1 /*
2  *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <emmintrin.h>
12 
13 #include "./vpx_config.h"
14 #include "./vp9_rtcd.h"
15 
16 #include "vpx_ports/emmintrin_compat.h"
17 #include "vpx/vpx_integer.h"
18 #include "vp9/common/vp9_reconinter.h"
19 #include "vp9/encoder/vp9_context_tree.h"
20 #include "vp9/encoder/vp9_denoiser.h"
21 #include "vpx_mem/vpx_mem.h"
22 
23 // Compute the sum of all pixel differences of this MB.
sum_diff_16x1(__m128i acc_diff)24 static INLINE int sum_diff_16x1(__m128i acc_diff) {
25   const __m128i k_1 = _mm_set1_epi16(1);
26   const __m128i acc_diff_lo =
27       _mm_srai_epi16(_mm_unpacklo_epi8(acc_diff, acc_diff), 8);
28   const __m128i acc_diff_hi =
29       _mm_srai_epi16(_mm_unpackhi_epi8(acc_diff, acc_diff), 8);
30   const __m128i acc_diff_16 = _mm_add_epi16(acc_diff_lo, acc_diff_hi);
31   const __m128i hg_fe_dc_ba = _mm_madd_epi16(acc_diff_16, k_1);
32   const __m128i hgfe_dcba =
33       _mm_add_epi32(hg_fe_dc_ba, _mm_srli_si128(hg_fe_dc_ba, 8));
34   const __m128i hgfedcba =
35       _mm_add_epi32(hgfe_dcba, _mm_srli_si128(hgfe_dcba, 4));
36   return _mm_cvtsi128_si32(hgfedcba);
37 }
38 
39 // Denoise a 16x1 vector.
vp9_denoiser_16x1_sse2(const uint8_t * sig,const uint8_t * mc_running_avg_y,uint8_t * running_avg_y,const __m128i * k_0,const __m128i * k_4,const __m128i * k_8,const __m128i * k_16,const __m128i * l3,const __m128i * l32,const __m128i * l21,__m128i acc_diff)40 static INLINE __m128i vp9_denoiser_16x1_sse2(
41     const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y,
42     const __m128i *k_0, const __m128i *k_4, const __m128i *k_8,
43     const __m128i *k_16, const __m128i *l3, const __m128i *l32,
44     const __m128i *l21, __m128i acc_diff) {
45   // Calculate differences
46   const __m128i v_sig = _mm_loadu_si128((const __m128i *)(&sig[0]));
47   const __m128i v_mc_running_avg_y =
48       _mm_loadu_si128((const __m128i *)(&mc_running_avg_y[0]));
49   __m128i v_running_avg_y;
50   const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig);
51   const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y);
52   // Obtain the sign. FF if diff is negative.
53   const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, *k_0);
54   // Clamp absolute difference to 16 to be used to get mask. Doing this
55   // allows us to use _mm_cmpgt_epi8, which operates on signed byte.
56   const __m128i clamped_absdiff =
57       _mm_min_epu8(_mm_or_si128(pdiff, ndiff), *k_16);
58   // Get masks for l2 l1 and l0 adjustments.
59   const __m128i mask2 = _mm_cmpgt_epi8(*k_16, clamped_absdiff);
60   const __m128i mask1 = _mm_cmpgt_epi8(*k_8, clamped_absdiff);
61   const __m128i mask0 = _mm_cmpgt_epi8(*k_4, clamped_absdiff);
62   // Get adjustments for l2, l1, and l0.
63   __m128i adj2 = _mm_and_si128(mask2, *l32);
64   const __m128i adj1 = _mm_and_si128(mask1, *l21);
65   const __m128i adj0 = _mm_and_si128(mask0, clamped_absdiff);
66   __m128i adj, padj, nadj;
67 
68   // Combine the adjustments and get absolute adjustments.
69   adj2 = _mm_add_epi8(adj2, adj1);
70   adj = _mm_sub_epi8(*l3, adj2);
71   adj = _mm_andnot_si128(mask0, adj);
72   adj = _mm_or_si128(adj, adj0);
73 
74   // Restore the sign and get positive and negative adjustments.
75   padj = _mm_andnot_si128(diff_sign, adj);
76   nadj = _mm_and_si128(diff_sign, adj);
77 
78   // Calculate filtered value.
