1 //! Parallel iterator types for [slices][std::slice] 2 //! 3 //! You will rarely need to interact with this module directly unless you need 4 //! to name one of the iterator types. 5 //! 6 //! [std::slice]: https://doc.rust-lang.org/stable/std/slice/ 7 8 mod mergesort; 9 mod quicksort; 10 11 mod test; 12 13 use self::mergesort::par_mergesort; 14 use self::quicksort::par_quicksort; 15 use iter::plumbing::*; 16 use iter::*; 17 use split_producer::*; 18 use std::cmp; 19 use std::cmp::Ordering; 20 use std::fmt::{self, Debug}; 21 22 use super::math::div_round_up; 23 24 /// Parallel extensions for slices. 25 pub trait ParallelSlice<T: Sync> { 26 /// Returns a plain slice, which is used to implement the rest of the 27 /// parallel methods. as_parallel_slice(&self) -> &[T]28 fn as_parallel_slice(&self) -> &[T]; 29 30 /// Returns a parallel iterator over subslices separated by elements that 31 /// match the separator. 32 /// 33 /// # Examples 34 /// 35 /// ``` 36 /// use rayon::prelude::*; 37 /// let smallest = [1, 2, 3, 0, 2, 4, 8, 0, 3, 6, 9] 38 /// .par_split(|i| *i == 0) 39 /// .map(|numbers| numbers.iter().min().unwrap()) 40 /// .min(); 41 /// assert_eq!(Some(&1), smallest); 42 /// ``` par_split<P>(&self, separator: P) -> Split<'_, T, P> where P: Fn(&T) -> bool + Sync + Send,43 fn par_split<P>(&self, separator: P) -> Split<'_, T, P> 44 where 45 P: Fn(&T) -> bool + Sync + Send, 46 { 47 Split { 48 slice: self.as_parallel_slice(), 49 separator, 50 } 51 } 52 53 /// Returns a parallel iterator over all contiguous windows of length 54 /// `window_size`. The windows overlap. 55 /// 56 /// # Examples 57 /// 58 /// ``` 59 /// use rayon::prelude::*; 60 /// let windows: Vec<_> = [1, 2, 3].par_windows(2).collect(); 61 /// assert_eq!(vec![[1, 2], [2, 3]], windows); 62 /// ``` par_windows(&self, window_size: usize) -> Windows<'_, T>63 fn par_windows(&self, window_size: usize) -> Windows<'_, T> { 64 Windows { 65 window_size, 66 slice: self.as_parallel_slice(), 67 } 68 } 69 70 /// Returns a parallel iterator over at most `chunk_size` elements of 71 /// `self` at a time. The chunks do not overlap. 72 /// 73 /// If the number of elements in the iterator is not divisible by 74 /// `chunk_size`, the last chunk may be shorter than `chunk_size`. All 75 /// other chunks will have that exact length. 76 /// 77 /// # Examples 78 /// 79 /// ``` 80 /// use rayon::prelude::*; 81 /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_chunks(2).collect(); 82 /// assert_eq!(chunks, vec![&[1, 2][..], &[3, 4], &[5]]); 83 /// ``` par_chunks(&self, chunk_size: usize) -> Chunks<'_, T>84 fn par_chunks(&self, chunk_size: usize) -> Chunks<'_, T> { 85 assert!(chunk_size != 0, "chunk_size must not be zero"); 86 Chunks { 87 chunk_size, 88 slice: self.as_parallel_slice(), 89 } 90 } 91 } 92 93 impl<T: Sync> ParallelSlice<T> for [T] { 94 #[inline] as_parallel_slice(&self) -> &[T]95 fn as_parallel_slice(&self) -> &[T] { 96 self 97 } 98 } 99 100 /// Parallel extensions for mutable slices. 101 pub trait ParallelSliceMut<T: Send> { 102 /// Returns a plain mutable slice, which is used to implement the rest of 103 /// the parallel methods. as_parallel_slice_mut(&mut self) -> &mut [T]104 fn as_parallel_slice_mut(&mut self) -> &mut [T]; 105 106 /// Returns a parallel iterator over mutable subslices separated by 107 /// elements that match the separator. 108 /// 109 /// # Examples 110 /// 111 /// ``` 112 /// use rayon::prelude::*; 113 /// let mut array = [1, 2, 3, 0, 2, 4, 8, 0, 3, 6, 9]; 114 /// array.par_split_mut(|i| *i == 0) 115 /// .for_each(|slice| slice.reverse()); 116 /// assert_eq!(array, [3, 2, 1, 0, 8, 4, 2, 0, 9, 6, 3]); 117 /// ``` par_split_mut<P>(&mut self, separator: P) -> SplitMut<'_, T, P> where P: Fn(&T) -> bool + Sync + Send,118 fn par_split_mut<P>(&mut self, separator: P) -> SplitMut<'_, T, P> 119 where 120 P: Fn(&T) -> bool + Sync + Send, 121 { 122 SplitMut { 123 slice: self.as_parallel_slice_mut(), 124 separator, 125 } 126 } 127 128 /// Returns a parallel iterator over at most `chunk_size` elements of 129 /// `self` at a time. The chunks are mutable and do not overlap. 