1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "compiler/glsl_types.h"
25 #include "loop_analysis.h"
26 #include "ir_hierarchical_visitor.h"
27 
28 static void try_add_loop_terminator(loop_variable_state *ls, ir_if *ir);
29 
30 static bool all_expression_operands_are_loop_constant(ir_rvalue *,
31 						      hash_table *);
32 
33 static ir_rvalue *get_basic_induction_increment(ir_assignment *, hash_table *);
34 
35 /**
36  * Find an initializer of a variable outside a loop
37  *
38  * Works backwards from the loop to find the pre-loop value of the variable.
39  * This is used, for example, to find the initial value of loop induction
40  * variables.
41  *
42  * \param loop  Loop where \c var is an induction variable
43  * \param var   Variable whose initializer is to be found
44  *
45  * \return
46  * The \c ir_rvalue assigned to the variable outside the loop.  May return
47  * \c NULL if no initializer can be found.
48  */
49 static ir_rvalue *
find_initial_value(ir_loop * loop,ir_variable * var)50 find_initial_value(ir_loop *loop, ir_variable *var)
51 {
52    for (exec_node *node = loop->prev; !node->is_head_sentinel();
53         node = node->prev) {
54       ir_instruction *ir = (ir_instruction *) node;
55 
56       switch (ir->ir_type) {
57       case ir_type_call:
58       case ir_type_loop:
59       case ir_type_loop_jump:
60       case ir_type_return:
61       case ir_type_if:
62          return NULL;
63 
64       case ir_type_function:
65       case ir_type_function_signature:
66          assert(!"Should not get here.");
67          return NULL;
68 
69       case ir_type_assignment: {
70          ir_assignment *assign = ir->as_assignment();
71          ir_variable *assignee = assign->lhs->whole_variable_referenced();
72 
73          if (assignee == var)
74             return (assign->condition != NULL) ? NULL : assign->rhs;
75 
76          break;
77       }
78 
79       default:
80          break;
81       }
82    }
83 
84    return NULL;
85 }
86 
87 
88 static int
calculate_iterations(ir_rvalue * from,ir_rvalue * to,ir_rvalue * increment,enum ir_expression_operation op,bool continue_from_then,bool swap_compare_operands,bool inc_before_terminator)89 calculate_iterations(ir_rvalue *from, ir_rvalue *to, ir_rvalue *increment,
90                      enum ir_expression_operation op, bool continue_from_then,
91                      bool swap_compare_operands, bool inc_before_terminator)
92 {
93    if (from == NULL || to == NULL || increment == NULL)
94       return -1;
95 
96    void *mem_ctx = ralloc_context(NULL);
97 
98    ir_expression *const sub =
99       new(mem_ctx) ir_expression(ir_binop_sub, from->type, to, from);
100 
101    ir_expression *const div =
102       new(mem_ctx) ir_expression(ir_binop_div, sub->type, sub, increment);
103 
104    ir_constant *iter = div->constant_expression_value(mem_ctx);
105    if (iter == NULL) {
106       ralloc_free(mem_ctx);
107       return -1;
108    }
109 
110    if (!iter->type->is_integer_32()) {
111       const ir_expression_operation op = iter->type->is_double()
112          ? ir_unop_d2i : ir_unop_f2i;
113       ir_rvalue *cast =
114          new(mem_ctx) ir_expression(op, glsl_type::int_type, iter, NULL);
115 
116       iter = cast->constant_expression_value(mem_ctx);
117    }
118 
119    int iter_value = iter->get_int_component(0);
120 
121    /* Code after this block works under assumption that iterator will be
122     * incremented or decremented until it hits the limit,
123     * however the loop condition can be false on the first iteration.
124     * Handle such loops first.
