative(const UText * ut)1536 utf8TextMapOffsetToNative(const UText *ut) {
1537     //
1538     UTF8Buf *u8b = (UTF8Buf *)ut->p;
1539     U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength);
1540     int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart;
1541     U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit);
1542     return nativeOffset;
1543 }
1544 
1545 //
1546 // Map a native index to the corrsponding chunk offset
1547 //
1548 static int32_t U_CALLCONV
utf8TextMapIndexToUTF16(const UText * ut,int64_t index64)1549 utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) {
1550     U_ASSERT(index64 <= 0x7fffffff);
1551     int32_t index = (int32_t)index64;
1552     UTF8Buf *u8b = (UTF8Buf *)ut->p;
1553     U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit);
1554     U_ASSERT(index<=ut->chunkNativeLimit);
1555     int32_t mapIndex = index - u8b->toUCharsMapStart;
1556     U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars));
1557     int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1558     U_ASSERT(offset>=0 && offset<=ut->chunkLength);
1559     return offset;
1560 }
1561 
1562 static UText * U_CALLCONV
utf8TextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)1563 utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status)
1564 {
1565     // First do a generic shallow clone.  Does everything needed for the UText struct itself.
1566     dest = shallowTextClone(dest, src, status);
1567 
1568     // For deep clones, make a copy of the string.
1569     //  The copied storage is owned by the newly created clone.
1570     //
1571     // TODO:  There is an isssue with using utext_nativeLength().
1572     //        That function is non-const in cases where the input was NUL terminated
1573     //          and the length has not yet been determined.
1574     //        This function (clone()) is const.
1575     //        There potentially a thread safety issue lurking here.
1576     //
1577     if (deep && U_SUCCESS(*status)) {
1578         int32_t  len = (int32_t)utext_nativeLength((UText *)src);
1579         char *copyStr = (char *)uprv_malloc(len+1);
1580         if (copyStr == NULL) {
1581             *status = U_MEMORY_ALLOCATION_ERROR;
1582         } else {
1583             uprv_memcpy(copyStr, src->context, len+1);
1584             dest->context = copyStr;
1585             dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1586         }
1587     }
1588     return dest;
1589 }
1590 
1591 
1592 static void U_CALLCONV
utf8TextClose(UText * ut)1593 utf8TextClose(UText *ut) {
1594     // Most of the work of close is done by the generic UText framework close.
1595     // All that needs to be done here is to delete the UTF8 string if the UText
1596     //  owns it.  This occurs if the UText was created by cloning.
1597     if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1598         char *s = (char *)ut->context;
1599         uprv_free(s);
1600         ut->context = NULL;
1601     }
1602 }
1603 
1604 U_CDECL_END
1605 
1606 
1607 static const struct UTextFuncs utf8Funcs =
1608 {
1609     sizeof(UTextFuncs),
1610     0, 0, 0,             // Reserved alignment padding
1611     utf8TextClone,
1612     utf8TextLength,
1613     utf8TextAccess,
1614     utf8TextExtract,
1615     NULL,                /* replace*/
1616     NULL,                /* copy   */
1617     utf8TextMapOffsetToNative,
1618     utf8TextMapIndexToUTF16,
1619     utf8TextClose,
1620     NULL,                // spare 1
1621     NULL,                // spare 2
1622     NULL                 // spare 3
1623 };
1624 
1625 
1626 static const char gEmptyString[] = {0};
1627 
1628 U_CAPI UText * U_EXPORT2
utext_openUTF8(UText * ut,const char * s,int64_t length,UErrorCode * status)1629 utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) {
1630     if(U_FAILURE(*status)) {
1631         return NULL;
1632     }
1633     if(s==NULL && length==0) {
1634         s = gEmptyString;
1635     }
1636 
1637     if(s==NULL || length<-1 || length>INT32_MAX) {
1638         *status=U_ILLEGAL_ARGUMENT_ERROR;
1639         return NULL;
1640     }
1641 
1642     ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status);
1643     if (U_FAILURE(*status)) {
1644         return ut;
1645     }
1646 
1647     ut->pFuncs  = &utf8Funcs;
1648     ut->context = s;
1649     ut->b       = (int32_t)length;
1650     ut->c       = (int32_t)length;
1651     if (ut->c < 0) {
1652         ut->c = 0;
1653         ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1654     }
1655     ut->p = ut->pExtra;
1656     ut->q = (char *)ut->pExtra + sizeof(UTF8Buf);
1657     return ut;
1658 
1659 }
1660 
1661 
1662 
1663 
1664 
1665 
1666 
1667 
1668 //------------------------------------------------------------------------------
1669 //
1670 //     UText implementation wrapper for Replaceable (read/write)
1671 //
1672 //         Use of UText data members:
1673 //            context    pointer to Replaceable.
1674 //            p          pointer to Replaceable if it is owned by the UText.
1675 //
1676 //------------------------------------------------------------------------------
1677 
1678 
1679 
1680 // minimum chunk size for this implementation: 3
1681 // to allow for possible trimming for code point boundaries
1682 enum { REP_TEXT_CHUNK_SIZE=10 };
1683 
1684 struct ReplExtra {
1685     /*
1686      * Chunk UChars.
1687      * +1 to simplify filling with surrogate pair at the end.
1688      */
1689     UChar s[REP_TEXT_CHUNK_SIZE+1];
1690 };
1691 
1692 
1693 U_CDECL_BEGIN
1694 
1695 static UText * U_CALLCONV
repTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)1696 repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
1697     // First do a generic shallow clone.  Does everything needed for the UText struct itself.
1698     dest = shallowTextClone(dest, src, status);
1699 
1700     // For deep clones, make a copy of the Replaceable.
1701     //  The copied Replaceable storage is owned by the newly created UText clone.
1702     //  A non-NULL pointer in UText.p is the signal to the close() function to delete
1703     //    it.
1704     //
1705     if (deep && U_SUCCESS(*status)) {
1706         const Replaceable *replSrc = (const Replaceable *)src->context;
1707         dest->context = replSrc->clone();
1708         dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1709 
1710         // with deep clone, the copy is writable, even when the source is not.
1711         dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
1712     }
1713     return dest;
1714 }
1715 
1716 
1717 static void U_CALLCONV
repTextClose(UText * ut)1718 repTextClose(UText *ut) {
1719     // Most of the work of close is done by the generic UText framework close.