130 /// 131 /// If the number of elements in the iterator is not divisible by 132 /// `chunk_size`, the last chunk may be shorter than `chunk_size`. All 133 /// other chunks will have that exact length. 134 /// 135 /// # Examples 136 /// 137 /// ``` 138 /// use rayon::prelude::*; 139 /// let mut array = [1, 2, 3, 4, 5]; 140 /// array.par_chunks_mut(2) 141 /// .for_each(|slice| slice.reverse()); 142 /// assert_eq!(array, [2, 1, 4, 3, 5]); 143 /// ``` par_chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T>144 fn par_chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> { 145 assert!(chunk_size != 0, "chunk_size must not be zero"); 146 ChunksMut { 147 chunk_size, 148 slice: self.as_parallel_slice_mut(), 149 } 150 } 151 152 /// Sorts the slice in parallel. 153 /// 154 /// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case. 155 /// 156 /// When applicable, unstable sorting is preferred because it is generally faster than stable 157 /// sorting and it doesn't allocate auxiliary memory. 158 /// See [`par_sort_unstable`](#method.par_sort_unstable). 159 /// 160 /// # Current implementation 161 /// 162 /// The current algorithm is an adaptive merge sort inspired by 163 /// [timsort](https://en.wikipedia.org/wiki/Timsort). 164 /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of 165 /// two or more sorted sequences concatenated one after another. 166 /// 167 /// Also, it allocates temporary storage the same size as `self`, but for very short slices a 168 /// non-allocating insertion sort is used instead. 169 /// 170 /// In order to sort the slice in parallel, the slice is first divided into smaller chunks and 171 /// all chunks are sorted in parallel. Then, adjacent chunks that together form non-descending 172 /// or descending runs are concatenated. Finally, the remaining chunks are merged together using 173 /// parallel subdivision of chunks and parallel merge operation. 174 /// 175 /// # Examples 176 /// 177 /// ``` 178 /// use rayon::prelude::*; 179 /// 180 /// let mut v = [-5, 4, 1, -3, 2]; 181 /// 182 /// v.par_sort(); 183 /// assert_eq!(v, [-5, -3, 1, 2, 4]); 184 /// ``` par_sort(&mut self) where T: Ord,185 fn par_sort(&mut self) 186 where 187 T: Ord, 188 { 189 par_mergesort(self.as_parallel_slice_mut(), T::lt); 190 } 191 192 /// Sorts the slice in parallel with a comparator function. 193 /// 194 /// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case. 195 /// 196 /// When applicable, unstable sorting is preferred because it is generally faster than stable 197 /// sorting and it doesn't allocate auxiliary memory. 198 /// See [`par_sort_unstable_by`](#method.par_sort_unstable_by). 199 /// 200 /// # Current implementation 201 /// 202 /// The current algorithm is an adaptive merge sort inspired by 203 /// [timsort](https://en.wikipedia.org/wiki/Timsort). 204 /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of 205 /// two or more sorted sequences concatenated one after another. 206 /// 207 /// Also, it allocates temporary storage the same size as `self`, but for very short slices a 208 /// non-allocating insertion sort is used instead. 209 /// 210 /// In order to sort the slice in parallel, the slice is first divided into smaller chunks and 211 /// all chunks are sorted in parallel. Then, adjacent chunks that together form non-descending 212 /// or descending runs are concatenated. Finally, the remaining chunks are merged together using 213 /// parallel subdivision of chunks and parallel merge operation. 214 /// 215 /// # Examples 216 /// 217 /// ``` 218 /// use rayon::prelude::*; 219 /// 220 /// let mut v = [5, 4, 1, 3, 2]; 221 /// v.par_sort_by(|a, b| a.cmp(b)); 222 /// assert_eq!