125     */
126    {
127       ir_rvalue *first_value = from;
128       if (inc_before_terminator) {
129          first_value =
130             new(mem_ctx) ir_expression(ir_binop_add, from->type, from, increment);
131       }
132 
133       ir_expression *cmp = swap_compare_operands
134             ? new(mem_ctx) ir_expression(op, glsl_type::bool_type, to, first_value)
135             : new(mem_ctx) ir_expression(op, glsl_type::bool_type, first_value, to);
136       if (continue_from_then)
137          cmp = new(mem_ctx) ir_expression(ir_unop_logic_not, cmp);
138 
139       ir_constant *const cmp_result = cmp->constant_expression_value(mem_ctx);
140       assert(cmp_result != NULL);
141       if (cmp_result->get_bool_component(0)) {
142          ralloc_free(mem_ctx);
143          return 0;
144       }
145    }
146 
147    /* Make sure that the calculated number of iterations satisfies the exit
148     * condition.  This is needed to catch off-by-one errors and some types of
149     * ill-formed loops.  For example, we need to detect that the following
150     * loop does not have a maximum iteration count.
151     *
152     *    for (float x = 0.0; x != 0.9; x += 0.2)
153     *        ;
154     */
155    const int bias[] = { -1, 0, 1 };
156    bool valid_loop = false;
157 
158    for (unsigned i = 0; i < ARRAY_SIZE(bias); i++) {
159       /* Increment may be of type int, uint or float. */
160       switch (increment->type->base_type) {
161       case GLSL_TYPE_INT:
162          iter = new(mem_ctx) ir_constant(iter_value + bias[i]);
163          break;
164       case GLSL_TYPE_UINT:
165          iter = new(mem_ctx) ir_constant(unsigned(iter_value + bias[i]));
166          break;
167       case GLSL_TYPE_FLOAT:
168          iter = new(mem_ctx) ir_constant(float(iter_value + bias[i]));
169          break;
170       case GLSL_TYPE_DOUBLE:
171          iter = new(mem_ctx) ir_constant(double(iter_value + bias[i]));
172          break;
173       default:
174           unreachable("Unsupported type for loop iterator.");
175       }
176 
177       ir_expression *const mul =
178          new(mem_ctx) ir_expression(ir_binop_mul, increment->type, iter,
179                                     increment);
180 
181       ir_expression *const add =
182          new(mem_ctx) ir_expression(ir_binop_add, mul->type, mul, from);
183 
184       ir_expression *cmp = swap_compare_operands
185          ? new(mem_ctx) ir_expression(op, glsl_type::bool_type, to, add)
186          : new(mem_ctx) ir_expression(op, glsl_type::bool_type, add, to);
187       if (continue_from_then)
188          cmp = new(mem_ctx) ir_expression(ir_unop_logic_not, cmp);
189 
190       ir_constant *const cmp_result = cmp->constant_expression_value(mem_ctx);
191 
192       assert(cmp_result != NULL);
193       if (cmp_result->get_bool_component(0)) {
194          iter_value += bias[i];
195          valid_loop = true;
196          break;
197       }
198    }
199 
200    ralloc_free(mem_ctx);
201 
202    if (inc_before_terminator) {
203       iter_value--;
204    }
205 
206    return (valid_loop) ? iter_value : -1;
207 }
208 
209 static bool
incremented_before_terminator(ir_loop * loop,ir_variable * var,ir_if * terminator)210 incremented_before_terminator(ir_loop *loop, ir_variable *var,
211                               ir_if *terminator)
212 {
213    for (exec_node *node = loop->body_instructions.get_head();
214         !node->is_tail_sentinel();
215         node = node->get_next()) {
216       ir_instruction *ir = (ir_instruction *) node;
217 
218       switch (ir->ir_type) {
219       case ir_type_if:
220          if (ir->as_if() == terminator)
221             return false;
222          break;
223 
224       case ir_type_assignment: {
225          ir_assignment *assign = ir->as_assignment();
226          ir_variable *assignee = assign->lhs->whole_variable_referenced();
227 
228          if (assignee == var) {
229             assert(assign->condition == NULL);
230             return true;
231          }
232 
233          break;
234       }
235 
236       default:
237          break;
238       }
239    }
240 
241    unreachable("Unable to find induction variable");
242 }
243 
244 /**
245  * Record the fact that the given loop variable was referenced inside the loop.