1720     // All that needs to be done here is delete the Replaceable if the UText
1721     //  owns it.  This occurs if the UText was created by cloning.
1722     if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1723         Replaceable *rep = (Replaceable *)ut->context;
1724         delete rep;
1725         ut->context = NULL;
1726     }
1727 }
1728 
1729 
1730 static int64_t U_CALLCONV
repTextLength(UText * ut)1731 repTextLength(UText *ut) {
1732     const Replaceable *replSrc = (const Replaceable *)ut->context;
1733     int32_t  len = replSrc->length();
1734     return len;
1735 }
1736 
1737 
1738 static UBool U_CALLCONV
repTextAccess(UText * ut,int64_t index,UBool forward)1739 repTextAccess(UText *ut, int64_t index, UBool forward) {
1740     const Replaceable *rep=(const Replaceable *)ut->context;
1741     int32_t length=rep->length();   // Full length of the input text (bigger than a chunk)
1742 
1743     // clip the requested index to the limits of the text.
1744     int32_t index32 = pinIndex(index, length);
1745     U_ASSERT(index<=INT32_MAX);
1746 
1747 
1748     /*
1749      * Compute start/limit boundaries around index, for a segment of text
1750      * to be extracted.
1751      * To allow for the possibility that our user gave an index to the trailing
1752      * half of a surrogate pair, we must request one extra preceding UChar when
1753      * going in the forward direction.  This will ensure that the buffer has the
1754      * entire code point at the specified index.
1755      */
1756     if(forward) {
1757 
1758         if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) {
1759             // Buffer already contains the requested position.
1760             ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
1761             return TRUE;
1762         }
1763         if (index32>=length && ut->chunkNativeLimit==length) {
1764             // Request for end of string, and buffer already extends up to it.
1765             // Can't get the data, but don't change the buffer.
1766             ut->chunkOffset = length - (int32_t)ut->chunkNativeStart;
1767             return FALSE;
1768         }
1769 
1770         ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1;
1771         // Going forward, so we want to have the buffer with stuff at and beyond
1772         //   the requested index.  The -1 gets us one code point before the
1773         //   requested index also, to handle the case of the index being on
1774         //   a trail surrogate of a surrogate pair.
1775         if(ut->chunkNativeLimit > length) {
1776             ut->chunkNativeLimit = length;
1777         }
1778         // unless buffer ran off end, start is index-1.
1779         ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE;
1780         if(ut->chunkNativeStart < 0) {
1781             ut->chunkNativeStart = 0;
1782         }
1783     } else {
1784         // Reverse iteration.  Fill buffer with data preceding the requested index.
1785         if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) {
1786             // Requested position already in buffer.
1787             ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart;
1788             return TRUE;
1789         }
1790         if (index32==0 && ut->chunkNativeStart==0) {
1791             // Request for start, buffer already begins at start.
1792             //  No data, but keep the buffer as is.
1793             ut->chunkOffset = 0;
1794             return FALSE;
1795         }
1796 
1797         // Figure out the bounds of the chunk to extract for reverse iteration.
1798         // Need to worry about chunk not splitting surrogate pairs, and while still
1799         // containing the data we need.
1800         // Fix by requesting a chunk that includes an extra UChar at the end.
1801         // If this turns out to be a lead surrogate, we can lop it off and still have
1802         //   the data we wanted.
1803         ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE;
1804         if (ut->chunkNativeStart < 0) {
1805             ut->chunkNativeStart = 0;
1806         }
1807 
1808         ut->chunkNativeLimit = index32 + 1;
1809         if (ut->chunkNativeLimit > length) {
1810             ut->chunkNativeLimit = length;
1811         }
1812     }
1813 
1814     // Extract the new chunk of text from the Replaceable source.
1815     ReplExtra *ex = (ReplExtra *)ut->pExtra;
1816     // UnicodeString with its buffer a writable alias to the chunk buffer
1817     UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/);
1818     rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer);
1819 
1820     ut->chunkContents  = ex->s;
1821     ut->chunkLength    = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart);
1822     ut->chunkOffset    = (int32_t)(index32 - ut->chunkNativeStart);
1823 
1824     // Surrogate pairs from the input text must not span chunk boundaries.
1825     // If end of chunk could be the start of a surrogate, trim it off.
1826     if (ut->chunkNativeLimit < length &&
1827         U16_IS_LEAD(ex->s[ut->chunkLength-1])) {
1828             ut->chunkLength--;
1829             ut->chunkNativeLimit--;
1830             if (ut->chunkOffset > ut->chunkLength) {
1831                 ut->chunkOffset = ut->chunkLength;
1832             }
1833         }
1834 
1835     // if the first UChar in the chunk could be the trailing half of a surrogate pair,
1836     // trim it off.
1837     if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) {
1838         ++(ut->chunkContents);
1839         ++(ut->chunkNativeStart);
1840         --(ut->chunkLength);
1841         --(ut->chunkOffset);
1842     }
1843 
1844     // adjust the index/chunkOffset to a code point boundary
1845     U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset);
1846 
1847     // Use fast indexing for get/setNativeIndex()
1848     ut->nativeIndexingLimit = ut->chunkLength;
1849 
1850     return TRUE;
1851 }
1852 
1853 
1854 
1855 static int32_t U_CALLCONV
repTextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * status)1856 repTextExtract(UText *ut,
1857                int64_t start, int64_t limit,
1858                UChar *dest, int32_t destCapacity,
1859                UErrorCode *status) {
1860     const Replaceable *rep=(const Replaceable *)ut->context;
1861     int32_t  length=rep->length();
1862 
1863     if(U_FAILURE(*status)) {
1864         return 0;
1865     }
1866     if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
1867         *status=U_ILLEGAL_ARGUMENT_ERROR;
1868     }
1869     if(start>limit) {
1870         *status=U_INDEX_OUTOFBOUNDS_ERROR;
1871         return 0;
1872     }
1873 
1874     int32_t  start32 = pinIndex(start, length);
1875     int32_t  limit32 = pinIndex(limit, length);
1876 
1877     // adjust start, limit if they point to trail half of surrogates
1878     if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) &&
1879         U_IS_SUPPLEMENTARY(rep->char32At(start32))){
1880             start32--;
1881     }
1882     if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) &&
1883         U_IS_SUPPLEMENTARY(rep->char32At(limit32))){
1884             limit32--;
1885     }
1886 
1887     length=limit32-start32;
1888     if(length>destCapacity) {
1889         limit32 = start32 + destCapacity;
1890     }
1891     UnicodeString buffer(dest, 0, destCapacity); // writable alias
1892     rep->extractBetween(start32, limit32, buffer);
1893     repTextAccess(ut, limit32, TRUE);
1894 
1895     return u_terminateUChars(dest, destCapacity, length, status);
1896 }
1897 
1898 static int32_t U_CALLCONV
repTextReplace(UText * ut,int64_t start,int64_t limit,const UChar * src,int32_t length,UErrorCode * status)1899 repTextReplace(UText *ut,
1900                int64_t start, int64_t limit,
1901                const UChar *src, int32_t length,
1902                UErrorCode *status) {
1903     Replaceable *rep=(Replaceable *)ut->context;
1904     int32_t oldLength;
1905 
1906     if(U_FAILURE(*status)) {
1907         return 0;
1908     }
1909     if(src==NULL && length!=0) {
1910         *status=U_ILLEGAL_ARGUMENT_ERROR;
1911         return 0;
1912     }
1913     oldLength=rep->length(); // will subtract from new length
1914     if(start>limit ) {
1915         *status=U_INDEX_OUTOFBOUNDS_ERROR;
1916         return 0;
1917     }
1918 
1919     int32_t start32 = pinIndex(start, oldLength);
1920     int32_t limit32 = pinIndex(limit, oldLength);
1921 
1922     // Snap start & limit to code point boundaries.