(v, [1, 2, 3, 4, 5]); 223 /// 224 /// // reverse sorting 225 /// v.par_sort_by(|a, b| b.cmp(a)); 226 /// assert_eq!(v, [5, 4, 3, 2, 1]); 227 /// ``` par_sort_by<F>(&mut self, compare: F) where F: Fn(&T, &T) -> Ordering + Sync,228 fn par_sort_by<F>(&mut self, compare: F) 229 where 230 F: Fn(&T, &T) -> Ordering + Sync, 231 { 232 par_mergesort(self.as_parallel_slice_mut(), |a, b| { 233 compare(a, b) == Ordering::Less 234 }); 235 } 236 237 /// Sorts the slice in parallel with a key extraction function. 238 /// 239 /// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case. 240 /// 241 /// When applicable, unstable sorting is preferred because it is generally faster than stable 242 /// sorting and it doesn't allocate auxiliary memory. 243 /// See [`par_sort_unstable_by_key`](#method.par_sort_unstable_by_key). 244 /// 245 /// # Current implementation 246 /// 247 /// The current algorithm is an adaptive merge sort inspired by 248 /// [timsort](https://en.wikipedia.org/wiki/Timsort). 249 /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of 250 /// two or more sorted sequences concatenated one after another. 251 /// 252 /// Also, it allocates temporary storage the same size as `self`, but for very short slices a 253 /// non-allocating insertion sort is used instead. 254 /// 255 /// In order to sort the slice in parallel, the slice is first divided into smaller chunks and 256 /// all chunks are sorted in parallel. Then, adjacent chunks that together form non-descending 257 /// or descending runs are concatenated. Finally, the remaining chunks are merged together using 258 /// parallel subdivision of chunks and parallel merge operation. 259 /// 260 /// # Examples 261 /// 262 /// ``` 263 /// use rayon::prelude::*; 264 /// 265 /// let mut v = [-5i32, 4, 1, -3, 2]; 266 /// 267 /// v.par_sort_by_key(|k| k.abs()); 268 /// assert_eq!(v, [1, 2, -3, 4, -5]); 269 /// ``` par_sort_by_key<B, F>(&mut self, f: F) where B: Ord, F: Fn(&T) -> B + Sync,270 fn par_sort_by_key<B, F>(&mut self, f: F) 271 where 272 B: Ord, 273 F: Fn(&T) -> B + Sync, 274 { 275 par_mergesort(self.as_parallel_slice_mut(), |a, b| f(a).lt(&f(b))); 276 } 277 278 /// Sorts the slice in parallel, but may not preserve the order of equal elements. 279 /// 280 /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), 281 /// and `O(n log n)` worst-case. 282 /// 283 /// # Current implementation 284 /// 285 /// The current algorithm is based on Orson Peters' [pattern-defeating quicksort][pdqsort], 286 /// which is a quicksort variant designed to be very fast on certain kinds of patterns, 287 /// sometimes achieving linear time. It is randomized but deterministic, and falls back to 288 /// heapsort on degenerate inputs. 289 /// 290 /// It is generally faster than stable sorting, except in a few special cases, e.g. when the 291 /// slice consists of several concatenated sorted sequences. 292 /// 293 /// All quicksorts work in two stages: partitioning into two halves followed by recursive 294 /// calls. The partitioning phase is sequential, but the two recursive calls are performed in 295 /// parallel. 296 /// 297 /// [pdqsort]: https://github.com/orlp/pdqsort 298 /// 299 /// # Examples 300 /// 301 /// ``` 302 /// use rayon::prelude::*; 303 /// 304 /// let mut v = [-5, 4, 1, -3, 2]; 305 /// 306 /// v.par_sort_unstable(); 307 /// assert_eq!(v, [-5, -3, 1, 2, 4]); 308 /// ``` par_sort_unstable(&mut self) where T: Ord,309 fn par_sort_unstable(&mut self) 310 where 311 T: Ord, 312 { 313 par_quicksort(self.as_parallel_slice_mut(), T::lt); 314 } 315 316 /// Sorts the slice in parallel with a comparator function, but may not preserve the order of 317 /// equal elements. 318 /// 319 /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), 320 /// and `O(n log n)` worst-case. 321 /// 322 /// # Current implementation 323 /// 324 /// The current algorithm is based on Orson Peters' [pattern-defeating quicksort][pdqsort], 325 /// which is a quicksort variant designed to be very fast on certain kinds of patterns, 326 /// sometimes achieving linear time. It is randomized but deterministic, and falls back to 327 /// heapsort on degenerate inputs. 