246  *
247  * \arg in_assignee is true if the reference was on the LHS of an assignment.
248  *
249  * \arg in_conditional_code_or_nested_loop is true if the reference occurred
250  * inside an if statement or a nested loop.
251  *
252  * \arg current_assignment is the ir_assignment node that the loop variable is
253  * on the LHS of, if any (ignored if \c in_assignee is false).
254  */
255 void
record_reference(bool in_assignee,bool in_conditional_code_or_nested_loop,ir_assignment * current_assignment)256 loop_variable::record_reference(bool in_assignee,
257                                 bool in_conditional_code_or_nested_loop,
258                                 ir_assignment *current_assignment)
259 {
260    if (in_assignee) {
261       assert(current_assignment != NULL);
262 
263       if (in_conditional_code_or_nested_loop ||
264           current_assignment->condition != NULL) {
265          this->conditional_or_nested_assignment = true;
266       }
267 
268       if (this->first_assignment == NULL) {
269          assert(this->num_assignments == 0);
270 
271          this->first_assignment = current_assignment;
272       }
273 
274       this->num_assignments++;
275    } else if (this->first_assignment == current_assignment) {
276       /* This catches the case where the variable is used in the RHS of an
277        * assignment where it is also in the LHS.
278        */
279       this->read_before_write = true;
280    }
281 }
282 
283 
loop_state()284 loop_state::loop_state()
285 {
286    this->ht = _mesa_pointer_hash_table_create(NULL);
287    this->mem_ctx = ralloc_context(NULL);
288    this->loop_found = false;
289 }
290 
291 
~loop_state()292 loop_state::~loop_state()
293 {
294    _mesa_hash_table_destroy(this->ht, NULL);
295    ralloc_free(this->mem_ctx);
296 }
297 
298 
299 loop_variable_state *
insert(ir_loop * ir)300 loop_state::insert(ir_loop *ir)
301 {
302    loop_variable_state *ls = new(this->mem_ctx) loop_variable_state;
303 
304    _mesa_hash_table_insert(this->ht, ir, ls);
305    this->loop_found = true;
306 
307    return ls;
308 }
309 
310 
311 loop_variable_state *
get(const ir_loop * ir)312 loop_state::get(const ir_loop *ir)
313 {
314    hash_entry *entry = _mesa_hash_table_search(this->ht, ir);
315    return entry ? (loop_variable_state *) entry->data : NULL;
316 }
317 
318 
319 loop_variable *
get(const ir_variable * ir)320 loop_variable_state::get(const ir_variable *ir)
321 {
322    if (ir == NULL)
323       return NULL;
324 
325    hash_entry *entry = _mesa_hash_table_search(this->var_hash, ir);
326    return entry ? (loop_variable *) entry->data : NULL;
327 }
328 
329 
330 loop_variable *
insert(ir_variable * var)331 loop_variable_state::insert(ir_variable *var)
332 {
333    void *mem_ctx = ralloc_parent(this);
334    loop_variable *lv = rzalloc(mem_ctx, loop_variable);
335 
336    lv->var = var;
337 
338    _mesa_hash_table_insert(this->var_hash, lv->var, lv);
339    this->variables.push_tail(lv);
340 
341    return lv;
342 }
343 
344 
345 loop_terminator *
insert(ir_if * if_stmt,bool continue_from_then)346 loop_variable_state::insert(ir_if *if_stmt, bool continue_from_then)
347 {
348    void *mem_ctx = ralloc_parent(this);
349    loop_terminator *t = new(mem_ctx) loop_terminator();
350 
351    t->ir = if_stmt;
352    t->continue_from_then = continue_from_then;
353 
354    this->terminators.push_tail(t);
355 
356    return t;
357 }
358 
359 
360 /**
361  * If the given variable already is recorded in the state for this loop,
362  * return the corresponding loop_variable object that records information
363  * about it.
364  *
365  * Otherwise, create a new loop_variable object to record information about
366  * the variable, and set its \c read_before_write field appropriately based on
367  * \c in_assignee.