1923     if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) &&
1924         start32>0 && U16_IS_LEAD(rep->charAt(start32-1)))
1925     {
1926             start32--;
1927     }
1928     if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) &&
1929         U16_IS_TRAIL(rep->charAt(limit32)))
1930     {
1931             limit32++;
1932     }
1933 
1934     // Do the actual replace operation using methods of the Replaceable class
1935     UnicodeString replStr((UBool)(length<0), src, length); // read-only alias
1936     rep->handleReplaceBetween(start32, limit32, replStr);
1937     int32_t newLength = rep->length();
1938     int32_t lengthDelta = newLength - oldLength;
1939 
1940     // Is the UText chunk buffer OK?
1941     if (ut->chunkNativeLimit > start32) {
1942         // this replace operation may have impacted the current chunk.
1943         // invalidate it, which will force a reload on the next access.
1944         invalidateChunk(ut);
1945     }
1946 
1947     // set the iteration position to the end of the newly inserted replacement text.
1948     int32_t newIndexPos = limit32 + lengthDelta;
1949     repTextAccess(ut, newIndexPos, TRUE);
1950 
1951     return lengthDelta;
1952 }
1953 
1954 
1955 static void U_CALLCONV
repTextCopy(UText * ut,int64_t start,int64_t limit,int64_t destIndex,UBool move,UErrorCode * status)1956 repTextCopy(UText *ut,
1957                 int64_t start, int64_t limit,
1958                 int64_t destIndex,
1959                 UBool move,
1960                 UErrorCode *status)
1961 {
1962     Replaceable *rep=(Replaceable *)ut->context;
1963     int32_t length=rep->length();
1964 
1965     if(U_FAILURE(*status)) {
1966         return;
1967     }
1968     if (start>limit || (start<destIndex && destIndex<limit))
1969     {
1970         *status=U_INDEX_OUTOFBOUNDS_ERROR;
1971         return;
1972     }
1973 
1974     int32_t start32     = pinIndex(start, length);
1975     int32_t limit32     = pinIndex(limit, length);
1976     int32_t destIndex32 = pinIndex(destIndex, length);
1977 
1978     // TODO:  snap input parameters to code point boundaries.
1979 
1980     if(move) {
1981         // move: copy to destIndex, then replace original with nothing
1982         int32_t segLength=limit32-start32;
1983         rep->copy(start32, limit32, destIndex32);
1984         if(destIndex32<start32) {
1985             start32+=segLength;
1986             limit32+=segLength;
1987         }
1988         rep->handleReplaceBetween(start32, limit32, UnicodeString());
1989     } else {
1990         // copy
1991         rep->copy(start32, limit32, destIndex32);
1992     }
1993 
1994     // If the change to the text touched the region in the chunk buffer,
1995     //  invalidate the buffer.
1996     int32_t firstAffectedIndex = destIndex32;
1997     if (move && start32<firstAffectedIndex) {
1998         firstAffectedIndex = start32;
1999     }
2000     if (firstAffectedIndex < ut->chunkNativeLimit) {
2001         // changes may have affected range covered by the chunk
2002         invalidateChunk(ut);
2003     }
2004 
2005     // Put iteration position at the newly inserted (moved) block,
2006     int32_t  nativeIterIndex = destIndex32 + limit32 - start32;
2007     if (move && destIndex32>start32) {
2008         // moved a block of text towards the end of the string.
2009         nativeIterIndex = destIndex32;
2010     }
2011 
2012     // Set position, reload chunk if needed.
2013     repTextAccess(ut, nativeIterIndex, TRUE);
2014 }
2015 
2016 static const struct UTextFuncs repFuncs =
2017 {
2018     sizeof(UTextFuncs),
2019     0, 0, 0,           // Reserved alignment padding
2020     repTextClone,
2021     repTextLength,
2022     repTextAccess,
2023     repTextExtract,
2024     repTextReplace,
2025     repTextCopy,
2026     NULL,              // MapOffsetToNative,
2027     NULL,              // MapIndexToUTF16,
2028     repTextClose,
2029     NULL,              // spare 1
2030     NULL,              // spare 2
2031     NULL               // spare 3
2032 };
2033 
2034 
2035 U_CAPI UText * U_EXPORT2
utext_openReplaceable(UText * ut,Replaceable * rep,UErrorCode * status)2036 utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status)
2037 {
2038     if(U_FAILURE(*status)) {
2039         return NULL;
2040     }
2041     if(rep==NULL) {
2042         *status=U_ILLEGAL_ARGUMENT_ERROR;
2043         return NULL;
2044     }
2045     ut = utext_setup(ut, sizeof(ReplExtra), status);
2046     if(U_FAILURE(*status)) {
2047         return ut;
2048     }
2049 
2050     ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2051     if(rep->hasMetaData()) {
2052         ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA);
2053     }
2054 
2055     ut->pFuncs  = &repFuncs;
2056     ut->context =  rep;
2057     return ut;
2058 }
2059 
2060 U_CDECL_END
2061 
2062 
2063 
2064 
2065 
2066 
2067 
2068 
2069 //------------------------------------------------------------------------------
2070 //
2071 //     UText implementation for UnicodeString (read/write)  and
2072 //                    for const UnicodeString (read only)
2073 //             (same implementation, only the flags are different)
2074 //
2075 //         Use of UText data members:
2076 //            context    pointer to UnicodeString
2077 //            p          pointer to UnicodeString IF this UText owns the string
2078 //                       and it must be deleted on close().  NULL otherwise.