328 /// 329 /// It is generally faster than stable sorting, except in a few special cases, e.g. when the 330 /// slice consists of several concatenated sorted sequences. 331 /// 332 /// All quicksorts work in two stages: partitioning into two halves followed by recursive 333 /// calls. The partitioning phase is sequential, but the two recursive calls are performed in 334 /// parallel. 335 /// 336 /// [pdqsort]: https://github.com/orlp/pdqsort 337 /// 338 /// # Examples 339 /// 340 /// ``` 341 /// use rayon::prelude::*; 342 /// 343 /// let mut v = [5, 4, 1, 3, 2]; 344 /// v.par_sort_unstable_by(|a, b| a.cmp(b)); 345 /// assert_eq!(v, [1, 2, 3, 4, 5]); 346 /// 347 /// // reverse sorting 348 /// v.par_sort_unstable_by(|a, b| b.cmp(a)); 349 /// assert_eq!(v, [5, 4, 3, 2, 1]); 350 /// ``` par_sort_unstable_by<F>(&mut self, compare: F) where F: Fn(&T, &T) -> Ordering + Sync,351 fn par_sort_unstable_by<F>(&mut self, compare: F) 352 where 353 F: Fn(&T, &T) -> Ordering + Sync, 354 { 355 par_quicksort(self.as_parallel_slice_mut(), |a, b| { 356 compare(a, b) == Ordering::Less 357 }); 358 } 359 360 /// Sorts the slice in parallel with a key extraction function, but may not preserve the order 361 /// of equal elements. 362 /// 363 /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), 364 /// and `O(n log n)` worst-case. 365 /// 366 /// # Current implementation 367 /// 368 /// The current algorithm is based on Orson Peters' [pattern-defeating quicksort][pdqsort], 369 /// which is a quicksort variant designed to be very fast on certain kinds of patterns, 370 /// sometimes achieving linear time. It is randomized but deterministic, and falls back to 371 /// heapsort on degenerate inputs. 372 /// 373 /// It is generally faster than stable sorting, except in a few special cases, e.g. when the 374 /// slice consists of several concatenated sorted sequences. 375 /// 376 /// All quicksorts work in two stages: partitioning into two halves followed by recursive 377 /// calls. The partitioning phase is sequential, but the two recursive calls are performed in 378 /// parallel. 379 /// 380 /// [pdqsort]: https://github.com/orlp/pdqsort 381 /// 382 /// # Examples 383 /// 384 /// ``` 385 /// use rayon::prelude::*; 386 /// 387 /// let mut v = [-5i32, 4, 1, -3, 2]; 388 /// 389 /// v.par_sort_unstable_by_key(|k| k.abs()); 390 /// assert_eq!(v, [1, 2, -3, 4, -5]); 391 /// ``` par_sort_unstable_by_key<B, F>(&mut self, f: F) where B: Ord, F: Fn(&T) -> B + Sync,392 fn par_sort_unstable_by_key<B, F>(&mut self, f: F) 393 where 394 B: Ord, 395 F: Fn(&T) -> B + Sync, 396 { 397 par_quicksort(self.as_parallel_slice_mut(), |a, b| f(a).lt(&f(b))); 398 } 399 } 400 401 impl<T: Send> ParallelSliceMut<T> for [T] { 402 #[inline] as_parallel_slice_mut(&mut self) -> &mut [T]403 fn as_parallel_slice_mut(&mut self) -> &mut [T] { 404 self 405 } 406 } 407 408 impl<'data, T: Sync + 'data> IntoParallelIterator for &'data [T] { 409 type Item = &'data T; 410 type Iter = Iter<'data, T>; 411 into_par_iter(self) -> Self::Iter412 fn into_par_iter(self) -> Self::Iter { 413 Iter { slice: self } 414 } 415 } 416 417 impl<'data, T: Sync + 'data> IntoParallelIterator for &'data Vec<T> { 418 type Item = &'data T; 419 type Iter = Iter<'data, T>; 420 into_par_iter(self) -> Self::Iter421 fn into_par_iter(self) -> Self::Iter { 422 Iter { slice: self } 423 } 424 } 425 426 impl<'data, T: Send + 'data> IntoParallelIterator for &'data mut [T] { 427 type Item = &'data mut T; 428 type Iter = IterMut<'data, T>; 429 into_par_iter(self) -> Self::Iter430 fn into_par_iter(self) -> Self::Iter { 431 IterMut { slice: self } 432 } 433 } 434 435 impl<'data, T: Send + 'data> IntoParallelIterator for &'data mut Vec<T> { 436 type Item = &'data mut T; 437 type Iter = IterMut<'data, T>; 438 into_par_iter(self) -> Self::Iter439 fn into_par_iter(self) -> Self::Iter { 440 IterMut { slice: self } 441 } 442 } 443 444 /// Parallel iterator over immutable items in a slice 445 #[derive(Debug)] 446 pub struct Iter<'data, T: 'data + Sync> { 447 slice: &'data [T], 448 } 449 450 impl<'data, T: Sync> Clone for Iter<'data, T> { clone(&self) -> Self451 fn clone(&self) -> Self { 452 Iter { ..