79   v_running_avg_y = _mm_adds_epu8(v_sig, padj);
80   v_running_avg_y = _mm_subs_epu8(v_running_avg_y, nadj);
81   _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y);
82 
83   // Adjustments <=7, and each element in acc_diff can fit in signed
84   // char.
85   acc_diff = _mm_adds_epi8(acc_diff, padj);
86   acc_diff = _mm_subs_epi8(acc_diff, nadj);
87   return acc_diff;
88 }
89 
90 // Denoise a 16x1 vector with a weaker filter.
vp9_denoiser_adj_16x1_sse2(const uint8_t * sig,const uint8_t * mc_running_avg_y,uint8_t * running_avg_y,const __m128i k_0,const __m128i k_delta,__m128i acc_diff)91 static INLINE __m128i vp9_denoiser_adj_16x1_sse2(
92     const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y,
93     const __m128i k_0, const __m128i k_delta, __m128i acc_diff) {
94   __m128i v_running_avg_y = _mm_loadu_si128((__m128i *)(&running_avg_y[0]));
95   // Calculate differences.
96   const __m128i v_sig = _mm_loadu_si128((const __m128i *)(&sig[0]));
97   const __m128i v_mc_running_avg_y =
98       _mm_loadu_si128((const __m128i *)(&mc_running_avg_y[0]));
99   const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig);
100   const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y);
101   // Obtain the sign. FF if diff is negative.
102   const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0);
103   // Clamp absolute difference to delta to get the adjustment.
104   const __m128i adj = _mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_delta);
105   // Restore the sign and get positive and negative adjustments.
106   __m128i padj, nadj;
107   padj = _mm_andnot_si128(diff_sign, adj);
108   nadj = _mm_and_si128(diff_sign, adj);
109   // Calculate filtered value.
110   v_running_avg_y = _mm_subs_epu8(v_running_avg_y, padj);
111   v_running_avg_y = _mm_adds_epu8(v_running_avg_y, nadj);
112   _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y);
113 
114   // Accumulate the adjustments.
115   acc_diff = _mm_subs_epi8(acc_diff, padj);
116   acc_diff = _mm_adds_epi8(acc_diff, nadj);
117   return acc_diff;
118 }
119 
120 // Denoise 8x8 and 8x16 blocks.
vp9_denoiser_NxM_sse2_small(const uint8_t * sig,int sig_stride,const uint8_t * mc_running_avg_y,int mc_avg_y_stride,uint8_t * running_avg_y,int avg_y_stride,int increase_denoising,BLOCK_SIZE bs,int motion_magnitude,int width)121 static int vp9_denoiser_NxM_sse2_small(const uint8_t *sig, int sig_stride,
122                                        const uint8_t *mc_running_avg_y,
123                                        int mc_avg_y_stride,
124                                        uint8_t *running_avg_y, int avg_y_stride,
125                                        int increase_denoising, BLOCK_SIZE bs,
126                                        int motion_magnitude, int width) {
127   int sum_diff_thresh, r, sum_diff = 0;
128   const int shift_inc =
129       (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
130           ? 1
131           : 0;
132   uint8_t sig_buffer[8][16], mc_running_buffer[8][16], running_buffer[8][16];
133   __m128i acc_diff = _mm_setzero_si128();
134   const __m128i k_0 = _mm_setzero_si128();
135   const __m128i k_4 = _mm_set1_epi8(4 + shift_inc);
136   const __m128i k_8 = _mm_set1_epi8(8);
137   const __m128i k_16 = _mm_set1_epi8(16);
138   // Modify each level's adjustment according to motion_magnitude.
139   const __m128i l3 = _mm_set1_epi8(
140       (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 + shift_inc : 6);
141   // Difference between level 3 and level 2 is 2.
142   const __m128i l32 = _mm_set1_epi8(2);
143   // Difference between level 2 and level 1 is 1.
144   const __m128i l21 = _mm_set1_epi8(1);
145   const int b_height = (4 << b_height_log2_lookup[bs]) >> 1;
146 
147   for (r = 0; r < b_height; ++r) {
148     memcpy(sig_buffer[r], sig, width);
149     memcpy(sig_buffer[r] + width, sig + sig_stride, width);
150     memcpy(mc_running_buffer[r], mc_running_avg_y, width);
151     memcpy(mc_running_buffer[r] + width, mc_running_avg_y + mc_avg_y_stride,
152            width);
153     memcpy(running_buffer[r], running_avg_y, width);
154     memcpy(running_buffer[r] + width, running_avg_y + avg_y_stride, width);
155     acc_diff = vp9_denoiser_16x1_sse2(sig_buffer[r], mc_running_buffer[r],
156                                       running_buffer[r], &k_0, &k_4, &k_8,
157                                       &k_16, &l3, &l32, &l21, acc_diff);
158     memcpy(running_avg_y, running_buffer[r], width);
159     memcpy(running_avg_y + avg_y_stride, running_buffer[r] + width, width);
160     // Update pointers for next iteration.