2079 //
2080 //------------------------------------------------------------------------------
2081 
2082 U_CDECL_BEGIN
2083 
2084 
2085 static UText * U_CALLCONV
unistrTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)2086 unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
2087     // First do a generic shallow clone.  Does everything needed for the UText struct itself.
2088     dest = shallowTextClone(dest, src, status);
2089 
2090     // For deep clones, make a copy of the UnicodeSring.
2091     //  The copied UnicodeString storage is owned by the newly created UText clone.
2092     //  A non-NULL pointer in UText.p is the signal to the close() function to delete
2093     //    the UText.
2094     //
2095     if (deep && U_SUCCESS(*status)) {
2096         const UnicodeString *srcString = (const UnicodeString *)src->context;
2097         dest->context = new UnicodeString(*srcString);
2098         dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2099 
2100         // with deep clone, the copy is writable, even when the source is not.
2101         dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2102     }
2103     return dest;
2104 }
2105 
2106 static void U_CALLCONV
unistrTextClose(UText * ut)2107 unistrTextClose(UText *ut) {
2108     // Most of the work of close is done by the generic UText framework close.
2109     // All that needs to be done here is delete the UnicodeString if the UText
2110     //  owns it.  This occurs if the UText was created by cloning.
2111     if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2112         UnicodeString *str = (UnicodeString *)ut->context;
2113         delete str;
2114         ut->context = NULL;
2115     }
2116 }
2117 
2118 
2119 static int64_t U_CALLCONV
unistrTextLength(UText * t)2120 unistrTextLength(UText *t) {
2121     return ((const UnicodeString *)t->context)->length();
2122 }
2123 
2124 
2125 static UBool U_CALLCONV
unistrTextAccess(UText * ut,int64_t index,UBool forward)2126 unistrTextAccess(UText *ut, int64_t index, UBool  forward) {
2127     int32_t length  = ut->chunkLength;
2128     ut->chunkOffset = pinIndex(index, length);
2129 
2130     // Check whether request is at the start or end
2131     UBool retVal = (forward && index<length) || (!forward && index>0);
2132     return retVal;
2133 }
2134 
2135 
2136 
2137 static int32_t U_CALLCONV
unistrTextExtract(UText * t,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * pErrorCode)2138 unistrTextExtract(UText *t,
2139                   int64_t start, int64_t limit,
2140                   UChar *dest, int32_t destCapacity,
2141                   UErrorCode *pErrorCode) {
2142     const UnicodeString *us=(const UnicodeString *)t->context;
2143     int32_t length=us->length();
2144 
2145     if(U_FAILURE(*pErrorCode)) {
2146         return 0;
2147     }
2148     if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
2149         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2150     }
2151     if(start<0 || start>limit) {
2152         *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2153         return 0;
2154     }
2155 
2156     int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length;
2157     int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length;
2158 
2159     length=limit32-start32;
2160     if (destCapacity>0 && dest!=NULL) {
2161         int32_t trimmedLength = length;
2162         if(trimmedLength>destCapacity) {
2163             trimmedLength=destCapacity;
2164         }
2165         us->extract(start32, trimmedLength, dest);
2166         t->chunkOffset = start32+trimmedLength;
2167     } else {
2168         t->chunkOffset = start32;
2169     }
2170     u_terminateUChars(dest, destCapacity, length, pErrorCode);
2171     return length;
2172 }
2173 
2174 static int32_t U_CALLCONV
unistrTextReplace(UText * ut,int64_t start,int64_t limit,const UChar * src,int32_t length,UErrorCode * pErrorCode)2175 unistrTextReplace(UText *ut,
2176                   int64_t start, int64_t limit,
2177                   const UChar *src, int32_t length,
2178                   UErrorCode *pErrorCode) {
2179     UnicodeString *us=(UnicodeString *)ut->context;
2180     int32_t oldLength;
2181 
2182     if(U_FAILURE(*pErrorCode)) {
2183         return 0;
2184     }
2185     if(src==NULL && length!=0) {
2186         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2187     }
2188     if(start>limit) {
2189         *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2190         return 0;
2191     }
2192     oldLength=us->length();
2193     int32_t start32 = pinIndex(start, oldLength);
2194     int32_t limit32 = pinIndex(limit, oldLength);
2195     if (start32 < oldLength) {
2196         start32 = us->getChar32Start(start32);
2197     }
2198     if (limit32 < oldLength) {
2199         limit32 = us->getChar32Start(limit32);
2200     }
2201 
2202     // replace
2203     us->replace(start32, limit32-start32, src, length);
2204     int32_t newLength = us->length();
2205 
2206     // Update the chunk description.
2207     ut->chunkContents    = us->getBuffer();
2208     ut->chunkLength      = newLength;
2209     ut->chunkNativeLimit = newLength;
2210     ut->nativeIndexingLimit = newLength;
2211 
2212     // Set iteration position to the point just following the newly inserted text.
2213     int32_t lengthDelta = newLength - oldLength;
2214     ut->chunkOffset = limit32 + lengthDelta;
2215 
2216     return lengthDelta;
2217 }
2218 
2219 static void U_CALLCONV
unistrTextCopy(UText * ut,int64_t start,int64_t limit,int64_t destIndex,UBool move,UErrorCode * pErrorCode)2220 unistrTextCopy(UText *ut,
2221                int64_t start, int64_t limit,
2222                int64_t destIndex,
2223                UBool move,
2224                UErrorCode *pErrorCode) {
2225     UnicodeString *us=(UnicodeString *)ut->context;
2226     int32_t length=us->length();
2227 
2228     if(U_FAILURE(*pErrorCode)) {
2229         return;
2230     }
2231     int32_t start32 = pinIndex(start, length);
2232     int32_t limit32 = pinIndex(limit, length);
2233     int32_t destIndex32 = pinIndex(destIndex, length);
2234 
2235     if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) {
2236         *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2237         return;
2238     }
2239 
2240     if(move) {
2241         // move: copy to destIndex, then remove original
2242         int32_t segLength=limit32-start32;
2243         us->copy(start32, limit32, destIndex32);
2244         if(destIndex32<start32) {
2245             start32+=segLength;
2246         }
2247         us->remove(start32, segLength);
2248     } else {
2249         // copy
2250         us->copy(start32, limit32, destIndex32);
2251     }
2252 
2253     // update chunk description, set iteration position.