*self } 453 } 454 } 455 456 impl<'data, T: Sync + 'data> ParallelIterator for Iter<'data, T> { 457 type Item = &'data T; 458 drive_unindexed<C>(self, consumer: C) -> C::Result where C: UnindexedConsumer<Self::Item>,459 fn drive_unindexed<C>(self, consumer: C) -> C::Result 460 where 461 C: UnindexedConsumer<Self::Item>, 462 { 463 bridge(self, consumer) 464 } 465 opt_len(&self) -> Option<usize>466 fn opt_len(&self) -> Option<usize> { 467 Some(self.len()) 468 } 469 } 470 471 impl<'data, T: Sync + 'data> IndexedParallelIterator for Iter<'data, T> { drive<C>(self, consumer: C) -> C::Result where C: Consumer<Self::Item>,472 fn drive<C>(self, consumer: C) -> C::Result 473 where 474 C: Consumer<Self::Item>, 475 { 476 bridge(self, consumer) 477 } 478 len(&self) -> usize479 fn len(&self) -> usize { 480 self.slice.len() 481 } 482 with_producer<CB>(self, callback: CB) -> CB::Output where CB: ProducerCallback<Self::Item>,483 fn with_producer<CB>(self, callback: CB) -> CB::Output 484 where 485 CB: ProducerCallback<Self::Item>, 486 { 487 callback.callback(IterProducer { slice: self.slice }) 488 } 489 } 490 491 struct IterProducer<'data, T: 'data + Sync> { 492 slice: &'data [T], 493 } 494 495 impl<'data, T: 'data + Sync> Producer for IterProducer<'data, T> { 496 type Item = &'data T; 497 type IntoIter = ::std::slice::Iter<'data, T>; 498 into_iter(self) -> Self::IntoIter499 fn into_iter(self) -> Self::IntoIter { 500 self.slice.iter() 501 } 502 split_at(self, index: usize) -> (Self, Self)503 fn split_at(self, index: usize) -> (Self, Self) { 504 let (left, right) = self.slice.split_at(index); 505 (IterProducer { slice: left }, IterProducer { slice: right }) 506 } 507 } 508 509 /// Parallel iterator over immutable non-overlapping chunks of a slice 510 #[derive(Debug)] 511 pub struct Chunks<'data, T: 'data + Sync> { 512 chunk_size: usize, 513 slice: &'data [T], 514 } 515 516 impl<'data, T: Sync> Clone for Chunks<'data, T> { clone(&self) -> Self517 fn clone(&self) -> Self { 518 Chunks { ..*self } 519 } 520 } 521 522 impl<'data, T: Sync + 'data> ParallelIterator for Chunks<'data, T> { 523 type Item = &'data [T]; 524 drive_unindexed<C>(self, consumer: C) -> C::Result where C: UnindexedConsumer<Self::Item>,525 fn drive_unindexed<C>(self, consumer: C) -> C::Result 526 where 527 C: UnindexedConsumer<Self::Item>, 528 { 529 bridge(self, consumer) 530 } 531 opt_len(&self) -> Option<usize>532 fn opt_len(&self) -> Option<usize> { 533 Some(self.len()) 534 } 535 } 536 537 impl<'data, T: Sync + 'data> IndexedParallelIterator for Chunks<'data, T> { drive<C>(self, consumer: C) -> C::Result where C: Consumer<Self::Item>,538 fn drive<C>(self, consumer: C) -> C::Result 539 where 540 C: Consumer<Self::Item>, 541 { 542 bridge(self, consumer) 543 } 544 len(&self) -> usize545 fn len(&self) -> usize { 546 div_round_up(self.slice.len(), self.chunk_size) 547 } 548 with_producer<CB>(self, callback: CB) -> CB::Output where CB: ProducerCallback<Self::Item>,549 fn with_producer<CB>(self, callback: CB) -> CB::Output 550 where 551 CB: ProducerCallback<Self::Item>, 552 { 553 callback.callback(ChunksProducer { 554 chunk_size: self.chunk_size, 555 slice: self.slice, 556 }) 557 } 558 } 559 560 struct ChunksProducer<'data, T: 'data + Sync> { 561 chunk_size: usize, 562 slice: &'data [T], 563 } 564 565 impl<'data, T: 'data + Sync> Producer for ChunksProducer<'data, T> { 566 type Item = &'data [T]; 