161     sig += (sig_stride << 1);
162     mc_running_avg_y += (mc_avg_y_stride << 1);
163     running_avg_y += (avg_y_stride << 1);
164   }
165 
166   {
167     sum_diff = sum_diff_16x1(acc_diff);
168     sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising);
169     if (abs(sum_diff) > sum_diff_thresh) {
170       // Before returning to copy the block (i.e., apply no denoising),
171       // check if we can still apply some (weaker) temporal filtering to
172       // this block, that would otherwise not be denoised at all. Simplest
173       // is to apply an additional adjustment to running_avg_y to bring it
174       // closer to sig. The adjustment is capped by a maximum delta, and
175       // chosen such that in most cases the resulting sum_diff will be
176       // within the acceptable range given by sum_diff_thresh.
177 
178       // The delta is set by the excess of absolute pixel diff over the
179       // threshold.
180       const int delta =
181           ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1;
182       // Only apply the adjustment for max delta up to 3.
183       if (delta < 4) {
184         const __m128i k_delta = _mm_set1_epi8(delta);
185         running_avg_y -= avg_y_stride * (b_height << 1);
186         for (r = 0; r < b_height; ++r) {
187           acc_diff = vp9_denoiser_adj_16x1_sse2(
188               sig_buffer[r], mc_running_buffer[r], running_buffer[r], k_0,
189               k_delta, acc_diff);
190           memcpy(running_avg_y, running_buffer[r], width);
191           memcpy(running_avg_y + avg_y_stride, running_buffer[r] + width,
192                  width);
193           // Update pointers for next iteration.
194           running_avg_y += (avg_y_stride << 1);
195         }
196         sum_diff = sum_diff_16x1(acc_diff);
197         if (abs(sum_diff) > sum_diff_thresh) {
198           return COPY_BLOCK;
199         }
200       } else {
201         return COPY_BLOCK;
202       }
203     }
204   }
205   return FILTER_BLOCK;
206 }
207 
208 // Denoise 16x16, 16x32, 32x16, 32x32, 32x64, 64x32 and 64x64 blocks.
vp9_denoiser_NxM_sse2_big(const uint8_t * sig,int sig_stride,const uint8_t * mc_running_avg_y,int mc_avg_y_stride,uint8_t * running_avg_y,int avg_y_stride,int increase_denoising,BLOCK_SIZE bs,int motion_magnitude)209 static int vp9_denoiser_NxM_sse2_big(const uint8_t *sig, int sig_stride,
210                                      const uint8_t *mc_running_avg_y,
211                                      int mc_avg_y_stride,
212                                      uint8_t *running_avg_y, int avg_y_stride,
213                                      int increase_denoising, BLOCK_SIZE bs,
214                                      int motion_magnitude) {
215   int sum_diff_thresh, r, c, sum_diff = 0;
216   const int shift_inc =
217       (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
218           ? 1
219           : 0;
220   __m128i acc_diff[4][4];
221   const __m128i k_0 = _mm_setzero_si128();
222   const __m128i k_4 = _mm_set1_epi8(4 + shift_inc);
223   const __m128i k_8 = _mm_set1_epi8(8);
224   const __m128i k_16 = _mm_set1_epi8(16);
225   // Modify each level's adjustment according to motion_magnitude.
226   const __m128i l3 = _mm_set1_epi8(
227       (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 + shift_inc : 6);
228   // Difference between level 3 and level 2 is 2.
229   const __m128i l32 = _mm_set1_epi8(2);
230   // Difference between level 2 and level 1 is 1.