368  *
369  * \arg in_assignee is true if this variable was encountered on the LHS of an
370  * assignment.
371  */
372 loop_variable *
get_or_insert(ir_variable * var,bool in_assignee)373 loop_variable_state::get_or_insert(ir_variable *var, bool in_assignee)
374 {
375    loop_variable *lv = this->get(var);
376 
377    if (lv == NULL) {
378       lv = this->insert(var);
379       lv->read_before_write = !in_assignee;
380    }
381 
382    return lv;
383 }
384 
385 
386 namespace {
387 
388 class loop_analysis : public ir_hierarchical_visitor {
389 public:
390    loop_analysis(loop_state *loops);
391 
392    virtual ir_visitor_status visit(ir_loop_jump *);
393    virtual ir_visitor_status visit(ir_dereference_variable *);
394 
395    virtual ir_visitor_status visit_enter(ir_call *);
396 
397    virtual ir_visitor_status visit_enter(ir_loop *);
398    virtual ir_visitor_status visit_leave(ir_loop *);
399    virtual ir_visitor_status visit_enter(ir_assignment *);
400    virtual ir_visitor_status visit_leave(ir_assignment *);
401    virtual ir_visitor_status visit_enter(ir_if *);
402    virtual ir_visitor_status visit_leave(ir_if *);
403 
404    loop_state *loops;
405 
406    int if_statement_depth;
407 
408    ir_assignment *current_assignment;
409 
410    exec_list state;
411 };
412 
413 } /* anonymous namespace */
414 
loop_analysis(loop_state * loops)415 loop_analysis::loop_analysis(loop_state *loops)
416    : loops(loops), if_statement_depth(0), current_assignment(NULL)
417 {
418    /* empty */
419 }
420 
421 
422 ir_visitor_status
visit(ir_loop_jump * ir)423 loop_analysis::visit(ir_loop_jump *ir)
424 {
425    (void) ir;
426 
427    assert(!this->state.is_empty());
428 
429    loop_variable_state *const ls =
430       (loop_variable_state *) this->state.get_head();
431 
432    ls->num_loop_jumps++;
433 
434    return visit_continue;
435 }
436 
437 
438 ir_visitor_status
visit_enter(ir_call *)439 loop_analysis::visit_enter(ir_call *)
440 {
441    /* Mark every loop that we're currently analyzing as containing an ir_call
442     * (even those at outer nesting levels).
443     */
444    foreach_in_list(loop_variable_state, ls, &this->state) {
445       ls->contains_calls = true;
446    }
447 
448    return visit_continue_with_parent;
449 }
450 
451 
452 ir_visitor_status
visit(ir_dereference_variable * ir)453 loop_analysis::visit(ir_dereference_variable *ir)
454 {
455    /* If we're not somewhere inside a loop, there's nothing to do.
456     */
457    if (this->state.is_empty())
458       return visit_continue;
459 
460    bool nested = false;
461 
462    foreach_in_list(loop_variable_state, ls, &this->state) {
463       ir_variable *var = ir->variable_referenced();
464       loop_variable *lv = ls->get_or_insert(var, this->in_assignee);
465 
466       lv->record_reference(this->in_assignee,
467                            nested || this->if_statement_depth > 0,
468                            this->current_assignment);
469       nested = true;
470    }
471 
472    return visit_continue;
473 }
474 
475 ir_visitor_status
visit_enter(ir_loop * ir)476 loop_analysis::visit_enter(ir_loop *ir)
477 {
478    loop_variable_state *ls = this->loops->insert(ir);
479    this->state.push_head(ls);
480 
481    return visit_continue;
482 }
483 
484 ir_visitor_status
visit_leave(ir_loop * ir)485 loop_analysis::visit_leave(ir_loop *ir)
486 {
487    loop_variable_state *const ls =
488       (loop_variable_state *) this->state.pop_head();
489 
490    /* Function calls may contain side effects.  These could alter any of our
491     * variables in ways that cannot be known, and may even terminate shader
492     * execution (say, calling discard in the fragment shader).  So we can't
493     * rely on any of our analysis about assignments to variables.