2254     ut->chunkContents = us->getBuffer();
2255     if (move==FALSE) {
2256         // copy operation, string length grows
2257         ut->chunkLength += limit32-start32;
2258         ut->chunkNativeLimit = ut->chunkLength;
2259         ut->nativeIndexingLimit = ut->chunkLength;
2260     }
2261 
2262     // Iteration position to end of the newly inserted text.
2263     ut->chunkOffset = destIndex32+limit32-start32;
2264     if (move && destIndex32>start32) {
2265         ut->chunkOffset = destIndex32;
2266     }
2267 
2268 }
2269 
2270 static const struct UTextFuncs unistrFuncs =
2271 {
2272     sizeof(UTextFuncs),
2273     0, 0, 0,             // Reserved alignment padding
2274     unistrTextClone,
2275     unistrTextLength,
2276     unistrTextAccess,
2277     unistrTextExtract,
2278     unistrTextReplace,
2279     unistrTextCopy,
2280     NULL,                // MapOffsetToNative,
2281     NULL,                // MapIndexToUTF16,
2282     unistrTextClose,
2283     NULL,                // spare 1
2284     NULL,                // spare 2
2285     NULL                 // spare 3
2286 };
2287 
2288 
2289 
2290 U_CDECL_END
2291 
2292 
2293 U_CAPI UText * U_EXPORT2
utext_openUnicodeString(UText * ut,UnicodeString * s,UErrorCode * status)2294 utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
2295     ut = utext_openConstUnicodeString(ut, s, status);
2296     if (U_SUCCESS(*status)) {
2297         ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2298     }
2299     return ut;
2300 }
2301 
2302 
2303 
2304 U_CAPI UText * U_EXPORT2
utext_openConstUnicodeString(UText * ut,const UnicodeString * s,UErrorCode * status)2305 utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) {
2306     if (U_SUCCESS(*status) && s->isBogus()) {
2307         // The UnicodeString is bogus, but we still need to detach the UText
2308         //   from whatever it was hooked to before, if anything.
2309         utext_openUChars(ut, NULL, 0, status);
2310         *status = U_ILLEGAL_ARGUMENT_ERROR;
2311         return ut;
2312     }
2313     ut = utext_setup(ut, 0, status);
2314     //    note:  use the standard (writable) function table for UnicodeString.
2315     //           The flag settings disable writing, so having the functions in
2316     //           the table is harmless.
2317     if (U_SUCCESS(*status)) {
2318         ut->pFuncs              = &unistrFuncs;
2319         ut->context             = s;
2320         ut->providerProperties  = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2321         ut->chunkContents       = s->getBuffer();
2322         ut->chunkLength         = s->length();
2323         ut->chunkNativeStart    = 0;
2324         ut->chunkNativeLimit    = ut->chunkLength;
2325         ut->nativeIndexingLimit = ut->chunkLength;
2326     }
2327     return ut;
2328 }
2329 
2330 //------------------------------------------------------------------------------
2331 //
2332 //     UText implementation for const UChar * strings
2333 //
2334 //         Use of UText data members:
2335 //            context    pointer to UnicodeString
2336 //            a          length.  -1 if not yet known.
2337 //
2338 //         TODO:  support 64 bit lengths.
2339 //
2340 //------------------------------------------------------------------------------
2341 
2342 U_CDECL_BEGIN
2343 
2344 
2345 static UText * U_CALLCONV
ucstrTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)2346 ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) {
2347     // First do a generic shallow clone.
2348     dest = shallowTextClone(dest, src, status);
2349 
2350     // For deep clones, make a copy of the string.
2351     //  The copied storage is owned by the newly created clone.
2352     //  A non-NULL pointer in UText.p is the signal to the close() function to delete
2353     //    it.
2354     //
2355     if (deep && U_SUCCESS(*status)) {
2356         U_ASSERT(utext_nativeLength(dest) < INT32_MAX);
2357         int32_t  len = (int32_t)utext_nativeLength(dest);
2358 
2359         // The cloned string IS going to be NUL terminated, whether or not the original was.
2360         const UChar *srcStr = (const UChar *)src->context;
2361         UChar *copyStr = (UChar *)uprv_malloc((len+1) * sizeof(UChar));
2362         if (copyStr == NULL) {
2363             *status = U_MEMORY_ALLOCATION_ERROR;
2364         } else {
2365             int64_t i;
2366             for (i=0; i<len; i++) {
2367                 copyStr[i] = srcStr[i];
2368             }
2369             copyStr[len] = 0;
2370             dest->context = copyStr;
2371             dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2372         }
2373     }
2374     return dest;
2375 }
2376 
2377 
2378 static void U_CALLCONV
ucstrTextClose(UText * ut)2379 ucstrTextClose(UText *ut) {
2380     // Most of the work of close is done by the generic UText framework close.
2381     // All that needs to be done here is delete the string if the UText
2382     //  owns it.  This occurs if the UText was created by cloning.
2383     if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2384         UChar *s = (UChar *)ut->context;
2385         uprv_free(s);
2386         ut->context = NULL;
2387     }
2388 }
2389 
2390 
2391 
2392 static int64_t U_CALLCONV
ucstrTextLength(UText * ut)2393 ucstrTextLength(UText *ut) {
2394     if (ut->a < 0) {
2395         // null terminated, we don't yet know the length.  Scan for it.
2396         //    Access is not convenient for doing this
2397         //    because the current interation postion can't be changed.