567 type IntoIter = ::std::slice::Chunks<'data, T>; 568 into_iter(self) -> Self::IntoIter569 fn into_iter(self) -> Self::IntoIter { 570 self.slice.chunks(self.chunk_size) 571 } 572 split_at(self, index: usize) -> (Self, Self)573 fn split_at(self, index: usize) -> (Self, Self) { 574 let elem_index = cmp::min(index * self.chunk_size, self.slice.len()); 575 let (left, right) = self.slice.split_at(elem_index); 576 ( 577 ChunksProducer { 578 chunk_size: self.chunk_size, 579 slice: left, 580 }, 581 ChunksProducer { 582 chunk_size: self.chunk_size, 583 slice: right, 584 }, 585 ) 586 } 587 } 588 589 /// Parallel iterator over immutable overlapping windows of a slice 590 #[derive(Debug)] 591 pub struct Windows<'data, T: 'data + Sync> { 592 window_size: usize, 593 slice: &'data [T], 594 } 595 596 impl<'data, T: Sync> Clone for Windows<'data, T> { clone(&self) -> Self597 fn clone(&self) -> Self { 598 Windows { ..*self } 599 } 600 } 601 602 impl<'data, T: Sync + 'data> ParallelIterator for Windows<'data, T> { 603 type Item = &'data [T]; 604 drive_unindexed<C>(self, consumer: C) -> C::Result where C: UnindexedConsumer<Self::Item>,605 fn drive_unindexed<C>(self, consumer: C) -> C::Result 606 where 607 C: UnindexedConsumer<Self::Item>, 608 { 609 bridge(self, consumer) 610 } 611 opt_len(&self) -> Option<usize>612 fn opt_len(&self) -> Option<usize> { 613 Some(self.len()) 614 } 615 } 616 617 impl<'data, T: Sync + 'data> IndexedParallelIterator for Windows<'data, T> { drive<C>(self, consumer: C) -> C::Result where C: Consumer<Self::Item>,618 fn drive<C>(self, consumer: C) -> C::Result 619 where 620 C: Consumer<Self::Item>, 621 { 622 bridge(self, consumer) 623 } 624 len(&self) -> usize625 fn len(&self) -> usize { 626 assert!(self.window_size >= 1); 627 self.slice.len().saturating_sub(self.window_size - 1) 628 } 629 with_producer<CB>(self, callback: CB) -> CB::Output where CB: ProducerCallback<Self::Item>,630 fn with_producer<CB>(self, callback: CB) -> CB::Output 631 where 632 CB: ProducerCallback<Self::Item>, 633 { 634 callback.callback(WindowsProducer { 635 window_size: self.window_size, 636 slice: self.slice, 637 }) 638 } 639 } 640 641 struct WindowsProducer<'data, T: 'data + Sync> { 642 window_size: usize, 643 slice: &'data [T], 644 } 645 646 impl<'data, T: 'data + Sync> Producer for WindowsProducer<'data, T> { 647 type Item = &'data [T]; 648 type IntoIter = ::std::slice::Windows<'data, T>; 649 into_iter(self) -> Self::IntoIter650 fn into_iter(self) -> Self::IntoIter { 651 self.slice.windows(self.window_size) 652 } 653 split_at(self, index: usize) -> (Self, Self)654 fn split_at(self, index: usize) -> (Self, Self) { 655 let left_index = cmp::min(self.slice.len(), index + (self.window_size - 1)); 656 let left = &self.slice[..left_index]; 657 let right = &self.slice[index..]; 658 ( 659 WindowsProducer { 660 window_size: self.window_size, 661 slice: left, 662 }, 663 WindowsProducer { 664 window_size: self.window_size, 665 slice: right, 666 }, 667 ) 668 } 669 } 670 671 /// Parallel iterator over mutable items in a slice 672 #[derive(Debug)] 673 pub struct IterMut<'data, T: 'data + Send> { 674 slice: &'data mut [T], 675 } 676 677 impl<'data, T: Send + 'data> ParallelIterator for IterMut<'data, T> { 678 type Item = &'data mut T; 679 drive_unindexed<C>(self, consumer: C) -> C::Result where C: UnindexedConsumer<Self::Item>,680 fn drive_unindexed<C>(self, consumer: C) -> C::Result 681 where 682 C: UnindexedConsumer<Self::Item>, 683 { 684 bridge(self, consumer) 685 } 686 opt_len(&self) -> Option<usize>687 fn opt_len(&self) -> Option<usize> { 688 Some(self.len()) 689 } 690 } 691 692 impl<'data, T: Send + 'data> IndexedParallelIterator for IterMut<'data, T> { drive<C>(self, consumer: C) -> C::Result where C: Consumer<Self::Item>,693 fn drive<C>(self, consumer: C) -> C::Result 694 where 695 C: Consumer<Self::Item>, 696 { 697 bridge(self, consumer) 698 } 699 