494     *
495     * We could perform some conservative analysis (prove there's no statically
496     * possible assignment, etc.) but it isn't worth it for now; function
497     * inlining will allow us to unroll loops anyway.
498     */
499    if (ls->contains_calls)
500       return visit_continue;
501 
502    foreach_in_list(ir_instruction, node, &ir->body_instructions) {
503       /* Skip over declarations at the start of a loop.
504        */
505       if (node->as_variable())
506 	 continue;
507 
508       ir_if *if_stmt = ((ir_instruction *) node)->as_if();
509 
510       if (if_stmt != NULL)
511          try_add_loop_terminator(ls, if_stmt);
512    }
513 
514 
515    foreach_in_list_safe(loop_variable, lv, &ls->variables) {
516       /* Move variables that are already marked as being loop constant to
517        * a separate list.  These trivially don't need to be tested.
518        */
519       if (lv->is_loop_constant()) {
520 	 lv->remove();
521 	 ls->constants.push_tail(lv);
522       }
523    }
524 
525    /* Each variable assigned in the loop that isn't already marked as being loop
526     * constant might still be loop constant.  The requirements at this point
527     * are:
528     *
529     *    - Variable is written before it is read.
530     *
531     *    - Only one assignment to the variable.
532     *
533     *    - All operands on the RHS of the assignment are also loop constants.
534     *
535     * The last requirement is the reason for the progress loop.  A variable
536     * marked as a loop constant on one pass may allow other variables to be
537     * marked as loop constant on following passes.
538     */
539    bool progress;
540    do {
541       progress = false;
542 
543       foreach_in_list_safe(loop_variable, lv, &ls->variables) {
544 	 if (lv->conditional_or_nested_assignment || (lv->num_assignments > 1))
545 	    continue;
546 
547 	 /* Process the RHS of the assignment.  If all of the variables
548 	  * accessed there are loop constants, then add this
549 	  */
550 	 ir_rvalue *const rhs = lv->first_assignment->rhs;
551 	 if (all_expression_operands_are_loop_constant(rhs, ls->var_hash)) {
552 	    lv->rhs_clean = true;
553 
554 	    if (lv->is_loop_constant()) {
555 	       progress = true;
556 
557 	       lv->remove();
558 	       ls->constants.push_tail(lv);
559 	    }
560 	 }
561       }
562    } while (progress);
563 
564    /* The remaining variables that are not loop invariant might be loop
565     * induction variables.
566     */
567    foreach_in_list_safe(loop_variable, lv, &ls->variables) {
568       /* If there is more than one assignment to a variable, it cannot be a
569        * loop induction variable.  This isn't strictly true, but this is a
570        * very simple induction variable detector, and it can't handle more
571        * complex cases.
572        */
573       if (lv->num_assignments > 1)
574 	 continue;
575 
576       /* All of the variables with zero assignments in the loop are loop
577        * invariant, and they should have already been filtered out.
578        */
579       assert(lv->num_assignments == 1);
580       assert(lv->first_assignment != NULL);
581 
582       /* The assignment to the variable in the loop must be unconditional and
583        * not inside a nested loop.
584        */
585       if (lv->conditional_or_nested_assignment)
586 	 continue;
587 
588       /* Basic loop induction variables have a single assignment in the loop
589        * that has the form 'VAR = VAR + i' or 'VAR = VAR - i' where i is a
590        * loop invariant.
591        */
592       ir_rvalue *const inc =
593 	 get_basic_induction_increment(lv->first_assignment, ls->var_hash);
594       if (inc != NULL) {
595 	 lv->increment = inc;
596 
597 	 lv->remove();
598 	 ls->induction_variables.push_tail(lv);
599       }
600    }
601 
602    /* Search the loop terminating conditions for those of the form 'i < c'
603     * where i is a loop induction variable, c is a constant, and < is any
604     * relative operator.  From each of these we can infer an iteration count.