2398         const UChar  *str = (const UChar *)ut->context;
2399         for (;;) {
2400             if (str[ut->chunkNativeLimit] == 0) {
2401                 break;
2402             }
2403             ut->chunkNativeLimit++;
2404         }
2405         ut->a = ut->chunkNativeLimit;
2406         ut->chunkLength = (int32_t)ut->chunkNativeLimit;
2407         ut->nativeIndexingLimit = ut->chunkLength;
2408         ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2409     }
2410     return ut->a;
2411 }
2412 
2413 
2414 static UBool U_CALLCONV
ucstrTextAccess(UText * ut,int64_t index,UBool forward)2415 ucstrTextAccess(UText *ut, int64_t index, UBool  forward) {
2416     const UChar *str   = (const UChar *)ut->context;
2417 
2418     // pin the requested index to the bounds of the string,
2419     //  and set current iteration position.
2420     if (index<0) {
2421         index = 0;
2422     } else if (index < ut->chunkNativeLimit) {
2423         // The request data is within the chunk as it is known so far.
2424         // Put index on a code point boundary.
2425         U16_SET_CP_START(str, 0, index);
2426     } else if (ut->a >= 0) {
2427         // We know the length of this string, and the user is requesting something
2428         // at or beyond the length.  Pin the requested index to the length.
2429         index = ut->a;
2430     } else {
2431         // Null terminated string, length not yet known, and the requested index
2432         //  is beyond where we have scanned so far.
2433         //  Scan to 32 UChars beyond the requested index.  The strategy here is
2434         //  to avoid fully scanning a long string when the caller only wants to
2435         //  see a few characters at its beginning.
2436         int32_t scanLimit = (int32_t)index + 32;
2437         if ((index + 32)>INT32_MAX || (index + 32)<0 ) {   // note: int64 expression
2438             scanLimit = INT32_MAX;
2439         }
2440 
2441         int32_t chunkLimit = (int32_t)ut->chunkNativeLimit;
2442         for (; chunkLimit<scanLimit; chunkLimit++) {
2443             if (str[chunkLimit] == 0) {
2444                 // We found the end of the string.  Remember it, pin the requested index to it,
2445                 //  and bail out of here.
2446                 ut->a = chunkLimit;
2447                 ut->chunkLength = chunkLimit;
2448                 ut->nativeIndexingLimit = chunkLimit;
2449                 if (index >= chunkLimit) {
2450                     index = chunkLimit;
2451                 } else {
2452                     U16_SET_CP_START(str, 0, index);
2453                 }
2454 
2455                 ut->chunkNativeLimit = chunkLimit;
2456                 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2457                 goto breakout;
2458             }
2459         }
2460         // We scanned through the next batch of UChars without finding the end.
2461         U16_SET_CP_START(str, 0, index);
2462         if (chunkLimit == INT32_MAX) {
2463             // Scanned to the limit of a 32 bit length.
2464             // Forceably trim the overlength string back so length fits in int32
2465             //  TODO:  add support for 64 bit strings.
2466             ut->a = chunkLimit;
2467             ut->chunkLength = chunkLimit;
2468             ut->nativeIndexingLimit = chunkLimit;
2469             if (index > chunkLimit) {
2470                 index = chunkLimit;
2471             }
2472             ut->chunkNativeLimit = chunkLimit;
2473             ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2474         } else {
2475             // The endpoint of a chunk must not be left in the middle of a surrogate pair.
2476             // If the current end is on a lead surrogate, back the end up by one.
2477             // It doesn't matter if the end char happens to be an unpaired surrogate,
2478             //    and it's simpler not to worry about it.
2479             if (U16_IS_LEAD(str[chunkLimit-1])) {
2480                 --chunkLimit;
2481             }
2482             // Null-terminated chunk with end still unknown.
2483             // Update the chunk length to reflect what has been scanned thus far.
2484             // That the full length is still unknown is (still) flagged by
2485             //    ut->a being < 0.
2486             ut->chunkNativeLimit = chunkLimit;
2487             ut->nativeIndexingLimit = chunkLimit;
2488             ut->chunkLength = chunkLimit;
2489         }
2490 
2491     }
2492 breakout:
2493     U_ASSERT(index<=INT32_MAX);
2494     ut->chunkOffset = (int32_t)index;
2495 
2496     // Check whether request is at the start or end
2497     UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index>0);
2498     return retVal;
2499 }
2500 
2501 
2502 
2503 static int32_t U_CALLCONV
ucstrTextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * pErrorCode)2504 ucstrTextExtract(UText *ut,
2505                   int64_t start, int64_t limit,
2506                   UChar *dest, int32_t destCapacity,
2507                   UErrorCode *pErrorCode)
2508 {
2509     if(U_FAILURE(*pErrorCode)) {
2510         return 0;
2511     }
2512     if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) {
2513         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2514         return 0;
2515     }
2516 
2517     //const UChar *s=(const UChar *)ut->context;
2518     int32_t si, di;
2519 
2520     int32_t start32;
2521     int32_t limit32;
2522 
2523     // Access the start.  Does two things we need:
2524     //   Pins 'start' to the length of the string, if it came in out-of-bounds.
2525     //   Snaps 'start' to the beginning of a code point.
2526     ucstrTextAccess(ut, start, TRUE);
2527     const UChar *s=ut->chunkContents;
2528     start32 = ut->chunkOffset;
2529 
2530     int32_t strLength=(int32_t)ut->a;
2531     if (strLength >= 0) {
2532         limit32 = pinIndex(limit, strLength);
2533     } else {
2534         limit32 = pinIndex(limit, INT32_MAX);
2535     }
2536     di = 0;
2537     for (si=start32; si<limit32; si++) {
2538         if (strLength<0 && s[si]==0) {
2539             // Just hit the end of a null-terminated string.
2540             ut->a = si;               // set string length for this UText
2541             ut->chunkNativeLimit    = si;
2542             ut->chunkLength         = si;
2543             ut->nativeIndexingLimit = si;
2544             strLength               = si;
2545             limit32                 = si;
2546             break;
2547         }
2548         U_ASSERT(di>=0); /* to ensure di never exceeds INT32_MAX, which must not happen logically */
2549         if (di<destCapacity) {
2550             // only store if there is space.
2551             dest[di] = s[si];
2552         } else {
2553             if (strLength>=0) {
2554                 // We have filled the destination buffer, and the string length is known.
2555                 //  Cut the loop short.  There is no need to scan string termination.
2556                 di = limit32 - start32;
2557                 si = limit32;
2558                 break;
2559             }
2560         }
2561         di++;
2562     }
2563 
2564     // If the limit index points to a lead surrogate of a pair,
2565     //   add the corresponding trail surrogate to the destination.