len(&self) -> usize700 fn len(&self) -> usize { 701 self.slice.len() 702 } 703 with_producer<CB>(self, callback: CB) -> CB::Output where CB: ProducerCallback<Self::Item>,704 fn with_producer<CB>(self, callback: CB) -> CB::Output 705 where 706 CB: ProducerCallback<Self::Item>, 707 { 708 callback.callback(IterMutProducer { slice: self.slice }) 709 } 710 } 711 712 struct IterMutProducer<'data, T: 'data + Send> { 713 slice: &'data mut [T], 714 } 715 716 impl<'data, T: 'data + Send> Producer for IterMutProducer<'data, T> { 717 type Item = &'data mut T; 718 type IntoIter = ::std::slice::IterMut<'data, T>; 719 into_iter(self) -> Self::IntoIter720 fn into_iter(self) -> Self::IntoIter { 721 self.slice.iter_mut() 722 } 723 split_at(self, index: usize) -> (Self, Self)724 fn split_at(self, index: usize) -> (Self, Self) { 725 let (left, right) = self.slice.split_at_mut(index); 726 ( 727 IterMutProducer { slice: left }, 728 IterMutProducer { slice: right }, 729 ) 730 } 731 } 732 733 /// Parallel iterator over mutable non-overlapping chunks of a slice 734 #[derive(Debug)] 735 pub struct ChunksMut<'data, T: 'data + Send> { 736 chunk_size: usize, 737 slice: &'data mut [T], 738 } 739 740 impl<'data, T: Send + 'data> ParallelIterator for ChunksMut<'data, T> { 741 type Item = &'data mut [T]; 742 drive_unindexed<C>(self, consumer: C) -> C::Result where C: UnindexedConsumer<Self::Item>,743 fn drive_unindexed<C>(self, consumer: C) -> C::Result 744 where 745 C: UnindexedConsumer<Self::Item>, 746 { 747 bridge(self, consumer) 748 } 749 opt_len(&self) -> Option<usize>750 fn opt_len(&self) -> Option<usize> { 751 Some(self.len()) 752 } 753 } 754 755 impl<'data, T: Send + 'data> IndexedParallelIterator for ChunksMut<'data, T> { drive<C>(self, consumer: C) -> C::Result where C: Consumer<Self::Item>,756 fn drive<C>(self, consumer: C) -> C::Result 757 where 758 C: Consumer<Self::Item>, 759 { 760 bridge(self, consumer) 761 } 762 len(&self) -> usize763 fn len(&self) -> usize { 764 div_round_up(self.slice.len(), self.chunk_size) 765 } 766 with_producer<CB>(self, callback: CB) -> CB::Output where CB: ProducerCallback<Self::Item>,767 fn with_producer<CB>(self, callback: CB) -> CB::Output 768 where 769 CB: ProducerCallback<Self::Item>, 770 { 771 callback.callback(ChunksMutProducer { 772 chunk_size: self.chunk_size, 773 slice: self.slice, 774 }) 775 } 776 } 777 778 struct ChunksMutProducer<'data, T: 'data + Send> { 779 chunk_size: usize, 780 slice: &'data mut [T], 781 } 782 783 impl<'data, T: 'data + Send> Producer for ChunksMutProducer<'data, T> { 784 type Item = &'data mut [T]; 785 type IntoIter = ::std::slice::ChunksMut<'data, T>; 786 into_iter(self) -> Self::IntoIter787 fn into_iter(self) -> Self::IntoIter { 788 self.slice.chunks_mut(self.chunk_size) 789 } 790 split_at(self, index: usize) -> (Self, Self)791 fn split_at(self, index: usize) -> (Self, Self) { 792 let elem_index = cmp::min(index * self.chunk_size, self.slice.len()); 793 let (left, right) = self.slice.split_at_mut(elem_index); 794 ( 795 ChunksMutProducer { 796 chunk_size: self.chunk_size, 797 slice: left, 798 }, 799 ChunksMutProducer { 800 chunk_size: self.chunk_size, 801 slice: right, 802 }, 803 ) 804 } 805 } 806 807 /// Parallel iterator over slices separated by a predicate 808 pub struct Split<'data, T: 'data, P> { 809 slice: &'data [T], 810 separator: P, 811 } 812 813 impl<'data, T, P: Clone> Clone for Split<'data, T, P> { clone(&self) -> Self814 fn clone(&self) -> Self { 815 Split { 816 separator: self.separator.clone(), 817 ..