605     * Also figure out which terminator (if any) produces the smallest
606     * iteration count--this is the limiting terminator.
607     */
608    foreach_in_list(loop_terminator, t, &ls->terminators) {
609       ir_if *if_stmt = t->ir;
610 
611       /* If-statements can be either 'if (expr)' or 'if (deref)'.  We only care
612        * about the former here.
613        */
614       ir_expression *cond = if_stmt->condition->as_expression();
615       if (cond == NULL)
616 	 continue;
617 
618       switch (cond->operation) {
619       case ir_binop_less:
620       case ir_binop_gequal: {
621 	 /* The expressions that we care about will either be of the form
622 	  * 'counter < limit' or 'limit < counter'.  Figure out which is
623 	  * which.
624 	  */
625 	 ir_rvalue *counter = cond->operands[0]->as_dereference_variable();
626 	 ir_constant *limit = cond->operands[1]->as_constant();
627 	 enum ir_expression_operation cmp = cond->operation;
628          bool swap_compare_operands = false;
629 
630 	 if (limit == NULL) {
631 	    counter = cond->operands[1]->as_dereference_variable();
632 	    limit = cond->operands[0]->as_constant();
633             swap_compare_operands = true;
634 	 }
635 
636 	 if ((counter == NULL) || (limit == NULL))
637 	    break;
638 
639 	 ir_variable *var = counter->variable_referenced();
640 
641 	 ir_rvalue *init = find_initial_value(ir, var);
642 
643          loop_variable *lv = ls->get(var);
644          if (lv != NULL && lv->is_induction_var()) {
645             bool inc_before_terminator =
646                incremented_before_terminator(ir, var, t->ir);
647 
648             t->iterations = calculate_iterations(init, limit, lv->increment,
649                                                  cmp, t->continue_from_then,
650                                                  swap_compare_operands,
651                                                  inc_before_terminator);
652 
653             if (t->iterations >= 0 &&
654                 (ls->limiting_terminator == NULL ||
655                  t->iterations < ls->limiting_terminator->iterations)) {
656                ls->limiting_terminator = t;
657             }
658          }
659          break;
660       }
661 
662       default:
663          break;
664       }
665    }
666 
667    return visit_continue;
668 }
669 
670 ir_visitor_status
visit_enter(ir_if * ir)671 loop_analysis::visit_enter(ir_if *ir)
672 {
673    (void) ir;
674 
675    if (!this->state.is_empty())
676       this->if_statement_depth++;
677 
678    return visit_continue;
679 }
680 
681 ir_visitor_status
visit_leave(ir_if * ir)682 loop_analysis::visit_leave(ir_if *ir)
683 {
684    (void) ir;
685 
686    if (!this->state.is_empty())
687       this->if_statement_depth--;
688 
689    return visit_continue;
690 }
691 
692 ir_visitor_status
visit_enter(ir_assignment * ir)693 loop_analysis::visit_enter(ir_assignment *ir)
694 {
695    /* If we're not somewhere inside a loop, there's nothing to do.
696     */
697    if (this->state.is_empty())
698       return visit_continue_with_parent;
699 
700    this->current_assignment = ir;
701 
702    return visit_continue;
703 }
704 
705 ir_visitor_status
visit_leave(ir_assignment * ir)706 loop_analysis::visit_leave(ir_assignment *ir)
707 {
708    /* Since the visit_enter exits with visit_continue_with_parent for this
709     * case, the loop state stack should never be empty here.