2566     if (si>0 && U16_IS_LEAD(s[si-1]) &&
2567             ((si<strLength || strLength<0)  && U16_IS_TRAIL(s[si])))
2568     {
2569         if (di<destCapacity) {
2570             // store only if there is space in the output buffer.
2571             dest[di++] = s[si];
2572         }
2573         si++;
2574     }
2575 
2576     // Put iteration position at the point just following the extracted text
2577     if (si <= ut->chunkNativeLimit) {
2578         ut->chunkOffset = si;
2579     } else {
2580         ucstrTextAccess(ut, si, TRUE);
2581     }
2582 
2583     // Add a terminating NUL if space in the buffer permits,
2584     // and set the error status as required.
2585     u_terminateUChars(dest, destCapacity, di, pErrorCode);
2586     return di;
2587 }
2588 
2589 static const struct UTextFuncs ucstrFuncs =
2590 {
2591     sizeof(UTextFuncs),
2592     0, 0, 0,           // Reserved alignment padding
2593     ucstrTextClone,
2594     ucstrTextLength,
2595     ucstrTextAccess,
2596     ucstrTextExtract,
2597     NULL,              // Replace
2598     NULL,              // Copy
2599     NULL,              // MapOffsetToNative,
2600     NULL,              // MapIndexToUTF16,
2601     ucstrTextClose,
2602     NULL,              // spare 1
2603     NULL,              // spare 2
2604     NULL,              // spare 3
2605 };
2606 
2607 U_CDECL_END
2608 
2609 static const UChar gEmptyUString[] = {0};
2610 
2611 U_CAPI UText * U_EXPORT2
utext_openUChars(UText * ut,const UChar * s,int64_t length,UErrorCode * status)2612 utext_openUChars(UText *ut, const UChar *s, int64_t length, UErrorCode *status) {
2613     if (U_FAILURE(*status)) {
2614         return NULL;
2615     }
2616     if(s==NULL && length==0) {
2617         s = gEmptyUString;
2618     }
2619     if (s==NULL || length < -1 || length>INT32_MAX) {
2620         *status = U_ILLEGAL_ARGUMENT_ERROR;
2621         return NULL;
2622     }
2623     ut = utext_setup(ut, 0, status);
2624     if (U_SUCCESS(*status)) {
2625         ut->pFuncs               = &ucstrFuncs;
2626         ut->context              = s;
2627         ut->providerProperties   = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2628         if (length==-1) {
2629             ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2630         }
2631         ut->a                    = length;
2632         ut->chunkContents        = s;
2633         ut->chunkNativeStart     = 0;
2634         ut->chunkNativeLimit     = length>=0? length : 0;
2635         ut->chunkLength          = (int32_t)ut->chunkNativeLimit;
2636         ut->chunkOffset          = 0;
2637         ut->nativeIndexingLimit  = ut->chunkLength;
2638     }
2639     return ut;
2640 }
2641 
2642 
2643 //------------------------------------------------------------------------------
2644 //
2645 //     UText implementation for text from ICU CharacterIterators
2646 //
2647 //         Use of UText data members:
2648 //            context    pointer to the CharacterIterator
2649 //            a          length of the full text.
2650 //            p          pointer to  buffer 1
2651 //            b          start index of local buffer 1 contents
2652 //            q          pointer to buffer 2
2653 //            c          start index of local buffer 2 contents
2654 //            r          pointer to the character iterator if the UText owns it.
2655 //                       Null otherwise.
2656 //
2657 //------------------------------------------------------------------------------
2658 #define CIBufSize 16
2659 
2660 U_CDECL_BEGIN
2661 static void U_CALLCONV
charIterTextClose(UText * ut)2662 charIterTextClose(UText *ut) {
2663     // Most of the work of close is done by the generic UText framework close.
2664     // All that needs to be done here is delete the CharacterIterator if the UText
2665     //  owns it.  This occurs if the UText was created by cloning.
2666     CharacterIterator *ci = (CharacterIterator *)ut->r;
2667     delete ci;
2668     ut->r = NULL;
2669 }
2670 
2671 static int64_t U_CALLCONV
charIterTextLength(UText * ut)2672 charIterTextLength(UText *ut) {
2673     return (int32_t)ut->a;
2674 }
2675 
2676 static UBool U_CALLCONV
charIterTextAccess(UText * ut,int64_t index,UBool forward)2677 charIterTextAccess(UText *ut, int64_t index, UBool  forward) {
2678     CharacterIterator *ci   = (CharacterIterator *)ut->context;
2679 
2680     int32_t clippedIndex = (int32_t)index;
2681     if (clippedIndex<0) {
2682         clippedIndex=0;
2683     } else if (clippedIndex>=ut->a) {
2684         clippedIndex=(int32_t)ut->a;
2685     }
2686     int32_t neededIndex = clippedIndex;
2687     if (!forward && neededIndex>0) {
2688         // reverse iteration, want the position just before what was asked for.
2689         neededIndex--;
2690     } else if (forward && neededIndex==ut->a && neededIndex>0) {
2691         // Forward iteration, don't ask for something past the end of the text.
2692         neededIndex--;
2693     }
2694 
2695     // Find the native index of the start of the buffer containing what we want.
2696     neededIndex -= neededIndex % CIBufSize;
2697 
2698     UChar *buf = NULL;
2699     UBool  needChunkSetup = TRUE;
2700     int    i;
2701     if (ut->chunkNativeStart == neededIndex) {
2702         // The buffer we want is already the current chunk.
2703         needChunkSetup = FALSE;
2704     } else if (ut->b == neededIndex) {
2705         // The first buffer (buffer p) has what we need.
2706         buf = (UChar *)ut->p;
2707     } else if (ut->c == neededIndex) {
2708         // The second buffer (buffer q) has what we need.
2709         buf = (UChar *)ut->q;
2710     } else {
2711         // Neither buffer already has what we need.
2712         // Load new data from the character iterator.
2713         // Use the buf that is not the current buffer.
2714         buf = (UChar *)ut->p;
2715         if (ut->p == ut->chunkContents) {
2716             buf = (UChar *)ut->q;
2717         }
2718         ci->setIndex(neededIndex);
2719         for (i=0; i<CIBufSize; i++) {
2720             buf[i] = ci->nextPostInc();
2721             if (i+neededIndex > ut->a) {
2722                 break;
2723             }
2724         }
2725     }
2726 
2727     // We have a buffer with the data we need.