*self 818 } 819 } 820 } 821 822 impl<'data, T: Debug, P> Debug for Split<'data, T, P> { fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result823 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 824 f.debug_struct("Split").field("slice", &self.slice).finish() 825 } 826 } 827 828 impl<'data, T, P> ParallelIterator for Split<'data, T, P> 829 where 830 P: Fn(&T) -> bool + Sync + Send, 831 T: Sync, 832 { 833 type Item = &'data [T]; 834 drive_unindexed<C>(self, consumer: C) -> C::Result where C: UnindexedConsumer<Self::Item>,835 fn drive_unindexed<C>(self, consumer: C) -> C::Result 836 where 837 C: UnindexedConsumer<Self::Item>, 838 { 839 let producer = SplitProducer::new(self.slice, &self.separator); 840 bridge_unindexed(producer, consumer) 841 } 842 } 843 844 /// Implement support for `SplitProducer`. 845 impl<'data, T, P> Fissile<P> for &'data [T] 846 where 847 P: Fn(&T) -> bool, 848 { length(&self) -> usize849 fn length(&self) -> usize { 850 self.len() 851 } 852 midpoint(&self, end: usize) -> usize853 fn midpoint(&self, end: usize) -> usize { 854 end / 2 855 } 856 find(&self, separator: &P, start: usize, end: usize) -> Option<usize>857 fn find(&self, separator: &P, start: usize, end: usize) -> Option<usize> { 858 self[start..end].iter().position(separator) 859 } 860 rfind(&self, separator: &P, end: usize) -> Option<usize>861 fn rfind(&self, separator: &P, end: usize) -> Option<usize> { 862 self[..end].iter().rposition(separator) 863 } 864 split_once(self, index: usize) -> (Self, Self)865 fn split_once(self, index: usize) -> (Self, Self) { 866 let (left, right) = self.split_at(index); 867 (left, &right[1..]) // skip the separator 868 } 869 fold_splits<F>(self, separator: &P, folder: F, skip_last: bool) -> F where F: Folder<Self>, Self: Send,870 fn fold_splits<F>(self, separator: &P, folder: F, skip_last: bool) -> F 871 where 872 F: Folder<Self>, 873 Self: Send, 874 { 875 let mut split = self.split(separator); 876 if skip_last { 877 split.next_back(); 878 } 879 folder.consume_iter(split) 880 } 881 } 882 883 /// Parallel iterator over mutable slices separated by a predicate 884 pub struct SplitMut<'data, T: 'data, P> { 885 slice: &'data mut [T], 886 separator: P, 887 } 888 889 impl<'data, T: Debug, P> Debug for SplitMut<'data, T, P> { fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result890 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 891 f.debug_struct("SplitMut") 892 .field("slice", &self.slice) 893 .finish() 894 } 895 } 896 897 impl<'data, T, P> ParallelIterator for SplitMut<'data, T, P> 898 where 899 P: Fn(&T) -> bool + Sync + Send, 900 T: Send, 901 { 902 type Item = &'data mut [T]; 903 drive_unindexed<C>(self, consumer: C) -> C::Result where C: UnindexedConsumer<Self::Item>,904 fn drive_unindexed<C>(self, consumer: C) -> C::Result 905 where 906 C: UnindexedConsumer<Self::Item>, 907 { 908 let producer = SplitProducer::new(self.slice, &self.separator); 909 bridge_unindexed(producer, consumer) 910 } 911 } 912 913 /// Implement support for `SplitProducer`. 914 impl<'data, T, P> Fissile<P> for &'data mut [T] 915 where 916 P: Fn(&T) -> bool, 917 { length(&self) -> usize918 fn length(&self) -> usize { 919 self.len() 920 } 921 midpoint(&self, end: usize) -> usize922 fn midpoint(&self, end: usize) -> usize { 923 end / 2 924 } 925 find(&self, separator: &P, start: usize, end: usize) -> Option<usize>926 fn find(&self, separator: &P, start: usize, end: usize) -> Option<usize> { 927 self[start..end].iter().position(separator) 928 } 929 rfind(&self, separator: &P, end: usize) -> Option<usize>930 fn rfind(&self, separator: &P, end: usize) -> Option<usize> { 931 self[..end].iter().rposition(separator) 932 } 933 split_once(self, index: usize) -> (Self, Self)934 fn split_once(self, index: usize) -> (Self, Self) { 935 let (left, right) = self.split_at_mut(index); 936 (left, &mut right[1..]) // skip the separator 937 } 938 fold_splits<F>(self, separator: &P, folder: F, skip_last: bool) -> F where F: Folder<Self>, Self: Send,939 fn fold_splits<F>(self, separator: &P, folder: F, skip_last: bool) -> F 940 where 941 F: Folder<Self>, 942 Self: Send, 943 { 944 let mut split = self.split_mut(separator); 945 if skip_last { 946 split.next_back(); 947 } 948 folder.consume_iter(split) 949 } 950 } 951