710     */
711    assert(!this->state.is_empty());
712 
713    assert(this->current_assignment == ir);
714    this->current_assignment = NULL;
715 
716    return visit_continue;
717 }
718 
719 
720 class examine_rhs : public ir_hierarchical_visitor {
721 public:
examine_rhs(hash_table * loop_variables)722    examine_rhs(hash_table *loop_variables)
723    {
724       this->only_uses_loop_constants = true;
725       this->loop_variables = loop_variables;
726    }
727 
visit(ir_dereference_variable * ir)728    virtual ir_visitor_status visit(ir_dereference_variable *ir)
729    {
730       hash_entry *entry = _mesa_hash_table_search(this->loop_variables,
731                                                   ir->var);
732       loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;
733 
734       assert(lv != NULL);
735 
736       if (lv->is_loop_constant()) {
737 	 return visit_continue;
738       } else {
739 	 this->only_uses_loop_constants = false;
740 	 return visit_stop;
741       }
742    }
743 
744    hash_table *loop_variables;
745    bool only_uses_loop_constants;
746 };
747 
748 
749 bool
all_expression_operands_are_loop_constant(ir_rvalue * ir,hash_table * variables)750 all_expression_operands_are_loop_constant(ir_rvalue *ir, hash_table *variables)
751 {
752    examine_rhs v(variables);
753 
754    ir->accept(&v);
755 
756    return v.only_uses_loop_constants;
757 }
758 
759 
760 ir_rvalue *
get_basic_induction_increment(ir_assignment * ir,hash_table * var_hash)761 get_basic_induction_increment(ir_assignment *ir, hash_table *var_hash)
762 {
763    /* The RHS must be a binary expression.
764     */
765    ir_expression *const rhs = ir->rhs->as_expression();
766    if ((rhs == NULL)
767        || ((rhs->operation != ir_binop_add)
768 	   && (rhs->operation != ir_binop_sub)))
769       return NULL;
770 
771    /* One of the of operands of the expression must be the variable assigned.
772     * If the operation is subtraction, the variable in question must be the
773     * "left" operand.
774     */
775    ir_variable *const var = ir->lhs->variable_referenced();
776 
777    ir_variable *const op0 = rhs->operands[0]->variable_referenced();
778    ir_variable *const op1 = rhs->operands[1]->variable_referenced();
779 
780    if (((op0 != var) && (op1 != var))
781        || ((op1 == var) && (rhs->operation == ir_binop_sub)))
782       return NULL;
783 
784    ir_rvalue *inc = (op0 == var) ? rhs->operands[1] : rhs->operands[0];
785 
786    if (inc->as_constant() == NULL) {
787       ir_variable *const inc_var = inc->variable_referenced();
788       if (inc_var != NULL) {
789          hash_entry *entry = _mesa_hash_table_search(var_hash, inc_var);
790          loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;
791 
792          if (lv == NULL || !lv->is_loop_constant()) {
793             assert(lv != NULL);
794             inc = NULL;
795          }
796       } else
797 	 inc = NULL;
798    }
799 
800    if ((inc != NULL) && (rhs->operation == ir_binop_sub)) {
801       void *mem_ctx = ralloc_parent(ir);
802 
803       inc = new(mem_ctx) ir_expression(ir_unop_neg,
804 				       inc->type,
805 				       inc->clone(mem_ctx, NULL),
806 				       NULL);
807    }
808 
809    return inc;
810 }
811 
812 
813 /**
814  * Detect whether an if-statement is a loop terminating condition, if so
815  * add it to the list of loop terminators.
816  *
817  * Detects if-statements of the form
818  *
819  *  (if (expression bool ...) (...then_instrs...break))
820  *
821  *     or
822  *
823  *  (if (expression bool ...) ... (...else_instrs...break))
824  */
825 void
try_add_loop_terminator(loop_variable_state * ls,ir_if * ir)826 try_add_loop_terminator(loop_variable_state *ls, ir_if *ir)
827 {
828    ir_instruction *inst = (ir_instruction *) ir->then_instructions.get_tail();
829    ir_instruction *else_inst =
830       (ir_instruction *) ir->else_instructions.get_tail();
831 
832    if (is_break(inst) || is_break(else_inst))
833       ls->insert(ir, is_break(else_inst));
834 }
835 
836 
837 loop_state *
analyze_loop_variables(exec_list * instructions)838 analyze_loop_variables(exec_list *instructions)
839 {
840    loop_state *loops = new loop_state;
841    loop_analysis v(loops);
842 
843    v.run(instructions);
844    return v.loops;
845 }
846