2728     // Set it up as the current chunk, if it wasn't already.
2729     if (needChunkSetup) {
2730         ut->chunkContents = buf;
2731         ut->chunkLength   = CIBufSize;
2732         ut->chunkNativeStart = neededIndex;
2733         ut->chunkNativeLimit = neededIndex + CIBufSize;
2734         if (ut->chunkNativeLimit > ut->a) {
2735             ut->chunkNativeLimit = ut->a;
2736             ut->chunkLength  = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chunkNativeStart);
2737         }
2738         ut->nativeIndexingLimit = ut->chunkLength;
2739         U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize);
2740     }
2741     ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart;
2742     UBool success = (forward? ut->chunkOffset<ut->chunkLength : ut->chunkOffset>0);
2743     return success;
2744 }
2745 
2746 static UText * U_CALLCONV
charIterTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)2747 charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status) {
2748     if (U_FAILURE(*status)) {
2749         return NULL;
2750     }
2751 
2752     if (deep) {
2753         // There is no CharacterIterator API for cloning the underlying text storage.
2754         *status = U_UNSUPPORTED_ERROR;
2755         return NULL;
2756     } else {
2757         CharacterIterator *srcCI =(CharacterIterator *)src->context;
2758         srcCI = srcCI->clone();
2759         dest = utext_openCharacterIterator(dest, srcCI, status);
2760         if (U_FAILURE(*status)) {
2761             return dest;
2762         }
2763         // cast off const on getNativeIndex.
2764         //   For CharacterIterator based UTexts, this is safe, the operation is const.
2765         int64_t  ix = utext_getNativeIndex((UText *)src);
2766         utext_setNativeIndex(dest, ix);
2767         dest->r = srcCI;    // flags that this UText owns the CharacterIterator
2768     }
2769     return dest;
2770 }
2771 
2772 static int32_t U_CALLCONV
charIterTextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * status)2773 charIterTextExtract(UText *ut,
2774                   int64_t start, int64_t limit,
2775                   UChar *dest, int32_t destCapacity,
2776                   UErrorCode *status)
2777 {
2778     if(U_FAILURE(*status)) {
2779         return 0;
2780     }
2781     if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) {
2782         *status=U_ILLEGAL_ARGUMENT_ERROR;
2783         return 0;
2784     }
2785     int32_t  length  = (int32_t)ut->a;
2786     int32_t  start32 = pinIndex(start, length);
2787     int32_t  limit32 = pinIndex(limit, length);
2788     int32_t  desti   = 0;
2789     int32_t  srci;
2790     int32_t  copyLimit;
2791 
2792     CharacterIterator *ci = (CharacterIterator *)ut->context;
2793     ci->setIndex32(start32);   // Moves ix to lead of surrogate pair, if needed.
2794     srci = ci->getIndex();
2795     copyLimit = srci;
2796     while (srci<limit32) {
2797         UChar32 c = ci->next32PostInc();
2798         int32_t  len = U16_LENGTH(c);
2799         U_ASSERT(desti+len>0); /* to ensure desti+len never exceeds MAX_INT32, which must not happen logically */
2800         if (desti+len <= destCapacity) {
2801             U16_APPEND_UNSAFE(dest, desti, c);
2802             copyLimit = srci+len;
2803         } else {
2804             desti += len;
2805             *status = U_BUFFER_OVERFLOW_ERROR;
2806         }
2807         srci += len;
2808     }
2809 
2810     charIterTextAccess(ut, copyLimit, TRUE);
2811 
2812     u_terminateUChars(dest, destCapacity, desti, status);
2813     return desti;
2814 }
2815 
2816 static const struct UTextFuncs charIterFuncs =
2817 {
2818     sizeof(UTextFuncs),
2819     0, 0, 0,             // Reserved alignment padding
2820     charIterTextClone,
2821     charIterTextLength,
2822     charIterTextAccess,
2823     charIterTextExtract,
2824     NULL,                // Replace
2825     NULL,                // Copy
2826     NULL,                // MapOffsetToNative,
2827     NULL,                // MapIndexToUTF16,
2828     charIterTextClose,
2829     NULL,                // spare 1
2830     NULL,                // spare 2
2831     NULL                 // spare 3
2832 };
2833 U_CDECL_END
2834 
2835 
2836 U_CAPI UText * U_EXPORT2
utext_openCharacterIterator(UText * ut,CharacterIterator * ci,UErrorCode * status)2837 utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status) {
2838     if (U_FAILURE(*status)) {
2839         return NULL;
2840     }
2841 
2842     if (ci->startIndex() > 0) {
2843         // No support for CharacterIterators that do not start indexing from zero.
2844         *status = U_UNSUPPORTED_ERROR;
2845         return NULL;
2846     }
2847 
2848     // Extra space in UText for 2 buffers of CIBufSize UChars each.
2849     int32_t  extraSpace = 2 * CIBufSize * sizeof(UChar);
2850     ut = utext_setup(ut, extraSpace, status);
2851     if (U_SUCCESS(*status)) {
2852         ut->pFuncs                = &charIterFuncs;
2853         ut->context              = ci;
2854         ut->providerProperties   = 0;
2855         ut->a                    = ci->endIndex();        // Length of text
2856         ut->p                    = ut->pExtra;            // First buffer
2857         ut->b                    = -1;                    // Native index of first buffer contents
2858         ut->q                    = (UChar*)ut->pExtra+CIBufSize;  // Second buffer
2859         ut->c                    = -1;                    // Native index of second buffer contents
2860 
2861         // Initialize current chunk contents to be empty.
2862         //   First access will fault something in.
2863         //   Note:  The initial nativeStart and chunkOffset must sum to zero
2864         //          so that getNativeIndex() will correctly compute to zero
2865         //          if no call to Access() has ever been made.  They can't be both
2866         //          zero without Access() thinking that the chunk is valid.
2867         ut->chunkContents        = (UChar *)ut->p;
2868         ut->chunkNativeStart     = -1;
2869         ut->chunkOffset          = 1;
2870         ut->chunkNativeLimit     = 0;
2871         ut->chunkLength          = 0;
2872         ut->nativeIndexingLimit  = ut->chunkOffset;  // enables native indexing
2873     }
2874     return ut;
2875 }
2876