231   const __m128i l21 = _mm_set1_epi8(1);
232   const int b_width = (4 << b_width_log2_lookup[bs]);
233   const int b_height = (4 << b_height_log2_lookup[bs]);
234   const int b_width_shift4 = b_width >> 4;
235 
236   for (r = 0; r < 4; ++r) {
237     for (c = 0; c < b_width_shift4; ++c) {
238       acc_diff[c][r] = _mm_setzero_si128();
239     }
240   }
241 
242   for (r = 0; r < b_height; ++r) {
243     for (c = 0; c < b_width_shift4; ++c) {
244       acc_diff[c][r >> 4] = vp9_denoiser_16x1_sse2(
245           sig, mc_running_avg_y, running_avg_y, &k_0, &k_4, &k_8, &k_16, &l3,
246           &l32, &l21, acc_diff[c][r >> 4]);
247       // Update pointers for next iteration.
248       sig += 16;
249       mc_running_avg_y += 16;
250       running_avg_y += 16;
251     }
252 
253     if ((r & 0xf) == 0xf || (bs == BLOCK_16X8 && r == 7)) {
254       for (c = 0; c < b_width_shift4; ++c) {
255         sum_diff += sum_diff_16x1(acc_diff[c][r >> 4]);
256       }
257     }
258 
259     // Update pointers for next iteration.
260     sig = sig - b_width + sig_stride;
261     mc_running_avg_y = mc_running_avg_y - b_width + mc_avg_y_stride;
262     running_avg_y = running_avg_y - b_width + avg_y_stride;
263   }
264 
265   {
266     sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising);
267     if (abs(sum_diff) > sum_diff_thresh) {
268       const int delta =
269           ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1;
270 
271       // Only apply the adjustment for max delta up to 3.
272       if (delta < 4) {
273         const __m128i k_delta = _mm_set1_epi8(delta);
274         sig -= sig_stride * b_height;
275         mc_running_avg_y -= mc_avg_y_stride * b_height;
276         running_avg_y -= avg_y_stride * b_height;
277         sum_diff = 0;
278         for (r = 0; r < b_height; ++r) {
279           for (c = 0; c < b_width_shift4; ++c) {
280             acc_diff[c][r >> 4] =
281                 vp9_denoiser_adj_16x1_sse2(sig, mc_running_avg_y, running_avg_y,
282                                            k_0, k_delta, acc_diff[c][r >> 4]);
283             // Update pointers for next iteration.
284             sig += 16;
285             mc_running_avg_y += 16;
286             running_avg_y += 16;
287           }
288 
289           if ((r & 0xf) == 0xf || (bs == BLOCK_16X8 && r == 7)) {
290             for (c = 0; c < b_width_shift4; ++c) {
291               sum_diff += sum_diff_16x1(acc_diff[c][r >> 4]);
292             }
293           }
294           sig = sig - b_width + sig_stride;
295           mc_running_avg_y = mc_running_avg_y - b_width + mc_avg_y_stride;
296           running_avg_y = running_avg_y - b_width + avg_y_stride;
297         }
298         if (abs(sum_diff) > sum_diff_thresh) {
299           return COPY_BLOCK;
300         }
301       } else {
302         return COPY_BLOCK;
303       }
304     }
305   }
306   return FILTER_BLOCK;
307 }
308 
vp9_denoiser_filter_sse2(const uint8_t * sig,int sig_stride,const uint8_t * mc_avg,int mc_avg_stride,uint8_t * avg,int avg_stride,int increase_denoising,BLOCK_SIZE bs,int motion_magnitude)309 int vp9_denoiser_filter_sse2(const uint8_t *sig, int sig_stride,
310                              const uint8_t *mc_avg, int mc_avg_stride,
311                              uint8_t *avg, int avg_stride,
312                              int increase_denoising, BLOCK_SIZE bs,
313                              int motion_magnitude) {
314   // Rank by frequency of the block type to have an early termination.
315   if (bs == BLOCK_16X16 || bs == BLOCK_32X32 || bs == BLOCK_64X64 ||
316       bs == BLOCK_16X32 || bs == BLOCK_16X8 || bs == BLOCK_32X16 ||
317       bs == BLOCK_32X64 || bs == BLOCK_64X32) {
318     return vp9_denoiser_NxM_sse2_big(sig, sig_stride, mc_avg, mc_avg_stride,
319                                      avg, avg_stride, increase_denoising, bs,
320                                      motion_magnitude);
321   } else if (bs == BLOCK_8X8 || bs == BLOCK_8X16) {
322     return vp9_denoiser_NxM_sse2_small(sig, sig_stride, mc_avg, mc_avg_stride,
323                                        avg, avg_stride, increase_denoising, bs,
324                                        motion_magnitude, 8);
325   } else {
326     return COPY_BLOCK;
327   }
328 }
329